1
|
Saroj N, Shanker S, Serrano-Hernández E, Manjarrez-Gutiérrez G, Mondragón JA, Moreno-Martínez S, Jarillo-Luna RA, López-Sánchez P, Terrón JA. Expression of tryptophan hydroxylase in rat adrenal glands: Upregulation of TPH2 by chronic stress. Psychoneuroendocrinology 2025; 171:107219. [PMID: 39467477 DOI: 10.1016/j.psyneuen.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
It has been shown that chronic restraint stress (CRS) increases adrenal 5-HT levels and turnover through a mechanism that appears unrelated to tryptophan hydroxylase (TPH). In the present study we re-analyzed the effects of CRS (20 min/day) for 14 days relative to control (CTRL) conditions on TPH expression, distribution, and activity in rat adrenal glands. On day 15, adrenal glands were collected for TPH1 and TPH2 immunohistochemistry, Western blot, and RT-PCR; TPH activity was estimated by quantification of 5-hydroxytryptophan (5-HTP) and, indirectly, through measurement of 5-HT and 5-hydroxindolacetic acid (5-HIAA) levels and turnover (5-HIAA/5-HT ratio) by HPLC. TPH expression and activity in the dorsal raphe nucleus (DRN) were also determined for comparison. TPH1 and TPH2 immunostaining was observed in the adrenal medulla, and measurable levels of TPH1 and TPH2 protein and mRNA were detected in rat adrenal glands from CTRL animals. CRS exposure noticeably increased TPH2- but not THP1-immunostaining in the medulla and the outer adrenocortical areas of left (LAG) but not of right adrenal glands (RAG). In addition, CRS exposure increased TPH2 protein and mRNA levels in LAG; however, both measures decreased in DRN. Finally, CRS treatment produced an increase and a decrease of TPH activity and 5-HT turnover in LAG and DRN, respectively. Results indicate that TPH is indeed expressed in rat adrenal glands. Exposure to CRS upregulates TPH2 in LAG, while inducing downregulation of it in the DRN. Then, the increased levels of 5-HT in LAG from CRS-exposed animals likely results from TPH2-mediated synthesis.
Collapse
Affiliation(s)
- Neeshu Saroj
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Shiv Shanker
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - Eduardo Serrano-Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Gabriel Manjarrez-Gutiérrez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico
| | - José-Antonio Mondragón
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología del IPN, Av. Acueducto, La Laguna Ticomán, CP 07340, Mexico
| | - Saidel Moreno-Martínez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Rosa A Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - Pedro López-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - José A Terrón
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México.
| |
Collapse
|
2
|
Zhou L, Wang T, Yu Y, Li M, Sun X, Song W, Wang Y, Zhang C, Fu F. The etiology of poststroke-depression: a hypothesis involving HPA axis. Biomed Pharmacother 2022; 151:113146. [PMID: 35643064 DOI: 10.1016/j.biopha.2022.113146] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Approximately, one in three ischemic stroke survivors suffered from depression, namely, post-stroke depression (PSD). PSD affects functional rehabilitation and may lead to poor quality of life of patients. There are numerous explanations about the etiologies of PSD. Here, we speculated that PSD are likely to be the result of specific changes in brain pathology. We hypothesized that the stroke-induced hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis plays an important role in PSD. Stroke initiates a complex sequence of events in neuroendocrine system including HPA axis. The HPA axis is involved in the pathophysiology of depression, especially, the overactivity of the HPA axis occurs in major depressive disorder. This review summarizes the possible etiologies of PSD, focusing on the stroke-induced activation of HPA axis, mainly including the stress followed by severe brain damage and the proinflammatory cytokines release. The role of hyperactive of HPA axis in PSD was discussed in detail, which includes the role of high level corticotropin-releasing hormone in PSD, the effects of glucocorticoids on the alterations in specific brain structures, the expression of enzymes, excitotoxicity, the change in intestinal permeability, and the activation of microglia. The relationship between neuroendocrine regulation and inflammation was also described. Finally, the therapy of PSD by regulating HPA axis, neuroendocrine, and immunity was discussed briefly. Nevertheless, the change of HPA axis and the occurring of PSD maybe interact and promote on each other, and future investigations should explore this hypothesis in more depth.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yawen Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Wenhao Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
3
|
Zaniewska M, Mosienko V, Bader M, Alenina N. Tph2 Gene Expression Defines Ethanol Drinking Behavior in Mice. Cells 2022; 11:cells11050874. [PMID: 35269497 PMCID: PMC8909500 DOI: 10.3390/cells11050874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/22/2023] Open
Abstract
Indirect evidence supports a link between disrupted serotonin (5-hydroxytryptamine; 5-HT) signaling in the brain and addictive behaviors. However, the effects of hyposerotonergia on ethanol drinking behavior are contradictory. In this study, mice deficient in tryptophan hydroxylase 2 (Tph2−/−), the rate-limiting enzyme of 5-HT synthesis in the brain, were used to assess the role of central 5-HT in alcohol drinking behavior. Life-long 5-HT depletion in these mice led to an increased ethanol consumption in comparison to wild-type animals in a two-bottle choice test. Water consumption was increased in naïve 5-HT-depleted mice. However, exposure of Tph2−/− animals to ethanol resulted in the normalization of water intake to the level of wild-type mice. Tph2 deficiency in mice did not interfere with ethanol-evoked antidepressant response in the forced swim test. Gene expression analysis in wild-type animals revealed no change in Tph2 expression in the brain of mice consuming ethanol compared to control mice drinking water. However, within the alcohol-drinking group, inter-individual differences in chronic ethanol intake correlated with Tph2 transcript levels. Taken together, central 5-HT is an important modulator of drinking behavior in mice but is not required for the antidepressant effects of ethanol.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Correspondence: (M.Z.); (N.A.); Tel.: +48-1-2662-3289 (M.Z.); +49-30-9406-3576 (N.A.)
| | - Valentina Mosienko
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
- Correspondence: (M.Z.); (N.A.); Tel.: +48-1-2662-3289 (M.Z.); +49-30-9406-3576 (N.A.)
| |
Collapse
|
4
|
Paul N, Raymond J, Lumbreras S, Bartsch D, Weber T, Lau T. Activation of the glucocorticoid receptor rapidly triggers calcium-dependent serotonin release in vitro. CNS Neurosci Ther 2021; 27:753-764. [PMID: 33715314 PMCID: PMC8193689 DOI: 10.1111/cns.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Aims Glucocorticoids rapidly provoke serotonin (5‐HT) release in vivo. We aimed to investigate molecular mechanisms of glucocorticoid receptor (GR)‐triggered 5‐HT release. Methods Employing 1C11 cells to model 5‐HT neurotransmission, immunofluorescence and Pearson's Correlation Coefficient were used to analyze colocalization of GR, 5‐HT, vesicle membrane protein synaptotagmin 1 and vesicle dye FM4‐64FX. FFN511 and FM4‐64FX dyes as well as calcium imaging were used to visualize vesicular 5‐HT release upon application of GR agonist dexamethasone, GR antagonist mifepristone and voltage‐gated calcium channel (VGCC) inhibitors. Results GR, 5‐HT, synaptotagmin 1 and FM4‐64FX showed overlapping staining patterns, with Pearson's Correlation Coefficient indicating colocalization. Similarly to potassium chloride, dexamethasone caused a release of FFN511 and uptake of FM4‐64FX, indicating vesicular 5‐HT release. Mifepristone, calcium depletion and inhibition of L‐type VGCC significantly diminished dexamethasone‐induced vesicular 5‐HT release. Conclusions In close proximity to 5‐HT releasing sites, activated GR rapidly triggers L‐type VGCC‐dependent vesicular 5‐HT release. These findings provide a better understanding of the interrelationship between glucocorticoids and 5‐HT release.
Collapse
Affiliation(s)
- Nicolas Paul
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Justine Raymond
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Bartsch
- Transgenic Models, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tillmann Weber
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,MEDIAN Klinik Wilhelmsheim, Oppenweiler, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Juneja A, Barenboim L, Jacobson L. Selective effects of dorsal raphé nucleus glucocorticoid receptor deletion on depression-like behavior in female C57BL/6J mice. Neurosci Lett 2020; 717:134697. [PMID: 31846734 DOI: 10.1016/j.neulet.2019.134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022]
Abstract
We have shown differing effects of glucocorticoid receptor (GR) deletion from the dorsal raphé nucleus (DRN) and locus coeruleus (LC) on depression-relevant behavior in male mice, but DRN GR deletion has not been tested in female mice. Female floxed GR mice were given DRN injections of AAV2/9 pseudotype viral vectors transducing Cre recombinase to produce DRN GR gene deletion (Cre) and compared with mice receiving DRN injections of AAV2/9 transducing green fluorescent protein (GFP). Social interaction, a measure of depression-like withdrawal, was unaffected by DRN GR deletion, but forced swim immobility, a measure of despair-like passivity, was reduced in female Cre vs. GFP mice. Behavioral effects were not attributable to changes in basal corticosterone or LC GR deletion. Combined with our prior studies, the current findings suggest that DRN GR have sex-independent effects to promote forced swim immobility, but influence social interaction only in male mice. Differential effects of DRN GR deletion in female mice may provide insight into the greater incidence of depression and specific depression symptoms in women.
Collapse
Affiliation(s)
- Ankit Juneja
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States
| | - Linda Barenboim
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States
| | - Lauren Jacobson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
6
|
Mikhailova EV, Romanova IV, Derkach KV, Vishnevskaya ON, Shpakov AO. The Effect of Diet-Induced and Melanocortin Obesity on Expression of Tryptophan Hydroxylase 2 in the Dorsal Raphe Nucleus and Ventral Tegmental Area in Mice. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019040057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Lieb MW, Weidner M, Arnold MR, Loupy KM, Nguyen KT, Hassell JE, Schnabel KS, Kern R, Day HEW, Lesch KP, Waider J, Lowry CA. Effects of maternal separation on serotonergic systems in the dorsal and median raphe nuclei of adult male Tph2-deficient mice. Behav Brain Res 2019; 373:112086. [PMID: 31319134 DOI: 10.1016/j.bbr.2019.112086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/18/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022]
Abstract
Previous studies have highlighted interactions between serotonergic systems and adverse early life experience as important gene x environment determinants of risk of stress-related psychiatric disorders. Evidence suggests that mice deficient in Tph2, the rate-limiting enzyme for brain serotonin synthesis, display disruptions in behavioral phenotypes relevant to stress-related psychiatric disorders. The aim of this study was to determine how maternal separation in wild-type, heterozygous, and Tph2 knockout mice affects mRNA expression of serotonin-related genes. Serotonergic genes studied included Tph2, the high-affinity, low-capacity, sodium-dependent serotonin transporter (Slc6a4), the serotonin type 1a receptor (Htr1a), and the corticosterone-sensitive, low-affinity, high-capacity sodium-independent serotonin transporter, organic cation transporter 3 (Slc22a3). Furthermore, we studied corticotropin-releasing hormone receptors 1 (Crhr1) and 2 (Crhr2), which play important roles in controlling serotonergic neuronal activity. For this study, offspring of Tph2 heterozygous dams were exposed to daily maternal separation for the first two weeks of life. Adult, male wild-type, heterozygous, and homozygous offspring were subsequently used for molecular analysis. Maternal separation differentially altered serotonergic gene expression in a genotype- and topographically-specific manner. For example, maternal separation increased Slc6a4 mRNA expression in the dorsal part of the dorsal raphe nucleus in Tph2 heterozygous mice, but not in wild-type or knockout mice. Overall, these data are consistent with the hypothesis that gene x environment interactions, including serotonergic genes and adverse early life experience, play an important role in vulnerability to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Margaret W Lieb
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Magdalena Weidner
- Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany; Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Kadi T Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - K'Loni S Schnabel
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Raphael Kern
- Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany.
| | - Heidi E W Day
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany; Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA.
| |
Collapse
|
8
|
Busceti CL, Ferese R, Bucci D, Ryskalin L, Gambardella S, Madonna M, Nicoletti F, Fornai F. Corticosterone Upregulates Gene and Protein Expression of Catecholamine Markers in Organotypic Brainstem Cultures. Int J Mol Sci 2019; 20:ijms20122901. [PMID: 31197099 PMCID: PMC6627138 DOI: 10.3390/ijms20122901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are produced by the adrenal cortex and regulate cell metabolism in a variety of organs. This occurs either directly, by acting on specific receptors in a variety of cells, or by stimulating catecholamine expression within neighbor cells of the adrenal medulla. In this way, the whole adrenal gland may support specific metabolic requirements to cope with stressful conditions from external environment or internal organs. In addition, glucocorticoid levels may increase significantly in the presence of inappropriate secretion from adrenal cortex or may be administered at high doses to treat inflammatory disorders. In these conditions, metabolic alterations and increased blood pressure may occur, although altered sleep-waking cycle, anxiety, and mood disorders are frequent. These latter symptoms remain unexplained at the molecular level, although they overlap remarkably with disorders affecting catecholamine nuclei of the brainstem reticular formation. In fact, the present study indicates that various doses of glucocorticoids alter the expression of genes and proteins, which are specific for reticular catecholamine neurons. In detail, corticosterone administration to organotypic mouse brainstem cultures significantly increases Tyrosine hydroxylase (TH) and Dopamine transporter (DAT), while Phenylethanolamine N-methyltransferase (PNMT) is not affected. On the other hand, Dopamine Beta-Hydroxylase (DBH) increases only after very high doses of corticosterone.
Collapse
Affiliation(s)
| | | | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
| | | | | | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
- Department of Physiology and Pharmacology, University Sapienza, 00185 Roma, Italy.
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
9
|
Jacobson L. Glucocorticoid receptor deletion from locus coeruleus norepinephrine neurons promotes depression-like social withdrawal in female but not male mice. Brain Res 2018; 1710:82-91. [PMID: 30576626 DOI: 10.1016/j.brainres.2018.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023]
Abstract
Abnormal glucocorticoid levels can cause psychiatric symptoms ranging from depression to euphoria that have been implicated in mood disorders. My overarching hypothesis is that these opposing effects are mediated by glucocorticoid receptors (GR) in different brain regions. My laboratory has shown that GR in the serotonergic dorsal raphé nucleus (DRN) promote depression-like social and behavioral withdrawal in mice. We have also shown that GR in the DRN and noradrenergic locus coeruleus (LC) exhibit divergent regulation by antidepressants that have differential efficacy for depression subtypes with opposing abnormalities in glucocorticoids. The current study tested the hypothesis that LC GR would have effects opposite to those in the DRN by preventing rather than promoting social withdrawal. GR was deleted from LC NE neurons in female and male floxed GR mice by bilateral injections of lentivirus transducing Cre recombinase under control of a multimerized Phox 2a/2b response sequence (PRS) from the dopamine β-hydroxylase promoter (PRS-Cre). Female but not male PRS-Cre mice exhibited lower social interaction compared to controls injected with lentivirus transducing green fluorescent protein (PRS-GFP). Differences in social interaction between PRS-GFP and PRS-Cre females were not associated with differences in exploratory behavior, plasma corticosterone, male-female differences in LC GR expression, or changes in LC mineralocorticoid receptor or tyrosine hydroxylase gene expression. These results indicate that LC NE GR have sex-dependent effects to prevent social withdrawal, supporting the concept that glucocorticoids exert opposing effects on depression symptoms via different brain targets, and potentially revealing novel drug targets to treat depression, particularly in women.
Collapse
Affiliation(s)
- Lauren Jacobson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
10
|
Absence of Stress Response in Dorsal Raphe Nucleus in Modulator of Apoptosis 1-Deficient Mice. Mol Neurobiol 2018; 56:2185-2201. [PMID: 30003515 PMCID: PMC6394635 DOI: 10.1007/s12035-018-1205-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 06/26/2018] [Indexed: 01/10/2023]
Abstract
Modulator of apoptosis 1 (MOAP-1) is a Bcl-2-associated X Protein (BAX)-associating protein that plays an important role in regulating apoptosis. It is highly enriched in the brain but its function in this organ remains unknown. Studies on BAX-/- mice suggested that disruption of programmed cell death may lead to abnormal emotional states. We thus hypothesize that MOAP-1-/- mice may also display stress-related behavioral differences and perhaps involved in stress responses in the brain and investigated if a depression-like trait exists in MOAP-1-/- mice, and if so, whether it is age related, and how it relates to central serotonergic stress response in the dorsal raphe nucleus. Young MOAP-1-/- mice exhibit depression-like behavior, in the form of increased immobility time when compared to age-matched wild-type mice in the forced swimming test, which is abolished by acute treatment of fluoxetine. This is supported by data from the tail suspension and sucrose preference tests. Repeated forced swimming stress causes an up-regulation of tryptophan hydroxylase 2 (TPH2) and a down-regulation of brain-derived neurotrophic factor (BDNF) in the dorsal raphe nucleus (DRN) in young wild-type (WT) control mice. In contrast, TPH2 up-regulation was not observed in aged WT mice. Interestingly, such a stress response appears absent in both young and aged MOAP-1-/- mice. Aged MOAP-1-/- and WT mice also have similar immobility times on the forced swimming test. These data suggest that MOAP-1 is required in the regulation of stress response in the DRN. Crosstalk between BDNF and 5-HT appears to play an important role in this stress response.
Collapse
|
11
|
Vincent MY, Donner NC, Smith DG, Lowry CA, Jacobson L. Dorsal raphé nucleus glucocorticoid receptors inhibit tph2 gene expression in male C57BL/6J mice. Neurosci Lett 2017; 665:48-53. [PMID: 29174640 DOI: 10.1016/j.neulet.2017.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/15/2022]
Abstract
The serotonergic dorsal raphé nucleus (DRN) expresses glucocorticoid receptors (GR), and systemic glucocorticoids have been shown to regulate expression and activity of tryptophan hydroxylase isoform 2, the rate-limiting enzyme for serotonin synthesis in brain. We have used intra-DRN injection of pseudotyped adeno-associated virus AAV2/9 transducing either green fluorescent protein (GFP control) or Cre recombinase (DRN GR deletion) in floxed GR mice to determine if DRN GR directly regulate DRN mRNA levels of tryptophan hydroxylase 2 (tph2). In a separate set of similarly-treated floxed GR mice, we also measured limbic forebrain region concentrations of serotonin (5-hydroxytryptamine; 5-HT) and its major metabolite, 5-hydroxyindoleacetic acid (5-HIAA). DRN GR deletion increased tph2 mRNA levels in the dorsal, lateral wing, and caudal parts of the DRN without altering tissue concentrations of 5-HT, 5-HIAA, or the 5-HIAA/5-HT ratio in limbic forebrain regions. We conclude that DRN GR inhibit DRN tph2 gene expression in mice without marked effects on serotonin metabolism, at least under basal conditions at the circadian nadir. These data provide the first evidence of localized control of DRN tph2 mRNA expression by DRN GR in mice.
Collapse
Affiliation(s)
- Melanie Y Vincent
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | - Nina C Donner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - David G Smith
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Lauren Jacobson
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
12
|
Jambhekar A, Anastas JN, Shi Y. Histone Lysine Demethylase Inhibitors. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026484. [PMID: 28049654 DOI: 10.1101/cshperspect.a026484] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dynamic regulation of covalent modifications to histones is essential for maintaining genomic integrity and cell identity and is often compromised in cancer. Aberrant expression of histone lysine demethylases has been documented in many types of blood and solid tumors, and thus demethylases represent promising therapeutic targets. Recent advances in high-throughput chemical screening, structure-based drug design, and structure-activity relationship studies have improved both the specificity and the in vivo efficacy of demethylase inhibitors. This review will briefly outline the connection between demethylases and cancer and will provide a comprehensive overview of the structure, specificity, and utility of currently available demethylase inhibitors. To date, a select group of demethylase inhibitors is being evaluated in clinical trials, and additional compounds may soon follow from the bench to the bedside.
Collapse
Affiliation(s)
- Ashwini Jambhekar
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jamie N Anastas
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
13
|
Surget A, Van Nieuwenhuijzen PS, Heinzmann JM, Knapman A, McIlwrick S, Westphal WP, Touma C, Belzung C. Antidepressant treatment differentially affects the phenotype of high and low stress reactive mice. Neuropharmacology 2016; 110:37-47. [DOI: 10.1016/j.neuropharm.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023]
|
14
|
Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids. PLoS One 2015; 10:e0143978. [PMID: 26624017 PMCID: PMC4666588 DOI: 10.1371/journal.pone.0143978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/11/2015] [Indexed: 12/26/2022] Open
Abstract
Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.
Collapse
|
15
|
O'Brien FE, Moloney GM, Scott KA, O'Connor RM, Clarke G, Dinan TG, Griffin BT, Cryan JF. Chronic P-glycoprotein inhibition increases the brain concentration of escitalopram: potential implications for treating depression. Pharmacol Res Perspect 2015; 3:e00190. [PMID: 27022464 PMCID: PMC4777256 DOI: 10.1002/prp2.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/23/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022] Open
Abstract
Recent preclinical studies have revealed a functionally important role for the drug efflux pump P‐glycoprotein (P‐gp) at the blood–brain barrier in limiting brain levels and thus antidepressant‐like activity of certain antidepressant drugs. Specifically, acute administration of P‐gp inhibitors, such as verapamil and cyclosporin A (CsA), has been shown to augment brain concentrations and functional activity of the antidepressant escitalopram in rodents. However, depression is a chronic disorder and current treatments require prolonged administration to elicit their full therapeutic effect. Thus, it is important to investigate whether acute findings in relation to P‐gp inhibition translate to chronic paradigms. To this end, the present study investigates whether chronic treatment with the P‐gp inhibitor verapamil and the antidepressant escitalopram results in enhanced brain distribution and antidepressant‐like effects of escitalopram. Verapamil (10 mg·kg−1 i.p.) and escitalopram (0.1 mg·kg−1 i.p.) were administered once daily for 22 days. On the final day of treatment, brain regions and plasma were collected for analysis of cortical and plasma escitalopram concentrations, and to determine the hippocampal expression of genes previously reported to be altered by chronic antidepressant treatment. Verapamil treatment resulted in a greater than twofold increase in brain levels of escitalopram, without altering plasma levels. Neither gene expression analysis nor behavioral testing revealed an augmentation of responses to escitalopram treatment due to verapamil administration. Taken together, these data demonstrate for the first time that P‐gp inhibition can yield elevated brain concentrations of an antidepressant after chronic treatment. The functional relevance of these increased brain levels requires further elaboration.
Collapse
Affiliation(s)
- Fionn E O'Brien
- APC Microbiome Institute University College Cork CorkIreland; Pharmacodelivery Group School of Pharmacy University College Cork CorkIreland; Department of Anatomy & Neuroscience University College Cork CorkIreland; Present address: UCL School of Pharmacy University College London London United Kingdom
| | - Gerard M Moloney
- Department of Anatomy & Neuroscience University College Cork Cork Ireland
| | - Karen A Scott
- Department of Anatomy & Neuroscience University College Cork Cork Ireland
| | - Richard M O'Connor
- Department of Anatomy & Neuroscience University College Cork Cork Ireland; Present address: Department of Pharmacology and Systems Therapeutics Icahn School of Medicine Mount Sinai Hospital NY USA
| | - Gerard Clarke
- APC Microbiome Institute University College Cork Cork Ireland; Department of Psychiatry University College Cork Cork Ireland
| | - Timothy G Dinan
- APC Microbiome Institute University College Cork Cork Ireland; Department of Psychiatry University College Cork Cork Ireland
| | - Brendan T Griffin
- Pharmacodelivery Group School of Pharmacy University College Cork Cork Ireland
| | - John F Cryan
- APC Microbiome Institute University College Cork Cork Ireland; Department of Anatomy & Neuroscience University College Cork Cork Ireland
| |
Collapse
|
16
|
Chmielarz P, Kreiner G, Kot M, Zelek-Molik A, Kowalska M, Bagińska M, Daniel WA, Nalepa I. Disruption of glucocorticoid receptors in the noradrenergic system leads to BDNF up-regulation and altered serotonergic transmission associated with a depressive-like phenotype in female GR(DBHCre) mice. Pharmacol Biochem Behav 2015; 137:69-77. [PMID: 26261018 DOI: 10.1016/j.pbb.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/12/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022]
Abstract
Recently, we have demonstrated that conditional inactivation of glucocorticoid receptors (GRs) in the noradrenergic system, may evoke depressive-like behavior in female but not male mutant mice (GR(DBHCre) mice). The aim of the current study was to dissect how selective ablation of glucocorticoid signaling in the noradrenergic system influences the previously reported depressive-like phenotype and whether it might be linked to neurotrophic alterations or secondary changes in the serotonergic system. We demonstrated that selective depletion of GRs enhances brain derived neurotrophic factor (BDNF) expression in female but not male GR(DBHCre) mice on both the mRNA and protein levels. The possible impact of the mutation on brain noradrenergic and serotonergic systems was addressed by investigating the tissue neurotransmitter levels under basal conditions and after acute restraint stress. The findings indicated a stress-provoked differential response in tissue noradrenaline content in the GR(DBHCre) female but not male mutant mice. An analogous gender-specific effect was identified in the diminished content of 5-hydroxyindoleacetic acid, the main metabolite of serotonin, in the prefrontal cortex, which suggests down-regulation of this monoamine system in female GR(DBHCre) mice. The lack of GR also resulted in an up-regulation of alpha2-adrenergic receptor (α2-AR) density in the female but not male mutants in the locus coeruleus. We have also confirmed the utility of the investigated model in pharmacological studies, which demonstrates that the depressive-like phenotype of GR(DBHCre) female mice can be reversed by antidepressant treatment with desipramine or fluoxetine, with the latter drug evoking more pronounced effects. Overall, our study validates the use of female GR(DBHCre) mice as an interesting and novel genetic tool for the investigation of the cross-connected mechanisms of depression that is not only based on behavioral phenotypes.
Collapse
Affiliation(s)
- Piotr Chmielarz
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marta Kot
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marta Kowalska
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Monika Bagińska
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
17
|
Antidepressant-like effects of rosmarinic acid through mitogen-activated protein kinase phosphatase-1 and brain-derived neurotrophic factor modulation. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
18
|
Jacobson L. Hypothalamic-pituitary-adrenocortical axis: neuropsychiatric aspects. Compr Physiol 2014; 4:715-38. [PMID: 24715565 DOI: 10.1002/cphy.c130036] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evidence of aberrant hypothalamic-pituitary-adrenocortical (HPA) activity in many psychiatric disorders, although not universal, has sparked long-standing interest in HPA hormones as biomarkers of disease or treatment response. HPA activity may be chronically elevated in melancholic depression, panic disorder, obsessive-compulsive disorder, and schizophrenia. The HPA axis may be more reactive to stress in social anxiety disorder and autism spectrum disorders. In contrast, HPA activity is more likely to be low in PTSD and atypical depression. Antidepressants are widely considered to inhibit HPA activity, although inhibition is not unanimously reported in the literature. There is evidence, also uneven, that the mood stabilizers lithium and carbamazepine have the potential to augment HPA measures, while benzodiazepines, atypical antipsychotics, and to some extent, typical antipsychotics have the potential to inhibit HPA activity. Currently, the most reliable use of HPA measures in most disorders is to predict the likelihood of relapse, although changes in HPA activity have also been proposed to play a role in the clinical benefits of psychiatric treatments. Greater attention to patient heterogeneity and more consistent approaches to assessing treatment effects on HPA function may solidify the value of HPA measures in predicting treatment response or developing novel strategies to manage psychiatric disease.
Collapse
|
19
|
Vincent MY, Jacobson L. Glucocorticoid receptor deletion from the dorsal raphé nucleus of mice reduces dysphoria-like behavior and impairs hypothalamic-pituitary-adrenocortical axis feedback inhibition. Eur J Neurosci 2014; 39:1671-81. [PMID: 24684372 DOI: 10.1111/ejn.12538] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 01/09/2023]
Abstract
Glucocorticoids can cause depression and anxiety. Mechanisms for glucocorticoid effects on mood are largely undefined. The dorsal raphé nucleus (DRN) produces the majority of serotonin in the brain, and expresses glucocorticoid receptors (GR). Because we previously showed that antidepressants used to treat depression and anxiety decrease DRN GR expression, we hypothesized that deleting DRN GR would have anxiolytic- and antidepressant-like effects. We also hypothesized that DRN GR deletion would disinhibit activity of the hypothalamic-pituitary-adrenal (HPA) axis. Adeno-associated virus pseudotype AAV2/9 expressing either Cre recombinase (DRNGRKO mice) or GFP (DRN-GFP mice) was injected into the DRN of floxed GR mice to test these hypotheses. Three weeks after injection, mice underwent 21 days of social defeat or control handling and were tested for anxiety-like behavior (open-field test, elevated-plus maze), depression-like behavior [sucrose preference, forced-swim test (FST), tail-suspension test (TST)], social interaction, and circadian and stress-induced HPA activity. DRN GR deletion decreased anxiety-like behavior in control but not in defeated mice. DRN GR deletion decreased FST and tended to decrease TST despair-like behavior in both control and defeated mice, but did not affect sucrose preference. Exploration of social (a novel mouse) as well as neutral (an empty box) targets was increased in DRNGRKO mice, suggesting that DRN GR deletion also promotes active coping. DRN GR deletion increased stress-induced HPA activity without strongly altering circadian HPA activity. We have shown a novel role for DRN GR to mediate anxiety- and despair-like behavior and to regulate HPA negative feedback during acute stress.
Collapse
Affiliation(s)
- Melanie Y Vincent
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, 12208, USA
| | | |
Collapse
|
20
|
Retson TA, Van Bockstaele EJ. Coordinate regulation of noradrenergic and serotonergic brain regions by amygdalar neurons. J Chem Neuroanat 2013; 52:9-19. [PMID: 23651691 DOI: 10.1016/j.jchemneu.2013.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
Based on the importance of the locus coeruleus-norepinephrine (LC-NE) system and the dorsal raphe nucleus-serotonergic (DRN-5-HT) system in stress-related pathologies, additional understanding of brain regions coordinating their activity is of particular interest. One such candidate is the amygdalar complex, and specifically, the central nucleus (CeA), which has been implicated in emotional arousal and is known to send monosynaptic afferent projections to both these regions. Our present data using dual retrograde tract tracing is the first to demonstrate a population of amygdalar neurons that project in a collateralized manner to the LC and DRN, indicating that amygdalar neurons are positioned to coordinately regulate the LC and DRN, and links these brain regions by virtue of a common set of afferents. Further, we have also characterized the phenotype of a population of these collaterally projecting neurons from the amygdala as containing corticotropin releasing factor or dynorphin, two peptides heavily implicated in the stress response. Understanding the co-regulatory influences of this limbic region on 5HT and NE regions may help fill a gap in our knowledge regarding neural circuits impacting these systems and their adaptations in stress.
Collapse
Affiliation(s)
- T A Retson
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, PA 19107, United States.
| | | |
Collapse
|
21
|
Abstract
BACKGROUND Cortisol plays a multifaceted role in major depression disorder (MDD). Diurnal rhythms are disturbed, there is increased resistance to the feedback action of glucocorticoids, excess cortisol may induce MDD, basal levels may be higher and the post-awakening cortisol surge accentuated in those at risk for MDD. Does this suggest new avenues for studying MDD or its clinical management? METHOD The relevant literature was reviewed. RESULTS Cortisol contributes to genetic variants for the risk for MDD and the way that environmental events amplify risk. The corticoids' influence begins prenatally, but continues into adulthood. The impact of cortisol at each phase depends not only on its interaction with other factors, such as psychological traits and genetic variants, but also on events that have, or have not, occurred previously. CONCLUSIONS This review suggests that the time is now right for serious consideration of the role of cortisol in a clinical context. Estimates of cortisol levels and the shape of the diurnal rhythm might well guide the understanding of subtypes of MDD and yield additional indicators for optimal treatment. Patients with disturbed cortisol rhythms might benefit from restitution of those rhythms; they may be distinct from those with more generally elevated levels, who might benefit from cortisol blockade. Higher levels of cortisol are a risk for subsequent depression. Should manipulation of cortisol or its receptors be considered as a preventive measure for some of those at very high risk of future MDD, or to reduce other cortisol-related consequences such as long-term cognitive decline?
Collapse
Affiliation(s)
- J Herbert
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK.
| |
Collapse
|
22
|
Chen GL, Miller GM. Tryptophan hydroxylase-2: an emerging therapeutic target for stress disorders. Biochem Pharmacol 2013; 85:1227-33. [PMID: 23435356 DOI: 10.1016/j.bcp.2013.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/18/2022]
Abstract
Serotonin (5-HT) has been long recognized to modulate the stress response, and dysfunction of 5-HT has been implicated in numerous stress disorders. Accordingly, the 5-HT system has been targeted for the treatment of stress disorders. Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT synthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. With a decade of extensive investigation, it is now recognized that: (1) TPH2 exhibits a highly flexible gene expression that is modulated by an increasing number of internal and external environmental factors including the biological clock, stressors, endogenous hormones, and antidepressant therapies; and (2) genetically determined TPH2 activity is linked to a growing body of stress-related neuronal correlates and behavioral traits. These findings reveal an active role of TPH2 in the stress response and provide new insights into the long recognized but not yet fully understood 5-HT-stress interaction. As a major modulator of 5-HT neurotransmission and the stress response, TPH2 is of both pathophysiological and pharmacological significance, and is emerging as a new therapeutic target for the treatment of stress disorders. Given that numerous antidepressant therapies influence TPH2 gene expression, TPH2 is already inadvertently targeted for the treatment of stress disorders. With increased understanding of the regulation of TPH2 activity we can now purposely utilize TPH2 as a target to develop new or optimize current therapies, which are expected to greatly improve the prevention and treatment of a wide variety of stress disorders.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neuroscience, One Pine Hill Drive, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|
23
|
Yi LT, Li J, Li HC, Su DX, Quan XB, He XC, Wang XH. Antidepressant-like behavioral, neurochemical and neuroendocrine effects of naringenin in the mouse repeated tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:175-81. [PMID: 22709719 DOI: 10.1016/j.pnpbp.2012.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/07/2012] [Accepted: 06/10/2012] [Indexed: 12/26/2022]
Abstract
Our previous study demonstrated that the citrus bioflavonoid naringenin ameliorated behavioral alterations via the central serotonergic and noradrenergic systems in the tail suspension test (TST) induced mice. To better understand its pharmacological activity, mice were submitted to three 6min-TSTs one week apart (Day 1: test, Day 7: retest 1, Day 14: retest 2) followed by hippocampal glucocorticoid receptor (GR), monoamine neurotransmitters and serum corticosterone measurement. The results suggested that repeated TST detected the gradual increase in the efficacy of naringenin over time, additionally 1-day (20 mg/kg), 7-day (10, 20 mg/kg) and 14-day (5, 10, 20 mg/kg) naringenin treatment markedly decreased the immobility time. Moreover, administration of naringenin for 14 days (20 mg/kg) increased hippocampal serotonin (5-HT), norepinephrine (NE) and GR levels, and reduced serum corticosterone levels in mice exposed to the repeated TST. Overall, the present study indicated that the re-exposure would facilitate the detection of the anti-immobility effects of antidepressant drugs in the mouse TST, and clearly demonstrated that the antidepressant-like effect of naringenin may be mediated by an interaction with neuroendocrine and neurochemical systems.
Collapse
Affiliation(s)
- Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Donner NC, Montoya CD, Lukkes JL, Lowry CA. Chronic non-invasive corticosterone administration abolishes the diurnal pattern of tph2 expression. Psychoneuroendocrinology 2012; 37:645-61. [PMID: 21924839 PMCID: PMC3249349 DOI: 10.1016/j.psyneuen.2011.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/20/2011] [Accepted: 08/22/2011] [Indexed: 12/25/2022]
Abstract
Both hypothalamic-pituitary-adrenal (HPA) axis activity and serotonergic systems are commonly dysregulated in stress-related psychiatric disorders. We describe here a non-invasive rat model for hypercortisolism, as observed in major depression, and its effects on physiology, behavior, and the expression of tph2, the gene encoding tryptophan hydroxylase 2, the rate-limiting enzyme for brain serotonin (5-hydroxytryptamine; 5-HT) synthesis. We delivered corticosterone (40 μg/ml, 100 μg/ml or 400 μg/ml) or vehicle to adrenal-intact adult, male rats via the drinking water for 3 weeks. On days 15, 16, 17 and 18, respectively, the rats' emotionality was assessed in the open-field (OF), social interaction (SI), elevated plus-maze (EPM), and forced swim tests (FST). On day 21, half of the rats in each group were killed 2h into the dark phase of a 12/12 h reversed light/dark cycle; the other half were killed 2h into the light phase. We then measured indices of HPA axis activity, plasma glucose and interleukin-6 (IL-6) availability, and neuronal tph2 expression at each time point. Chronic corticosterone intake was sufficient to cause increased anxiety- and depressive-like behavior in a dose-dependent manner. It also disrupted the diurnal pattern of plasma adrenocorticotropin (ACTH), corticosterone, and glucose concentrations, caused adrenal atrophy, and prevented regular weight gain. No diurnal or treatment-dependent changes were found for plasma concentrations of IL-6. Remarkably, all doses of corticosterone treatment abolished the diurnal variation of tph2 mRNA expression in the brainstem dorsal raphe nucleus (DR) by elevating the gene's expression during the animals' inactive (light) phase. Our data demonstrate that chronic elevation of corticosterone creates a vulnerability to a depression-like syndrome that is associated with increased tph2 expression, similar to that observed in depressed patients.
Collapse
Affiliation(s)
- Nina C Donner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | | | | | | |
Collapse
|
25
|
Chen GL, Miller GM. Advances in tryptophan hydroxylase-2 gene expression regulation: new insights into serotonin-stress interaction and clinical implications. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:152-71. [PMID: 22241550 PMCID: PMC3587664 DOI: 10.1002/ajmg.b.32023] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) modulates the stress response by interacting with the hormonal hypothalamic-pituitary-adrenal (HPA) axis and neuronal sympathetic nervous system (SNS). Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT biosynthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. While TPH2 genetic variance has been linked to numerous behavioral traits and disorders, findings on TPH2 gene expression have not only reinforced, but also provided new insights into, the long-recognized but not yet fully understood 5-HT-stress interaction. In this review, we summarize advances in TPH2 expression regulation and its relevance to the stress response and clinical implications. Particularly, based on findings on rhesus monkey TPH2 genetics and other relevant literature, we propose that: (i) upon activation of adrenal cortisol secretion, the cortisol surge induces TPH2 expression and de novo 5-HT synthesis; (ii) the induced 5-HT in turn inhibits cortisol secretion by modulating the adrenal sensitivity to ACTH via the suprachiasmatic nuclei (SCN)-SNS-adrenal system, such that it contributes to the feedback inhibition of cortisol production; (iii) basal TPH2 expression or 5-HT synthesis, as well as early-life experience, influence basal cortisol primarily via the hormonal HPA axis; and (iv) 5'- and 3'-regulatory polymorphisms of TPH2 may differentially influence the stress response, presumably due to their differential roles in gene expression regulation. Our increasing knowledge of TPH2 expression regulation not only helps us better understand the 5-HT-stress interaction and the pathophysiology of neuropsychiatric disorders, but also provides new strategies for the treatment of stress-associated diseases.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neuroscience, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|
26
|
Kalinina TS, Shishkina GT, Dygalo NN. Induction of Tyrosine Hydroxylase Gene Expression by Glucocorticoids in the Perinatal Rat Brain is Age-Dependent. Neurochem Res 2012; 37:811-8. [DOI: 10.1007/s11064-011-0676-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022]
|
27
|
Bowens N, Heydendael W, Bhatnagar S, Jacobson L. Lack of elevations in glucocorticoids correlates with dysphoria-like behavior after repeated social defeat. Physiol Behav 2011; 105:958-65. [PMID: 22108507 DOI: 10.1016/j.physbeh.2011.10.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/06/2011] [Accepted: 10/25/2011] [Indexed: 11/29/2022]
Abstract
Activity of the hypothalamic-pituitary-adrenocortical (HPA) axis is often abnormal in depression and could hold clues for better treatment of this debilitating disease. However, it has been difficult to use HPA activity as a depression biomarker because both HPA hyperactivity and HPA hypoactivity have been reported in depression. Melancholic depression has typically been associated with HPA hyperactivity, while atypical depression has been linked with HPA hypoactivity. Many animal models of chronic stress recapitulate behavioral aberrations and elevated HPA activity that could represent a model for melancholic depression. However, there are no animal models that could be used to elucidate the etiology or treatment of atypical depression. We have used repeated social defeat in mice to test the hypothesis that this chronic stress would induce dysphoria-like behavior associated with HPA hypoactivity in a subset of subjects. Intruder mice were placed in the home cage of an aggressive resident mouse for 5 min/d for 30 days. The majority of intruder mice had elevated basal plasma corticosterone (High Morning Corticosterone, or HMC) and adrenal 11β hydroxylase mRNA levels relative to control mice that were handled daily. However, a subset of intruder mice (Low Morning Corticosterone; LMC) exhibited basal plasma corticosterone and 11β hydroxylase mRNA levels that were indistinguishable from control levels. Significant changes in emotional behavior only occurred in LMC mice, which exhibited anxiety-like increases in activity and defecation during tail suspension and anhedonia-like decreases in sucrose preference. Relative to HMC mice, LMC mice also showed increases in gene expression of mineralocorticoid receptor in CA2 hippocampus, consistent with the possibility that HPA activity in this group is constrained by increased sensitivity to glucocorticoid negative feedback. LMC mice also exhibited increased c-fos gene expression compared to HMC mice in the paraventricular hypothalamus and lateral septum suggesting that central pathways fail to habituate to chronic stress even though adrenocortical activity is not stimulated. We conclude that LMC mice showed adrenocortical hyporesponsiveness, which in combination with the behavioral abnormalities in this group may represent a model for the HPA hypoactivity associated with atypical depression.
Collapse
Affiliation(s)
- Nicole Bowens
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, United States
| | | | | | | |
Collapse
|
28
|
Radley JJ, Kabbaj M, Jacobson L, Heydendael W, Yehuda R, Herman JP. Stress risk factors and stress-related pathology: neuroplasticity, epigenetics and endophenotypes. Stress 2011; 14:481-97. [PMID: 21848436 PMCID: PMC3641164 DOI: 10.3109/10253890.2011.604751] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This paper highlights a symposium on stress risk factors and stress susceptibility, presented at the Neurobiology of Stress workshop in Boulder, CO, in June 2010. This symposium addressed factors linking stress plasticity and reactivity to stress pathology in animal models and in humans. Dr. J. Radley discussed studies demonstrating prefrontal cortical neuroplasticity and prefrontal control of hypothalamo-pituitary-adrenocortical axis function in rats, highlighting the emerging evidence of the critical role that this region plays in normal and pathological stress integration. Dr. M. Kabbaj summarized his studies of possible epigenetic mechanisms underlying behavioral differences in rat populations bred for differential stress reactivity. Dr. L. Jacobson described studies using a mouse model to explore the diverse actions of antidepressants in brain, suggesting mechanisms whereby antidepressants may be differentially effective in treating specific depression endophenotypes. Dr. R. Yehuda discussed the role of glucocorticoids in post-traumatic stress disorder (PTSD), indicating that low cortisol level may be a trait that predisposes the individual to development of the disorder. Furthermore, she presented evidence indicating that traumatic events can have transgenerational impact on cortisol reactivity and development of PTSD symptoms. Together, the symposium highlighted emerging themes regarding the role of brain reorganization, individual differences, and epigenetics in determining stress plasticity and pathology.
Collapse
Affiliation(s)
- Jason J. Radley
- Department of Psychology, University of Iowa, Iowa City, IA 52242
| | - Mohamed Kabbaj
- Biomedical Sciences Department, Program in Neurosciences, Florida State University, Tallahassee, FL 32306
| | - Lauren Jacobson
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208
| | - Willem Heydendael
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208
| | - Rachel Yehuda
- James J. Peters VA Medical Center and Mount Sinai School of Medicine
| | - James P. Herman
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
29
|
Nexon L, Sage D, Pévet P, Raison S. Glucocorticoid-mediated nycthemeral and photoperiodic regulation of tph2 expression. Eur J Neurosci 2011; 33:1308-17. [PMID: 21299657 DOI: 10.1111/j.1460-9568.2010.07586.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the Syrian hamster dorsal and median raphé nuclei, the tryptophan hydroxylase 2 gene (tph2), which codes the rate-limiting enzyme of serotonin synthesis, displays daily variations in its expression in animals entrained to a long but not to a short photoperiod. The present study aimed to assess the role of glucocorticoids in the nycthemeral and photoperiodic regulation of daily tph2 expression. In hamsters held in long photoperiod from birth, after adrenalectomy and glucocorticoid implants the suppression of glucocorticoid rhythms induced an abolition of the daily variations in tph2-mRNA concentrations, a decrease in the amplitude of body temperature rhythms and an increase in testosterone levels. All these effects were reversed after experimental restoration of a clear daily rhythm in the plasma glucocorticoid concentrations. We conclude that the photoperiod-dependent rhythm of glucocorticoids is the main regulator of tph2 daily expression.
Collapse
Affiliation(s)
- Laurent Nexon
- Département de Neu\robiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR-3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
30
|
Heydendael W, Jacobson L. Widespread hypothalamic-pituitary-adrenocortical axis-relevant and mood-relevant effects of chronic fluoxetine treatment on glucocorticoid receptor gene expression in mice. Eur J Neurosci 2010; 31:892-902. [DOI: 10.1111/j.1460-9568.2010.07131.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|