1
|
Ren H, Zhu YP, Su R, Li H, Pan YY. Hyperbaric intervention ameliorates the negative effects of long-term high-altitude exposure on cognitive control capacity. Front Physiol 2024; 15:1378987. [PMID: 39282090 PMCID: PMC11392845 DOI: 10.3389/fphys.2024.1378987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Hypoxia due to reduced partial pressure of oxygen from high-altitude exposure affects the cognitive function of high-altitude migrants. Executive function is an important component of human cognitive function, characterized by high oxygen consumption during activity, and its level can be measured using cognitive control capacity (CCC). In addition, there is evidence for the potential value of hyperbaric oxygen (HBO) interventions in improving cognitive decline on the plateau. Therefore, the objective of this study was to investigate the effect of long-term high-altitude exposure on CCC in high-altitude newcomers and whether hyperbaric oxygen intervention has an ameliorative effect. Methods This study measured the magnitude of participants' CCC using a Backward Masking Majority Function Task (MFT-M). Study 1 was a controlled study of different altitude conditions, with 64 participants in the high-altitude newcomer group and 64 participants in the low-altitude resident group, each completing the MFT-M task once. Study 2 was a controlled HBO intervention study in which newcomers who had lived at a high altitude for 2 years were randomly divided into the HBO group (n = 28) and control group (n = 28). 15 times hyperbaric oxygen interventions were performed in the HBO group. Subjects in both groups completed the MFT-M task once before and once after the intervention. Results Study 1 showed that CCC was significantly higher in the low-altitude resident group than in the high-altitude newcomer group (p = 0.031). Study 2 showed that the CCC in the HBO group was significantly higher after 15 hyperbaric interventions than before (p = 0.005), while there was no significant difference in the control group (p = 0.972). The HBO group had significantly higher correct task rates than the control group after the intervention (p = 0.001). Conclusion This study confirms that long-term high-altitude exposure leads to impairment of CCC in high-altitude newcomers and that hyperbaric oxygen intervention is effective in improving CCC.
Collapse
Affiliation(s)
- Hong Ren
- Plateau Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Yun-Peng Zhu
- Plateau Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Rui Su
- Plateau Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hao Li
- Plateau Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Yong-Yue Pan
- School of Medicine, Tibet University, Lhasa, China
| |
Collapse
|
2
|
Barata P, Camacho O, Lima CG, Pereira AC. The Role of Hyperbaric Oxygen Therapy in Neuroregeneration and Neuroprotection: A Review. Cureus 2024; 16:e62067. [PMID: 38989389 PMCID: PMC11235151 DOI: 10.7759/cureus.62067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Neurogenesis is a high energy-demanding process, which is why blood vessels are an active part of the neurogenic niche since they allow the much-needed oxygenation of progenitor cells. In this regard, although neglected for a long time, the "oxygen niche" should be considered an important intervenient in adult neurogenesis. One possible hypothesis for the failure of numerous neuroprotective trials is that they relied on compounds that target a highly specific neuroprotective pathway. This approach may be too limited, given the complexity of the processes that lead to cell death. Therefore, research should adopt a more multifactorial approach. Among the limited range of agents with multimodal neuromodulatory capabilities, hyperbaric oxygen therapy has demonstrated effectiveness in reducing secondary brain damage in various brain injury models. This therapy functions not only as a neuroprotective mechanism but also as a powerful neuroregenerative mechanism.
Collapse
Affiliation(s)
- Pedro Barata
- Pathology and Laboratory Medicine, Centro Hospitalar Universitário do Porto, Porto, PRT
- CECLIN (Center for Clinical Studies), Hospital-Escola da Universidade Fernando Pessoa (HE-UFP), Porto, PRT
| | - Oscar Camacho
- Hyperbaric Medicine Unit, Unidade Local de Saúde de Matosinhos, Matosinhos, PRT
| | - Clara G Lima
- Anesthesiology, Hospital Pedro Hispano, Matosinhos, PRT
| | - Ana Claudia Pereira
- Faculty of Health Sciences, Universidade Fernando Pessoa (UFP), Porto, PRT
- CECLIN (Center for Clinical Studies), Hospital-Escola da Universidade Fernando Pessoa (HE-UFP), Porto, PRT
| |
Collapse
|
3
|
Davis CK, Arruri V, Joshi P, Vemuganti R. Non-pharmacological interventions for traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:641-659. [PMID: 38388365 PMCID: PMC11197135 DOI: 10.1177/0271678x241234770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Heterogeneity and variability of symptoms due to the type, site, age, sex, and severity of injury make each case of traumatic brain injury (TBI) unique. Considering this, a universal treatment strategy may not be fruitful in managing outcomes after TBI. Most of the pharmacological therapies for TBI aim at modifying a particular pathway or molecular process in the sequelae of secondary injury rather than a holistic approach. On the other hand, non-pharmacological interventions such as hypothermia, hyperbaric oxygen, preconditioning with dietary adaptations, exercise, environmental enrichment, deep brain stimulation, decompressive craniectomy, probiotic use, gene therapy, music therapy, and stem cell therapy can promote healing by modulating multiple neuroprotective mechanisms. In this review, we discussed the major non-pharmacological interventions that are being tested in animal models of TBI as well as in clinical trials. We evaluated the functional outcomes of various interventions with an emphasis on the links between molecular mechanisms and outcomes after TBI.
Collapse
Affiliation(s)
- Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Pallavi Joshi
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
4
|
Hsieh KL, Sun TB, Huang KH, Lin CH, Tang LY, Liu CL, Chao CM, Chang CP. Hyperbaric oxygen preconditioning normalizes scrotal temperature, sperm quality, testicular structure, and erectile function in adult male rats subjected to exertional heat injury. Mol Cell Endocrinol 2024; 584:112175. [PMID: 38341020 DOI: 10.1016/j.mce.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Testicular hyperthermia has been noted in men who work in high ambient temperatures. Scrotal temperatures above the normal range caused germ cell loss in the testes and resulted in male subfertility. In adult male rats, exercising at a higher environmental temperature (36 °C with relative humidity of 50%, 52 min) caused exertional heat stroke (EHS) characterized by scrotal hyperthermia, impaired sperm quality, dysmorphology in testes, prostates and bladders, and erectile dysfunction. Here, we aim to ascertain whether hyperbaric oxygen preconditioning (HBOP: 100% O2 at 2.0 atm absolute [ATA] for 2 h daily for 14 days consequently before the onset of EHS) is able to prevent the problem of EHS-induced sterility, testes, prostates, and bladders dysmorphology and erectile dysfunction. At the end of exertional heat stress compared to normobaric air (NBA or non-HBOP) rats, the HBOP rats exhibited lower body core temperature (40 °C vs. 43 °C), lower scrotal temperature (34 °C vs. 36 °C), lower neurological severity scores (2.8 vs. 5.8), higher erectile ability, (5984 mmHg-sec vs. 3788 mmHg-sec), higher plasma testosterone (6.8 ng/mL vs. 3.5 ng/mL), lower plasma follicle stimulating hormone (196.3 mIU/mL vs. 513.8 mIU/mL), lower plasma luteinizing hormone (131 IU/L vs. 189 IU/L), lower plasma adrenocorticotropic hormone (5136 pg/mL vs. 6129 pg/mL), lower plasma corticosterone (0.56 ng/mL vs. 1.18 ng/mL), lower sperm loss and lower values of histopathological scores for epididymis, testis, seminal vesicle, prostate, and bladder. Our data suggest that HBOP reduces body core and scrotal hyperthermia and improves sperm loss, testis/prostate/bladder dysmorphology, and erectile dysfunction after EHS in rats.
Collapse
Affiliation(s)
- Kun-Lin Hsieh
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tzong-Bor Sun
- Department of Hyperbaric Oxygen Medicine, Chi-Mei Medical Center, Tainan, Taiwan; Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Ling-Yu Tang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Chien-Liang Liu
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, Taiwan.
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
5
|
Zhang J, Guo Y, Mak M, Tao Z. Translational medicine for acute lung injury. J Transl Med 2024; 22:25. [PMID: 38183140 PMCID: PMC10768317 DOI: 10.1186/s12967-023-04828-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Acute lung injury (ALI) is a complex disease with numerous causes. This review begins with a discussion of disease development from direct or indirect pulmonary insults, as well as varied pathogenesis. The heterogeneous nature of ALI is then elaborated upon, including its epidemiology, clinical manifestations, potential biomarkers, and genetic contributions. Although no medication is currently approved for this devastating illness, supportive care and pharmacological intervention for ALI treatment are summarized, followed by an assessment of the pathophysiological gap between human ALI and animal models. Lastly, current research progress on advanced nanomedicines for ALI therapeutics in preclinical and clinical settings is reviewed, demonstrating new opportunities towards developing an effective treatment for ALI.
Collapse
Affiliation(s)
- Jianguo Zhang
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yumeng Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA
| | - Zhimin Tao
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
6
|
Sakas R, Dan K, Edelman D, Abu-Ata S, Ben-Menashe A, Awad-Igbaria Y, Francois-Soustiel J, Palzur E. Hyperbaric Oxygen Therapy Alleviates Memory and Motor Impairments Following Traumatic Brain Injury via the Modulation of Mitochondrial-Dysfunction-Induced Neuronal Apoptosis in Rats. Antioxidants (Basel) 2023; 12:2034. [PMID: 38136154 PMCID: PMC10740762 DOI: 10.3390/antiox12122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in young adults, characterized by primary and secondary injury. Primary injury is the immediate mechanical damage, while secondary injury results from delayed neuronal death, often linked to mitochondrial damage accumulation. Hyperbaric oxygen therapy (HBOT) has been proposed as a potential treatment for modulating secondary post-traumatic neuronal death. However, the specific molecular mechanism by which HBOT modulates secondary brain damage through mitochondrial protection remains unclear. Spatial learning, reference memory, and motor performance were measured in rats before and after Controlled Cortical Impact (CCI) injury. The HBOT (2.5 ATA) was performed 4 h following the CCI and twice daily (12 h intervals) for four consecutive days. Mitochondrial functions were assessed via high-resolution respirometry on day 5 following CCI. Moreover, IHC was performed at the end of the experiment to evaluate cortical apoptosis, neuronal survival, and glial activation. The current result indicates that HBOT exhibits a multi-level neuroprotective effect. Thus, we found that HBOT prevents cortical neuronal loss, reduces the apoptosis marker (cleaved-Caspase3), and modulates glial cell proliferation. Furthermore, HBO treatment prevents the reduction in mitochondrial respiration, including non-phosphorylation state, oxidative phosphorylation, and electron transfer capacity. Additionally, a superior motor and spatial learning performance level was observed in the CCI group treated with HBO compared to the CCI group. In conclusion, our findings demonstrate that HBOT during the critical period following the TBI improves cognitive and motor damage via regulating glial proliferation apoptosis and protecting mitochondrial function, consequently preventing cortex neuronal loss.
Collapse
Affiliation(s)
- Reem Sakas
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| | - Katya Dan
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| | - Doron Edelman
- Neurosurgery Department, Tel-Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel;
| | - Saher Abu-Ata
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| | - Aviv Ben-Menashe
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| | - Yaseen Awad-Igbaria
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| | - Jean Francois-Soustiel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Neurosurgery Department, Galilee Medical Center, Nahariya 221001, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| |
Collapse
|
7
|
Doenyas-Barak K, Kutz I, Lang E, Merzbach R, Lev Wiesel R, Boussi-Gross R, Efrati S. The use of hyperbaric oxygen for veterans with PTSD: basic physiology and current available clinical data. Front Neurosci 2023; 17:1259473. [PMID: 38027524 PMCID: PMC10630921 DOI: 10.3389/fnins.2023.1259473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) affects up to 30% of veterans returning from the combat zone. Unfortunately, a substantial proportion of them do not remit with the current available treatments and thus continue to experience long-term social, behavioral, and occupational dysfunction. Accumulating data implies that the long-standing unremitting symptoms are related to changes in brain activity and structure, mainly disruption in the frontolimbic circuit. Hence, repair of brain structure and restoration of function could be a potential aim of effective treatment. Hyperbaric oxygen therapy (HBOT) has been effective in treating disruptions of brain structure and functions such as stroke, traumatic brain injury, and fibromyalgia even years after the acute insult. These favorable HBOT brain effects may be related to recent protocols that emphasize frequent fluctuations in oxygen concentrations, which in turn contribute to gene expression alterations and metabolic changes that induce neuronal stem cell proliferation, mitochondrial multiplication, angiogenesis, and regulation of the inflammatory cascade. Recently, clinical findings have also demonstrated the beneficial effect of HBOT on veterans with treatment-resistant PTSD. Moderation of intrusive symptoms, avoidance, mood and cognitive symptoms, and hyperarousal were correlated with improved brain function and with diffusion tensor imaging-defined structural changes. This article reviews the current data on the regenerative biological effects of HBOT, and the ongoing research of its use for veterans with PTSD.
Collapse
Affiliation(s)
- Keren Doenyas-Barak
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Kutz
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Erez Lang
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Merzbach
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- The Louis and Gabi Weisfeld School of Social Work, Bar-Ilan University, Ramat Gan, Israel
| | - Rachel Lev Wiesel
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- The Emili Sagol Creative Arts Therapies Research Center, University of Haifa, Haifa, Israel
| | - Rahav Boussi-Gross
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Kasikasetsiri J, Apaijai N, Aschaitrakool Y, Kerdphoo S, Sriyaranya N, Chattipakorn N, Chattipakorn SC. Hyperbaric oxygen therapy restores wound healing in irradiated gingiva to a similar level to that in healthy gingiva. J Wound Care 2023; 32:676-684. [PMID: 37830829 DOI: 10.12968/jowc.2023.32.10.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
OBJECTIVE This study aimed to investigate the involvement of mitochondrial biogenesis, and determine the extent of fibroblast proliferation and cellular apoptosis, in the gingiva of patients who had undergone head and neck radiation, after receiving hyperbaric oxygen therapy (HBOT), in comparison with normal gingiva. METHOD A total of 16 patients who had undergone head and neck radiation with HBOT and six healthy subjects were included in the study. After the completion of radiation therapy, patients received HBOT at 2 ATA for 90 minutes per session, and for 20 sessions per patient. Samples of gingival tissues were then taken. The levels of: transforming growth factor beta (TGF-β); phospho-nuclear factor kappa-light-chain-enhancer of activated B cells (p-NFϰB); nuclear factor kappa-light-chain-enhancer of activated B cells (NFϰB); proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); phospho-dynamin-related protein 1 at ser616 (p-Drp1ser616); dynamin-related protein 1 (Drp1); Bcl-2-associated X-protein (Bax); and B-cell lymphoma 2 (Bcl-2) were determined using a Western blot. Independent t-test and Chi-squared tests were used in the study. RESULTS There were no differences in the levels of TGF-β, p-NFϰB, NFϰB, p-Drp1ser616, Drp1, Bax and Bcl-2 between the two groups. However, the level of PGC-1α was greater in irradiated gingival tissues with HBOT than in the healthy gingiva. CONCLUSION Radiation-induced impaired wound healing can be improved by HBOT as indicated by levels of apoptosis, mitochondrial dynamics, cell proliferation and inflammation in irradiated gingiva with HBOT to a similar level to normal healthy gingiva. These findings may occur through an increase in mitochondrial biogenesis following HBOT.
Collapse
Affiliation(s)
- Juthathip Kasikasetsiri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Yuthakran Aschaitrakool
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nutchada Sriyaranya
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Schimmel S, El Sayed B, Lockard G, Gordon J, Young I, D’Egidio F, Lee JY, Rodriguez T, Borlongan CV. Identifying the Target Traumatic Brain Injury Population for Hyperbaric Oxygen Therapy. Int J Mol Sci 2023; 24:14612. [PMID: 37834059 PMCID: PMC10572450 DOI: 10.3390/ijms241914612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Traumatic brain injury (TBI) results from direct penetrating and indirect non-penetrating forces that alters brain functions, affecting millions of individuals annually. Primary injury following TBI is exacerbated by secondary brain injury; foremost is the deleterious inflammatory response. One therapeutic intervention being increasingly explored for TBI is hyperbaric oxygen therapy (HBOT), which is already approved clinically for treating open wounds. HBOT consists of 100% oxygen administration, usually between 1.5 and 3 atm and has been found to increase brain oxygenation levels after hypoxia in addition to decreasing levels of inflammation, apoptosis, intracranial pressure, and edema, reducing subsequent secondary injury. The following review examines recent preclinical and clinical studies on HBOT in the context of TBI with a focus on contributing mechanisms and clinical potential. Several preclinical studies have identified pathways, such as TLR4/NF-kB, that are affected by HBOT and contribute to its therapeutic effect. Thus far, the mechanisms mediating HBOT treatment have yet to be fully elucidated and are of interest to researchers. Nonetheless, multiple clinical studies presented in this review have examined the safety of HBOT and demonstrated the improved neurological function of TBI patients after HBOT, deeming it a promising avenue for treatment.
Collapse
Affiliation(s)
- Samantha Schimmel
- Morsani College of Medicine, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA; (S.S.); (B.E.S.); (G.L.); (J.G.)
| | - Bassel El Sayed
- Morsani College of Medicine, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA; (S.S.); (B.E.S.); (G.L.); (J.G.)
| | - Gavin Lockard
- Morsani College of Medicine, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA; (S.S.); (B.E.S.); (G.L.); (J.G.)
| | - Jonah Gordon
- Morsani College of Medicine, University of South Florida, 560 Channelside Dr., Tampa, FL 33602, USA; (S.S.); (B.E.S.); (G.L.); (J.G.)
| | | | - Francesco D’Egidio
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (F.D.); (J.Y.L.)
| | - Jea Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (F.D.); (J.Y.L.)
| | - Thomas Rodriguez
- School of Medicine, Loma Linda University, 11175 Campus St., Loma Linda, CA 92350, USA;
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (F.D.); (J.Y.L.)
| |
Collapse
|
10
|
Cracchiolo AN, Palma DM, Genco F, Palmeri M, Teresi A, Zummo L, Gigliuto C, Saporito EFG, Ferruzza A, Piccoli T. Fibromyalgia: Could hyperbaric oxygen therapy make the difference? Our experience. Clin Case Rep 2023; 11:e7812. [PMID: 37636871 PMCID: PMC10448139 DOI: 10.1002/ccr3.7812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/29/2023] Open
Abstract
Fibromyalgia is a rare disease, difficult to diagnose and to treat. We think that hyperbaric oxygen therapy could improve its signs and symptoms although more evidences have to be accumulated.
Collapse
Affiliation(s)
| | | | - Fabio Genco
- ARNAS Civico Di Cristina BenfratelliPalermoItaly
| | | | | | - Leila Zummo
- ARNAS Civico Di Cristina Benfratelli, Neurologia con Stroke UnitPalermoItaly
| | - Carmelo Gigliuto
- Umberto I di Siracusa Hospital, UOC Anestesia e Rianimazione Camera IperbaricaSiracusaItaly
| | | | | | - Tommaso Piccoli
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of PalermoPalermoItaly
| |
Collapse
|
11
|
Awad-Igbaria Y, Ferreira N, Keadan A, Sakas R, Edelman D, Shamir A, Francous-Soustiel J, Palzur E. HBO treatment enhances motor function and modulates pain development after sciatic nerve injury via protection the mitochondrial function. J Transl Med 2023; 21:545. [PMID: 37582750 PMCID: PMC10428612 DOI: 10.1186/s12967-023-04414-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Peripheral nerve injury can cause neuroinflammation and neuromodulation that lead to mitochondrial dysfunction and neuronal apoptosis in the dorsal root ganglion (DRG) and spinal cord, contributing to neuropathic pain and motor dysfunction. Hyperbaric oxygen therapy (HBOT) has been suggested as a potential therapeutic tool for neuropathic pain and nerve injury. However, the specific cellular and molecular mechanism by which HBOT modulates the development of neuropathic pain and motor dysfunction through mitochondrial protection is still unclear. METHODS Mechanical and thermal allodynia and motor function were measured in rats following sciatic nerve crush (SNC). The HBO treatment (2.5 ATA) was performed 4 h after SNC and twice daily (12 h intervals) for seven consecutive days. To assess mitochondrial function in the spinal cord (L2-L6), high-resolution respirometry was measured on day 7 using the OROBOROS-O2k. In addition, RT-PCR and Immunohistochemistry were performed at the end of the experiment to assess neuroinflammation, neuromodulation, and apoptosis in the DRG (L3-L6) and spinal cord (L2-L6). RESULTS HBOT during the early phase of the SNC alleviates mechanical and thermal hypersensitivity and motor dysfunction. Moreover, HBOT modulates neuroinflammation, neuromodulation, mitochondrial stress, and apoptosis in the DRG and spinal cord. Thus, we found a significant reduction in the presence of macrophages/microglia and MMP-9 expression, as well as the transcription of pro-inflammatory cytokines (TNFa, IL-6, IL-1b) in the DRG and (IL6) in the spinal cord of the SNC group that was treated with HBOT compared to the untreated group. Notable, the overexpression of the TRPV1 channel, which has a high Ca2+ permeability, was reduced along with the apoptosis marker (cleaved-Caspase3) and mitochondrial stress marker (TSPO) in the DRG and spinal cord of the HBOT group. Additionally, HBOT prevents the reduction in mitochondrial respiration, including non-phosphorylation state, ATP-linked respiration, and maximal mitochondrial respiration in the spinal cord after SNC. CONCLUSION Mitochondrial dysfunction in peripheral neuropathic pain was found to be mediated by neuroinflammation and neuromodulation. Strikingly, our findings indicate that HBOT during the critical period of the nerve injury modulates the transition from acute to chronic pain via reducing neuroinflammation and protecting mitochondrial function, consequently preventing neuronal apoptosis in the DRG and spinal cord.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel.
- Research Institute of Galilee Medical Center, P.O.B 21, 22100, Nahariya, Israel.
| | - Nadine Ferreira
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
| | - Ali Keadan
- Research Institute of Galilee Medical Center, P.O.B 21, 22100, Nahariya, Israel
| | - Reem Sakas
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
- Research Institute of Galilee Medical Center, P.O.B 21, 22100, Nahariya, Israel
| | - Doron Edelman
- UHN-Neurosurgery Spine Program, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jean Francous-Soustiel
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
- Research Institute of Galilee Medical Center, P.O.B 21, 22100, Nahariya, Israel
- Department of Neurosurgery, Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, P.O.B 21, 22100, Nahariya, Israel
| |
Collapse
|
12
|
Doenyas-Barak K, Kutz I, Levi G, Lang E, Beberashvili I, Efrati S. Hyperbaric Oxygen Therapy for Veterans With Treatment-resistant PTSD: A Longitudinal Follow-up Study. Mil Med 2023; 188:e2227-e2233. [PMID: 36433746 DOI: 10.1093/milmed/usac360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION PTSD is common among veteran combatants. PTSD is characterized by brain changes, for which available treatments have shown limited effect. In a short-term study, we showed that hyperbaric oxygen therapy (HBOT) induced neuroplasticity and improved clinical symptoms of veterans with treatment-resistant PTSD. Here, we evaluated the long-term clinical symptoms of the participants of that study. MATERIALS AND METHODS Veterans from our short-term study were recruited 1 or more years after completing HBOT. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) and self-reported questionnaires were administered at a single site visit. Changes in clinical scores between long-term, short-term, and pretreatment evaluations were analyzed. RESULTS Of the 28 participants who received HBOT during or following the short-term study, 22 agreed to participate in the current study. At a mean of 704 ± 230 days after completing the HBOT course, the mean CAPS-5 score (26.6 ± 14.4) was significantly better (lower) than at the pre-HBOT evaluation (47.5 ± 13.1, P < .001) and not statistically different from the short-term evaluation (28.6 ± 16.7, P = .745). However, for the CAPS-5 subcategory D (cognition and mood symptoms), the mean score was significantly better (lower) at long-term than at short-term evaluation (7.6 ± 5.1 vs. 10.0 ± 6.0, P < .001). At the long-term compared to the pretreatment evaluation, higher proportions of the participants were living with life partners (10 (46%) vs. 17 (77%), P = .011) and were working (9 (41%) vs. 16 (73%), P = .033). Decreases were observed between pretreatment and the long-term follow-up, in the number of benzodiazepine users (from 10 (46%) to 4 (18%), P = .07) and in the median (range) cannabis daily dose (from 40.0 g (0-50) to 22.5 g (0-30), P = .046). CONCLUSIONS The beneficial clinical effects of HBOT are persistent and were not attenuated at long-term follow-up of about 2 years after completion of HBOT. Additional long-term effects of the treatment were observed in social function and in decreased medication use.
Collapse
Affiliation(s)
- Keren Doenyas-Barak
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin 70300, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Ilan Kutz
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin 70300, Israel
| | - Gabriela Levi
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin 70300, Israel
| | - Erez Lang
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin 70300, Israel
| | - Ilia Beberashvili
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin 70300, Israel
- Department of Nephrology, Shamir Medical Center, Zerifin 70300, Israel
| | - Shai Efrati
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin 70300, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
13
|
Jeyaraman M, Sami A, Nallakumarasamy A, Jeyaraman N, Jain VK. Hyperbaric Oxygen Therapy in Orthopaedics: An Adjunct Therapy with an Emerging Role. Indian J Orthop 2023; 57:748-761. [PMID: 37128570 PMCID: PMC10147865 DOI: 10.1007/s43465-023-00837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Introduction Hyperbaric oxygen therapy (HBOT) has emerged as an adjunct treatment modality in various orthopedic and rheumatological conditions. Undersea and Hyperbaric Medical Society (UHMS) defined the minimum number of HBOT cycles, dose, and frequency for various diseases. UHMS laid the 14 absolute indications for HBOT. This article deals with the mechanism of actions of HBOT and evidence of various musculoskeletal disorders where HBOT was utilized to accelerate the healing process of the diseases. Materials and methods The review literature search was conducted by using PubMed, SCOPUS, and other database of medical journals for identifying, reviewing, and evaluating the published clinical trial data, research study, and review articles for the use of HBOT in musculoskeletal disorders. Results Various clinical researchers documented cellular and biochemical advantages of HBOT which possess allodynic effects, anti-inflammatory, and prooxygenatory effects in patients with musculoskeletal conditions. Studies on the usage of HBOT in avascular necrosis and wound healing provide a platform for exploring the plausible uses of HBOT in other musculoskeletal conditions. Literature evidence states the complications associated with HBOT therapy. Conclusion The existing HBOT protocols have to be optimized for various musculoskeletal disorders. Large scale blinded RCTs have to be performed for demonstrating the level of evidence in the usage of HBOT in various musculoskeletal clinical scenarios.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600056 India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
| | - Abdus Sami
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, 110001 India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019 India
| | - Naveen Jeyaraman
- Department of Orthopaedics, Rathimed Specialty Hospital, Chennai, Tamil Nadu 600040 India
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, 110001 India
| |
Collapse
|
14
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
15
|
Doerr V, Montalvo RN, Nguyen BL, Boeno FP, Sunshine MD, Bindi VE, Fuller DD, Smuder AJ. Effects of Hyperbaric Oxygen Preconditioning on Doxorubicin Cardiorespiratory Toxicity. Antioxidants (Basel) 2022; 11:antiox11102073. [PMID: 36290796 PMCID: PMC9598583 DOI: 10.3390/antiox11102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiorespiratory dysfunction resulting from doxorubicin (DOX) chemotherapy treatment is a debilitating condition affecting cancer patient outcomes and quality of life. DOX treatment promotes cardiac and respiratory muscle pathology due to enhanced reactive oxygen species (ROS) production, mitochondrial dysfunction and impaired muscle contractility. In contrast, hyperbaric oxygen (HBO) therapy is considered a controlled oxidative stress that can evoke a substantial and sustained increase in muscle antioxidant expression. This HBO-induced increase in antioxidant capacity has the potential to improve cardiac and respiratory (i.e., diaphragm) muscle redox balance, preserving mitochondrial function and preventing muscle dysfunction. Therefore, we determined whether HBO therapy prior to DOX treatment is sufficient to enhance muscle antioxidant expression and preserve muscle redox balance and cardiorespiratory muscle function. To test this, adult female Sprague Dawley rats received HBO therapy (2 or 3 atmospheres absolute (ATA), 100% O2, 1 h/day) for 5 consecutive days prior to acute DOX treatment (20 mg/kg i.p.). Our data demonstrate that 3 ATA HBO elicits a greater antioxidant response compared to 2 ATA HBO. However, these effects did not correspond with beneficial adaptations to cardiac systolic and diastolic function or diaphragm muscle force production in DOX treated rats. These findings suggest that modulating muscle antioxidant expression with HBO therapy is not sufficient to prevent DOX-induced cardiorespiratory dysfunction.
Collapse
Affiliation(s)
- Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Ryan N. Montalvo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Branden L. Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
| | - Franccesco P. Boeno
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Michael D. Sunshine
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Victoria E. Bindi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - David D. Fuller
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
16
|
Oxidative Stress in Fibromyalgia: From Pathology to Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1582432. [PMID: 36246401 PMCID: PMC9556195 DOI: 10.1155/2022/1582432] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/23/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
Fibromyalgia (FM) is characterized by chronic widespread musculoskeletal pain associated with sleep problems, fatigue, depression, and anxiety. The persistence of pain, impairment of cognitive function, and negative impact on the psychological state have caused a detrimental effect on the patients' quality of life. However, to date, the treatment and mechanisms of this disease are yet to be established. Oxidative stress might play a critical role in FM pathophysiology. Increased levels of prooxidative factors such as nitric oxide, lipid peroxidation, and mitophagy can cause pain sensitization in fibromyalgia. Numerous studies have supported the hypothesis of beneficial antioxidative effects in FM. Due to the lack of effective therapy for fibromyalgia, many treatments are sought to reduce pain and fatigue and improve patients' quality of life. This manuscript discusses the impact of various antioxidative procedures that can diminish fibromyalgia symptoms, such as hyperbaric oxygen therapy, modification of dietary habits, and physical activity.
Collapse
|
17
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Li Y, Wang Y. Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function and Its Mechanism: A Narrative Review. Brain Sci 2022; 12:808. [PMID: 35741693 PMCID: PMC9221409 DOI: 10.3390/brainsci12060808] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Cognitive function is affected by low pressure and hypoxia in high-altitude environments, and is regulated by altitude and exposure time. With the economic development in the Qinghai-Tibet Plateau, the increase in work and study activities, as well as the development of plateau tourism, mountaineering, and other activities, the number of plateau immigrants is increasing daily. Long-term hypoxia challenges human physical and mental health, restricts work efficiency, and thus affects plateau economic development and human wellbeing. Therefore, it is of scientific and social significance to study how long-term exposure to the hypoxic plateau environment affects the physical and mental health of lowlanders as part of the ongoing development of the current plateau region. In this paper, we reviewed the research progress and mechanism of the effects of long-term (≥1 year) high-altitude (>2500 m) hypoxia exposure on the cognitive function of lowlanders, and suggested that the scope and sample size of the research should be expanded in the future, and that follow-up studies should be carried out to explore the time threshold of cognitive impairment and its compensatory or repair mechanism.
Collapse
Affiliation(s)
- Yuan Li
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China;
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China
| | - Yan Wang
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China;
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Hyperbaric Oxygen Therapy Improves Parkinson’s Disease by Promoting Mitochondrial Biogenesis via the SIRT-1/PGC-1α Pathway. Biomolecules 2022; 12:biom12050661. [PMID: 35625589 PMCID: PMC9138219 DOI: 10.3390/biom12050661] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 12/30/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT) has been suggested as a potential adjunctive therapy for Parkinson’s disease (PD). PD is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The aim of this study was to investigate the protective mechanisms of HBOT on neurons and motor function in a 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and 1-methyl-4-phenylpyridinium (MPP+)-mediated neurotoxicity in SH-SY5Y cells on the potential protective capability. In vivo: male C57BL/6 mice were randomly divided into three groups: control, MPTP group and MPTP+HBOT group. The MPTP-treated mice were intraperitoneally received MPTP (20 mg/kg) four times at 2 h intervals within a day. The day after MPTP treatment, MPTP+HBOT mice were exposed to hyperbaric oxygen at 2.5 atmosphere absolute (ATA) with 100% oxygen for 1 h once daily for 7 consecutive days. In vitro: retinoic acid (RA)-differentiated SH-SY5Y cells were treated with MPP+ for 1 h followed by hyperbaric oxygen at 2.5 ATA with 100% oxygen for 1 h. The results showed that MPTP induced a significant loss in tyrosine hydroxylase (TH)-positive neurons in the SNpc of mice. HBOT treatment significantly increased the number of TH-positive neurons, with enhanced neurotrophic factor BDNF, decreased apoptotic signaling and attenuated inflammatory mediators in the midbrain of MPTP-treated mice. In addition, MPTP treatment decreased the locomotor activity and grip strength of mice, and these effects were shown to improve after HBOT treatment. Furthermore, MPTP decreased mitochondrial biogenesis signaling (SIRT-1, PGC-1α and TFAM), as well as mitochondrial marker VDAC expression, while HBOT treatment was shown to upregulate protein expression. In cell experiments, MPP+ reduced neurite length, while HBOT treatment attenuated neurite retraction. Conclusions: the effects of HBOT in MPTP-treated mice might come from promoting mitochondrial biogenesis, decreasing apoptotic signaling and attenuating inflammatory mediators in the midbrain, suggesting its potential benefits in PD treatment.
Collapse
|
20
|
Morales G, Fiero M, Albert J, Di Gennaro J, Gerbino A. Cerebral Arterial Gas Embolism due to Helium Inhalation from a High-Pressure Gas Cylinder. Case Rep Emerg Med 2022; 2022:1847605. [PMID: 35311225 PMCID: PMC8924607 DOI: 10.1155/2022/1847605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Cerebral arterial gas embolism (CAGE) is a rare but serious cause for acute neurologic deficit that occurs most often in divers who breathe compressed gas at depth or iatrogenically from a variety of invasive medical procedures. We present a rare case of CAGE caused by inhaling helium from an unregulated, high-pressure gas cylinder. Following inhalation, the patient experienced loss of consciousness, neurologic deficits, pneumomediastinum, and pneumothorax requiring transfer and treatment at a hyperbaric facility with resulting resolution of neurologic symptoms. This case highlights the importance of rapid diagnosis and hyperbaric oxygen treatment (HBO), facilitated by close coordination among community emergency departments, pediatric tertiary care centers, hyperbaric facilities, and poison control.
Collapse
Affiliation(s)
- Gabriel Morales
- Department of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - Marie Fiero
- Divsion of Pediatric Critical Care Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Jesselle Albert
- Divsion of Pediatric Critical Care Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Jane Di Gennaro
- Divsion of Pediatric Critical Care Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Anthony Gerbino
- Sections of Critical Care and Pulmonary Medicine, Virginia Mason Medical Center, Seattle, WA, USA
- Center for Hyperbaric Medicine, Virginia Mason Medical Center, Seattle, WA, USA
| |
Collapse
|
21
|
Li W, Cao F, Takase H, Arai K, Lo EH, Lok J. Blood-Brain Barrier Mechanisms in Stroke and Trauma. Handb Exp Pharmacol 2022; 273:267-293. [PMID: 33580391 DOI: 10.1007/164_2020_426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Cao
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Josephine Lok
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Choi J, Kwon HJ, Seoh JY, Han PL. Hyperoxygenation Ameliorates Stress-induced Neuronal and Behavioral Deficits. Exp Neurobiol 2021; 30:415-429. [PMID: 34983882 PMCID: PMC8752323 DOI: 10.5607/en21029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
Hyperoxygenation therapy remediates neuronal injury and improves cognitive function in various animal models. In the present study, the optimal conditions for hyperoxygenation treatment of stress-induced maladaptive changes were investigated. Mice exposed to chronic restraint stress (CRST) produce persistent adaptive changes in genomic responses and exhibit depressive-like behaviors. Hyperoxygenation treatment with 100% O2 (HO2) at 2.0 atmospheres absolute (ATA) for 1 h daily for 14 days in CRST mice produces an antidepressive effect similar to that of the antidepressant imipramine. In contrast, HO2 treatment at 2.0 ATA for 1 h daily for shorter duration (3, 5, or 7 days), HO2 treatment at 1.5 ATA for 1 h daily for 14 days, or hyperbaric air treatment at 2.0 ATA (42% O2) for 1 h daily for 14 days is ineffective or less effective, indicating that repeated sufficient hyperoxygenation conditions are required to reverse stress-induced maladaptive changes. HO2 treatment at 2.0 ATA for 14 days restores stress-induced reductions in levels of mitochondrial copy number, stress-induced attenuation of synaptophysin-stained density of axon terminals and MAP-2-staining dendritic processes of pyramidal neurons in the hippocampus, and stress-induced reduced hippocampal neurogenesis. These results suggest that HO2 treatment at 2.0 ATA for 14 days is effective to ameliorate stress-induced neuronal and behavioral deficits.
Collapse
Affiliation(s)
- Juli Choi
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hye-Jin Kwon
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Ju-Young Seoh
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Central Research Laboratory, GI Biome, Inc., Seongnam 13201, Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
23
|
Hyperbaric Oxygen Treatment: Effects on Mitochondrial Function and Oxidative Stress. Biomolecules 2021; 11:biom11121827. [PMID: 34944468 PMCID: PMC8699286 DOI: 10.3390/biom11121827] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperbaric oxygen treatment (HBOT)—the administration of 100% oxygen at atmospheric pressure (ATA) greater than 1 ATA—increases the proportion of dissolved oxygen in the blood five- to twenty-fold. This increase in accessible oxygen places the mitochondrion—the organelle that consumes most of the oxygen that we breathe—at the epicenter of HBOT’s effects. As the mitochondrion is also a major site for the production of reactive oxygen species (ROS), it is possible that HBOT will increase also oxidative stress. Depending on the conditions of the HBO treatment (duration, pressure, umber of treatments), short-term treatments have been shown to have deleterious effects on both mitochondrial activity and production of ROS. Long-term treatment, on the other hand, improves mitochondrial activity and leads to a decrease in ROS levels, partially due to the effects of HBOT, which increases antioxidant defense mechanisms. Many diseases and conditions are characterized by mitochondrial dysfunction and imbalance between ROS and antioxidant scavengers, suggesting potential therapeutic intervention for HBOT. In the present review, we will present current views on the effects of HBOT on mitochondrial function and oxidative stress, the interplay between them and the implications for several diseases.
Collapse
|
24
|
Haddad HW, Mallepalli NR, Scheinuk JE, Bhargava P, Cornett EM, Urits I, Kaye AD. The Role of Nutrient Supplementation in the Management of Chronic Pain in Fibromyalgia: A Narrative Review. Pain Ther 2021; 10:827-848. [PMID: 33909266 PMCID: PMC8586285 DOI: 10.1007/s40122-021-00266-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION The multifaceted clinical presentation of fibromyalgia (FM) supports the modern understanding of the disorder as a more global condition than one simply affecting pain sensation. The main pharmacologic therapies used clinically include anti-epileptics and anti-depressants. Conservative treatment options include exercise, myofascial release, psychotherapy, and nutrient supplementation. METHODS Narrative review. RESULTS Nutrient supplementation is a broadly investigated treatment modality as numerous deficiencies have been linked to FM. Additionally, a proposed link between gut microbiome patterns and chronic pain syndromes has led to studies investigating probiotics as a possible treatment. Despite positive results, much of the current evidence regarding this topic is of poor quality, with variable study designs, limited sample sizes, and lack of control groups. CONCLUSIONS The etiology of FM is complex, and has shown to be multi-factorial with genetics and environmental exposures lending influence into its development. Preliminary results are promising, however, much of the existing evidence regarding diet supplementation is of poor quality. Further, more robust studies are needed to fully elucidate the potential of this alternative therapeutic option.
Collapse
Affiliation(s)
| | - Nikita Reddy Mallepalli
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
| | - John Emerson Scheinuk
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
| | - Pranav Bhargava
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
| | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
| | - Ivan Urits
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
- Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA USA
| | - Alan David Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA USA
| |
Collapse
|
25
|
Shin SS, Hwang M, Diaz-Arrastia R, Kilbaugh TJ. Inhalational Gases for Neuroprotection in Traumatic Brain Injury. J Neurotrauma 2021; 38:2634-2651. [PMID: 33940933 PMCID: PMC8820834 DOI: 10.1089/neu.2021.0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. In this review, we perform a systematic review of both pre-clinical and clinical reports describing inhalational gas therapy in the setting of TBI. Hyperbaric oxygen, which has been investigated for many years, and some of the newest developments are reviewed. Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Wang HC, Wang PM, Lin YT, Tsai NW, Lai YR, Kung CT, Su CM, Lu CH. Effects of Hyperbaric Oxygen Therapy on Serum Adhesion Molecules, and Serum Oxidative Stress in Patients with Acute Traumatic Brain Injury. J Pers Med 2021; 11:jpm11100985. [PMID: 34683126 PMCID: PMC8541528 DOI: 10.3390/jpm11100985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Serum concentrations of adhesion molecules and oxidative stress is thought to participate in the pathobiology of secondary brain injury after acute traumatic brain injury (TBI). We aimed to study the hypothesis that hyperbaric oxygen therapy (HBOT) both improves the adhesion molecules levels and antioxidant capacity. Methods: Thirty blood samples from ten patients after acute TBI were obtained after injury and before and after HBOT. Four patients received early HBOT started two weeks after injury, four patients received late HBOT started ten weeks after injury and two patients did not receive HBOT and served as control in this study. The HBOT patients received total 30 times HBOT in six weeks period. Results: Those serum biomarkers in patients with TBI had not significantly difference in glutathione (GSH), thiobarbituric acid reactive substances (TBARS), soluble intercellular cell adhesion-molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) concentrations on admission between early HBOT, late HBOT, and control group (p = 0.916, p = 0.98, p = 0.306, and p = 0.548, respectively). Serum GSH levels were higher at 10 weeks after injury in the early HBOT group than in the late HBOT group and control group (mean, 1.40 μmol/L, 1.16 μmol/L, and 1.05 μmol/L, respectively). Then the serum GSH level was increased at 18 weeks after injury in the late HBOT group (mean, 1.49 μmol/L). However, there was only statistically significant difference at Weeks 18 (p = 0.916, p = 0.463, and p = 0.006, at Week 2, Week 10, and Week 18, respectively). Serum TBARS levels were decreased at 10 weeks after injury in the early HBOT group than in the late HBOT group and control group (mean, 11.21 μmol/L, 17.23 μmol/L, and 17.14 μmol/L, respectively). Then the serum TBARS level was decreased at 18 weeks after injury in the late HBOT group (mean, 12.06 μmol/L). There was statistically significant difference after HBOT (p = 0.98, p = 0.007, and p = 0.018, at Week 2, Week 10, and Week 18, respectively). There was no statistically significant difference between the three groups on sICAM-1 and sVCAM-1 levels from Week 2 to Week 18. Conclusions: HBOT can improve serum oxidative stress in patients after TBI. These molecules may be added as evaluation markers in clinical practice. Perhaps in the future it may also become part of the treatment of patients after acute traumatic brain injury. Further large-scale study may be warrant.
Collapse
Affiliation(s)
- Hung-Chen Wang
- Departments of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan;
| | - Pei-Ming Wang
- Departments of Family Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan;
| | - Yu-Tsai Lin
- Departments of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Nai-Wen Tsai
- Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (N.-W.T.); (Y.-R.L.)
| | - Yun-Ru Lai
- Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (N.-W.T.); (Y.-R.L.)
| | - Chia-Te Kung
- Departments of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (C.-T.K.); (C.-M.S.)
| | - Chih-Min Su
- Departments of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (C.-T.K.); (C.-M.S.)
| | - Cheng-Hsien Lu
- Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (N.-W.T.); (Y.-R.L.)
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Neurology, Xiamen Chang Gung Memorial Hospital, Xiamen 361126, China
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8011)
| |
Collapse
|
27
|
Bo-Htay C, Shwe T, Jaiwongkam T, Kerdphoo S, Pratchayasakul W, Pattarasakulchai T, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Hyperbaric oxygen therapy effectively alleviates D-galactose-induced-age-related cardiac dysfunction via attenuating mitochondrial dysfunction in pre-diabetic rats. Aging (Albany NY) 2021; 13:10955-10972. [PMID: 33861726 PMCID: PMC8109141 DOI: 10.18632/aging.202970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
Currently, the prevalence of obesity in aging populations is fast growing worldwide. Aging induced by D-galactose (D-gal) is proven to cause the worsening of cardiac dysfunction in pre-diabetic rats via deteriorating cardiac mitochondrial function. Hyperbaric oxygen therapy (HBOT) has been shown to attenuate D-gal-induced cognitive deterioration through decreased inflammation and apoptosis. We tested the hypothesis that HBOT alleviates D-gal induced cardiac dysfunction via improving mitochondrial function in pre-diabetic rats. Wistar rats (n=56) were fed normal diet or high-fat diet for 12 weeks. For subsequent 8 weeks, they were subcutaneously injected either vehicle (0.9% normal saline) or D-gal (150mg/kg/day). Rats were randomly subdivided into 7 groups at week 21: sham-treated (normal diet fed rats with vehicle (NDV), high-fat diet fed rats with vehicle (HFV), normal diet fed rats with D-gal (NDDg), high-fat diet fed rats with D-gal (HFDg)) and HBOT-treated (HFV, NDDg, HFDg). Sham rats received ambient pressure of oxygen while HBOT-treated ones received 100% oxygen given once daily for 60 minutes at 2 atmosphere absolute. HBOT reduced metabolic impairments, mitochondrial dysfunction and increased autophagy, resulting in an improvement of cardiac function in aged pre-diabetic rats.
Collapse
Affiliation(s)
- Cherry Bo-Htay
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thazin Shwe
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thienchai Pattarasakulchai
- Hyperbaric Oxygen Therapy Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
28
|
Hippocampal cerebral blood flow increased following low-pressure hyperbaric oxygenation in firefighters with mild traumatic brain injury and emotional distress. Neurol Sci 2021; 42:4131-4138. [PMID: 33532950 DOI: 10.1007/s10072-021-05094-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/27/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recent evidence suggests that hyperbaric oxygenation (HBO), which has been used as an effective treatment for certain types of tissue injury, may change neural activities in the human brain and subsequently improve symptoms of psychiatric disorders. To scrutinize the neural mechanism of HBO in the human brain, we investigated whether 20 sessions of HBO changed regional cerebral blood flow (rCBF) of the limbic system in firefighters with mild traumatic brain injury (mTBI) and subjective emotional distress. METHODS Twenty firefighters with mTBI and mild emotional distress were treated with HBO at a relatively low pressure of 1.3 atmospheres absolute for 45 min a day for 20 consecutive days (the mild emotional distress group). The rCBF of the limbic system was measured using an arterial spin labeling perfusion magnetic resonance imaging before and after the HBO. Analyses were performed on the data from fourteen individuals who completed the study and 14 age- and sex-matched healthy firefighters (the comparison group). RESULTS Firefighters in the mild emotional distress group showed increase rCBF following HBO in a cluster encompassing the right hippocampal and parahippocampal regions (peak t = 4.31; cluster size = 248 mm3)(post-hoc analysis, z = 5.92, p < 0.001) that had lower rCBF relative to the comparison group at baseline (post-hoc analysis, t = -2.20, p = 0.04). CONCLUSION The current study demonstrated that low-pressure HBO might increase rCBF of the hippocampal and parahippocampal regions, suggesting a potential underpinning mechanism of HBO in the human brain.
Collapse
|
29
|
Liang F, Sun L, Yang J, Liu XH, Zhang J, Zhu WQ, Yang L, Nan D. The effect of different atmosphere absolute hyperbaric oxygen on the expression of extracellular histones after traumatic brain injury in rats. Cell Stress Chaperones 2020; 25:1013-1024. [PMID: 32705509 PMCID: PMC7591663 DOI: 10.1007/s12192-020-01137-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/03/2022] Open
Abstract
By observing the dynamic changes of extracellular histones H1, H2A, H4, and NF-κB expression in brain tissues after brain injury in rats, we explore the association among the expression of extracellular histones H1, H2A, H4, and NF-κB following traumatic brain injury (TBI), as well as the effect of different atmospheres absolute hyperbaric oxygen (HBO) intervention on the expression and possible mechanisms. A total of 120 SD rats were randomly divided into 4 groups: Sham-operated (SH), TBI (traumatic brain injury) group, traumatic brain injury and hyperbaric oxygen treatment 1.6ATA (TBI + HBO1) group, and traumatic brain injury and hyperbaric oxygen treatment2.2ATA (TBI + HBO2) group, with 30 rats in each group. The rats in each group were then randomly divided into five smaller time-specific sub-groups: 3 h, 6 h, 12 h, 24 h, and 48 h after surgery. TBI models were established, and the brain tissue around the lesion was taken at different time points. On the one hand,we detected the level of local histones H1, H2A, H4, and NF-κB by RT-PCR and Western Blot. On the other hand, we used immunohistochemical methods to detect the expression of NF-κB, while using the TUNEL method to observe the cell apoptosis in experimental groups after brain injury. Extracellular histones H1, H2A, H4, and NF-κB proteins were highly expressed at 3 h, then with a slight fluctuation, reached to peak at 48 h after the injury. HBO can affect the expression of histones H1, H2A, H4, and NF-κB. The decline of each indicator in the 1.6ATA group was significantly lower than that in the 2.2ATA group, especially within 6 h (P < 0. 05). In addition, NF-κB expression was consistent with the pathological changes of apoptosis in experimental groups. Hyperbaric oxygen therapy with relatively low pressure (1.6ATA) at the early stage can significantly inhibit the expression of extracellular histones H1, H2A, H4, and NF-κB around the lesion, reduce the apoptosis of nerve cells, and thus play an important role in alleviating secondary brain injury.
Collapse
Affiliation(s)
- Fang Liang
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, 8 South Gongti Road, Chao-Yang District, Beijing, 100020, China
| | - Lei Sun
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, 8 South Gongti Road, Chao-Yang District, Beijing, 100020, China
| | - Jing Yang
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, 8 South Gongti Road, Chao-Yang District, Beijing, 100020, China.
| | - Xue-Hua Liu
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, 8 South Gongti Road, Chao-Yang District, Beijing, 100020, China
| | - Jing Zhang
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, 8 South Gongti Road, Chao-Yang District, Beijing, 100020, China
| | - Wan-Qiu Zhu
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, 8 South Gongti Road, Chao-Yang District, Beijing, 100020, China
| | - Lu Yang
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, 8 South Gongti Road, Chao-Yang District, Beijing, 100020, China
| | - Ding Nan
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, 8 South Gongti Road, Chao-Yang District, Beijing, 100020, China
| |
Collapse
|
30
|
Hyperbaric Oxygen Exposure Attenuates Circulating Stress Biomarkers: A Pilot Interventional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217853. [PMID: 33120884 PMCID: PMC7663415 DOI: 10.3390/ijerph17217853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) has been used to provide oxygen to underperfused organs following ischemia or carbon monoxide intoxication. Various beneficial consequences of HBOT have been reported, including wound healing, anti-inflammatory action, and cell survival; however, the molecular mechanisms underlying these effects have not been elucidated yet. We applied a single HBOT program consisting of administration of 2.8 atmospheres absolute (ATA) for 45 min, followed by 2.0 ATA for 55 min, to 10 male volunteers without any metabolic disease. Within 1 week of HBOT, there was no alteration in serum biochemical variables, except for an increase in triglyceride content. As a mitochondrial stress indicator, the serum concentration of growth differentiation factor 15 was reduced by HBOT. The circulating level of γ–glutamyltransferase was also decreased by HBOT, suggesting an attenuation of oxidative stress. HBOT increased adiponectin and reduced leptin levels in the serum, leading to an elevated adiponectin/leptin ratio. This is the first study to investigate the effect of HBOT on serum levels of metabolic stress-related biomarkers. We suggest that HBOT attenuates mitochondrial and oxidative stresses, and relieves metabolic burdens, indicating its potential for use in therapeutic applications to metabolic diseases.
Collapse
|
31
|
Fischer I, Barak B. Molecular and Therapeutic Aspects of Hyperbaric Oxygen Therapy in Neurological Conditions. Biomolecules 2020; 10:E1247. [PMID: 32867291 PMCID: PMC7564723 DOI: 10.3390/biom10091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
In hyperbaric oxygen therapy (HBOT), the subject is placed in a chamber containing 100% oxygen gas at a pressure of more than one atmosphere absolute. This treatment is used to hasten tissue recovery and improve its physiological aspects, by providing an increased supply of oxygen to the damaged tissue. In this review, we discuss the consequences of hypoxia, as well as the molecular and physiological processes that occur in subjects exposed to HBOT. We discuss the efficacy of HBOT in treating neurological conditions and neurodevelopmental disorders in both humans and animal models. We summarize by discussing the challenges in this field, and explore future directions that will allow the scientific community to better understand the molecular aspects and applications of HBOT for a wide variety of neurological conditions.
Collapse
Affiliation(s)
- Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
32
|
Kalvala AK, Yerra VG, Sherkhane B, Gundu C, Arruri V, Kumar R, Kumar A. Chronic hyperglycemia impairs mitochondrial unfolded protein response and precipitates proteotoxicity in experimental diabetic neuropathy: focus on LonP1 mediated mitochondrial regulation. Pharmacol Rep 2020; 72:1627-1644. [PMID: 32720218 DOI: 10.1007/s43440-020-00147-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Disturbed mitochondrial homeostasis has been identified to contribute to the pathogenesis of diabetic neuropathy (DN). However, the role of Mitochondrial Lon peptidase 1 (Lonp1) and Heat shock proteins (HSP's) in DN remains elusive. Here we studied the role of these proteins in experimental DN. METHODS Rats were injected with STZ (55 mg/kg, ip) to induce diabetes. After confirmation of diabetes, animals were maintained for 8 weeks to develop neuropathy. Resveratrol was administered at two dose levels 10 and 20 mg/kg for last 2 weeks. Neuronal PC12 cells was challenged with 30 mM of β-D glucose to evaluate the molecular changes. RESULTS Diabetic rats showed reduced expression of various mitochondrial proteases in dorsal root ganglions (DRG). This effect may increase proteotoxicity and diminish electron transport chain (ETC) activity as evident by increased protein oxidation and reduced ETC complexes activities under diabetic condition. In particular, we focused on our efforts to characterize the expression pattern of Lonp1 which was found to be significantly (p < 0.01 vs. control group) under expressed in DRG of diabetic rats. We used Resveratrol to characterize the importance of Lonp1 in regulation of mitochondrial function. High glucose (HG) (30 mM) exposed PC12 cells suggested that Resveratrol treatment attenuated the HG induced mitochondrial damage via induction of mitochondrial proteases. Moreover, siRNA directed against Lonp1 has impaired the activity of Resveratrol in attenuating the HG induced mitochondrial dysfunction. CONCLUSION These results would signify the importance of modulating mitochondrial proteases for the therapeutic management of DN.
Collapse
Affiliation(s)
- Anil Kumar Kalvala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, Hyderabad, Telangana, 500037, India
| | - Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Bhoomika Sherkhane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, Hyderabad, Telangana, 500037, India
| | - Chayanika Gundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, Hyderabad, Telangana, 500037, India
| | - Vijay Arruri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, Hyderabad, Telangana, 500037, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, Hyderabad, Telangana, 500037, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
33
|
Protective Effects of Hyperbaric Oxygen Therapy on Brain Injury by Regulating the Phosphorylation of Drp1 Through ROS/PKC Pathway in Heatstroke Rats. Cell Mol Neurobiol 2020; 40:1253-1269. [PMID: 32043174 DOI: 10.1007/s10571-020-00811-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to elucidate the neurotherapeutic effect of hyperbaric oxygen (HBO) on brain injury and the potential role of dynamin-related protein 1 (Drp1) and its regulatory pathway in heatstroke (HS) rats. In in vivo experiments, rats were exposed to HBO after the onset of HS, or the same pressure but normal air as a control. The results indicated that HBO decreased the mortality and thermoregulatory dysfunction and prolonged the survival time of HS rats. Neurological dysfunction induced by HS was attenuated by HBO through assessment of modified neurological severity score and Morris water maze. HBO also alleviated histopathologic changes and oxidative injury (malondialdehyde and 8-hydroxyguanine), increased activities of superoxide dismutase (SOD) and glutathione/oxidized glutathione and ameliorated apoptotic parameters (caspase-3/6 activities and the number of apoptotic cells) of the hippocampus, hypothalamus and brain stem in rats compared to the HS group. Phosphorylation of DrpSer616 was increased by HS but decreased by HBO in the brains of rats determined by Western blot and immunohistochemical staining. In experiments in vitro, rat hippocampal neurons were used as a heat stress (HS) cellular model to examine the effects of HBO. As the results, HBO attenuated HS-induced cytotoxicity, oxidative injury (malondialdehyde), reactive oxygen species (ROS) generation, decreasing SOD activity and apoptosis. Drp1 inhibitor (Mdivi-1) treatment produced the same effects and had a trend to decrease oxidative injury. But the difference is not statistically significant. HBO and Mdivi-1decreased the phosphorylation of DrpSer616 induced by HS and HBO decreased the phosphorylation of protein kinase C (PKC) induced by HS. Moreover, both PKC inhibitor and ROS scavenger inhibited HS-induced p-DrpSer616. In conclusion, HBO may alleviate the brain injury caused by HS by decreasing ROS/PKC-regulated p-DrpSer616.
Collapse
|
34
|
Leitman M, Efrati S, Fuchs S, Hadanny A, Vered Z. The effect of hyperbaric oxygenation therapy on myocardial function. Int J Cardiovasc Imaging 2020; 36:833-840. [PMID: 31953651 DOI: 10.1007/s10554-020-01773-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Hyperbaric oxygenation therapy is successfully implemented for the treatment of several disorders. Data on the effect of hyperbaric oxygenation on echocardiographic parameters in asymptomatic patients is limited. The current study sought to evaluate the effect of hyperbaric oxygenation therapy on echocardiographic parameters in asymptomatic patients. Thirty-one consecutive patients underwent a 60-sessions course of hyperbaric oxygenation therapy in an attempt to improve cognitive impairment. In all subjects, echocardiography examination was performed before and after a course of hyperbaric oxygenation therapy. Conventional and speckle tracking imaging parameters were calculated and analyzed. The mean age was 70 ± 9.5 years, 28 [90%] were males. History of coronary artery disease was present in 12 [39%]. 94% suffered from hypertension, 42% had diabetes mellitus. Baseline wall motion abnormalities were found in eight patients, however, global ejection fraction was within normal limits. During the study, ejection fraction [EF], increased from 60.71 ± 6.02 to 62.29 ± 5.19%, p = 0.02. Left ventricular end systolic volume [LVESV], decreased from 38.08 ± 13.30 to 35.39 ± 13.32 ml, p = 0.01. Myocardial performance index [MPi] improved, from 0.29 ± 0.07 to 0.26 ± 0.08, p = 0.03. Left ventricular [LV] global longitudinal strain increased from - 19.31 ± 3.17% to - 20.16 ± 3.34%, p = 0.036 due to improvement in regional strain in the apical and antero-septal segments. Twist increased from 18.32 ± 6.61° to 23.12 ± 6.35° p = 0.01, due to improvement in the apical rotation, from 11.76 ± 4.40° to 16.10 ± 5.56°, p = 0.004. Hyperbaric oxygen therapy appears to improve left ventricular function, especially in the apical segments, and is associated with better cardiac performance. If our results are confirmed in further studies, HBOT can be used in many patients with heart failure and systolic dysfunction.
Collapse
Affiliation(s)
- Marina Leitman
- Department of Cardiology, Shamir Medical Center, Zerifin, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Fuchs
- Department of Cardiology, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Vered
- Department of Cardiology, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Poljsak B, Kovac V, Dahmane R, Levec T, Starc A. Cancer Etiology: A Metabolic Disease Originating from Life's Major Evolutionary Transition? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7831952. [PMID: 31687086 PMCID: PMC6800902 DOI: 10.1155/2019/7831952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
A clear understanding of the origins of cancer is the basis of successful strategies for effective cancer prevention and management. The origin of cancer at the molecular and cellular levels is not well understood. Is the primary cause of the origin of cancer the genomic instability or impaired energy metabolism? An attempt was made to present cancer etiology originating from life's major evolutionary transition. The first evolutionary transition went from simple to complex cells when eukaryotic cells with glycolytic energy production merged with the oxidative mitochondrion (The Endosymbiosis Theory first proposed by Lynn Margulis in the 1960s). The second transition went from single-celled to multicellular organisms once the cells obtained mitochondria, which enabled them to obtain a higher amount of energy. Evidence will be presented that these two transitions, as well as the decline of NAD+ and ATP levels, are the root of cancer diseases. Restoring redox homeostasis and reactivation of mitochondrial oxidative metabolism are important factors in cancer prevention.
Collapse
Affiliation(s)
- B. Poljsak
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - V. Kovac
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - R. Dahmane
- 2Faculty of Health Sciences, University of Ljubljana, Chair of Biomedicine in Health Care, Ljubljana, Slovenia
| | - T. Levec
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - A. Starc
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| |
Collapse
|
36
|
Hyperbaric oxygen and aerobic exercise in the long-term treatment of fibromyalgia: A narrative review. Biomed Pharmacother 2018; 109:629-638. [PMID: 30399600 DOI: 10.1016/j.biopha.2018.10.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/13/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is one of the most common clinical presentations in the primary care settings. In the US, Fibromyalgia (FM) affects about 1-3% of adults and commonly occurs in adults between the ages of 40-50 years. FM causes widespread muscular pain and tenderness with hyperalgesia and allodynia and may be associated with other somatic complaints. Hyperbaric oxygen therapy (HBOT) has been utilized and has recently shown promising effects in the management of FM and other chronic pain disorders. In HBOT, the intermittent breathing of 100% oxygen in a pressurized chamber where the pressure is higher than 1 atmosphere absolute (ATA) has been utilized. HBOT exhibits a significant anti-inflammatory effect through reducing production of glial cells and inflammatory mediators which results in pain alleviation in different chronic pain conditions. HBOT can also influence neuroplasticity and affects the mitochondrial mechanisms resulting in functional brain changes. In addition to that, HBOT stimulates nitric oxide (NO) synthesis which helps in alleviating hyperalgesia and NO-dependent release of endogenous opioids which seemed to be the primary HBOT mechanism of antinociception. Moreover, aerobic exercise and meditative movement therapies (MMT) have gained attention for their role in pain alleviation through different anti-inflammatory and antioxidant mechanisms. In this review, we aim to elucidate the different mechanisms of HBOT and aerobic exercise in attenuating pain as adjuvant therapy in the multidisciplinary treatment strategy of chronic pain, and more particularly fibromyalgia.
Collapse
|
37
|
Dong Y, Hu XH, Wu T, Wang T. Effect of hyperbaric oxygenation therapy on post-concussion syndrome. Exp Ther Med 2018; 16:2193-2202. [PMID: 30186458 PMCID: PMC6122203 DOI: 10.3892/etm.2018.6463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 07/11/2017] [Indexed: 11/12/2022] Open
Abstract
The present review evaluated the effect of hyperbaric oxygenation (HBO) therapy on post-concussion syndrome (PCS). Searches for publications from the earliest date possible up until the first week of 2016 were conducted using the electronic databases Cochrane, EBSCOhost, Embase, Ovid MEDLINE, PubMed and Web of Science. Additional trials were identified through reference list scanning. Randomized controlled trials assessing the effectiveness of HBO therapy in PCS were selected and tested for eligibility for inclusion in the present review. Two independent reviewers conducted data extraction and the Cochrane Collaboration's recommended method was used to assess the risk of bias in each study included. Review Manager 5.3 software was used for data synthesis and analysis and the standardized mean difference (SMD) or mean difference (MD) was estimated with a fixed or random effects model using a 95% confidence interval (CI). A total of 127 articles were identified, 4 of which were eligible for final analysis. The meta-analysis identified no difference in the Rivermead Post-Concussion Symptoms Questionnaire (MD=1.23; 95% CI, -3.47-5.94; P>0.05; I2=35%) or Post-Traumatic Stress Disorder Checklist (PCL) scores (SMD=0.12; 95% CI, -0.31-0.54; P>0.05; I2=0%) scores between groups receiving different oxygen doses. The differences in PCL scores (SMD=-0.13, 95% CI, -0.80-0.53; P>0.05; I2=63%) and neurobehavioral symptoms (SMD=-1.00, 95% CI, -2.58-0.58; P>0.05; I2=92%) between the HBO and sham groups were not significant. The current study demonstrated that HBO therapy has no significant effect on PCS compared with the sham group. Therefore, it was determined that effective design and execution of a large clinical trial, which includes treatment, control and sham groups is required in the future.
Collapse
Affiliation(s)
- Yang Dong
- Department of Rehabilitation Medicine, Hangzhou Hospital of Zhejiang CAPF, Hangzhou, Zhejiang 310016, P.R. China
- Institute of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xia Hua Hu
- Department of Rehabilitation Medicine, Hangzhou Hospital of Zhejiang CAPF, Hangzhou, Zhejiang 310016, P.R. China
| | - Tao Wu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Tong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
38
|
Peña-Villalobos I, Casanova-Maldonado I, Lois P, Prieto C, Pizarro C, Lattus J, Osorio G, Palma V. Hyperbaric Oxygen Increases Stem Cell Proliferation, Angiogenesis and Wound-Healing Ability of WJ-MSCs in Diabetic Mice. Front Physiol 2018; 9:995. [PMID: 30104981 PMCID: PMC6078002 DOI: 10.3389/fphys.2018.00995] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/06/2018] [Indexed: 01/23/2023] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is effective for the medical treatment of diverse diseases, infections, and tissue injury. In fact, in recent years there is growing evidence on the beneficial effect of HBOT on non-healing ischemic wounds. However, there is still yet discussion on how this treatment could benefit from combination with regenerative medicine strategies. Here we analyzed the effects of HBOT on three specific aspects of tissue growth, maintenance, and regeneration: (i) modulation of adult rodent (Mus musculus) intestinal stem cell turnover rates; (ii) angiogenesis dynamics during the development of the chorio-allantoic membrane (CAM) in Gallus gallus embryos; (iii) and wound-healing in a spontaneous type II diabetic mouse model with a low capacity to regenerate skin. To analyze these aspects of tissue growth, maintenance, and regeneration, we used HBOT alone or in combination with cellular therapy. Specifically, Wharton Jelly Mesenchymal Stem cells (WJ-MSC) were embedded in a commercial collagen-scaffold. HBOT did not affect the metabolic rate of adult mice nor of chicken embryos. Notwithstanding, HBOT modified the proliferation rate of stem cells in the mice small intestinal crypts, increased angiogenesis in the CAM, and improved wound-healing and tissue repair in diabetic mice. Moreover, our study demonstrates that combining stem cell therapy and HBOT has a collaborative effect on wound-healing. In summary, our data underscore the importance of oxygen tension as a regulator of stem cell biology and support the potential use of oxygenation in clinical treatments.
Collapse
Affiliation(s)
- Isaac Peña-Villalobos
- Laboratorio de Ecofisiología Animal, Departamento de Ecología, Universidad de Chile, Santiago, Chile
- Laboratorio de Células Troncales y Biología del Desarrollo, Departamento de Biología, Universidad de Chile, Santiago, Chile
| | - Ignacio Casanova-Maldonado
- Laboratorio de Células Troncales y Biología del Desarrollo, Departamento de Biología, Universidad de Chile, Santiago, Chile
| | - Pablo Lois
- Laboratorio de Células Troncales y Biología del Desarrollo, Departamento de Biología, Universidad de Chile, Santiago, Chile
| | - Catalina Prieto
- Laboratorio de Células Troncales y Biología del Desarrollo, Departamento de Biología, Universidad de Chile, Santiago, Chile
| | - Carolina Pizarro
- Laboratorio de Células Troncales y Biología del Desarrollo, Departamento de Biología, Universidad de Chile, Santiago, Chile
| | - José Lattus
- Campus Oriente, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Verónica Palma
- Laboratorio de Células Troncales y Biología del Desarrollo, Departamento de Biología, Universidad de Chile, Santiago, Chile
| |
Collapse
|
39
|
Daly S, Thorpe M, Rockswold S, Hubbard M, Bergman T, Samadani U, Rockswold G. Hyperbaric Oxygen Therapy in the Treatment of Acute Severe Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2018; 35:623-629. [PMID: 29132229 PMCID: PMC6909681 DOI: 10.1089/neu.2017.5225] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There has been no major advancement in a quarter of a century for the treatment of acute severe traumatic brain injury (TBI). This review summarizes 40 years of clinical and pre-clinical research on the treatment of acute TBI with hyperbaric oxygen therapy (HBO2) in the context of an impending National Institute of Neurologic Disorders and Stroke-funded, multi-center, randomized, adaptive Phase II clinical trial -the Hyperbaric Oxygen Brain Injury Treatment (HOBIT) trial. Thirty studies (eight clinical and 22 pre-clinical) that administered HBO2 within 30 days of a TBI were identified from PubMed searches. The pre-clinical studies consistently reported positive treatment effects across a variety of outcome measures with almost no safety concerns, thus providing strong proof-of-concept evidence for treating severe TBI in the acute setting. Of the eight clinical studies reviewed, four were based on the senior author's (GR) investigation of HBO2 as a treatment for acute severe TBI. These studies provided evidence that HBO2 significantly improves physiologic measures without causing cerebral or pulmonary toxicity and can potentially improve clinical outcome. These results were consistent across the other four reviewed clinical studies, thus providing preliminary clinical data supporting the HOBIT trial. This comprehensive review demonstrates that HBO2 has the potential to be the first significant treatment in the acute phase of severe TBI.
Collapse
Affiliation(s)
- Samuel Daly
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
- University of Minnesota Medical School, Minneapolis, Minnesota
| | - Maxwell Thorpe
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Sarah Rockswold
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota
| | - Molly Hubbard
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Thomas Bergman
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Uzma Samadani
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Gaylan Rockswold
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
40
|
Veenith TV, Carter EL, Grossac J, Newcombe VFJ, Outtrim JG, Nallapareddy S, Lupson V, Correia MM, Mada MM, Williams GB, Menon DK, Coles JP. Normobaric hyperoxia does not improve derangements in diffusion tensor imaging found distant from visible contusions following acute traumatic brain injury. Sci Rep 2017; 7:12419. [PMID: 28963497 PMCID: PMC5622132 DOI: 10.1038/s41598-017-12590-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
We have previously shown that normobaric hyperoxia may benefit peri-lesional brain and white matter following traumatic brain injury (TBI). This study examined the impact of brief exposure to hyperoxia using diffusion tensor imaging (DTI) to identify axonal injury distant from contusions. Fourteen patients with acute moderate/severe TBI underwent baseline DTI and following one hour of 80% oxygen. Thirty-two controls underwent DTI, with 6 undergoing imaging following graded exposure to oxygen. Visible lesions were excluded and data compared with controls. We used the 99% prediction interval (PI) for zero change from historical control reproducibility measurements to demonstrate significant change following hyperoxia. Following hyperoxia DTI was unchanged in controls. In patients following hyperoxia, mean diffusivity (MD) was unchanged despite baseline values lower than controls (p < 0.05), and fractional anisotropy (FA) was lower within the left uncinate fasciculus, right caudate and occipital regions (p < 0.05). 16% of white and 14% of mixed cortical and grey matter patient regions showed FA decreases greater than the 99% PI for zero change. The mechanistic basis for some findings are unclear, but suggest that a short period of normobaric hyperoxia is not beneficial in this context. Confirmation following a longer period of hyperoxia is required.
Collapse
Affiliation(s)
- Tonny V Veenith
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
- Department of Critical Care Medicine, University Hospital of Birmingham NHS Trust, Queen Elizabeth Medical Centre, Birmingham, B15 2TH, UK
| | - Eleanor L Carter
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Julia Grossac
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
- Anesthesiology and Critical Care Department, University Hospital of Toulouse, 31000, Toulouse, France
| | - Virginia F J Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Joanne G Outtrim
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Sri Nallapareddy
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Victoria Lupson
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Marta M Correia
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Marius M Mada
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Jonathan P Coles
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK.
| |
Collapse
|
41
|
Immediate and delayed hyperbaric oxygen therapy as a neuroprotective treatment for traumatic brain injury in mice. Mol Cell Neurosci 2017; 83:74-82. [DOI: 10.1016/j.mcn.2017.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/29/2023] Open
|
42
|
Huang JL, Zhao BL, Manaenko A, Liu F, Sun XJ, Hu Q. Medical gases for stroke therapy: summary of progress 2015-2016. Med Gas Res 2017; 7:107-112. [PMID: 28744363 PMCID: PMC5510291 DOI: 10.4103/2045-9912.208516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a cerebrovascular disease with high mortality and morbidity. Despite extensive research, there are only a very limited number of therapeutic approaches suitable for treatment of stroke patients as yet. Mounting evidence has demonstrated that such gases as oxygen, hydrogen and hydrogen sulfide are able to provide neuroprotection after stroke. In this paper, we will focus on the recent two years’ progress in the development of gas therapies of stroke and in understanding the molecular mechanisms underlying protection induced by medical gases. We will also discuss the advantages and challenges of these approaches and provide information for future study.
Collapse
Affiliation(s)
- Jun-Long Huang
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Bao-Lian Zhao
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Anatol Manaenko
- Departments of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Fan Liu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Jun Sun
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qin Hu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Sureda A, Batle JM, Martorell M, Capó X, Tejada S, Tur JA, Pons A. Antioxidant Response of Chronic Wounds to Hyperbaric Oxygen Therapy. PLoS One 2016; 11:e0163371. [PMID: 27654305 PMCID: PMC5031445 DOI: 10.1371/journal.pone.0163371] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/06/2016] [Indexed: 01/24/2023] Open
Abstract
We analyzed the effects of the clinical hyperbaric oxygen therapy (HBOT) on the plasma antioxidant response and levels of endothelin-1, Interleukine-6 (IL-6) and vascular endothelial growth factor (VEGF) in patients with chronic wounds (20.2±10.0 months without healing). They received 20 HBOT sessions (five sessions/week), and blood samples were obtained at sessions 1, 5 and 20 before and 2 hours after the HBOT. An additional blood sample was collected 1 month after wound recovery. Serum creatine kinase activity decreased progressively in accordance with the wound healing. Plasma catalase activity significantly increased after the first and fifth sessions of HBOT. Plasma myeloperoxidase activity reported significantly lower values after sessions. Plasma VEGF and IL-6 increased after sessions. Endothelin-1 levels were progressively decreasing during the HBOT, being significant at the session 20. Plasma malondialdehyde concentration was significantly reduced at the last session. Both creatine kinase activity and malondialdehyde levels were maintained lower 1 month after wound recovery respect to initial values. In conclusion, HBOT enhanced the plasma antioxidant defenses and may contribute to activate the healing resolution, angiogenesis and vascular tone regulation by increasing the VEGF and IL-6 release and the endothelin-1 decrease, which may be significant factors in stimulating wound healing.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Juan M. Batle
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Miquel Martorell
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, E-4070386, Concepción, Chile
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Tejada
- Experimental Laboratory, Research Unit, Son Llàtzer Hospital, IUNICS, Ctra. Manacor km 4, E-07198, Palma de Mallorca, Balearic Islands, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
- * E-mail:
| |
Collapse
|
44
|
Hu Q, Manaenko A, Xu T, Guo Z, Tang J, Zhang JH. Hyperbaric oxygen therapy for traumatic brain injury: bench-to-bedside. Med Gas Res 2016; 6:102-110. [PMID: 27867476 PMCID: PMC5110132 DOI: 10.4103/2045-9912.184720] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious public health problem in the United States. Survivors of TBI are often left with significant cognitive, behavioral, and communicative disabilities. So far there is no effective treatment/intervention in the daily clinical practice for TBI patients. The protective effects of hyperbaric oxygen therapy (HBOT) have been proved in stroke; however, its efficiency in TBI remains controversial. In this review, we will summarize the results of HBOT in experimental and clinical TBI, elaborate the mechanisms, and bring out our current understanding and opinions for future studies.
Collapse
Affiliation(s)
- Qin Hu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anatol Manaenko
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ting Xu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhenni Guo
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
45
|
Hadanny A, Efrati S. Treatment of persistent post-concussion syndrome due to mild traumatic brain injury: current status and future directions. Expert Rev Neurother 2016; 16:875-87. [PMID: 27337294 DOI: 10.1080/14737175.2016.1205487] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Persistent post-concussion syndrome caused by mild traumatic brain injury has become a major cause of morbidity and poor quality of life. Unlike the acute care of concussion, there is no consensus for treatment of chronic symptoms. Moreover, most of the pharmacologic and non-pharmacologic treatments have failed to demonstrate significant efficacy on both the clinical symptoms as well as the pathophysiologic cascade responsible for the permanent brain injury. This article reviews the pathophysiology of PCS, the diagnostic tools and criteria, the current available treatments including pharmacotherapy and different cognitive rehabilitation programs, and promising new treatment directions. A most promising new direction is the use of hyperbaric oxygen therapy, which targets the basic pathological processes responsible for post-concussion symptoms; it is discussed here in depth.
Collapse
Affiliation(s)
- Amir Hadanny
- a The Sagol Center for Hyperbaric Medicine and Research , Assaf Harofeh Medical Center , Zerifin , Israel.,b Sackler School of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Shai Efrati
- a The Sagol Center for Hyperbaric Medicine and Research , Assaf Harofeh Medical Center , Zerifin , Israel.,b Sackler School of Medicine , Tel-Aviv University , Tel-Aviv , Israel.,c Research and Development Unit , Assaf Harofeh Medical Center , Zerifin , Israel.,d Sagol School of Neuroscience , Tel-Aviv University , Tel-Aviv , Israel
| |
Collapse
|
46
|
Hadanny A, Golan H, Fishlev G, Bechor Y, Volkov O, Suzin G, Ben-Jacob E, Efrati S. Hyperbaric oxygen can induce neuroplasticity and improve cognitive functions of patients suffering from anoxic brain damage. Restor Neurol Neurosci 2016; 33:471-86. [PMID: 26409406 PMCID: PMC4923708 DOI: 10.3233/rnn-150517] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose: Cognitive impairment may occur in 42–50% of cardiac arrest survivors. Hyperbaric oxygen therapy (HBO2) has recently been shown to have neurotherapeutic effects in patients suffering from chronic cognitive impairments (CCI) consequent to stroke and mild traumatic brain injury. The objective of this study was to assess the neurotherapeutic effect of HBO2 in patients suffering from CCI due to cardiac arrest. Methods: Retrospective analysis of patients with CCI caused by cardiac arrest, treated with 60 daily sessions of HBO2. Evaluation included objective computerized cognitive tests (NeuroTrax), Activity of Daily Living (ADL) and Quality of life questionnaires. The results of these tests were compared with changes in brain activity as assessed by single photon emission computed tomography (SPECT) brain imaging. Results: The study included 11 cases of CCI patients. Patients were treated with HBO2, 0.5–7.5 years (mean 2.6 ± 0.6 years) after the cardiac arrest. HBO2 was found to induce modest, but statistically significant improvement in memory, attention and executive function (mean scores) of 12% , 20% and 24% respectively. The clinical improvements were found to be well correlated with increased brain activity in relevant brain areas as assessed by computerized analysis of the SPECT imaging. Conclusions: Although further research is needed, the results demonstrate the beneficial effects of HBO2 on CCI in patients after cardiac arrest, even months to years after the acute event.
Collapse
Affiliation(s)
- A Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - H Golan
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Nuclear Imaging Division, Assaf Harofeh Medical Center, Zerifin, Israel
| | - G Fishlev
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Y Bechor
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Zerifin, Israel
| | - O Volkov
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Nuclear Imaging Division, Assaf Harofeh Medical Center, Zerifin, Israel
| | - G Suzin
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Zerifin, Israel
| | - E Ben-Jacob
- Research and Development Unit, Assaf Harofeh Medical Center, Zerifin, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,School of Physics and Astronomy, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - S Efrati
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Research and Development Unit, Assaf Harofeh Medical Center, Zerifin, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
47
|
Yang L, Hei MY, Dai JJ, Hu N, Xiang XY. Effect of hyperbaric oxygenation on mitochondrial function of neuronal cells in the cortex of neonatal rats after hypoxic-ischemic brain damage. ACTA ACUST UNITED AC 2016; 49:e5187. [PMID: 27119428 PMCID: PMC4849969 DOI: 10.1590/1414-431x20165187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/15/2016] [Indexed: 11/21/2022]
Abstract
The timing and mechanisms of protection by hyperbaric oxygenation (HBO) in
hypoxic-ischemic brain damage (HIBD) have only been partially elucidated. We
monitored the effect of HBO on the mitochondrial function of neuronal cells in the
cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of
360 of both genders) were randomly divided into normal control, HIBD, and HIBD+HBO
groups. The HBO treatment began immediately after hypoxia-ischemia (HI) and continued
once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h
post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm) occurring
soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days
post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm
were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to
12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some
extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days
post-HI period, but was more severe in the HIBD+HBO group. There was a secondary
recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the
5-7 days period after HI insult. HBO therapy may not lead to improvement of neural
cell mitochondrial function in the cerebral cortex in the early stage post-HI, but
may improve it in the sub-acute stage post-HI.
Collapse
Affiliation(s)
- L Yang
- Third Xiangya Hospital, Department of Pediatrics, Central South University, Changsha, Hunan, China
| | - M Y Hei
- Third Xiangya Hospital, Department of Pediatrics, Central South University, Changsha, Hunan, China
| | - J J Dai
- Third Xiangya Hospital, Department of Pediatrics, Central South University, Changsha, Hunan, China
| | - N Hu
- Third Xiangya Hospital, Department of Pediatrics, Central South University, Changsha, Hunan, China
| | - X Y Xiang
- Third Xiangya Hospital, Department of Pediatrics, Central South University, Changsha, Hunan, China
| |
Collapse
|
48
|
Eve DJ, Steele MR, Sanberg PR, Borlongan CV. Hyperbaric oxygen therapy as a potential treatment for post-traumatic stress disorder associated with traumatic brain injury. Neuropsychiatr Dis Treat 2016; 12:2689-2705. [PMID: 27799776 PMCID: PMC5077240 DOI: 10.2147/ndt.s110126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) describes the presence of physical damage to the brain as a consequence of an insult and frequently possesses psychological and neurological symptoms depending on the severity of the injury. The recent increased military presence of US troops in Iraq and Afghanistan has coincided with greater use of improvised exploding devices, resulting in many returning soldiers suffering from some degree of TBI. A biphasic response is observed which is first directly injury-related, and second due to hypoxia, increased oxidative stress, and inflammation. A proportion of the returning soldiers also suffer from post-traumatic stress disorder (PTSD), and in some cases, this may be a consequence of TBI. Effective treatments are still being identified, and a possible therapeutic candidate is hyperbaric oxygen therapy (HBOT). Some clinical trials have been performed which suggest benefits with regard to survival and disease severity of TBI and/or PTSD, while several other studies do not see any improvement compared to a possibly poorly controlled sham. HBOT has been shown to reduce apoptosis, upregulate growth factors, promote antioxidant levels, and inhibit inflammatory cytokines in animal models, and hence, it is likely that HBOT could be advantageous in treating at least the secondary phase of TBI and PTSD. There is some evidence of a putative prophylactic or preconditioning benefit of HBOT exposure in animal models of brain injury, and the optimal time frame for treatment is yet to be determined. HBOT has potential side effects such as acute cerebral toxicity and more reactive oxygen species with long-term use, and therefore, optimizing exposure duration to maximize the reward and decrease the detrimental effects of HBOT is necessary. This review provides a summary of the current understanding of HBOT as well as suggests future directions including prophylactic use and chronic treatment.
Collapse
Affiliation(s)
- David J Eve
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, Morsani College of Medicine
| | - Martin R Steele
- Veterans Reintegration Steering Committee, Veterans Research, University of South Florida, Tampa, FL, USA
| | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, Morsani College of Medicine
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, Morsani College of Medicine
| |
Collapse
|
49
|
Hu Q, Manaenko A, Guo Z, Huang L, Tang J, Zhang JH. Hyperbaric oxygen therapy for post concussion symptoms: issues may affect the results. Med Gas Res 2015; 5:10. [PMID: 26306183 PMCID: PMC4547434 DOI: 10.1186/s13618-015-0033-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/05/2015] [Indexed: 01/24/2023] Open
Abstract
Post concussion syndrome (PCS) is a set of symptoms succeeding in 25 % of mild traumatic brain injury (mTBI) patients. Hyperbaric oxygen therapy (HBOT) has been demonstrated as an effective method for treating acute and severe TBI, but its efficacy in PCS remains controversial. In this editorial, we reviewed the clinical studies of HBOT in PCS, summarized the limitations of these studies, and discussed the limitations: inappropriate Sham group using room air at 1.2 or 1.3 ATA; delayed HBO administration; subjective assessment methods; time point for outcome assessment and small sample size. We hope that our concerns will be helpful for future clinical studies of HBO therapy in TBI or other neurological disorders.
Collapse
Affiliation(s)
- Qin Hu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA USA
| | - Anatol Manaenko
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA USA
| | - Zhenni Guo
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA USA
| | - Lei Huang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA USA ; Department of Neurosurgery, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA USA
| |
Collapse
|
50
|
Cifu DX, Hoke KW, Wetzel PA, Wares JR, Gitchel G, Carne W. Effects of hyperbaric oxygen on eye tracking abnormalities in males after mild traumatic brain injury. ACTA ACUST UNITED AC 2015; 51:1047-56. [PMID: 25436771 DOI: 10.1682/jrrd.2014.01.0013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/30/2014] [Indexed: 11/05/2022]
Abstract
The effects of hyperbaric oxygen (HBO2) on eye movement abnormalities in 60 military servicemembers with at least one mild traumatic brain injury (TBI) from combat were examined in a single-center, randomized, double-blind, sham-controlled, prospective study at the Naval Medicine Operational Training Center. During the 10 wk of the study, each subject was delivered a series of 40, once a day, hyperbaric chamber compressions at a pressure of 2.0 atmospheres absolute (ATA). At each session, subjects breathed one of three preassigned oxygen fractions (10.5%, 75%, or 100%) for 1 h, resulting in an oxygen exposure equivalent to breathing either surface air, 100% oxygen at 1.5 ATA, or 100% oxygen at 2.0 ATA, respectively. Using a standardized, validated, computerized eye tracking protocol, fixation, saccades, and smooth pursuit eye movements were measured just prior to intervention and immediately postintervention. Between and within groups testing of pre- and postintervention means revealed no significant differences on eye movement abnormalities and no significant main effect for HBO2 at either 1.5 ATA or 2.0 ATA equivalent compared with the sham-control. This study demonstrated that neither 1.5 nor 2.0 ATA equivalent HBO2 had an effect on postconcussive eye movement abnormalities after mild TBI when compared with a sham-control.
Collapse
Affiliation(s)
- David X Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA
| | | | | | | | | | | |
Collapse
|