1
|
Duffy BC, King KM, Nepal B, Nonnemacher MR, Kortagere S. Acute Administration of HIV-1 Tat Protein Drives Glutamatergic Alterations in a Rodent Model of HIV-Associated Neurocognitive Disorders. Mol Neurobiol 2024; 61:8467-8480. [PMID: 38514527 DOI: 10.1007/s12035-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
HIV-1-associated neurocognitive disorders (HAND) are a major comorbidity of HIV-1 infection, marked by impairment of executive function varying in severity. HAND affects nearly half of people living with HIV (PLWH), with mild forms predominating since the use of anti-retroviral therapies (ART). The HIV-1 transactivator of transcription (Tat) protein is found in the cerebrospinal fluid of patients adherent to ART, and its administration or expression in animals causes cognitive symptoms. Studies of Tat interaction with the N-methyl-D-aspartate receptor (NMDAR) suggest that glutamate toxicity contributes to Tat-induced impairments. To identify changes in regional glutamatergic circuitry underlying cognitive impairment, we injected recombinant Tat86 or saline to medial prefrontal cortex (mPFC) of male Sprague-Dawley rats. Rats were assessed with behavioral tasks that involve intact functioning of mPFC including the novel object recognition (NOR), spatial object recognition (SOR), and temporal order (TO) tasks at 1 and 2 postoperative weeks. Following testing, mPFC tissue was collected and analyzed by RT-PCR. Results showed Tat86 in mPFC-induced impairment in SOR, and upregulation of Grin1 and Grin2a transcripts. To further understand the mechanism of Tat toxicity, we assessed the effects of full-length Tat101 on gene expression in mPFC by RNA sequencing. The results of RNAseq suggest that glutamatergic effects of Tat86 are maintained with Tat101, as Grin2a was upregulated in Tat101-injected tissue, among other differentially expressed genes. Spatial learning and memory impairment and Grin2a upregulation suggest that exposure to Tat protein drives adaptation in mPFC, altering the function of circuitry supporting spatial learning and memory.
Collapse
Affiliation(s)
- Brenna C Duffy
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kirsten M King
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Dhume SH, Balogun K, Sarkar A, Acosta S, Mount HTJ, Cahill LS, Sled JG, Serghides L. Perinatal exposure to atazanavir-based antiretroviral regimens in a mouse model leads to differential long-term motor and cognitive deficits dependent on the NRTI backbone. Front Mol Neurosci 2024; 17:1376681. [PMID: 38646101 PMCID: PMC11027900 DOI: 10.3389/fnmol.2024.1376681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Background Combination antiretroviral therapy (ART) use in pregnancy has been pivotal in improving maternal health and reducing perinatal HIV transmission. However, children born HIV-exposed uninfected fall behind their unexposed peers in several areas including neurodevelopment. The contribution of in utero ART exposure to these deficits is not clear. Here we present our findings of neurocognitive outcomes in adult mice exposed in utero to ART. Methods Dams were treated with a combination of ritonavir-boosted atazanavir with either abacavir plus lamivudine (ABC/3TC + ATV/r) or tenofovir disoproxil fumarate plus emtricitabine (TDF/FTC + ATV/r), or water as a control, administered daily from day of plug detection to birth. Offspring underwent a battery of behavioral tests that investigated motor performance and cognition starting at 6-weeks of age and ending at 8 months. Changes in brain structure were assessed using magnetic resonance imaging and immunohistochemistry. Expression of genes involved in neural circuitry and synaptic transmission were assessed in the hippocampus, a region strongly associated with memory formation, using qPCR. Findings Pups exposed to TDF/FTC + ATV/r showed increased motor activity and exploratory drive, and deficits in hippocampal-dependent working memory and social interaction, while pups exposed to ABC/3TC + ATV/r showed increased grooming, and deficits in working memory and social interaction. Significant volumetric reductions in the brain were seen only in the ABC/3TC + ATV/r group and were associated with reduced neuronal counts in the hippocampus. Altered neurotransmitter receptor mRNA expression as well as changes in expression of the neurotrophic factor BDNF and its receptors were observed in both ART-exposed groups in a sex-dependent manner. Interpretation In our model, in utero ART exposure had long-term effects on brain development and cognitive and motor outcomes in adulthood. Our data show that neurological outcomes can be influenced by the type of nucleoside reverse transcriptase inhibitor backbone of the regimen and not just the base drug, and display sex differences.
Collapse
Affiliation(s)
- Shreya H. Dhume
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kayode Balogun
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ambalika Sarkar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sebastian Acosta
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Howard T. J. Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Psychiatry and Physiology, University of Toronto, Toronto, ON, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
| | - John G. Sled
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Women’s College Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
HIV-Proteins-Associated CNS Neurotoxicity, Their Mediators, and Alternative Treatments. Cell Mol Neurobiol 2021; 42:2553-2569. [PMID: 34562223 DOI: 10.1007/s10571-021-01151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV)-infected people's livelihoods are gradually being prolonged with the use of combined antiretroviral therapy (ART). Conversely, despite viral suppression by ART, the symptoms of HIV-associated neurocognitive disorder (HAND) endure. HAND persists because ART cannot really permanently confiscate the virus from the body. HAND encompasses a variety of conditions based on clinical presentation and severity level, comprising asymptomatic neurocognitive impairment, moderate neurocognitive disorder, and HIV-associated dementia. During the early stages of HIV infection, inflammation compromises the blood-brain barrier, allowing toxic virus, infected monocytes, macrophages, T-lymphocytes, and cellular products from the bloodstream to enter the brain and eventually the entire central nervous system. Since there are no resident T-lymphocytes in the brain, the virus will live for decades in macrophages and astrocytes, establishing a reservoir of infection. The HIV proteins then inflame neurons both directly and indirectly. The purpose of this review is to provide a synopsis of the effects of these proteins on the central nervous system and conceptualize avenues to be considered in mitigating HAND. We used bioinformatics repositories extensively to simulate the transcription factors that bind to the promoter of the HIV-1 protein and possibly could be used as a target to circumvent HIV-associated neurocognitive disorders. In the same vein, a protein-protein interaction complex was also deduced from a Search Tool for the Retrieval of Interacting Genes. In conclusion, this provides an alternative strategy that could be used to avert HAND.
Collapse
|
4
|
Yarandi SS, Duggan MR, Sariyer IK. Emerging Role of Nef in the Development of HIV Associated Neurological Disorders. J Neuroimmune Pharmacol 2021; 16:238-250. [PMID: 33123948 PMCID: PMC8081738 DOI: 10.1007/s11481-020-09964-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
Despite adherence to treatment, individuals living with HIV have an increased risk for developing cognitive impairments, referred to as HIV-associated neurological disorders (HAND). Due to continued growth in the HIV population, particularly amongst the aging cohort, the neurobiological mechanisms of HAND are increasingly relevant. Similar to other viral proteins (e.g. Tat, Gp120, Vpr), the Negative Factor (Nef) is associated with numerous adverse effects in the CNS as well as cognitive impairments. In particular, emerging data indicate the consequences of Nef may be facilitated by the modulation of cellular autophagy as well as its inclusion into extracellular vesicles (EVs). The present review examines evidence for the molecular mechanisms by which Nef might contribute to neuronal dysfunction underlying HAND, with a specific focus on autophagy and EVs. Based on the these data, we propose an integrated model by which Nef may contribute to underlying neuronal dysfunction in HAND and highlight potentially novel therapeutic targets for HAND. Graphical abstract.
Collapse
Affiliation(s)
- Shadan S Yarandi
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, Medical Education and Research Building Room 753, 7th Floor, Philadelphia, PA, 19140, USA
| | - Michael R Duggan
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, Medical Education and Research Building Room 753, 7th Floor, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, Medical Education and Research Building Room 753, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
5
|
McLaurin KA, Li H, Cook AK, Booze RM, Mactutus CF. S-EQUOL: a neuroprotective therapeutic for chronic neurocognitive impairments in pediatric HIV. J Neurovirol 2020; 26:704-718. [PMID: 32870477 DOI: 10.1007/s13365-020-00886-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Chronic neurocognitive impairments, commonly associated with pediatric human immunodeficiency virus type 1 (PHIV), are a detrimental consequence of early exposure to HIV-1 viral proteins. Strong evidence supports S-Equol (SE) as an efficacious adjunctive neuroprotective and/or neurorestorative therapeutic for neurocognitive impairments in adult ovariectomized female HIV-1 transgenic (Tg) rats. There remains, however, a critical need to assess the therapeutic efficacy of SE when treatment occurs at an earlier age (i.e., resembling a therapeutic for children with PHIV) and across the factor of biological sex. Utilization of a series of signal detection operant tasks revealed prominent, sex-dependent neurocognitive deficits in the HIV-1 Tg rat, characterized by alterations in stimulus-reinforcement learning, the response profile, and temporal processing. Early (i.e., postnatal day 28) initiation of SE treatment precluded the development of chronic neurocognitive impairments in all (i.e., 100%) HIV-1 Tg animals, albeit not for all neurocognitive domains. Most notably, the therapeutic effects of SE are generalized across the factor of biological sex, despite the presence of endogenous hormones. Results support, therefore, the efficacy of SE as a neuroprotective therapeutic for chronic neurocognitive impairments in the post-cART era; an adjunctive therapeutic that demonstrates high efficacy in both males and females. Optimizing treatment conditions by evaluating multiple factors (i.e., age, neurocognitive domains, and biological sex) associated with PHIV and HIV-1 associated neurocognitive disorders (HAND) affords a key opportunity to improve the therapeutic efficacy of SE.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Hailong Li
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Anna K Cook
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
6
|
Mele AR, Marino J, Dampier W, Wigdahl B, Nonnemacher MR. HIV-1 Tat Length: Comparative and Functional Considerations. Front Microbiol 2020; 11:444. [PMID: 32265877 PMCID: PMC7105873 DOI: 10.3389/fmicb.2020.00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Cirino TJ, Harden SW, McLaughlin JP, Frazier CJ. Region-specific effects of HIV-1 Tat on intrinsic electrophysiological properties of pyramidal neurons in mouse prefrontal cortex and hippocampus. J Neurophysiol 2020; 123:1332-1341. [PMID: 32101482 DOI: 10.1152/jn.00029.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 transactivator of transcription protein (Tat) is a viral protein that promotes transcription of the HIV genome and possesses cell-signaling properties. Long-term exposure of central nervous system (CNS) tissue to HIV-1 Tat is theorized to contribute to HIV-associated neurodegenerative disorder (HAND). In the current study, we sought to directly evaluate the effect of HIV-1 Tat expression on the intrinsic electrophysiological properties of pyramidal neurons located in layer 2/3 of the medial prefrontal cortex and in area CA1 of the hippocampus. Toward that end, we drove Tat expression with doxycycline (100 mg·kg-1·day-1 ip) in inducible Tat (iTat) transgenic mice for 7 days and then performed single-cell electrophysiological studies in acute tissue slices made through the prefrontal cortex and hippocampus. Control experiments were performed in doxycycline-treated G-tg mice, which retain the tetracycline-sensitive promoter but do not express Tat. Our results indicated that the predominant effects of HIV-1 Tat expression are excitatory in medial prefrontal cortical pyramidal neurons yet inhibitory in hippocampal pyramidal neurons. Notably, in these two populations, HIV-1 Tat expression produced differential effects on neuronal gain, membrane time constant, resting membrane potential, and rheobase. Similarly, we also observed distinct effects on action potential kinetics and afterhyperpolarization, as well as on the current-voltage relationship in subthreshold voltage ranges. Collectively, these data provide mechanistic evidence of complex and region-specific changes in neuronal physiology by which HIV-1 Tat protein may promote cognitive deficits associated with HAND.NEW & NOTEWORTHY We drove expression of human immunodeficiency virus (HIV)-1 transactivator of transcription protein (Tat) protein in inducible Tat (iTat) transgenic mice for 7 days and then examined the effects on the intrinsic electrophysiological properties of pyramidal neurons located in the medial prefrontal cortex (mPFC) and in the hippocampus. Our results reveal a variety of specific changes that promote increased intrinsic excitability of layer II/III mPFC pyramidal neurons and decreased intrinsic excitability of hippocampal CA1 pyramidal neurons, highlighting both cell type and region-specific effects.
Collapse
Affiliation(s)
- Thomas J Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Scott W Harden
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Charles J Frazier
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Sokolova IV, Szucs A, Sanna PP. Reduced intrinsic excitability of CA1 pyramidal neurons in human immunodeficiency virus (HIV) transgenic rats. Brain Res 2019; 1724:146431. [PMID: 31491420 PMCID: PMC6939992 DOI: 10.1016/j.brainres.2019.146431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
The hippocampus is involved in key neuronal circuits that underlie cognition, memory, and anxiety, and it is increasingly recognized as a vulnerable structure that contributes to the pathogenesis of HIV-associated neurocognitive disorder (HAND). However, the mechanisms responsible for hippocampal dysfunction in neuroHIV remain unknown. The present study used HIV transgenic (Tg) rats and patch-clamp electrophysiological techniques to study the effects of the chronic low-level expression of HIV proteins on hippocampal CA1 pyramidal neurons. The dorsal and ventral areas of the hippocampus are involved in different neurocircuits and thus were evaluated separately. We found a significant decrease in the intrinsic excitability of CA1 neurons in the dorsal hippocampus in HIV Tg rats by comparing neuronal spiking induced by current step injections and by dynamic clamp to simulate neuronal spiking activity. The decrease in excitability in the dorsal hippocampus was accompanied by a higher rate of excitatory postsynaptic currents (EPSCs), whereas CA1 pyramidal neurons in the ventral hippocampus in HIV Tg rats had higher EPSC amplitudes. We also observed a reduction of hyperpolarization-activated nonspecific cationic current (Ih) in both the dorsal and ventral hippocampus. Neurotoxic HIV proteins have been shown to increase neuronal excitation. The lower excitability of CA1 pyramidal neurons that was observed herein may represent maladaptive homeostatic plasticity that seeks to stabilize baseline neuronal firing activity but may disrupt neural network function and contribute to HIV-associated neuropsychological disorders, such as HAND and depression.
Collapse
Affiliation(s)
- Irina V Sokolova
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States
| | - Attila Szucs
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States; University of California, San Diego, BioCircuits Institute, 9500 Gilman Drive, La Jolla, CA 92039-0328, United States; MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Lóránd University, Budapest, Hungary
| | - Pietro Paolo Sanna
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States.
| |
Collapse
|
9
|
McHenry MS, Balogun KA, McDonald BC, Vreeman RC, Whipple EC, Serghides L. In utero exposure to HIV and/or antiretroviral therapy: a systematic review of preclinical and clinical evidence of cognitive outcomes. J Int AIDS Soc 2019; 22:e25275. [PMID: 30983111 PMCID: PMC6462810 DOI: 10.1002/jia2.25275] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/15/2019] [Indexed: 01/29/2023] Open
Abstract
INTRODUCION With the increasing number of children exposed to HIV or antiretroviral therapy in utero, there are concerns that this population may have worse neurodevelopmental outcomes compared to those who are unexposed. The objective of this study was to systematically review the clinical and preclinical literature on the effects of in utero exposure to HIV and/or antiretroviral therapy (ART) on neurodevelopment. METHODS We systematically searched OVID Medline, PsycINFO and Embase, as well as the Cochrane Collaborative Database, Google Scholar and bibliographies of pertinent articles. Titles, abstracts, and full texts were assessed independently by two reviewers. Data from included studies were extracted. Results are summarized qualitatively. RESULTS The search yielded 3027 unique titles. Of the 255 critically reviewed full-text articles, 25 met inclusion criteria for the systematic review. Five articles studied human subjects and looked at brain structure and function. The remaining 20 articles were preclinical studies that mostly focused on behavioural assessments in animal models. The few clinical studies had mixed results. Some clinical studies found no difference in white matter while others noted higher fractional anisotropy and lower mean diffusivity in the brains of HIV-exposed uninfected children compared to HIV-unexposed uninfected children, correlating with abnormal neurobehavioral scores. Preclinical studies focused primarily on neurobehavioral changes resulting from monotherapy with either zidovudine or lamivudine. Various developmental and behavioural changes were noted in preclinical studies with ART exposure, including decreased grooming, decreased attention, memory deficits and fewer behaviours associated with appropriate social interaction. CONCLUSIONS While the existing literature suggests that there may be some neurobehavioral differences associated with HIV and ART exposure, limited data are available to substantially support these claims. More research is needed comparing neurobiological factors between HIV-exposed uninfected and HIV-unexposed uninfected children and using exposures consistent with current clinical care.
Collapse
Affiliation(s)
- Megan S McHenry
- Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
- Academic Model Providing Access to Healthcare (AMPATH)EldoretKenya
| | - Kayode A Balogun
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoCanada
| | - Brenna C McDonald
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rachel C Vreeman
- Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
- Academic Model Providing Access to Healthcare (AMPATH)EldoretKenya
| | - Elizabeth C Whipple
- Ruth Lilly Medical LibraryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Lena Serghides
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoCanada
- Department of ImmunologyInstitute of Medical SciencesTorontoCanada
| |
Collapse
|
10
|
Santerre M, Bagashev A, Gorecki L, Lysek KZ, Wang Y, Shrestha J, Del Carpio-Cano F, Mukerjee R, Sawaya BE. HIV-1 Tat protein promotes neuronal dysregulation by inhibiting E2F transcription factor 3 (E2F3). J Biol Chem 2018; 294:3618-3633. [PMID: 30591585 DOI: 10.1074/jbc.ra118.003744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
Individuals who are infected with HIV-1 accumulate damage to cells and tissues (e.g. neurons) that are not directly infected by the virus. These include changes known as HIV-associated neurodegenerative disorder (HAND), leading to the loss of neuronal functions, including synaptic long-term potentiation (LTP). Several mechanisms have been proposed for HAND, including direct effects of viral proteins such as the Tat protein. Searching for the mechanisms involved, we found here that HIV-1 Tat inhibits E2F transcription factor 3 (E2F3), CAMP-responsive element-binding protein (CREB), and brain-derived neurotropic factor (BDNF) by up-regulating the microRNA miR-34a. These changes rendered murine neurons dysfunctional by promoting neurite retraction, and we also demonstrate that E2F3 is a specific target of miR-34a. Interestingly, bioinformatics analysis revealed the presence of an E2F3-binding site within the CREB promoter, which we validated with ChIP and transient transfection assays. Of note, luciferase reporter assays revealed that E2F3 up-regulates CREB expression and that Tat interferes with this up-regulation. Further, we show that miR-34a inhibition or E2F3 overexpression neutralizes Tat's effects and restores normal distribution of the synaptic protein synaptophysin, confirming that Tat alters these factors, leading to neurite retraction inhibition. Our results suggest that E2F3 is a key player in neuronal functions and may represent a good target for preventing the development of HAND.
Collapse
Affiliation(s)
- Maryline Santerre
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Asen Bagashev
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology.,the Department of Anatomy and Cell Biology, and
| | - Laura Gorecki
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Kyle Z Lysek
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Ying Wang
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Jenny Shrestha
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Fabiola Del Carpio-Cano
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Ruma Mukerjee
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Bassel E Sawaya
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology, .,the Department of Anatomy and Cell Biology, and.,the Department of Neurology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
11
|
Nookala AR, Schwartz DC, Chaudhari NS, Glazyrin A, Stephens EB, Berman NEJ, Kumar A. Methamphetamine augment HIV-1 Tat mediated memory deficits by altering the expression of synaptic proteins and neurotrophic factors. Brain Behav Immun 2018; 71:37-51. [PMID: 29729322 PMCID: PMC6003882 DOI: 10.1016/j.bbi.2018.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (METH) abuse is common among individuals infected with HIV-1 and has been shown to affect HIV replication and pathogenesis. These HIV-1 infected individuals also exhibit greater neuronal injury and higher cognitive decline. HIV-1 proteins, specifically gp120 and HIV-1 Tat, have been earlier shown to affect neurocognition. HIV-1 Tat, a viral protein released early during HIV-1 replication, contributes to HIV-associated neurotoxicity through various mechanisms including production of pro-inflammatory cytokines, reactive oxygen species and dysregulation of neuroplasticity. However, the combined effect of METH and HIV-1 Tat on neurocognition and its potential effect on neuroplasticity mechanisms remains largely unknown. Therefore, the present study was undertaken to investigate the combined effect of METH and HIV-1 Tat on behavior and on the expression of neuroplasticity markers by utilizing Doxycycline (DOX)-inducible HIV-1 Tat (1-86) transgenic mice. Expression of Tat in various brain regions of these mice was confirmed by RT-PCR. The mice were administered with an escalating dose of METH (0.1 mg/kg to 6 mg/kg, i.p) over a 7-day period, followed by 6 mg/kg, i.p METH twice a day for four weeks. After three weeks of METH administration, Y maze and Morris water maze assays were performed to determine the effect of Tat and METH on working and spatial memory, respectively. Compared with controls, working memory was significantly decreased in Tat mice that were administered METH. Moreover, significant deficits in spatial memory were also observed in Tat-Tg mice that were administered METH. A significant reduction in the protein expressions of synapsin 1, synaptophysin, Arg3.1, PSD-95, and BDNF in different brain regions were also observed. Expression levels of Calmodulin kinase II (CaMKII), a marker of synaptodendritic integrity, were also significantly decreased in HIV-1 Tat mice that were treated with METH. Together, this data suggests that METH enhances HIV-1 Tat-induced memory deficits by reducing the expression of pre- and postsynaptic proteins and neuroplasticity markers, thus providing novel insights into the molecular mechanisms behind neurocognitive impairments in HIV-infected amphetamine users.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Daniel C. Schwartz
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Alexy Glazyrin
- Department of Pathology, School of Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Edward B. Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nancy E. J. Berman
- Department of Anatomy and Cell biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
12
|
Fitting S, McLaurin KA, Booze RM, Mactutus CF. Dose-dependent neurocognitive deficits following postnatal day 10 HIV-1 viral protein exposure: Relationship to hippocampal anatomy parameters. Int J Dev Neurosci 2018; 65:66-82. [PMID: 29111178 PMCID: PMC5889695 DOI: 10.1016/j.ijdevneu.2017.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022] Open
Abstract
Despite the availability of antiretroviral prophylactic treatment, pediatric human immunodeficiency virus type 1 (HIV-1) continues to be a significant risk factor in the post-cART era. The time of infection (i.e., during pregnancy, delivery or breastfeeding) may play a role in the development of neurocognitive deficits in pediatric HIV-1. HIV-1 viral protein exposure on postnatal day (P)1, preceding the postnatal brain growth spurt in rats, had deleterious effects on neurocognitive development and anatomical parameters of the hippocampus (Fitting et al., 2008a,b). In the present study, rats were stereotaxically injected with HIV-1 viral proteins, including Tat1-86 and gp120, on P10 to further examine the role of timing on neurocognitive development and anatomical parameters of the hippocampus (Fitting et al., 2010). The dose-dependent virotoxin effects observed across development following P10 Tat1-86 exposure were specific to spatial learning and absent from prepulse inhibition and locomotor activity. A relationship between alterations in spatial learning and/or memory and hippocampal anatomical parameters was noted. Specifically, the estimated number of neurons and astrocytes in the hilus of the dentate gyrus explained 70% of the variance of search behavior in Morris water maze acquisition training for adolescents and 65% of the variance for adults; a brain-behavior relationship consistent with observations following P1 viral protein exposure. Collectively, late viral protein exposure (P10) results in selective alterations in neurocognitive development without modifying measures of somatic growth, preattentive processing, or locomotor activity, as characterized by early viral protein exposure (P1). Thus, timing may be a critical factor in disease progression, with children infected with HIV earlier in life being more vulnerable to CNS disease.
Collapse
Affiliation(s)
- Sylvia Fitting
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kristen A McLaurin
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Rosemarie M Booze
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Charles F Mactutus
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA.
| |
Collapse
|
13
|
Carryl H, Van Rompay KKA, De Paris K, Burke MW. Hippocampal Neuronal Loss in Infant Macaques Orally Infected with Virulent Simian Immunodeficiency Virus (SIV). Brain Sci 2017; 7:E40. [PMID: 28394273 PMCID: PMC5406697 DOI: 10.3390/brainsci7040040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
The neurological impact of Human Immunodeficiency Virus (HIV) on children includes loss of brain growth, motor abnormalities and cognitive dysfunction. Despite early antiretroviral treatment (ART) intervention to suppress viral load, neurological consequences of perinatal HIV-1 infection persist. Utilizing the pediatric simian immunodeficiency virus (SIV) infection model, we tested the hypothesis that early-life SIV infection depletes neuronal population in the hippocampus. A total of 22 ART-naïve infant rhesus macaques (Macaca mulatta) from previous studies were retrospectively analyzed. Infant macaques were either intravenously (IV) inoculated with highly virulent SIVmac251 at ~1 week of age and monitored for 6-10 weeks, or orally challenged with SIVmac251 from week 9 of age onwards with a monitoring period of 10-23 weeks post-infection (19-34 weeks of age), and SIV-uninfected controls were euthanized at 16-17 weeks of age. We have previously reported that the IV SIVmac251-infected neonatal macaques (Group 1) displayed a 42% neuronal reduction throughout the hippocampal cornu ammonis (CA) fields. The orally-infected infant macaques displayed a 75% neuronal reduction in the CA1 region compared to controls and 54% fewer neurons than IV SIV infants. The CA2 region showed a similar pattern, with a 67% reduction between orally-infected SIV subjects and controls and a 40% difference between IV-and orally-infected SIV groups. In the CA3 region, there were no significant differences between these groups, however both SIV-infected groups had significantly fewer pyramidal neurons than control subjects. There was no correlation between plasma viral load and neuronal populations in any of the CA fields. The loss of hippocampal neurons may contribute to the rapid neurocognitive decline associated with pediatric HIV infection. While each subfield showed vulnerability to SIV infection, the CA1 and CA2 subregions demonstrated a potentially enhanced vulnerability to pediatric SIV infection. These data underscore the need for early diagnosis and treatment, including therapeutics targeting the central nervous system (CNS).
Collapse
Affiliation(s)
- Heather Carryl
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059, USA.
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059, USA.
| |
Collapse
|
14
|
McLaurin KA, Moran LM, Li H, Booze RM, Mactutus CF. A Gap in Time: Extending our Knowledge of Temporal Processing Deficits in the HIV-1 Transgenic Rat. J Neuroimmune Pharmacol 2017; 12:171-179. [PMID: 27699630 PMCID: PMC5316491 DOI: 10.1007/s11481-016-9711-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/14/2016] [Indexed: 12/01/2022]
Abstract
Approximately 50 % of HIV-1 seropositive individuals develop HIV-1 associated neurocognitive disorders (HAND), which commonly include alterations in executive functions, such as inhibition, set shifting, and complex problem solving. Executive function deficits in HIV-1 are fairly well characterized, however, relatively few studies have explored the elemental dimensions of neurocognitive impairment in HIV-1. Deficits in temporal processing, caused by HIV-1, may underlie the symptoms of impairment in higher level cognitive processes. Translational measures of temporal processing, including cross-modal prepulse inhibition (PPI), gap-prepulse inhibition (gap-PPI), and gap threshold detection, were studied in mature (ovariectomized) female HIV-1 transgenic (Tg) rats, which express 7 of the 9 HIV-1 genes constitutively throughout development. Cross-modal PPI revealed a relative insensitivity to the manipulation of interstimulus interval (ISI) in HIV-1 Tg animals in comparison to control animals, extending previously reported temporal processing deficits in HIV-1 Tg rats to a more advanced age, suggesting the permanence of temporal processing deficits. In gap-PPI, HIV-1 Tg animals exhibited a relative insensitivity to the manipulation of ISI in comparison to control animals. In gap-threshold detection, HIV-1 Tg animals displayed a profound differential sensitivity to the manipulation of gap duration. Presence of the HIV-1 transgene was diagnosed with 91.1 % accuracy using gap threshold detection measures. Understanding the generality and permanence of temporal processing deficits in the HIV-1 Tg rat is vital to modeling neurocognitive deficits observed in HAND and provides a key target for the development of a diagnostic screening tool.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Landhing M Moran
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Hailong Li
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
15
|
Antiretroviral Treatment in HIV-1-Positive Mothers: Neurological Implications in Virus-Free Children. Int J Mol Sci 2017; 18:ijms18020423. [PMID: 28212307 PMCID: PMC5343957 DOI: 10.3390/ijms18020423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/23/2022] Open
Abstract
Since the worldwide introduction of antiretroviral therapy (ART) in human immunodeficiency virus type 1, HIV-1-positive mothers, together with HIV-1 testing prior to pregnancy, caesarian birth and breastfeeding cessation with replacement feeding, a reduction of HIV-1 mother-to-child transmission (MTCT) has been observed in the last few years. As such, an increasing number of children are being exposed in utero to ART. Several questions have arisen concerning the neurological effects of ART exposure in utero, considering the potential effect of antiretroviral drugs on the central nervous system, a structure which is in continuous development in the fetus and characterized by great plasticity. This review aims at discussing the possible neurological impairment of children exposed to ART in utero, focusing attention on the drugs commonly used for HIV-1 MTCT prevention, clinical reports of ART neurotoxicity in children born to HIV-1-positive mothers, and neurologic effects of protease inhibitors (PIs), especially ritonavir-“boosted” lopinavir (LPV/r) in cell and animal central nervous system models evaluating the potential neurotoxic effect of ART. Finally, we present the findings of a meta-analysis to assess the effects on the neurodevelopment of children exposed to ART in utero.
Collapse
|
16
|
McLaurin KA, Booze RM, Mactutus CF. Temporal processsing demands in the HIV-1 transgenic rat: Amodal gating and implications for diagnostics. Int J Dev Neurosci 2016; 57:12-20. [PMID: 28040491 DOI: 10.1016/j.ijdevneu.2016.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022] Open
Abstract
Despite the success of combination antiretroviral therapy (cART), approximately 50% of HIV-1 seropositive individuals develop HIV-1 associated neurocognitive disorders (HAND). Unfortunately, point-of-care screening tools for HAND lack sensitivity and specificity, especially in low-resource countries. Temporal processing deficits have emerged as a critical underlying dimension of neurocognitive impairments observed in HIV-1 and may provide a key target for the development of a novel point-of-care screening tool for HAND. Cross-modal prepulse inhibition (PPI; i.e., auditory, visual, or tactile prepulse stimuli) and gap-prepulse inhibition (gap-PPI; i.e., auditory, visual or tactile prepulse stimuli), two translational experimental paradigms, were used to assess the nature of temporal processing deficits in the HIV-1 transgenic (Tg) rat. Cross-modal PPI revealed a relative insensitivity to the manipulation of interstimulus interval (ISI) in HIV-1 Tg rats in comparison to controls, regardless of prestimulus modality. Gap-PPI revealed differential sensitivity to the manipulation of ISI, independent of modality, in HIV-1 Tg rats in comparison to control animals. Manipulation of context (i.e., concurrent visual or tactile stimulus) in auditory PPI revealed a differential sensitivity in HIV-1 Tg animals compared to controls. The potential utility of amodal temporal processing deficits as an innovative point-of-care screening tool was explored using a discriminant function analysis, which diagnosed the presence of the HIV-1 transgene with 97.4% accuracy. Thus, the presence of amodal temporal processing deficits in the HIV-1 Tg rat supports the hypothesis of a central temporal processing deficit in HIV-1 seropositive individuals, heralding an opportunity for the development of a point-of-care screening tool for HAND.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, 29208, United States
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, 29208, United States
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
17
|
McLaurin KA, Booze RM, Mactutus CF. Progression of temporal processing deficits in the HIV-1 transgenic rat. Sci Rep 2016; 6:32831. [PMID: 27596023 PMCID: PMC5011765 DOI: 10.1038/srep32831] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/15/2016] [Indexed: 11/09/2022] Open
Abstract
The HIV-1 transgenic (Tg) rat, which expresses 7 of the 9 HIV-1 genes, was used to investigate the effect(s) of long-term HIV-1 viral protein exposure on chronic neurocognitive deficits observed in pediatric HIV-1 (PHIV). A longitudinal experimental design was used to assess the progression of temporal processing deficits, a potential underlying dimension of neurocognitive impairment in HIV-1. Gap prepulse inhibition (gap-PPI), a translational experimental paradigm, was conducted every thirty days from postnatal day (PD) 30 to PD 180. HIV-1 Tg animals, regardless of sex, displayed profound alterations in the development of temporal processing, assessed using prepulse inhibition. A differential sensitivity to the manipulation of interstimulus interval was observed in HIV-1 Tg animals in comparison to control animals. Moreover, presence of the HIV-1 transgene was diagnosed with 90.8% accuracy using measures of prepulse inhibition and temporal sensitivity. Progression of temporal processing deficits in the HIV-1 Tg rat affords a relatively untapped opportunity to increase our mechanistic understanding of the role of long-term exposure to HIV-1 viral proteins, observed in pediatric HIV-1, in the development of chronic neurological impairment, as well as suggesting an innovative clinical diagnostic screening tool.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience Department of Psychology University of South Carolina Columbia, SC 29208, USA
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience Department of Psychology University of South Carolina Columbia, SC 29208, USA
| | - Charles F Mactutus
- Program in Behavioral Neuroscience Department of Psychology University of South Carolina Columbia, SC 29208, USA
| |
Collapse
|
18
|
McLaurin KA, Booze RM, Mactutus CF. Selective developmental alterations in The HIV-1 transgenic rat: Opportunities for diagnosis of pediatric HIV-1. J Neurovirol 2016; 23:87-98. [PMID: 27538996 DOI: 10.1007/s13365-016-0476-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022]
Abstract
Since the advent of combination antiretroviral therapy (cART), pediatric HIV-1 (PHIV) has evolved from a fatal disease to a chronic disease as children perinatally infected with HIV-1 survive into adulthood. The HIV-1 transgenic (Tg) rat, which expresses 7 of the 9 HIV-1 genes constitutively throughout development, was used to model the early development of chronic neurological impairment in PHIV. Male and female Fischer HIV-1 Tg and F344 N control rats, sampled from 35 litters, were repeatedly assessed during early development using multiple experimental paradigms, including somatic growth, locomotor activity, cross-modal prepulse inhibition (PPI) and gap-prepulse inhibition (gap-PPI). Later eye opening was observed in HIV-1 Tg animals relative to controls. HIV-1 Tg animals exhibited a shift in the development of locomotor activity implicating alterations in the maturation of the forebrain cholinergic inhibitory system. Alterations in the development of PPI and perceptual sharpening were observed in both auditory and visual PPI as indexed by a relative insensitivity to the dimension of time (msec for ISI; days of age for perceptual sharpening) as a function of the HIV-1 transgene. Presence of the HIV-1 transgene was diagnosed with 97.1 % accuracy using auditory and visual PPI measurements from PD 17 and 21. Early selective developmental alterations observed in the HIV-1 Tg rats provide an opportunity for the development of a point-of-care screening tool, which would permit the early diagnosis of PHIV and improve the long-term outcome for children perinatally infected with HIV-1.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
19
|
Neigh GN, Rhodes ST, Valdez A, Jovanovic T. PTSD co-morbid with HIV: Separate but equal, or two parts of a whole? Neurobiol Dis 2016; 92:116-23. [PMID: 26592355 PMCID: PMC5673262 DOI: 10.1016/j.nbd.2015.11.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/26/2015] [Accepted: 11/14/2015] [Indexed: 01/06/2023] Open
Abstract
Approximately 30 million people currently live with HIV worldwide and the incidence of stress-related disorders, such as post-traumatic stress disorder (PTSD), is elevated among people living with HIV as compared to those living without the virus. PTSD is a severely debilitating, stress-related psychiatric illness associated with trauma exposure. Patients with PTSD experience intrusive and fearful memories as well as flashbacks and nightmares of the traumatic event(s) for much of their lives, may avoid other people, and may be constantly on guard for new negative experiences. This review will delineate the information available to date regarding the comorbidity of PTSD and HIV and discuss the biological mechanisms which may contribute to the co-existence, and potential interaction of, these two disorders. Both HIV and PTSD are linked to altered neurobiology within areas of the brain involved in the startle response and altered function of the hypothalamic-pituitary-adrenal axis. Collectively, the data highlighted suggest that PTSD and HIV are more likely to actively interact than to simply co-exist within the same individual. Multi-faceted interactions between PTSD and HIV have the potential to alter response to treatment for either independent disorder. Therefore, it is of great importance to advance the understanding of the neurobiological substrates that are altered in comorbid PTSD and HIV such that the most efficacious treatments can be administered to improve both mental and physical health and reduce the spread of HIV.
Collapse
Affiliation(s)
- Gretchen N Neigh
- Emory University Department of Physiology, United States; Emory University Department of Psychiatry & Behavioral Sciences, United States.
| | - Siara T Rhodes
- Georgia State University Department of Psychology, United States
| | - Arielle Valdez
- Emory University Medical Scientist Training Program, United States; Emory University Department of Cell Biology, United States
| | - Tanja Jovanovic
- Emory University Department of Psychiatry & Behavioral Sciences, United States
| |
Collapse
|
20
|
Hahn YK, Masvekar RR, Xu R, Hauser KF, Knapp PE. Chronic HIV-1 Tat and HIV reduce Rbfox3/NeuN: evidence for sex-related effects. Curr HIV Res 2015; 13:10-20. [PMID: 25760045 DOI: 10.2174/1570162x13666150311163733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/17/2014] [Accepted: 02/13/2015] [Indexed: 11/22/2022]
Abstract
The NeuN antibody has been widely used to identify and quantify neurons in normal and disease situations based on binding to a nuclear epitope in most types of neurons. This epitope was recently identified as the RNA-binding, feminizing locus on X-3 (Rbfox3), a member of the larger, mammalian Fox1 family of RNA binding proteins. Fox1 proteins recognize a unique UGCAUG mRNA motif and regulate alternative splicing of precursor mRNA to control post-transcriptional events important in neuronal differentiation and central nervous system development. Recent clinical findings show that Rbfox3/NeuN gene dosage is altered in certain human neurodevelopmental disorders, and redistribution has been noted in HIV(+) tissue. We hypothesized that HIV-1 Tat might affect Rbfox3/NeuN expression, and examined this question in vivo using inducible transgenic mice, and in vitro using human mesencephalic-derived neurons. Rbfox3/NeuN expression and localization in HIV+ basal ganglia and hippocampus was also examined. Chronic Tat exposure reduced Rbfox3/NeuN protein levels and increased cytoplasmic localization, similar to the effect of HIV exposure. Cytoplasmic Rbfox3/NeuN signal has occasionally been reported, although the meaning or function of cytoplasmic versus nuclear localization remains speculative. Importantly, Rbfox3/NeuN reductions were more significant in male mice. Although Rbfox3/NeuN-expressing cells were significantly decreased by Tat exposure, stereology showed that Nissl(+) neuron numbers remained normal. Thus, loss of Rbfox3/NeuN may relate more to functional change than to neuron loss. The effects of Tat by itself are highly relevant to HIV(+) individuals maintained on antiretroviral therapy, since Tat is released from infected cells even when viral replication is inhibited.
Collapse
Affiliation(s)
- Yun Kyung Hahn
- Department of Anatomy & Neurobiology, MCV Campus, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298-0709, USA.
| | | | | | | | | |
Collapse
|
21
|
Fitting S, Booze RM, Mactutus CF. HIV-1 proteins, Tat and gp120, target the developing dopamine system. Curr HIV Res 2015; 13:21-42. [PMID: 25613135 DOI: 10.2174/1570162x13666150121110731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/17/2014] [Accepted: 12/23/2014] [Indexed: 11/22/2022]
Abstract
In 2014, 3.2 million children (< 15 years of age) were estimated to be living with HIV and AIDS worldwide, with the 240,000 newly infected children in the past year, i.e., another child infected approximately every two minutes [1]. The primary mode of HIV infection is through mother-to-child transmission (MTCT), occurring either in utero, intrapartum, or during breastfeeding. The effects of HIV-1 on the central nervous system (CNS) are putatively accepted to be mediated, in part, via viral proteins, such as Tat and gp120. The current review focuses on the targets of HIV-1 proteins during the development of the dopamine (DA) system, which appears to be specifically susceptible in HIV-1-infected children. Collectively, the data suggest that the DA system is a clinically relevant target in chronic HIV-1 infection, is one of the major targets in pediatric HIV-1 CNS infection, and may be specifically susceptible during development. The present review discusses the development of the DA system, follows the possible targets of the HIV-1 proteins during the development of the DA system, and suggests potential therapeutic approaches. By coupling our growing understanding of the development of the CNS with the pronounced age-related differences in disease progression, new light may be shed on the neurological and neurocognitive deficits that follow HIV-1 infection.
Collapse
Affiliation(s)
| | - Rosemarie M Booze
- Department of Psychology, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
22
|
Carryl H, Swang M, Lawrence J, Curtis K, Kamboj H, Van Rompay KKA, De Paris K, Burke MW. Of mice and monkeys: can animal models be utilized to study neurological consequences of pediatric HIV-1 infection? ACS Chem Neurosci 2015; 6:1276-89. [PMID: 26034832 PMCID: PMC4545399 DOI: 10.1021/acschemneuro.5b00044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pediatric human immunodeficiency virus (HIV-1) infection remains a global health crisis. Children are much more susceptible to HIV-1 neurological impairments than adults, which can be exacerbated by coinfections. Neurological characteristics of pediatric HIV-1 infection suggest dysfunction in the frontal cortex as well as the hippocampus; limited MRI data indicate global cerebral atrophy, and pathological data suggest accelerated neuronal apoptosis in the cortex. An obstacle to pediatric HIV-1 research is a human representative model system. Host-species specificity of HIV-1 limits the ability to model neurological consequences of pediatric HIV-1 infection in animals. Several models have been proposed including neonatal intracranial injections of HIV-1 viral proteins in rats and perinatal simian immunodeficiency virus (SIV) infection of infant macaques. Nonhuman primate models recapitulate the complexity of pediatric HIV-1 neuropathogenesis while rodent models are able to elucidate the role specific viral proteins exert on neurodevelopment. Nonhuman primate models show similar behavioral and neuropathological characteristics to pediatric HIV-1 infection and offer a stage to investigate early viral mechanisms, latency reservoirs, and therapeutic interventions. Here we review the relative strengths and limitations of pediatric HIV-1 model systems.
Collapse
Affiliation(s)
- Heather Carryl
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, D.C. 20059, United States
| | - Melanie Swang
- Department of Biology, Howard University, Washington, D.C. 20059, United States
| | - Jerome Lawrence
- Department of Biology, Howard University, Washington, D.C. 20059, United States
| | - Kimberly Curtis
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, D.C. 20059, United States
| | - Herman Kamboj
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, D.C. 20059, United States
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California at Davis, Davis, California 95616, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark W. Burke
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, D.C. 20059, United States
| |
Collapse
|
23
|
Reduction of pyramidal and immature hippocampal neurons in pediatric simian immunodeficiency virus infection. Neuroreport 2015; 25:973-8. [PMID: 25102373 DOI: 10.1097/wnr.0000000000000148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pediatric HIV infection remains a global health crisis with a worldwide infection rate of 2.5 million (WHO, Geneva Switzerland, 2009). Children are much more susceptible to HIV-1 neurological impairments compared with adults, which is exacerbated by coinfections. A major obstacle in pediatric HIV research is sample access. The proposed studies take advantage of ongoing pediatric simian immunodeficiency virus (SIV) pathogenesis and vaccine studies to test the hypothesis that pediatric SIV infection diminishes neuronal populations and neurogenesis in the hippocampus. Newborn rhesus macaques (Macaca mulatta) that received intravenous inoculation of highly virulent SIVmac251 (n=3) or vehicle (control n=4) were used in this study. After a 6-18-week survival time, the animals were euthanized and the brains prepared for quantitative histopathological analysis. Systematic sections through the hippocampus were either Nissl stained or immunostained for doublecortin (DCX+), a putative marker of immature neurons. Using design-based stereology, we report a 42% reduction in the pyramidal neuron population of the CA1, CA2, and CA3 fields of the hippocampus (P<0.05) in SIV-infected infants. The DCX+ neuronal population was also significantly reduced within the dentate gyrus of the hippocampus. The loss of hippocampal neurons and neurogenic capacity may contribute to the rapid neurocognitive decline associated with pediatric HIV infection. These data suggest that pediatric SIV infection, which leads to significant neuronal loss in the hippocampus within 3 months, closely models a subset of pediatric HIV infections with rapid progression.
Collapse
|
24
|
Harricharan R, Thaver V, Russell VA, Daniels WMU. Tat-induced histopathological alterations mediate hippocampus-associated behavioural impairments in rats. Behav Brain Funct 2015; 11:3. [PMID: 25880773 PMCID: PMC4333156 DOI: 10.1186/s12993-014-0047-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/22/2014] [Indexed: 01/30/2023] Open
Abstract
Background HIV-1 is a global catastrophe, and is exceedingly prevalent in Sub-Saharan Africa. HIV-associated neurocognitive disorder is characterized by symptoms such as motor impairments, a decline in cognition, and behavioural irregularities. The aim of this study was to provide insight into the fundamental behavioural and histopathological mechanisms underlying the development and progression of HIV-1 neuropathology. Methods Using stereotaxic techniques, Tat protein Clade B (1 μg/μl, 10 μl) was injected bilaterally into the dorsal hippocampus of male Sprague–Dawley rats. The Morris water maze (MWM) and novel object recognition test (NORT) were used to assess spatial learning and recognition memory, respectively. Haematoxylin and eosin staining was used to identify the histopathological changes. Results A highly significant increase in latency to reach the hidden platform in the MWM implied that noteworthy hippocampal damage had occurred. Severe behavioural deficits were also observed in the NORT where the Tat-injected group showed a greater preference for a familiar object over a novel one. This damage was confirmed by the histopathological changes (increased astrogliosis, cells becoming eosinophilic and a significant reduction in the pyramidal cell layer) observed in the hippocampus. Additionally, increases in the hippocampal mass and protein were observed, consistent with the structural alterations. Conclusion This study highlights the relationship between hippocampal-associated behavioural changes and histologic alterations following stereotaxic intra-hippocampal administration of Tat protein in rats. The implications of this study may positively impact the fields of immunology and neuroscience by encouraging future researchers to consider novel strategies to understand the complexities of the pathogenesis of HIV-associated neurocognitive disorder.
Collapse
Affiliation(s)
- Rivona Harricharan
- School of Laboratory Medicine and Medical Sciences, Discipline of Human Physiology, University of KwaZulu-Natal, Westville Campus, Private Bag X 54001, Durban, 4000, South Africa.
| | - Veneesha Thaver
- School of Laboratory Medicine and Medical Sciences, Discipline of Human Physiology, University of KwaZulu-Natal, Westville Campus, Private Bag X 54001, Durban, 4000, South Africa.
| | - Vivienne A Russell
- School of Laboratory Medicine and Medical Sciences, Discipline of Human Physiology, University of KwaZulu-Natal, Westville Campus, Private Bag X 54001, Durban, 4000, South Africa.
| | - William M U Daniels
- School of Laboratory Medicine and Medical Sciences, Discipline of Human Physiology, University of KwaZulu-Natal, Westville Campus, Private Bag X 54001, Durban, 4000, South Africa.
| |
Collapse
|
25
|
Moran LM, Fitting S, Booze RM, Webb KM, Mactutus CF. Neonatal intrahippocampal HIV-1 protein Tat(1-86) injection: neurobehavioral alterations in the absence of increased inflammatory cytokine activation. Int J Dev Neurosci 2014; 38:195-203. [PMID: 25285887 DOI: 10.1016/j.ijdevneu.2014.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 01/05/2023] Open
Abstract
Pediatric AIDS caused by human immunodeficiency virus type 1 (HIV-1) remains one of the leading worldwide causes of childhood morbidity and mortality. HIV-1 proteins, such as Tat and gp120, are believed to play a crucial role in the neurotoxicity of pediatric HIV-1 infection. Detrimental effects on development, behavior, and neuroanatomy follow neonatal exposure to the HIV-1 viral toxins Tat1-72 and gp120. The present study investigated the neurobehavioral effects induced by the HIV-1 neurotoxic protein Tat1-86, which encodes the first and second exons of the Tat protein. In addition, the potential effects of HIV-1 toxic proteins Tat1-86 and gp120 on inflammatory pathways were examined in neonatal brains. Vehicle, 25 μg Tat1-86 or 100 ng gp120 was injected into the hippocampus of male Sprague-Dawley pups on postnatal day 1 (PD1). Tat1-86 induced developmental neurotoxic effects, as witnessed by delays in eye opening, delays in early reflex development and alterations in prepulse inhibition (PPI) and between-session habituation of locomotor activity. Overall, the neurotoxic profile of Tat1-86 appeared more profound in the developing nervous system in vivo relative to that seen with the first exon encoded Tat1-72 (Fitting et al., 2008b), as noted on measures of eye opening, righting reflex, and PPI. Neither the direct PD1 CNS injection of the viral HIV-1 protein variant Tat1-86, nor the HIV-1 envelope protein gp120, at doses sufficient to induce neurotoxicity, necessarily induced significant expression of the inflammatory cytokine IL-1β or inflammatory factors NF-κβ and I-κβ. The findings agree well with clinical observations that indicate delays in developmental milestones of pediatric HIV-1 patients, and suggest that activation of inflammatory pathways is not an obligatory response to viral protein-induced neurotoxicity that is detectable with behavioral assessments. Moreover, the amino acids encoded by the second tat exon may have unique actions on the developing hippocampus.
Collapse
Affiliation(s)
- Landhing M Moran
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Sylvia Fitting
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Rosemarie M Booze
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Katy M Webb
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Charles F Mactutus
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA.
| |
Collapse
|
26
|
Williamson LL, Bilbo SD. Neonatal infection modulates behavioral flexibility and hippocampal activation on a Morris Water Maze task. Physiol Behav 2014; 129:152-9. [PMID: 24576680 PMCID: PMC4005787 DOI: 10.1016/j.physbeh.2014.02.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/29/2013] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Neonatal infection has enduring effects on the brain, both at the cellular and behavioral levels. We determined the effects of peripheral infection with Escherichia coli at postnatal day (P) 4 in rats on a water maze task in adulthood, and assessed neuronal activation in the dentate gyrus (DG) following the memory test. Rats were trained and tested on one of 3 distinct water maze task paradigms: 1) minimal training (18 trials/3days), 2) extended training (50 trials/10days) or 3) reversal training (extended training followed by 30 trials/3days with a new platform location). Following a 48h memory test, brains were harvested to assess neuronal activation using activity-regulated cytoskeleton-associated (Arc) protein in the DG. Following minimal training, rats treated neonatally with E. coli had improved performance and paradoxically reduced Arc expression during the memory test compared to control rats treated with PBS early in life. However, neonatally-infected rats did not differ from control rats in behavior or neuronal activation during the memory test following extended training. Furthermore, rats treated neonatally with E. coli were significantly impaired during the 48h memory test for a reversal platform location, unlike controls. Specifically, whereas neonatally-infected rats were able to acquire the new location at the same rate as controls, they spent significantly less time in the target quadrant for the reversal platform during a memory test. However, neonatally-infected and control rats had similar levels of Arc expression following the 48h memory test for reversal. Together, these data indicate that neonatal infection may improve the rate of acquisition on hippocampal-dependent tasks while impairing flexibility on the same tasks; in addition, network activation in the DG during learning may be predictive of future cognitive flexibility on a hippocampal-dependent task.
Collapse
Affiliation(s)
- Lauren L Williamson
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, United States.
| | - Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
27
|
Bertrand SJ, Aksenova MV, Mactutus CF, Booze RM. HIV-1 Tat protein variants: critical role for the cysteine region in synaptodendritic injury. Exp Neurol 2013; 248:228-35. [PMID: 23811015 DOI: 10.1016/j.expneurol.2013.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/24/2013] [Accepted: 06/18/2013] [Indexed: 01/08/2023]
Abstract
HIV-1 enters the central nervous system early in infection; although HIV-1 does not directly infect neurons, HIV-1 may cause a variety of neurological disorders. Neuronal loss has been found in HIV-1, but synaptodendritic injury is more closely associated with the neurocognitive disorders of HIV-1. The HIV-1 transactivator of transcription (Tat) protein causes direct and indirect damage to neurons. The cysteine rich domain (residues 22-37) of Tat is important for producing neuronal death; however, little is known about the effects of the Tat protein functional domains on the dendritic network. The ability of HIV-1 Tat 1-101 Clades B and C, Tat 1-86 and Tat 1-72 proteins, as well as novel peptides (truncated 47-57, 1-72δ31-61, and 1-86 with a mutation at Cys22) to produce early synaptodendritic injury (24h), relative to later cell death (48h), was examined using cell culture. Treatment of primary hippocampal neurons with Tat proteins 1-72, 1-86 and 1-101B produced a significant early reduction in F-actin labeled puncta, implicating that these peptides play a role in synaptodendritic injury. Variants with a mutation, deletion, or lack of a cysteine rich region (1-86[Cys22], 1-101C, 1-72δ31-61, or 47-57) did not cause a significant reduction in F-actin rich puncta. Tat 1-72, 1-86, and 1-101B proteins did not significantly differ from one another, indicating that the second exon (73-86 or 73-101) does not play a significant role in the reduction of F-actin puncta. Conversely, peptides with a mutation, deletion, or lack of the cysteine rich domain (22-37) failed to produce a loss of F-actin puncta, indicating that the cysteine rich domain plays a key role in synaptodendritic injury. Collectively, these results suggest that for Tat proteins, 1) synaptodendritic injury occurs early, relative to cell death, and 2) the cysteine rich domain of the first exon is key for synaptic loss. Preventing such early synaptic loss may attenuate HIV-1 associated neurocognitive disorders.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Barnwell College Building, 1512 Pendleton Street, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
28
|
Morales D, Acevedo SF, Skolasky RL, Hechavarria R, Santiago S, De La Torre T, Maldonado E, Wojna V. Translational spatial task and its relationship to HIV-associated neurocognitive disorders and apolipoprotein E in HIV-seropositive women. J Neurovirol 2012; 18:488-502. [PMID: 22972599 DOI: 10.1007/s13365-012-0128-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 08/24/2012] [Indexed: 11/26/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) continue to be a neurological complication of HIV infection in the era of combined antiretroviral therapy. Hippocampal neurodegeneration and dysfunction occurs as a result of HIV infection, but few studies to date have assesses spatial learning and memory function in patients with HAND. We used the Memory Island (MI) test to study the effects of HIV infection, apolipoprotein E (ApoE) allele status, and cerebral spinal fluid (CSF) ApoE protein levels on spatial learning and memory in our cohort of Hispanic women. The MI test is a virtual reality-based computer program that tests spatial learning and memory and was designed to resemble the Morris Water Maze test of hippocampal function widely used in rodent studies. In the current study, HIV-seropositive women (n = 20) and controls (n = 16) were evaluated with neuropsychological (NP) tests, the MI test, ApoE, and CSF ApoE assays. On the MI, the HIV-seropositive group showed significant reduced learning and delayed memory performance compared with HIV-seronegative controls. When stratified by cognitive performance on NP tests, the HIV-seropositive, cognitively impaired group performed worse than HIV-seronegative controls in ability to learn and in the delayed memory trial. Interestingly, differences were observed in the results obtained by the NP tests and the MI test for ε4 carriers and noncarriers: NP tests showed effects of the ε4 allele in HIV-seronegative women but not HIV-seropositive ones, whereas the converse was true for the MI test. Our findings suggest that the MI test is sensitive in detecting spatial deficits in HIV-seropositive women and that these deficits may arise relatively early in the course of HAND.
Collapse
Affiliation(s)
- Diana Morales
- Department of Physiology, Pharmacology, and Toxicology, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Adams SM, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM. Soy isoflavones genistein and daidzein exert anti-apoptotic actions via a selective ER-mediated mechanism in neurons following HIV-1 Tat(1-86) exposure. PLoS One 2012; 7:e37540. [PMID: 22629415 PMCID: PMC3358258 DOI: 10.1371/journal.pone.0037540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/24/2012] [Indexed: 01/02/2023] Open
Abstract
Background HIV-1 viral protein Tat partially mediates the neural dysfunction and neuronal cell death associated with HIV-1 induced neurodegeneration and neurocognitive disorders. Soy isoflavones provide protection against various neurotoxic insults to maintain neuronal function and thus help preserve neurocognitive capacity. Methodology/Principal Findings We demonstrate in primary cortical cell cultures that 17β-estradiol or isoflavones (genistein or daidzein) attenuate Tat1–86-induced expression of apoptotic proteins and subsequent cell death. Exposure of cultured neurons to the estrogen receptor antagonist ICI 182,780 abolished the anti-apoptotic actions of isoflavones. Use of ERα or ERβ specific antagonists determined the involvement of both ER isoforms in genistein and daidzein inhibition of caspase activity; ERβ selectively mediated downregulation of mitochondrial pro-apoptotic protein Bax. The findings suggest soy isoflavones effectively diminished HIV-1 Tat-induced apoptotic signaling. Conclusions/Significance Collectively, our results suggest that soy isoflavones represent an adjunctive therapeutic option with combination anti-retroviral therapy (cART) to preserve neuronal functioning and sustain neurocognitive abilities of HIV-1 infected persons.
Collapse
Affiliation(s)
- Sheila M Adams
- Department of Psychology, University of South Carolina, Columbia, South Carolina, United States of America.
| | | | | | | | | |
Collapse
|
30
|
Carey AN, Sypek EI, Singh HD, Kaufman MJ, McLaughlin JP. Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse. Behav Brain Res 2011; 229:48-56. [PMID: 22197678 DOI: 10.1016/j.bbr.2011.12.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/05/2011] [Accepted: 12/11/2011] [Indexed: 01/10/2023]
Abstract
HIV-Tat protein has been implicated in the pathogenesis of HIV-1 neurological complications (i.e., neuroAIDS), but direct demonstrations of the effects of Tat on behavior are limited. GT-tg mice with a doxycycline (Dox)-inducible and brain-selective tat gene coding for Tat protein were used to test the hypothesis that the activity of Tat in brain is sufficient to impair learning and memory processes. Western blot analysis of GT-tg mouse brains demonstrated an increase in Tat antibody labeling that seemed to be dependent on the dose and duration of Dox pretreatment. Dox-treated GT-tg mice tested in the Barnes maze demonstrated longer latencies to find an escape hole and displayed deficits in probe trial performance versus uninduced GT-tg littermates, suggesting Tat-induced impairments of spatial learning and memory. Reversal learning was also impaired in Tat-induced mice. Tat-induced mice additionally demonstrated long-lasting (up to one month) deficiencies in novel object recognition learning and memory performance. Furthermore, novel object recognition impairment was dependent on the dose and duration of Dox exposure, suggesting that Tat exposure progressively mediated deficits. These experiments provide evidence that Tat protein expression is sufficient to mediate cognitive abnormalities seen in HIV-infected individuals. Moreover, the genetically engineered GT-tg mouse may be useful for improving our understanding of the neurological underpinnings of neuroAIDS-related behaviors.
Collapse
Affiliation(s)
- Amanda N Carey
- Northeastern University, Department of Psychology, 360 Huntington Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ, Sawaya BE. HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem 2011; 286:41125-34. [PMID: 21956116 PMCID: PMC3220514 DOI: 10.1074/jbc.m111.268466] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/13/2011] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, small noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators in the expression and function of eukaryotic genomes. It has been suggested that viral infections and neurological disease outcome may also be shaped by the influence of small RNAs. This has prompted us to suggest that HIV infection alters the endogenous miRNA expression patterns, thereby contributing to neuronal deregulation and AIDS dementia. Therefore, using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Tat) on the expression of miRNAs due to its characteristic features such as release from the infected cells and taken up by noninfected cells. Using microRNA array assay, we demonstrated that Tat deregulates the levels of several miRNAs. Interestingly, miR-34a was among the most highly induced miRNAs in Tat-treated neurons. Tat also decreases the levels of miR-34a target genes such as CREB protein as shown by real time PCR. The effect of Tat was neutralized in the presence of anti-miR-34a. Using in situ hybridization assay, we found that the levels of miR-34a increase in Tat transgenic mice when compared with the parental mice. Therefore, we conclude that deregulation of neuronal functions by HIV-1 Tat protein is miRNA-dependent.
Collapse
Affiliation(s)
- J. Robert Chang
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Ruma Mukerjee
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Asen Bagashev
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Luis Del Valle
- the Department of Medicine, Section of Hematology/Oncology, and Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| | - Tinatin Chabrashvili
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Brian J. Hawkins
- Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington 98109, and
| | - Johnny J. He
- the Center for AIDS Research, Department of Microbiology and Immunology, School of Medicine, University of Indiana, Indianapolis, Indiana 46202
| | - Bassel E. Sawaya
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
32
|
Lu SM, Tremblay MÈ, King IL, Qi J, Reynolds HM, Marker DF, Varrone JJP, Majewska AK, Dewhurst S, Gelbard HA. HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PLoS One 2011; 6:e23915. [PMID: 21912650 PMCID: PMC3166280 DOI: 10.1371/journal.pone.0023915] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/27/2011] [Indexed: 11/30/2022] Open
Abstract
Despite the ability of combination antiretroviral treatment (cART) to reduce viral burden to nearly undetectable levels in cerebrospinal fluid and serum, HIV-1 associated neurocognitive disorders (HAND) continue to persist in as many as half the patients living with this disease. There is growing consensus that the actual substrate for HAND is destruction of normal synaptic architecture but the sequence of cellular events that leads to this outcome has never been resolved. To address whether central vs. peripheral myeloid lineage cells contribute to synaptic damage during acute neuroinflammation we injected a single dose of the HIV-1 transactivator of transcription protein (Tat) or control vehicle into hippocampus of wild-type or chimeric C57Bl/6 mice genetically marked to distinguish infiltrating and resident immune cells. Between 8–24 hr after injection of Tat, invading CD11b+ and/or myeloperoxidase-positive leukocytes with granulocyte characteristics were found to engulf both microglia and synaptic structures, and microglia reciprocally engulfed invading leukocytes. By 24 hr, microglial processes were also seen ensheathing dendrites, followed by inclusion of synaptic elements in microglia 7 d after Tat injection, with a durable microgliosis lasting at least 28 d. Thus, central nervous system (CNS) exposure to Tat induces early activation of peripheral myeloid lineage cells with phagocytosis of synaptic elements and reciprocal microglial engulfment of peripheral leukocytes, and enduring microgliosis. Our data suggest that a single exposure to a foreign antigen such as HIV-1 Tat can lead to long-lasting disruption of normal neuroimmune homeostasis with deleterious consequences for synaptic architecture, and further suggest a possible mechanism for enduring neuroinflammation in the absence of productive viral replication in the CNS.
Collapse
Affiliation(s)
- Shao-Ming Lu
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fitting S, Booze RM, Hasselrot U, Mactutus CF. Dose-dependent long-term effects of Tat in the rat hippocampal formation: a design-based stereological study. Hippocampus 2010; 20:469-80. [PMID: 19489004 DOI: 10.1002/hipo.20648] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) protein transactivator of transcription (Tat) is believed to play a critical role in mediating central nervous system (CNS) pathology in pediatric HIV-1 infection. Long-term neurotoxicity was investigated in a design-based stereology study following intrahippocampal injection of Tat on postnatal day (P)10, a time period that approximates the peak in the rats' rate of brain growth and mimics clinical HIV-1 CNS infection at labor/delivery. The goal was to examine the impact of P10 intrahippocampal Tat injection on the anatomy of the adult hippocampus (5 month) to gain a better understanding about how timing of infection influences the rate of progression of pediatric HIV-1 infection [cf. Fitting et al. (2008a) Hippocampus 18:135-147]. Male P10 Sprague-Dawley rats were bilaterally injected with vehicle or one of three different doses of Tat (5, 25, or 50 mug). Unbiased stereological estimates were used to quantify total neuron number (Nissl stain) in five major subregions of the rat hippocampus: granular layer (GL), hilus of the dentate gyrus (DGH), cornu ammonis fields (CA)2/3, CA1, and subiculum (SUB). Glial cells (astrocytes and oligodendrocytes) were quantified in the DGH and SUB. No significant reduction of neuron number was noted for any of the five hippocampal subregions, in contrast to the very prominent reductions reported when Tat was administered on P1 [Fitting et al. (2008a) Hippocampus 18:135-147]. However, for glial cells, the number of astrocytes in the DGH and SUB as well as the number of oligodendrocytes in the DGH were linear dose dependently increased as a function of dose of Tat. In conjunction with previous stereological research [Fitting et al., (2008a) Hippocampus 18:135-147], the present data suggest that variability in the progression of pediatric HIV/acquired immunodeficiency syndrome (AIDS) may be better understood with the knowledge of the factor of timing of HIV-1 CNS infection.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA.
| | | | | | | |
Collapse
|
34
|
Musante V, Summa M, Neri E, Puliti A, Godowicz TT, Severi P, Battaglia G, Raiteri M, Pittaluga A. The HIV-1 Viral Protein Tat Increases Glutamate and Decreases GABA Exocytosis from Human and Mouse Neocortical Nerve Endings. Cereb Cortex 2009; 20:1974-84. [DOI: 10.1093/cercor/bhp274] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
35
|
Role of Tat protein in HIV neuropathogenesis. Neurotox Res 2009; 16:205-20. [PMID: 19526283 DOI: 10.1007/s12640-009-9047-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 12/13/2022]
Abstract
The Tat protein of the human immunodeficiency virus (HIV) has been implicated in the pathophysiology of the neurocognitive deficits associated with HIV infection. This is the earliest protein to be produced by the proviral DNA in the infected cell. The protein not only drives the regulatory regions of the virus but may also be actively released from the cell and then interact with the cell surface receptors of other uninfected cells in the brain leading to cellular dysfunction. It may also be taken up by these cells and can then activate a number of host genes. The Tat protein is highly potent and has the unique ability to travel along neuronal pathways. Importantly, its production is not impacted by the use of antiretroviral drugs once the proviral DNA has been formed. This article reviews the pleomorphic actions of Tat protein and the evidence supporting its central role in the neuropathogenesis of the HIV infection.
Collapse
|
36
|
Webb KM, Mactutus CF, Booze RM. The ART of HIV therapies: dopaminergic deficits and future treatments for HIV pediatric encephalopathy. Expert Rev Anti Infect Ther 2009; 7:193-203. [PMID: 19254168 DOI: 10.1586/14787210.7.2.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The concerted efforts of clinicians, scientists and caregivers of HIV-infected children have led to tremendous advances in our understanding of pediatric HIV/AIDS. Antiretroviral therapy (ART; formerly known as highly active antiretroviral therapy [HAART]) has significantly extended the longevity of HIV-infected children, but there are limitations to improvements in quality of life that may persist despite therapy. ART has remarkably reduced the incidence of neurologic deficits for the majority of infected children, but some patients do not experience these benefits and children living in poorer nations, who may not have access to antiretrovirals, are particularly at risk for developing neurologic deficits. This article reviews the neurologic symptoms of pediatric HIV infection that manifest as dopaminergic disruptions and explores potential future adjuvant therapies for HIV-related neurologic disorders in children.
Collapse
Affiliation(s)
- Katy M Webb
- Behavioral Neuroscience Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
37
|
Ferris MJ, Frederick-Duus D, Fadel J, Mactutus CF, Booze RM. In vivo microdialysis in awake, freely moving rats demonstrates HIV-1 Tat-induced alterations in dopamine transmission. Synapse 2009; 63:181-5. [PMID: 19086089 DOI: 10.1002/syn.20594] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Individuals infected with human immunodeficiency virus (HIV) may develop neuropsychological impairment, and a modest percentage may progress to HIV-associated dementia (HAD). Research using human and nonhuman, in vitro and in vivo models, demonstrates that subcortical dopamine (DA) systems may be particularly vulnerable to HIV-induced neurodegeneration. The goal of the current investigation is to provide an understanding of the extent to which the HIV-1 protein Tat induces alterations in striatal DA transmission using in vivo brain microdialysis in awake, freely moving rats. The current study was designed to investigate Tat-induced neuronal dysfunction between 24-h and 48-h post-Tat administration, and demonstrates a reduction in evoked DA for the Tat-treated group relative to vehicle-treated group at 24 and 48 h. The Tat-induced reduction of DA overflow by 24 h suggests dysfunction of nerve terminals, and a compromised DA system in Tat-treated animals. Furthermore, the current study provides direct support for HIV-associated decline of DA function at a systemic level, helping to characterize the functional outcome of the relatively large amount of research on the molecular and behavioral levels of HIV-induced neurotoxicity. This initial study may provide additional characteristics of Tat-induced neuronal dysfunction to inform research on therapeutic intervention, and it provides a springboard for future in vivo research currently needed in the field.
Collapse
Affiliation(s)
- Mark J Ferris
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|