1
|
Zelleroth S, Stam F, Nylander E, Kjellgren E, Gising J, Larhed M, Grönbladh A, Hallberg M. The decanoate esters of nandrolone, testosterone, and trenbolone induce steroid specific memory impairment and somatic effects in the male rat. Horm Behav 2024; 161:105501. [PMID: 38368844 DOI: 10.1016/j.yhbeh.2024.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.
Collapse
Affiliation(s)
- Sofia Zelleroth
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Frida Stam
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Ellinor Kjellgren
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden
| | - Johan Gising
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, SE-751 23, Uppsala University, Sweden.
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, SE-751 23, Uppsala University, Sweden.
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| |
Collapse
|
2
|
Corsini W, Esteves A, Junior WCR, de Almeida Hermes T, Damião B, Rodrigues MR. Association between neuronal degeneration and supraphysiological doses of two types of anabolic steroids in rat brain. Steroids 2022; 188:109121. [PMID: 36208700 DOI: 10.1016/j.steroids.2022.109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022]
Abstract
The anabolic androgenic steroids (AAS) are natural compounds that are precursors or derivatives of testosterone and, as a consequence of indiscriminate use, cause irreversible neuronal effects. For this study, 70 brain samples were used from male Wistar rats, separated into 14 groups, divided into: control, sedentary, and exercise groups; in the concentrations: 5 mg, 10 mg, and 15 mg. Two different AAS were used: Testosterone Cypionate (TC) and Nandrolone Decanoate (ND). The encephali followed all the conventional histological procedures, for further analysis of the estimates of neuron bodies of the Locus coeruleus; also being carried out the techniques of the Tunnel Assay and Von Kossa staining. The results obtained show significant values different from the control group: Testosterone Cypionate (TCS): 5 mg (25,00 ± 4,47); 10 mg (23,67 ± 4,45) and 15 mg (21,93 ± 5,65), as well as for Nandrolone Decanoate (ND) in the doses: 5 mg (23,40 ± 3,81); 10 mg (22,80 ± 3,80) and 15 mg (22,80 ± 4,54) being the values of the control group (CGS) 34,27 ± 6,06. For the groups that exercised, the values were: TCT 5 mg 20,87 ± 3,23; TCT 10 mg 21,93 ± 4,91 and TCT 15 mg 21,47 ± 4,36 while, the Nandrolone Decanoate (ND) groups, in the different doses were: NDT 5 mg 21,53 ± 4,34; NDT 10 mg 23,53 ± 1,68 and NDT 15 mg 23,40 ± 2,20, also expressing significant values different from the control group. When comparing the sedentary control group with the animals that exercised, a statistically significant difference was observed being: CGS 34,27 ± 6,06; TCT 5 mg; 20,87 ± 3,23; NDT 5 mg 21,53 ± 4,34; TCT 10 mg 21,93 ± 4,91; NDT 10 mg 23,53 ± 1,68; TCT 15 mg 21,47 ± 4,36 and NDT 15 mg 23,40 ± 2,20. The results of this study, point out that both steroids drastically reduce neuronal density in the Locus coeruleus area inferring that, the possible cause of neuronal death is necrosis, caused by intracellular calcium imbalance.
Collapse
Affiliation(s)
- Wagner Corsini
- Master in the Program of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil.
| | - Alessandra Esteves
- Institute of Biomedical Sciences, Department of Anatomy, Federal University of Alfenas, Alfenas, Brazil
| | - Wagner Costa Rossi Junior
- Institute of Biomedical Sciences, Department of Anatomy, Federal University of Alfenas, Alfenas, Brazil
| | - Túlio de Almeida Hermes
- Institute of Biomedical Sciences, Department of Anatomy, Federal University of Alfenas, Alfenas, Brazil
| | | | - Maria Rita Rodrigues
- Faculty of Pharmaceutical Science, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
3
|
Mowaad NA, El-Shamarka MEA, Khadrawy YA. The Behavioral and Neurochemical Changes Induced by Boldenone and/or Tramadol in Adult Male Rats. Neurochem Res 2022; 48:1320-1333. [PMID: 36449200 PMCID: PMC10066173 DOI: 10.1007/s11064-022-03827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/17/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
AbstractBoldenone and tramadol are abused among large sectors of adolescents. Therefore, the behavioral changes concerned with memory and cognitive functions and neurochemical variations were investigated in the cortex of rats treated with boldenone and/or tramadol. Rats were divided into control and rats treated with boldenone, tramadol, or both drugs. At the end of the treatment period, the memory and cognitive functions were evaluated by the Y-maze test (YMT) and elevated plus maze test (EPMT) and the motor activity was determined by the open field test (OFT). The cortex was dissected to carry out the neurochemical analyses. Rats treated with boldenone and/or tramadol showed impaired memory and cognitive functions and reduced motor activity. A significant increase in lipid peroxidation (MDA), nitric oxide (NO), and a significant decrease in reduced glutathione (GSH) were observed in the cortex of rats treated with boldenone and/or tramadol. The levels of acetylcholinesterase (AChE) and monoamine oxidase (MAO) decreased significantly. Western blot data showed a significant decrease in Bcl2 and a significant increase in caspase-3 and inducible nitric oxide synthase (iNOS) in rats treated with boldenone and/or tramadol. These changes were associated with neuronal death as indicated from the histopathological examination.The present findings indicate that boldenone and/or tramadol induced impairment in memory and cognitive functions. These changes could be mediated by the increase in oxidative stress, neuroinflammation, reduced AChE level, and reduced number of survived neurons in the cortex as indicated from the decreased Bcl2 level and the histological examination.
Collapse
Affiliation(s)
- Noha A Mowaad
- Department of Narcotics, Ergogenic Aids and Poisons,Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marwa E A El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons,Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt.
| |
Collapse
|
4
|
Bjørnebekk A, Kaufmann T, Hauger LE, Klonteig S, Hullstein IR, Westlye LT. Long-term Anabolic-Androgenic Steroid Use Is Associated With Deviant Brain Aging. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:579-589. [PMID: 33811018 DOI: 10.1016/j.bpsc.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND High-dose long-term use of anabolic-androgenic steroids (AASs) may cause a range of adverse effects, including brain and cognitive abnormalities. We performed age prediction based on brain scans to test whether prolonged AAS use is associated with accentuated brain aging. METHODS T1-weighted magnetic resonance imaging (3D MPRAGE [magnetization-prepared rapid acquisition gradient-echo]) scans were obtained from male weightlifters with a history of prolonged AAS use (n = 130) or no AAS use (n = 99). We trained machine learning models on combinations of regional brain volumes, cortical thickness, and surface area in an independent training set of 1838 healthy male subjects (18-92 years of age) and predicted brain age for each participant in our study. Including cross-sectional and longitudinal (mean interval = 3.5 years, n = 76) magnetic resonance imaging data, we used linear mixed-effects models to compare the gap between chronological age and predicted brain age (the brain age gap [BAG]) for the two groups and tested for group differences in the rate of change in BAG. We tested for associations between apparent brain aging and AAS use duration, pattern of administration, and dependence. RESULTS AAS users had higher BAG compared with weightlifting control subjects, which was associated with dependency and longer history of use. Group differences in BAG could not be explained by other substance use, general cognitive abilities, or depression. While longitudinal analysis revealed no evidence of increased brain aging in the overall AAS group, accelerated brain aging was seen with longer AAS exposure. CONCLUSIONS The findings suggest that long-term high-dose AAS use may have adverse effects on brain aging, potentially linked to dependency and exaggerated use of AASs.
Collapse
Affiliation(s)
- Astrid Bjørnebekk
- Anabolic Androgenic Steroid Research Group, Section for Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Lisa E Hauger
- Anabolic Androgenic Steroid Research Group, Section for Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sandra Klonteig
- Anabolic Androgenic Steroid Research Group, Section for Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingunn R Hullstein
- Norwegian Doping Control Laboratory, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; K.G. Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Chrobak W, Pacut DW, Blomgren F, Rodin A, Swenson J, Ermilova I. Component of Cannabis, Cannabidiol, as a Possible Drug against the Cytotoxicity of Aβ(31-35) and Aβ(25-35) Peptides: An Investigation by Molecular Dynamics and Well-Tempered Metadynamics Simulations. ACS Chem Neurosci 2021; 12:660-674. [PMID: 33544587 PMCID: PMC8023578 DOI: 10.1021/acschemneuro.0c00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
In this work cannabidiol (CBD) was investigated as a possible drug against the cytotoxicity of Aβ(31-35) and Aβ(25-35) peptides with the help of atomistic molecular dynamics (MD) and well-tempered metadynamics simulations. Four interrelated mechanisms of possible actions of CBD are proposed from our computations. This implies that one mechanism can be a cause or/and a consequence of another. CBD is able to decrease the aggregation of peptides at certain concentrations of compounds in water. This particular action is more prominent for Aβ(25-35), since originally Aβ(31-35) did not exhibit aggregation properties in aqueous solutions. Interactions of CBD with the peptides affect secondary structures of the latter ones. Clusters of CBD are seen as possible adsorbents of Aβ(31-35) and Aβ(25-35) since peptides are tending to aggregate around them. And last but not least, CBD exhibits binding to MET35. All four mechanisms of actions can possibly inhibit the Aβ-cytotoxicity as discussed in this paper. Moreover, the amount of water also played a role in peptide clustering: with a growing concentration of peptides in water without a drug, the aggregation of both Aβ(31-35) and Aβ(25-35) increased. The number of hydrogen bonds between peptides and water was significantly higher for simulations with Aβ(25-35) at the higher concentration of peptides, while for Aβ(31-35) that difference was rather insignificant. The presence of CBD did not substantially affect the number of hydrogen bonds in the simulated systems.
Collapse
Affiliation(s)
| | | | | | | | - Jan Swenson
- Department of Physics, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
6
|
Santos LCDS, Lapa Neto CJC, Santos AMGD, Marinho KSDN, Nascimento BJD, Alves ER, Teixeir ÁAC, Wanderley-Teixeira V. Immunohistochemical and histophysiological study of prolonged use of nandrolone on reproductive organs and fertility. Biotech Histochem 2020; 96:468-486. [PMID: 32981356 DOI: 10.1080/10520295.2020.1822545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigated possible changes in morphology and immunohistochemistry of the uterus and ovaries of rats caused by nandrolone (ND); we also investigated effects on fertility. We used 30 rats divided into three experimental groups: control (C), control vehicle (CV) and 5 mg/kg ND. Rats treated with ND exhibited loss of estrous cyclicity with predominance of the estrus phase, increased body weight and an organosomatic index that was decreased for the ovaries, but increased for the uterus. In the ovary, we observed a reduction in primary and secondary follicles and an increase in tertiary follicles; no corpora lutea were observed. Estrogen and progesterone levels were reduced. In the uterus, the endometrium was edematous with hyperplasic glands. The cytokines, TNFα and IL6, and the apoptotic index were increased in rats treated with ND. VEGF-A was increased in the ovaries and decreased in the uterus. We conclude that ND disrupts ovarian and uterine histophysiology by establishing an anovulatory and inflammatory condition, which directly affects reproduction.
Collapse
Affiliation(s)
| | | | | | | | - Bruno José do Nascimento
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco, Recife, Brazil
| | - Erique Ricardo Alves
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
7
|
Damião B, Rossi-Junior WC, Guerra FDR, Marques PP, Nogueira DA, Esteves A. Anabolic steroids and their effects of on neuronal density in cortical areas and hippocampus of mice. BRAZ J BIOL 2020; 81:537-543. [PMID: 32876164 DOI: 10.1590/1519-6984.224642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/01/2020] [Indexed: 12/26/2022] Open
Abstract
Anabolic substances have been increasingly used by bodybuilders and athletes with the goal of improving performance and aesthetics. However, this practice has caused some concern to physicians and researchers because of unknowledge of consequences that the indiscriminate and illicit use of these substances can cause. Thus, this study analyzed the effects of two commercially available anabolic steroids (AS), Winstrol Depot® (Stanozolol) and Deposteron® (Testosterone Cypionate), in the neuronal density of limbic, motor and sensory regions on the cerebral cortex and in CA1, CA2, CA3 regions of the hippocampus. A total of 60 Swiss mice were used (30 males and 30 females), separated into three groups: control and two experimental groups, which received the AAS. From each brain, homotypic and semi-serial samples were taken in frontal sections from areas established for the study. The results showed that females treated with testosterone cypionate presented a reduction in all regions tested and the ones treated with Stanozolol showed a decrease in some hippocampal areas. Regarding male animals, stanozolol led to a decrease in neuron number in one hippocampal region. These data allow us to conclude that supra-physiological doses of steroids used in this study, can cause considerable damage to nervous tissue with ultrastructural and consequently behavioral impairment. These changes could interfere with the loss of physical yield and performance of athletes and non-athletes and may cause irreparable damage to individuals making irresponsible use of anabolic steroids.
Collapse
Affiliation(s)
- B Damião
- Programa de Ciências Farmacêuticas, Universidade Federal de Alfenas - UNIFAL-MG, R. Gabriel Monteiro da Silva, 700, Centro, CEP 37130-000, Alfenas, MG, Brasil
| | - W C Rossi-Junior
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas - UNIFAL-MG, R. Gabriel Monteiro da Silva, 700, Centro, CEP 37130-000, Alfenas, MG, Brasil
| | - F D R Guerra
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas - UNIFAL-MG, R. Gabriel Monteiro da Silva, 700, Centro, CEP 37130-000, Alfenas, MG, Brasil
| | - P P Marques
- Departamento de Morfologia, Faculdade de Ciências Médicas, Universidade José Vellano - UNIFENAS, Rodovia MG-179, Km 0, s/n, CEP 37130-000, Alfenas, MG, Brasil
| | - D A Nogueira
- Departamento de Estatística, Instituto de Ciências Exatas, Universidade Federal de Alfenas - UNIFAL-MG, R. Gabriel Monteiro da Silva, 700, Centro, CEP 37130-000, Alfenas, MG, Brasil
| | - A Esteves
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas - UNIFAL-MG, R. Gabriel Monteiro da Silva, 700, Centro, CEP 37130-000, Alfenas, MG, Brasil
| |
Collapse
|
8
|
Bianchi VE, Rizzi L, Bresciani E, Omeljaniuk RJ, Torsello A. Androgen Therapy in Neurodegenerative Diseases. J Endocr Soc 2020; 4:bvaa120. [PMID: 33094209 PMCID: PMC7568521 DOI: 10.1210/jendso/bvaa120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington disease, are characterized by the loss of neurons as well as neuronal function in multiple regions of the central and peripheral nervous systems. Several studies in animal models have shown that androgens have neuroprotective effects in the brain and stimulate axonal regeneration. The presence of neuronal androgen receptors in the peripheral and central nervous system suggests that androgen therapy might be useful in the treatment of neurodegenerative diseases. To illustrate, androgen therapy reduced inflammation, amyloid-β deposition, and cognitive impairment in patients with AD. As well, improvements in remyelination in MS have been reported; by comparison, only variable results are observed in androgen treatment of PD. In ALS, androgen administration stimulated motoneuron recovery from progressive damage and regenerated both axons and dendrites. Only a few clinical studies are available in human individuals despite the safety and low cost of androgen therapy. Clinical evaluations of the effects of androgen therapy on these devastating diseases using large populations of patients are strongly needed.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, Falciano, San Marino
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
9
|
Corona G, Guaraldi F, Rastrelli G, Sforza A, Maggi M. Testosterone Deficiency and Risk of Cognitive Disorders in Aging Males. World J Mens Health 2020; 39:9-18. [PMID: 32378366 PMCID: PMC7752509 DOI: 10.5534/wjmh.200017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cognitive impairment and dementia are predicted to undergo a dramatic increase in the following years with more than 131.5 million people being affected by 2030. Although vascular diseases play the most important role in the pathogenesis of memory impairment in aging men, some pre-clinical and clinical evidence has suggested a possible contribution of the age-dependent reduction of testosterone (T). In this paper we have summarized and discussed all the information derived from available animal and experimental studies. In addition, we meta-analyzed data rising from all randomized placebo controlled trials (RCTs) published so far. Only limited preclinical and clinical evidence can support a possible contribution of T in the pathogenesis of the age-dependent impairment of cognitive functions. In addition, our meta-analysis did not support the use of T replacement therapy for the improvement of several cognitive domains analyzed including attention/working memory, executive function, language, verbal memory, visual memory, visuomotor ability, and visuospatial ability. However, it is important to recognize that the vast majority of available RCTs included mixed populations of subjects with eugonadism and hypogonadism preventing any final conclusion being drawn on these issues.
Collapse
Affiliation(s)
- Giovanni Corona
- Endocrinology Unit, Medical Department, Azienda Usl, Maggiore-Bellaria Hospital, Bologna, Italy.
| | - Federica Guaraldi
- Pituitary Unit, IRCCS Institute of Neurological Science of Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia Rastrelli
- Andrology, Female Endocrinology and Gender Incongruence Unit, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Florence, Italy
| | - Alessandra Sforza
- Endocrinology Unit, Medical Department, Azienda Usl, Maggiore-Bellaria Hospital, Bologna, Italy
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Hauger LE, Westlye LT, Fjell AM, Walhovd KB, Bjørnebekk A. Structural brain characteristics of anabolic-androgenic steroid dependence in men. Addiction 2019; 114:1405-1415. [PMID: 30955206 PMCID: PMC6767448 DOI: 10.1111/add.14629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
AIM To identify differences in brain morphology between dependent and non-dependent male anabolic-androgenic steroid (AAS) users. DESIGN This study used cross-sectional data from a longitudinal study on male weightlifters. PARTICIPANTS Oslo University Hospital, Norway. SETTING Eighty-one AAS users were divided into two groups; AAS-dependent (n = 43) and AAS-non-dependent (n = 38). MEASUREMENTS Neuroanatomical volumes and cerebral cortical thickness were estimated based on magnetic resonance imaging (MRI) using FreeSurfer. Background and health information were obtained using a semi-structured interview. AAS-dependence was evaluated in a standardized clinical interview using a version of the Structured Clinical Interview for DSM-IV, adapted to apply to AAS-dependence. FINDINGS Compared with non-dependent users, dependent users had significantly thinner cortex in three clusters of the right hemisphere and in five clusters of the left hemisphere, including frontal, temporal, parietal and occipital regions. Profound differences were seen in frontal regions (left pars orbitalis, cluster-wise P < 0.001, right superior frontal, cluster-wise P < 0.001), as has been observed in other dependencies. Group differences were also seen when excluding participants with previous or current non-AAS drug abuse (left pre-central, cluster-wise P < 0.001, left pars orbitalis, cluster-wise P = 0.010). CONCLUSION Male dependent anabolic-androgenic steroid users appear to have thinner cortex in widespread regions, specifically in pre-frontal areas involved in inhibitory control and emotional regulation, compared with non-dependent anabolic-androgenic steroid users.
Collapse
Affiliation(s)
- Lisa E. Hauger
- The Anabolic Androgenic Steroid Research Group, National Advisory Unit on Substance Use Disorder Treatment, the Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Lars T. Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical MedicineUniversity of OsloNorway,Department of PsychologyUniversity of OsloOsloNorway
| | - Anders M. Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloOsloNorway,Department of Radiology and Nuclear MedicineOslo University HospitalOsloNorway
| | - Kristine B. Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloOsloNorway,Department of Radiology and Nuclear MedicineOslo University HospitalOsloNorway
| | - Astrid Bjørnebekk
- The Anabolic Androgenic Steroid Research Group, National Advisory Unit on Substance Use Disorder Treatment, the Division of Mental Health and AddictionOslo University HospitalOsloNorway
| |
Collapse
|
11
|
Karimooy FN, Bideskan AE, Pour AM, Hoseini SM. Neurotoxic Effects of Stanozolol on Male Rats‘ Hippocampi: Does Stanozolol cause apoptosis? Biomol Concepts 2019; 10:73-81. [DOI: 10.1515/bmc-2019-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/03/2019] [Indexed: 11/15/2022] Open
Abstract
AbstractStanozolol is an anabolic-androgenic steroid which is commonly abused by athletes for improved energy, appearance, and physical size. It has been previously shown to cause changes in behaviour and has various physical effects. Studies have previously been conducted on its neurotoxic effect on the central nervous system (CNS), which are typically psychological in nature. This study was performed to investigate the apoptotic effect of stanozolol on different parts of the rat hippocampus. Sixteen male Wistar rats were divided randomly into two groups (experimental and control). The experimental group received subcutaneous injections of stanozolol (5mg/kg/day) for consecutive 28 days, whereas the control group received saline using the same dosing schedule and administration route. After routine procedures, coronal sections of rat brain were stained with Toluidine blue and TUNEL for pre-apoptotic and apoptotic cell detection, respectively. In order to compare groups, the mean number of TUNEL-positive and pre-apoptotic neurons per unit area were calculated and analysed. Histopathological examination revealed that the mean number of pre-apoptotic and apoptotic neurons in the CA1, CA2, CA3 and DG areas of the hippocampus were significantly increased in the stanozolol treated group. In conclusion, stanozolol abuse may induce pre-apoptotic and apoptotic cell formation in different regions of the hippocampus.
Collapse
|
12
|
Zelleroth S, Nylander E, Nyberg F, Grönbladh A, Hallberg M. Toxic Impact of Anabolic Androgenic Steroids in Primary Rat Cortical Cell Cultures. Neuroscience 2018; 397:172-183. [PMID: 30500611 DOI: 10.1016/j.neuroscience.2018.11.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
Abstract
The use of anabolic androgenic steroids (AASs) among non-athletes is a public health-problem, as abusers underestimate the negative effects associated with these drugs. The present study investigated the toxic effects of testosterone, nandrolone, stanozolol, and trenbolone, and aimed to understand how AAS abuse affects the brain. Mixed cortical cultures from embryonic rats were grown in vitro for 7 days and thereafter treated with increasing concentrations of AASs for 24 h (single-dose) or 3 days (repeated exposure). Cells were co-treated with the androgen-receptor (AR) antagonist flutamide, to determine whether the potential adverse effects observed were mediated by the AR. Cellular toxicity was determined by measuring mitochondrial activity, lactate dehydrogenase (LDH) release, and caspase-3/7 activity. Nandrolone, unlike the other AASs studied, indicated an effect on mitochondrial activity after 24 h. Furthermore, single-dose exposure with testosterone, nandrolone and trenbolone increased LDH release, while no effect was detected with stanozolol. However, all of the four steroids negatively affected mitochondrial function and resulted in LDH release after repeated exposure. Testosterone, nandrolone, and trenbolone caused their toxic effects by induction of apoptosis, unlike stanozolol that seemed to induce necrosis. Flutamide almost completely prevented AAS-induced toxicity by maintaining mitochondrial function, cellular integrity, and inhibition of apoptosis. Overall, we found that supra-physiological concentrations of AASs induce cell death in mixed primary cortical cultures, but to different extents, and possibly through various mechanisms. The data presented herein suggest that the molecular interactions of the AASs with the AR are primarily responsible for the toxic outcomes observed.
Collapse
Affiliation(s)
- Sofia Zelleroth
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| | - Fred Nyberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| |
Collapse
|
13
|
|
14
|
Sýkorová S, Fojtíková L, Kuchař M, Mikšátková P, Karamonová L, Fukal L, Lapčík O, Holubová B. Sensitive enzyme immunoassay for screening methandienone in dietary supplements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1653-1661. [PMID: 29601260 DOI: 10.1080/19440049.2018.1459876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Methandienone is a synthetic exogenous steroid which, like other anabolic steroids, is strictly regulated in many countries. In recent years, increasing numbers have been detected of illegal additions into dietary supplements of methandienone and other anabolic androgenic steroids (AAS). In this work, a competitive indirect enzyme-linked immunosorbent assay (ELISA) has been constructed for the detection of methandienone using an antiserum against methandienone. Under optimal experimental conditions, the ELISA achieved a limit of detection of 0.04 ± 0.01 µg.g-1. The obtained intra- and inter-day coefficients of variation were less than 8%. The developed ELISA was applied in the analysis of real dietary supplement samples. To minimise the effect of the sample matrix, the sample extracts were simply diluted before addition into the immunoassay. The achieved recovery values were around 100%. Results obtained from the ELISA correlated well, both in terms of accuracy and precision, with those obtained by UHPLC-MS/MS (reference method). The presented ELISA could be successfully applied for the simple screening of dietary supplements.
Collapse
Affiliation(s)
- Sandra Sýkorová
- a Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology , University of Chemistry and Technology Prague , Prague , Czech Republic
| | - Lucie Fojtíková
- a Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology , University of Chemistry and Technology Prague , Prague , Czech Republic
| | - Martin Kuchař
- b Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology , University of Chemistry and Technology Prague , Prague , Czech Republic
| | - Petra Mikšátková
- b Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology , University of Chemistry and Technology Prague , Prague , Czech Republic
| | - Ludmila Karamonová
- a Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology , University of Chemistry and Technology Prague , Prague , Czech Republic
| | - Ladislav Fukal
- a Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology , University of Chemistry and Technology Prague , Prague , Czech Republic
| | - Oldřich Lapčík
- b Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology , University of Chemistry and Technology Prague , Prague , Czech Republic
| | - Barbora Holubová
- a Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology , University of Chemistry and Technology Prague , Prague , Czech Republic
| |
Collapse
|
15
|
Goldman A, Basaria S. Adverse health effects of androgen use. Mol Cell Endocrinol 2018; 464:46-55. [PMID: 28606866 DOI: 10.1016/j.mce.2017.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 01/21/2023]
Abstract
Anabolic androgenic steroids (AAS) are performance enhancing drugs commonly used by athletes and bodybuilders to improve appearance and athletic capability. Unfortunately, these testosterone derivatives can be associated with serious and potentially irreversible side effects, and can impact multiple organ systems. It is important that physicians be familiar with these adverse consequences so that they can appropriately counsel patients whom they suspect of AAS-abuse. In this chapter, we will review the negative effects of these compounds on various organ systems in men using AAS.
Collapse
Affiliation(s)
- Anna Goldman
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shehzad Basaria
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Badawy AAB. Modulation of Tryptophan and Serotonin Metabolism as a Biochemical Basis of the Behavioral Effects of Use and Withdrawal of Androgenic-Anabolic Steroids and Other Image- and Performance-Enhancing Agents. Int J Tryptophan Res 2018; 11:1178646917753422. [PMID: 29487480 PMCID: PMC5821294 DOI: 10.1177/1178646917753422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/29/2017] [Indexed: 01/01/2023] Open
Abstract
Modulation of tryptophan (Trp) metabolism may underpin the behavioral effects of androgenic-anabolic steroids (AAS) and associated image and performance enhancers. Euphoria, arousal, and decreased anxiety observed with moderate use and exercise may involve enhanced cerebral serotonin synthesis and function by increased release of albumin-bound Trp and estrogen-mediated liver Trp 2,3-dioxygenase (TDO) inhibition and enhancement of serotonin function. Aggression, anxiety, depression, personality disorders, and psychosis, observed on withdrawal of AAS or with use of large doses, can be caused by decreased serotonin synthesis due to TDO induction on withdrawal, excess Trp inhibiting the 2 enzymes of serotonin synthesis, and increased cerebral levels of neuroactive kynurenines. Exercise and excessive protein and branched-chain amino acid intakes may aggravate the effects of large AAS dosage. The hypothesis is testable in humans and experimental animals by measuring parameters of Trp metabolism and disposition and related metabolic processes.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
17
|
Massa MG, David C, Jörg S, Berg J, Gisevius B, Hirschberg S, Linker RA, Gold R, Haghikia A. Testosterone Differentially Affects T Cells and Neurons in Murine and Human Models of Neuroinflammation and Neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28634006 DOI: 10.1016/j.ajpath.2017.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high female-to-male sex ratio of multiple sclerosis (MS) prevalence has continuously confounded researchers, especially in light of male patients' accelerated disease course at later stages of MS. Although multiple studies have concentrated on estrogenic mechanisms of disease modulation, fairly little attention has been paid to androgenic effects in a female system, and even fewer studies have attempted to dissociate hormonal effects on the neurodegenerative and neuroinflammatory processes of MS. Herein, we demonstrate the differential effects of hormone treatment on the acute inflammatory and chronic neurodegenerative phases of murine experimental autoimmune encephalomyelitis. Although s.c. treatment with testosterone and aromatase inhibitor applied beginning on the day of immunization ameliorated initial course of disease, similar treatment administered therapeutically exacerbated chronic disease course. Spinal cord analyses of axonal densities reflected the clinical scores of the chronic phase. In vitro, testosterone treatment not only decreased Th1 and Th17 differentiation in an aromatase-independent fashion, but also exacerbated cell death in induced pluripotent stem cell-derived primary human neurons under oxidative stress conditions in an aromatase inhibitor-dependent manner. Thus, through the alleviation of inflammatory processes and the exacerbation of neurodegenerative processes, androgens may contribute to the epidemiologic sex differentials observed in MS prevalence and course.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Christina David
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Stefanie Jörg
- Department of Neurology, Friedrich-Alexander University-Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Berg
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Barbara Gisevius
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Sarah Hirschberg
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander University-Erlangen-Nuremberg, Erlangen, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany.
| |
Collapse
|
18
|
Structural Brain Imaging of Long-Term Anabolic-Androgenic Steroid Users and Nonusing Weightlifters. Biol Psychiatry 2017; 82:294-302. [PMID: 27616036 DOI: 10.1016/j.biopsych.2016.06.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Prolonged high-dose anabolic-androgenic steroid (AAS) use has been associated with psychiatric symptoms and cognitive deficits, yet we have almost no knowledge of the long-term consequences of AAS use on the brain. The purpose of this study is to investigate the association between long-term AAS exposure and brain morphometry, including subcortical neuroanatomical volumes and regional cortical thickness. METHODS Male AAS users and weightlifters with no experience with AASs or any other equivalent doping substances underwent structural magnetic resonance imaging scans of the brain. The current paper is based upon high-resolution structural T1-weighted images from 82 current or past AAS users exceeding 1 year of cumulative AAS use and 68 non-AAS-using weightlifters. Images were processed with the FreeSurfer software to compare neuroanatomical volumes and cerebral cortical thickness between the groups. RESULTS Compared to non-AAS-using weightlifters, the AAS group had thinner cortex in widespread regions and significantly smaller neuroanatomical volumes, including total gray matter, cerebral cortex, and putamen. Both volumetric and thickness effects remained relatively stable across different AAS subsamples comprising various degrees of exposure to AASs and also when excluding participants with previous and current non-AAS drug abuse. The effects could not be explained by differences in verbal IQ, intracranial volume, anxiety/depression, or attention or behavioral problems. CONCLUSIONS This large-scale systematic investigation of AAS use on brain structure shows negative correlations between AAS use and brain volume and cortical thickness. Although the findings are correlational, they may serve to raise concern about the long-term consequences of AAS use on structural features of the brain.
Collapse
|
19
|
Joksimović J, Selaković D, Jakovljević V, Mihailović V, Katanić J, Boroja T, Rosić G. Alterations of the oxidative status in rat hippocampus and prodepressant effect of chronic testosterone enanthate administration. Mol Cell Biochem 2017; 433:41-50. [DOI: 10.1007/s11010-017-3014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
20
|
Kassa RM, Bonafede R, Boschi F, Bentivoglio M, Mariotti R. Effect of physical exercise and anabolic steroid treatment on spinal motoneurons and surrounding glia of wild-type and ALS mice. Brain Res 2016; 1657:269-278. [PMID: 28048973 DOI: 10.1016/j.brainres.2016.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/07/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022]
Abstract
Motoneuron degeneration is the hallmark of amyotrophic lateral sclerosis (ALS). The cause and predisposing factors for sporadic ALS are still unknown. Exposure to a specific environmental risk factors in subjects with a susceptibility genotype may increase the risk of the disease. The role of physical activity and the use of anabolic steroids are still debated in epidemiological studies on patients and murine models of ALS. To assess at the cellular level the role (beneficial or detrimental) of physical exercise and the use of anabolic steroid, we here investigated, in SOD1(G93A) (mSOD1) mice and wild-type littermates, changes in the ventral horn after regular exercise, treatment with the anabolic androgenic steroid 19-nortestosterone (nandrolone), and their combination, compared with matched control sedentary mice. The experiments were pursued for several weeks until symptom onset in mSOD1 mice. Lumbar motoneurons, astrocytes and microglia were analyzed. In wild-type mice, cytological alterations of motoneurons were observed especially after nandrolone treatment. The following main findings were observed in treated mSOD1 mice versus untreated ones: i) nandrolone treatment markedly enhanced motoneuron loss; this detrimental effect was reverted by the combination with exercise, resulting in increased motoneuron survival; ii) astrocytic activation was most marked after nandrolone treatment when motoneuron damage was most severe; iii) microglia activation was most marked after physical exercise when motoneuron damage was less severe. The results indicate a vulnerability of mSOD1 motoneurons to nandrolone treatment, a potential neuroprotective effect of physical exercise, and a modulation by glial cells in the ALS murine model in the examined paradigms.
Collapse
Affiliation(s)
- Roman M Kassa
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberta Bonafede
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Boschi
- Department of Computer Sciences, University of Verona, Verona, Italy
| | - Marina Bentivoglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
21
|
Westlye LT, Kaufmann T, Alnæs D, Hullstein IR, Bjørnebekk A. Brain connectivity aberrations in anabolic-androgenic steroid users. NEUROIMAGE-CLINICAL 2016; 13:62-69. [PMID: 27942448 PMCID: PMC5133655 DOI: 10.1016/j.nicl.2016.11.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 12/27/2022]
Abstract
Sustained anabolic-androgenic steroid (AAS) use has adverse behavioral consequences, including aggression, violence and impulsivity. Candidate mechanisms include disruptions of brain networks with high concentrations of androgen receptors and critically involved in emotional and cognitive regulation. Here, we tested the effects of AAS on resting-state functional brain connectivity in the largest sample of AAS-users to date. We collected resting-state functional magnetic resonance imaging (fMRI) data from 151 males engaged in heavy resistance strength training. 50 users tested positive for AAS based on the testosterone to epitestosterone (T/E) ratio and doping substances in urine. 16 previous users and 59 controls tested negative. We estimated brain network nodes and their time-series using ICA and dual regression and defined connectivity matrices as the between-node partial correlations. In line with the emotional and behavioral consequences of AAS, current users exhibited reduced functional connectivity between key nodes involved in emotional and cognitive regulation, in particular reduced connectivity between the amygdala and default-mode network (DMN) and between the dorsal attention network (DAN) and a frontal node encompassing the superior and inferior frontal gyri (SFG/IFG) and the anterior cingulate cortex (ACC), with further reductions as a function of dependency, lifetime exposure, and cycle state (on/off). Sustained AAS use has adverse behavioral consequences, including aggression, violence and impulsivity. We obtained r-fMRI data from 50 male users testing positive for AAS and 16 previous users and 59 controls testing negative. We used ICA and dual regression, and defined connectivity matrices as the between-node temporal partial correlations. Current users showed significantly reduced connectivity between amygdala and DMN and between DAN and a SFG/IFG/ACC node.
Collapse
Affiliation(s)
- Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Dag Alnæs
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | | | - Astrid Bjørnebekk
- Division of Mental Health and Addiction, Department on Substance Use Disorder Treatment, Norwegian National Advisory Unit on Substance Use Disorder Treatment, Oslo University Hospital, Norway
| |
Collapse
|
22
|
Toro-Urrego N, Garcia-Segura LM, Echeverria V, Barreto GE. Testosterone Protects Mitochondrial Function and Regulates Neuroglobin Expression in Astrocytic Cells Exposed to Glucose Deprivation. Front Aging Neurosci 2016; 8:152. [PMID: 27445795 PMCID: PMC4921852 DOI: 10.3389/fnagi.2016.00152] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022] Open
Abstract
Testosterone is a hormone that has been shown to confer neuroprotection from different insults affecting the central nervous system (CNS). Testosterone induces this protection by different mechanisms that include the activation of anti-apoptotic pathways that are directly implicated in neuronal survival. However, little attention has been devoted to its actions on glial cells. In the present study, we have assessed whether testosterone exerts protection in a human astrocyte cell model, the T98G cells. Our results indicate that testosterone improves cell survival and mitochondrial membrane potential and reduces nuclear fragmentation and reactive oxygen species (ROS) generation. These effects were accompanied by a positive regulation of neuroglobin, an oxygen-binding and sensor protein, which may serve as a regulator of ROS and nitrogen reactive species (NOS), and these protective effects of testosterone may be at least in part mediated by estradiol and DHT. In conclusion, these findings suggest that astroglia may mediate some of the protective actions of testosterone in the brain upon pathological conditions.
Collapse
Affiliation(s)
- Nicolas Toro-Urrego
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad JaverianaBogotá, Colombia
| | | | | | - George E. Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad JaverianaBogotá, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de ChileSantiago, Chile
- Universidad Científica del SurLima, Perú
| |
Collapse
|
23
|
Turillazzi E, Neri M, Cerretani D, Cantatore S, Frati P, Moltoni L, Busardò FP, Pomara C, Riezzo I, Fineschi V. Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB. J Cell Mol Med 2016; 20:601-12. [PMID: 26828721 PMCID: PMC5125979 DOI: 10.1111/jcmm.12748] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-κB. It has been argued that one of the pathways leading to the activation of NF-κB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF-κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF-κB, and that this negative regulation of ROS is the means through which NF-κB counters programmed cells.
Collapse
Affiliation(s)
- Emanuela Turillazzi
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Margherita Neri
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Daniela Cerretani
- Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Santina Cantatore
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy.,Neuromed, Istituto Mediterraneo Neurologico (IRCCS), Pozzilli, Isernia, Italy
| | - Laura Moltoni
- Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Francesco Paolo Busardò
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| | - Cristoforo Pomara
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Irene Riezzo
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
24
|
Busardò FP, Frati P, Sanzo MD, Napoletano S, Pinchi E, Zaami S, Fineschi V. The impact of nandrolone decanoate on the central nervous system. Curr Neuropharmacol 2016; 13:122-31. [PMID: 26074747 PMCID: PMC4462037 DOI: 10.2174/1570159x13666141210225822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/10/2014] [Accepted: 10/25/2014] [Indexed: 01/31/2023] Open
Abstract
Nandrolone is included in the class II of anabolic androgenic steroids (AAS) which is
composed of 19-nor-testosterone-derivates. In general, AAS is a broad and rapidly increasing group
of synthetic androgens used both clinically and illicitly. AAS in general and nandrolone decanoate
(ND) in particular have been associated with several behavioral disorders. The purpose of this review
is to summarize the literature concerning studies dealing with ND exposure on animal models, mostly
rats that mimic human abuse systems (i.e. supraphysiological doses). We have focused in particular
on researches that have investigated how ND alters the function and expression of neuronal signaling molecules that
underlie behavior, anxiety, aggression, learning and memory, reproductive behaviors, locomotion and reward.
Collapse
Affiliation(s)
- Francesco P Busardò
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy; ; Neuromed, Istituto Mediterraneo Neurologico (IRCCS), Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | - Mariantonia Di Sanzo
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Simona Napoletano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Enrica Pinchi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| |
Collapse
|
25
|
Giatti S, Garcia-Segura LM, Melcangi RC. New steps forward in the neuroactive steroid field. J Steroid Biochem Mol Biol 2015; 153:127-34. [PMID: 25797031 DOI: 10.1016/j.jsbmb.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/07/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
Abstract
Evidence accumulated in recent years suggests that the systemic treatment with neuroactive steroids, or the pharmacological modulation of its production by brain cells, represent therapeutic options to promote neuroprotection. However, new findings, which are reviewed in this paper, suggest that the factors to be considered for the design of possible therapies based on neuroactive steroids are more complex than previously thought. Thus, although as recently reported, the nervous system regulates neuroactive steroid synthesis and metabolism in adaptation to modifications in peripheral steroidogenesis, the neuroactive steroid levels in the brain do not fully reflect its levels in plasma. Even, in some cases, neuroactive steroid level modifications occurring in the nervous tissues, under physiological and pathological conditions, are in the opposite direction than in the periphery. This suggests that the systemic treatment with these molecules may have unexpected outcomes on neural steroid levels. In addition, the multiple metabolic pathways and signaling mechanisms of neuroactive steroids, which may change from one brain region to another, together with the existence of regional and sex differences in its neural levels are additional sources of complexity that should be clarified. This complexity in the levels and actions of these molecules may explain why in some cases these molecules have detrimental rather than beneficial actions for the nervous system. This article is part of a Special Issue entitled 'Steroid Perspectives'.
Collapse
Affiliation(s)
- Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
26
|
Kaufman MJ, Janes AC, Hudson JI, Brennan BP, Kanayama G, Kerrigan AR, Jensen JE, Pope HG. Brain and cognition abnormalities in long-term anabolic-androgenic steroid users. Drug Alcohol Depend 2015; 152:47-56. [PMID: 25986964 PMCID: PMC4458166 DOI: 10.1016/j.drugalcdep.2015.04.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Anabolic-androgenic steroid (AAS) use is associated with psychiatric symptoms including increased aggression as well as with cognitive dysfunction. The brain effects of long-term AAS use have not been assessed in humans. METHODS This multimodal magnetic resonance imaging study of the brain compared 10 male weightlifters reporting long-term AAS use with 10 age-matched weightlifters reporting no AAS exposure. Participants were administered visuospatial memory tests and underwent neuroimaging. Brain volumetric analyses were performed; resting-state fMRI functional connectivity (rsFC) was evaluated using a region-of-interest analysis focused on the amygdala; and dorsal anterior cingulate cortex (dACC) metabolites were quantified by proton magnetic resonance spectroscopy (MRS). RESULTS AAS users had larger right amygdala volumes than nonusers (P=0.002) and reduced rsFC between right amygdala and frontal, striatal, limbic, hippocampal, and visual cortical areas. Left amygdala volumes were slightly larger in AAS users (P=0.061) but few group differences were detected in left amygdala rsFC. AAS users also had lower dACC scyllo-inositol levels (P=0.004) and higher glutamine/glutamate ratios (P=0.028), possibly reflecting increased glutamate turnover. On a visuospatial cognitive task, AAS users performed more poorly than nonusers, with the difference approaching significance (P=0.053). CONCLUSIONS Long-term AAS use is associated with right amygdala enlargement and reduced right amygdala rsFC with brain areas involved in cognitive control and spatial memory, which could contribute to the psychiatric effects and cognitive dysfunction associated with AAS use. The MRS abnormalities we detected could reflect enhanced glutamate turnover and increased vulnerability to neurotoxic or neurodegenerative processes, which could contribute to AAS-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Marc J. Kaufman
- McLean Imaging Center, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Amy C. Janes
- McLean Imaging Center, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - James I. Hudson
- Biological Psychiatry Laboratory, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Brian P. Brennan
- Biological Psychiatry Laboratory, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Andrew R. Kerrigan
- McLean Imaging Center, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - J. Eric Jensen
- McLean Imaging Center, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Harrison G. Pope
- Biological Psychiatry Laboratory, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| |
Collapse
|
27
|
Pomara C, Neri M, Bello S, Fiore C, Riezzo I, Turillazzi E. Neurotoxicity by synthetic androgen steroids: oxidative stress, apoptosis, and neuropathology: A review. Curr Neuropharmacol 2015; 13:132-45. [PMID: 26074748 PMCID: PMC4462038 DOI: 10.2174/1570159x13666141210221434] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/25/2014] [Indexed: 12/25/2022] Open
Abstract
Anabolic-androgenic steroids (AAS) are synthetic substances derived from testosterone that are largely employed due to their trophic effect on muscle tissue of athletes at all levels. Since a great number of organs and systems are a target of AAS, their adverse effects are primarily on the following systems: reproductive, hepatic, musculoskeletal, endocrine, renal, immunological, infectious, cardiovascular, cerebrovascular, and hematological. Neuropsychiatric and behavioral effects as a result of AAS abuse are well known and described in the literature. Mounting evidence exists suggesting that in addition to psychiatric and behavioral effects, non-medical use of AAS carries neurodegenerative potential. Although, the nature of this association remains largely unexplored, recent animal studies have shown the recurrence of this AAS effect, ranging from neurotrophin unbalance to increased neuronal susceptibility to apoptotic stimuli. Experimental and animal studies strongly suggest that apoptotic mechanisms are at least in part involved in AAS-induced neurotoxicity. Furthermore, a great body of evidence is emerging suggesting that increased susceptibility to cellular oxidative stress could play a pivotal role in the pathogenesis of many neurodegenerative disorders and cognitive impairment. As in other drug-evoked encephalopathies, the key mechanisms involved in AAS - induced neuropathology could represent a target for future neuroprotective strategies. Progress in the understanding of these mechanisms will provide important insights into the complex pathophysiology of AAS-induced neurodegeneration, and will pave the way for forthcoming studies. Supplementary to abandoning the drug abuse that represents the first step in reducing the possibility of irreversible brain damage in AAS abusers, neuroprotective strategies have to be developed and implemented in future.
Collapse
Affiliation(s)
- Cristoforo Pomara
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Department of Anatomy, University of Malta. Msida, Malta
| | - Margherita Neri
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stefania Bello
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Carmela Fiore
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Irene Riezzo
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuela Turillazzi
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
28
|
Protective effects of testosterone on presynaptic terminals against oligomeric β-amyloid peptide in primary culture of hippocampal neurons. BIOMED RESEARCH INTERNATIONAL 2014; 2014:103906. [PMID: 25045655 PMCID: PMC4086619 DOI: 10.1155/2014/103906] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022]
Abstract
Increasing lines of evidence support that testosterone may have neuroprotective effects. While observational studies reported an association between higher bioavailable testosterone or brain testosterone levels and reduced risk of Alzheimer's disease (AD), there is limited understanding of the underlying neuroprotective mechanisms. Previous studies demonstrated that testosterone could alleviate neurotoxicity induced by β-amyloid (Aβ), but these findings mainly focused on neuronal apoptosis. Since synaptic dysfunction and degeneration are early events during the pathogenesis of AD, we aim to investigate the effects of testosterone on oligomeric Aβ-induced synaptic changes. Our data suggested that exposure of primary cultured hippocampal neurons to oligomeric Aβ could reduce the length of neurites and decrease the expression of presynaptic proteins including synaptophysin, synaptotagmin, and synapsin-1. Aβ also disrupted synaptic vesicle recycling and protein folding machinery. Testosterone preserved the integrity of neurites and the expression of presynaptic proteins. It also attenuated Aβ-induced impairment of synaptic exocytosis. By using letrozole as an aromatase antagonist, we further demonstrated that the effects of testosterone on exocytosis were unlikely to be mediated through the estrogen receptor pathway. Furthermore, we showed that testosterone could attenuate Aβ-induced reduction of HSP70, which suggests a novel mechanism that links testosterone and its protective function on Aβ-induced synaptic damage. Taken together, our data provide further evidence on the beneficial effects of testosterone, which may be useful for future drug development for AD.
Collapse
|
29
|
Strano-Rossi S, Castrignanò E, Anzillotti L, Odoardi S, De-Giorgio F, Bermejo A, Pascali VL. Screening for exogenous androgen anabolic steroids in human hair by liquid chromatography/orbitrap-high resolution mass spectrometry. Anal Chim Acta 2013; 793:61-71. [DOI: 10.1016/j.aca.2013.07.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/19/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
|
30
|
Pieretti S, Mastriota M, Tucci P, Battaglia G, Trabace L, Nicoletti F, Scaccianoce S. Brain nerve growth factor unbalance induced by anabolic androgenic steroids in rats. Med Sci Sports Exerc 2013; 45:29-35. [PMID: 22895368 DOI: 10.1249/mss.0b013e31826c60ea] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Anabolic androgenic steroids (AAS) are synthetic androgen-like compounds that are abused in sport communities despite their adverse effects. Nerve growth factor (NGF) influences neuronal differentiation and survival, and it also mediates higher brain functions such as learning and memory. Changes in NGF expression have been implicated in neurodegenerative disorders, including Alzheimer disease. Hence, we decided to study the effect of chronic AAS exposure on brain NGF profile, NGF-dependent cholinergic function, and related behavioral performance. METHODS Male Wistar rats were injected for 4 wk with either nandrolone or stanozolol at daily doses (5.0 mg·kg(-1), s.c.) that are considered equivalent to those abused by humans. NGF levels and NGF receptor (TrkA and p75NTR) expression were measured in the hippocampus and in the basal forebrain. Choline acetyltransferase expression was evaluated in basal forebrain. Spatial learning and memory were assessed using the Morris water maze. RESULTS AAS treatment caused region-specific changes in the expression of NGF and its receptors. Both nandrolone and stanozolol increased NGF levels in the hippocampus and reduced NGF levels in the basal forebrain, reduced p75NTR expression in the hippocampus, and failed to affect TrkA expression in the basal forebrain. Finally, AAS treatment reduced the expression of choline acetyltransferase in the basal forebrain and impaired the behavioral performance in the Morris water maze. CONCLUSION The evidence that supraphysiological doses of AAS cause neurotrophic unbalance and related behavioral disturbances raises the concern that AAS abuse in humans may affect mechanisms that lie at the core of neuronal plasticity.
Collapse
Affiliation(s)
- Stefano Pieretti
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Basile JR, Binmadi NO, Zhou H, Yang YH, Paoli A, Proia P. Supraphysiological doses of performance enhancing anabolic-androgenic steroids exert direct toxic effects on neuron-like cells. Front Cell Neurosci 2013; 7:69. [PMID: 23675320 PMCID: PMC3648690 DOI: 10.3389/fncel.2013.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/23/2013] [Indexed: 01/28/2023] Open
Abstract
Anabolic-androgenic steroids (AAS) are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose) polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR) in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks.
Collapse
Affiliation(s)
- John R Basile
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School Baltimore, MD, USA ; Marlene and Stuart Greenebaum Cancer Center, University of Maryland Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
32
|
Flutamide Enhances Neuroprotective Effects of Testosterone during Experimental Cerebral Ischemia in Male Rats. ISRN NEUROLOGY 2012; 2013:592398. [PMID: 23401794 PMCID: PMC3562684 DOI: 10.1155/2013/592398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 12/18/2012] [Indexed: 12/30/2022]
Abstract
Testosterone has been shown to worsen histological and neurological impairment during cerebral ischemia in animal models. Cell culture studies revealed that testosterone is implicated in protecting neural and glial cells against insults, and they started to elucidate testosterone pathways that underlie these protective effects. These studies support the hypothesis that testosterone can be neuroprotective throughout an episode of cerebral ischemia. Therefore, we evaluated the mechanisms underlying the shift between testosterone protective and deleterious effects via block testosterone aromatization and androgen receptors in rats subjected to 60-minute middle cerebral artery occlusion. Fifty rats were divided into five equal groups: gonadally intact male; castrated male; intact male + flutamide; intact male + letrozole; intact male + combination flutamide and letrozole. Our results indicated that castration has the ability to reduce histological damage and to improve neurological score 24 hours after middle cerebral artery occlusion. Moreover, flutamide improved histologic and neurological impairment better than castration. Letrozole induced increases in striatal infarct volume and seizures in gonadally intact rats. Combination of flutamide and letrozole showed that letrozole can reverse beneficial effects of flutamide. In conclusion, it seems that the beneficial effects of flutamide are the prevention of the deleterious effects and enhancement of neuroprotective effects of testosterone during cerebral ischemia.
Collapse
|
33
|
Caraci F, Pistarà V, Corsaro A, Tomasello F, Giuffrida ML, Sortino MA, Nicoletti F, Copani A. Neurotoxic properties of the anabolic androgenic steroids nandrolone and methandrostenolone in primary neuronal cultures. J Neurosci Res 2011; 89:592-600. [PMID: 21290409 DOI: 10.1002/jnr.22578] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/22/2010] [Accepted: 11/08/2010] [Indexed: 11/11/2022]
Abstract
Anabolic-androgenic steroid (AAS) abuse is associated with multiple neurobehavioral disturbances. The sites of action and the neurobiological sequels of AAS abuse are unclear at present. We investigated whether two different AASs, nandrolone and methandrostenolone, could affect neuronal survival in culture. The endogenous androgenic steroid testosterone was used for comparison. Both testosterone and nandrolone were neurotoxic at micromolar concentrations, and their effects were prevented by blockade of androgen receptors (ARs) with flutamide. Neuronal toxicity developed only over a 48-hr exposure to the steroids. The cell-impermeable analogues testosterone-BSA and nandrolone-BSA, which preferentially target membrane-associated ARs, were also neurotoxic in a time-dependent and flutamide-sensitive manner. Testosterone-BSA and nandrolone-BSA were more potent than their parent compounds, suggesting that membrane-associated ARs were the relevant sites for the neurotoxic actions of the steroids. Unlike testosterone and nandrolone, toxicity by methandrostenolone and methandrostenolone-BSA was insensitive to flutamide, but it was prevented by the glucocorticoid receptor (GR) antagonist RU-486. Methandrostenolone-BSA was more potent than the parent compound, suggesting that its toxicity relied on the preferential activation of putative membrane-associated GRs. Consistently with the evidence that membrane-associated GRs can mediate rapid effects, a brief challenge with methandrostenolone-BSA was able to promote neuronal toxicity. Activation of putative membrane steroid receptors by nontoxic (nanomolar) concentrations of either nandrolone-BSA or methandrostenolone-BSA became sufficient to increase neuronal susceptibility to the apoptotic stimulus provided by β-amyloid (the main culprit of AD). We speculate that AAS abuse might facilitate the onset or progression of neurodegenerative diseases not usually linked to drug abuse.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yu X, Guo J, Fang H, Peng S. Basal metallothionein-I/II protects against NMDA-mediated oxidative injury in cortical neuron/astrocyte cultures. Toxicology 2011; 282:16-22. [PMID: 21215786 DOI: 10.1016/j.tox.2010.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
N-Methyl-D-aspartate (NMDA) receptor overactivation-mediated oxidative stress has been proposed to contribute to brain injury. Metallothionein-I/II (MT-I/II), a member of cysteine-rich metalloproteins, has been found to express in the central nervous system primarily in cortical tissues and be upregulated following brain injury. To address the role of MT-I/II on NMDA-mediated oxidative injury, we established primary cortical neuron/astrocyte cultures from neonatal MT-I/II deficient (MT⁻/⁻) and wild type (MT+/+) mice to test whether basal MT-I/II protects cortical cultures against NMDA-mediated injury. We found that MT-I/II expression was increased by NMDA in MT+/+ cultures but was not detectable in MT⁻/⁻ cultures. NMDA concentration-dependently induced oxidative injury in both MT+/+ and MT⁻/⁻ cultures as evidenced by decrease of cell viability, increases of lipid peroxidation and DNA damage. However, these toxic effects were greater in MT⁻/⁻ than MT+/+ cultures. NMDA significantly increased reactive oxygen species (ROS) generation and disrupted mitochondrial membrane potential in neurons in MT+/+ cultures, and these effects were exaggerated in MT⁻/⁻ cultures. Our findings clearly show that basal MT-I/II provides protection against NMDA-mediated oxidative injury in cortical neuron/astrocyte cultures, and suggest that the protective effects are possibly associated with inhibition of ROS generation and preservation of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20# Dongdajie Rd, Fengtai District, Beijing 100071, PR China
| | | | | | | |
Collapse
|
35
|
Abstract
Biologic sex and sex steroids are important factors in clinical and experimental stroke. This review evaluates key evidence that biological sex strongly alters mechanisms and outcomes from cerebral ischemia. The role of androgens in male stroke is understudied and important to pursue given that male sex is a well known risk factor for human stroke. To date, male sex steroids remain largely evaluated at the bench rather than the bedside. We review recent advances in our understanding of androgens in the context of ischemic cell death and neuroprotection. We also highlight some possible molecular mechanisms by which androgens impact ischemic outcomes.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Anesthesiology and Perioperative Medicine, UHS-2 3181 SW Sam Jackson Park Rd., Portland, OR 97239-3098, United States
| | - Patricia D. Hurn
- Department of Anesthesiology and Perioperative Medicine, UHS-2 3181 SW Sam Jackson Park Rd., Portland, OR 97239-3098, United States
- Department of Physiology and Pharmacology, Portland, OR 97239, United States
- Department of Neurology Oregon Health and Science University, Portland, OR 97239, United States
- Corresponding author. OHSU Research Center for Gender Based Medicine School of Medicine Oregon Health; Science University 3181 SW Sam Jackson Pk Rd UHN-2 Portland OR 97239-3098, USA. (P.D. Hurn)
| |
Collapse
|
36
|
Abstract
Androgens can protect neurones from injury, although androgen neuroprotection is not well characterised in terms of either specificity or mechanism. In the present study, we compared the ability of androgens to protect neurones against a panel of insults, empirically determined to induce cell death by apoptotic or non-apoptotic mechanisms. Three criteria defining but not inclusive of apoptosis are: protection by caspase inhibition, protection by protein synthesis inhibition and the presence of pyknotic nuclei. According to these criteria, beta-amyloid, staurosporine, and Apoptosis Activator II induced cell death involving apoptosis, whereas hydrogen peroxide (H(2)O(2)), iron, calcium ionophore and 3-nitropropionic acid induced cell death featuring non-apoptotic characteristics. Pretreatment of hippocampal neurones with testosterone or dihydrotestosterone attenuated cell death induced by beta-amyloid, staurosporine and Apoptosis Activator II, but none of the other insults. The anti-oxidant Trolox did not reduce cell death induced by beta-amyloid, staurosporine and Apoptosis Activator II, but did protect against H(2)O(2) and iron. Similarly, a supra-physiological concentration of oestrogen reduced cell death induced by H(2)O(2) and iron, an effect not observed with androgens. We also show that activation of oestrogen pathways was not necessary for androgen neuroprotection. These data suggest that androgens directly activate a neuroprotective mechanism specific to inhibition of cell death involving apoptosis. Determining the specificity of androgen neuroprotection may enable the development of androgen compounds for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- T V Nguyen
- Neuroscience Graduate Programme and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | | | |
Collapse
|
37
|
Kachadroka S, Hall AM, Niedzielko TL, Chongthammakun S, Floyd CL. Effect of endogenous androgens on 17beta-estradiol-mediated protection after spinal cord injury in male rats. J Neurotrauma 2010; 27:611-26. [PMID: 20001688 DOI: 10.1089/neu.2009.1069] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several groups have recently shown that 17beta-estradiol is protective in spinal cord injury (SCI). Testosterone can be aromatized to 17beta-estradiol and may increase estrogen-mediated protection. Alternatively, testosterone has been shown to increase excitotoxicity in models of central nervous system (CNS) injury. These experiments test the hypothesis that endogenous testosterone in male rats alters 17beta-estradiol-mediated protection by evaluating a delayed administration over a clinically relevant dose range and manipulating testicular-derived testosterone. Adult male Sprague Dawley rats were either gonadectomized or left gonad-intact prior to SCI. SCI was produced by a midthoracic crush injury. At 30 min post SCI, animals received a subcutaneous pellet of 0.0, 0.05, 0.5, or 5.0 mg of 17beta-estradiol, released over 21 days. Hindlimb locomotion was analyzed weekly in the open field. Spinal cords were collected and analyzed for cell death, expression of Bcl-family proteins, and white-matter sparing. Post-SCI administration of the 0.5- or 5.0-mg pellet improved hindlimb locomotion, reduced urinary bladder size, increased neuronal survival, reduced apoptosis, improved the Bax/Bcl-xL protein ratio, and increased white-matter sparing. In the absence of endogenous testicular-derived androgens, SCI induced greater apoptosis, yet 17beta-estradiol administration reduced apoptosis to the same extent in gonadectomized and gonad-intact male rats. These data suggest that delayed post-SCI administration of a clinically relevant dose of 17beta-estradiol is protective in male rats, and endogenous androgens do not alter estrogen-mediated protection. These data suggest that 17beta-estradiol is an effective therapeutic intervention for reducing secondary damage after SCI in males, which could be readily translated to clinical trials.
Collapse
Affiliation(s)
- Supatra Kachadroka
- Department of Physical Medicine and Rehabilitation, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alhabama 35249, USA
| | | | | | | | | |
Collapse
|
38
|
Prolonged treatment with the anabolic–androgenic steroid stanozolol increases antioxidant defences in rat skeletal muscle. J Physiol Biochem 2010; 66:63-71. [DOI: 10.1007/s13105-010-0010-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/09/2009] [Indexed: 10/19/2022]
|
39
|
Cunningham RL, Giuffrida A, Roberts JL. Androgens induce dopaminergic neurotoxicity via caspase-3-dependent activation of protein kinase Cdelta. Endocrinology 2009; 150:5539-48. [PMID: 19837873 PMCID: PMC2795716 DOI: 10.1210/en.2009-0640] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aged men have a greater incidence of Parkinson's disease (PD) than women. PD is a neurodegenerative condition associated with the loss of dopamine neurons in the nigrostriatal pathway. This study examined the neurotoxic effects of androgens in a dopaminergic cell line (N27 cells) and the downstream signaling pathways activated by androgens. Treatment of N27 cells with testosterone- and dihydrotestosterone-induced mitochondrial dysfunction, protein kinase C (PKC)-delta cleavage, and apoptosis in dopaminergic neuronal cells. Inhibition of caspase-3 prevented the cleavage of PKCdelta from the full-length element to the catalytic fragment and apoptosis in N27 cells, suggesting that androgen-induced apoptosis is mediated by caspase-3-dependent activation of PKCdelta. Androgen-induced apoptosis may be specific to dopamine neurons as evidenced by a lack of testosterone-induced apoptosis in GnRH neurons. These results support a neurotoxic consequence of testosterone on dopaminergic neurons and may provide insight into the gender bias found in PD.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Pharmacology and the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | | | |
Collapse
|
40
|
Dose-dependent effects of androgens on outcome after focal cerebral ischemia in adult male mice. J Cereb Blood Flow Metab 2009; 29:1454-62. [PMID: 19436313 PMCID: PMC2821811 DOI: 10.1038/jcbfm.2009.60] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Males exhibit greater histologic and behavioral impairment after stroke than do age-matched females. However, the contribution of androgens to stroke outcome remains unclear. We compared outcomes from middle cerebral artery occlusion (MCAO) in castrated mice with those in testosterone- or dihydrotestosterone (DHT)-replaced castrated mice. Castrates treated with 1.5 mg testosterone or 0.5 mg DHT before MCAO showed smaller infarct volumes (hemisphere: 27 or 26%) at 24 h after 90 mins MCAO than did untreated castrates (37%), whereas 5 mg testosterone or 1.5 mg DHT exacerbated infarcts (53 or 51%). These outcomes were blocked by the androgen receptor antagonist, flutamide, suggesting that androgen receptors mediate these responses to ischemia. We further evaluated long-term outcomes with a milder 60-min MCAO in castrates treated with the protective 1.5 mg testosterone dose. Consistent with data obtained at 24 h reperfusion, the infarct volume was decreased at 9 days reperfusion. Neurobehavioral analysis showed that motor functional recovery was improved during the first 3 days of reperfusion, but not improved at 7 days. We conclude that testosterone exhibits dose-dependent and time-sensitive effects after ischemia and that testosterone is likely to be an important factor in sex-linked differences in cerebrovascular disease.
Collapse
|
41
|
Pike CJ, Carroll JC, Rosario ER, Barron AM. Protective actions of sex steroid hormones in Alzheimer's disease. Front Neuroendocrinol 2009; 30:239-58. [PMID: 19427328 PMCID: PMC2728624 DOI: 10.1016/j.yfrne.2009.04.015] [Citation(s) in RCA: 382] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/25/2009] [Accepted: 04/28/2009] [Indexed: 12/19/2022]
Abstract
Risk for Alzheimer's disease (AD) is associated with age-related loss of sex steroid hormones in both women and men. In post-menopausal women, the precipitous depletion of estrogens and progestogens is hypothesized to increase susceptibility to AD pathogenesis, a concept largely supported by epidemiological evidence but refuted by some clinical findings. Experimental evidence suggests that estrogens have numerous neuroprotective actions relevant to prevention of AD, in particular promotion of neuron viability and reduction of beta-amyloid accumulation, a critical factor in the initiation and progression of AD. Recent findings suggest neural responsiveness to estrogen can diminish with age, reducing neuroprotective actions of estrogen and, consequently, potentially limiting the utility of hormone therapies in aged women. In addition, estrogen neuroprotective actions are also modulated by progestogens. Specifically, continuous progestogen exposure is associated with inhibition of estrogen actions whereas cyclic delivery of progestogens may enhance neural benefits of estrogen. In recent years, emerging literature has begun to elucidate a parallel relationship of sex steroid hormones and AD risk in men. Normal age-related testosterone loss in men is associated with increased risk to several diseases including AD. Like estrogen, testosterone has been established as an endogenous neuroprotective factor that not only increases neuronal resilience against AD-related insults, but also reduces beta-amyloid accumulation. Androgen neuroprotective effects are mediated both directly by activation of androgen pathways and indirectly by aromatization to estradiol and initiation of protective estrogen signaling mechanisms. The successful use of hormone therapies in aging men and women to delay, prevent, and or treat AD will require additional research to optimize key parameters of hormone therapy and may benefit from the continuing development of selective estrogen and androgen receptor modulators.
Collapse
Affiliation(s)
- Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
42
|
Nicot A. Gender and sex hormones in multiple sclerosis pathology and therapy. Front Biosci (Landmark Ed) 2009; 14:4477-515. [PMID: 19273365 DOI: 10.2741/3543] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several lines of evidence indicate that gender affects the susceptibility and course of multiple sclerosis (MS) with a higher disease prevalence and overall better prognosis in women than men. This sex dimorphism may be explained by sex chromosome effects and effects of sex steroid hormones on the immune system, blood brain barrier or parenchymal central nervous system (CNS) cells. The well known improvement in disease during late pregnancy has also been linked to hormonal changes and has stimulated recent clinical studies to determine the efficacy of and tolerance to sex steroid therapeutic approaches. Both clinical and experimental studies indicate that sex steroid supplementation may be beneficial for MS. This could be related to anti-inflammatory actions on the immune system or CNS and to direct neuroprotective properties. Here, clinical and experimental data are reviewed with respect to the effects of sex hormones or gender in the pathology or therapy of MS or its rodent disease models. The different cellular targets as well as some molecular mechanisms likely involved are discussed.
Collapse
|
43
|
Pinna G, Agis-Balboa RC, Pibiri F, Nelson M, Guidotti A, Costa E. Neurosteroid biosynthesis regulates sexually dimorphic fear and aggressive behavior in mice. Neurochem Res 2008; 33:1990-2007. [PMID: 18473173 DOI: 10.1007/s11064-008-9718-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 04/14/2008] [Indexed: 01/24/2023]
Abstract
The neurosteroid allopregnanolone is a potent positive allosteric modulator of GABA action at GABA(A) receptors. Allopregnanolone is synthesized in the brain from progesterone by the sequential action of 5alpha-reductase type I (5alpha-RI) and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD). 5alpha-RI and 3alpha-HSD are co-expressed in cortical, hippocampal, and olfactory bulb glutamatergic neurons and in output neurons of the amygdala, thalamus, cerebellum, and striatum. Neither 5alpha-RI nor 3alpha-HSD mRNAs is expressed in glial cells or in cortical or hippocampal GABAergic interneurons. It is likely that allopregnanolone synthesized in principal output neurons locally modulates GABA(A) receptor function by reaching GABA(A) receptor intracellular sites through lateral membrane diffusion. This review will focus on the behavioral effects of allopregnanolone on mouse models that are related to a sexually dimorphic regulation of brain allopregnanolone biosynthesis. Animal models of psychiatric disorders, including socially isolated male mice or mice that receive a long-term treatment with anabolic androgenic steroids (AAS), show abnormal behaviors such as altered fear responses and aggression. In these animal models, the cortico-limbic mRNA expression of 5alpha-RI is regulated in a sexually dimorphic manner. Hence, in selected glutamatergic pyramidal neurons of the cortex, CA3, and basolateral amygdala and in granular cells of the dentate gyrus, mRNA expression of 5alpha-RI is decreased, which results in a downregulation of allopregnanolone content. In contrast, 5alpha-RI mRNA expression fails to change in the striatum medium spiny neurons and in the reticular thalamic nucleus neurons, which are GABAergic.By manipulating allopregnanolone levels in glutamatergic cortico-limbic neurons in opposite directions to improve [using the potent selective brain steroidogenic stimulant (SBSS) S-norfluoxetine] or induce (using the potent 5alpha-RI inhibitor SKF 105,111) behavioral deficits, respectively, we have established the fundamental role of cortico-limbic allopregnanolone levels in the sexually dimorphic regulation of aggression and fear. By selectively targeting allopregnanolone downregulation in glutamatergic cortico-limbic neurons, i.e., by improving the response of GABA(A) receptors to GABA, new therapeutics would offer appropriate and safe management of psychiatric conditions, including impulsive aggression, irritability, irrational fear, anxiety, posttraumatic stress disorders, and depression.
Collapse
Affiliation(s)
- Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601W Taylor Street, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|