1
|
García MT, Tran DN, Peterson RE, Stegmann SK, Hanson SM, Reid CM, Xie Y, Vu S, Harwell CC. A developmentally defined population of neurons in the lateral septum controls responses to aversive stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.24.559205. [PMID: 37873286 PMCID: PMC10592641 DOI: 10.1101/2023.09.24.559205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
When interacting with their environment, animals must balance exploratory and defensive behavior to evaluate and respond to potential threats. The lateral septum (LS) is a structure in the ventral forebrain that calibrates the magnitude of behavioral responses to stress-related external stimuli, including the regulation of threat avoidance. The complex connectivity between the LS and other parts of the brain, together with its largely unexplored neuronal diversity, makes it difficult to understand how defined LS circuits control specific behaviors. Here, we describe a mouse model in which a population of neurons with a common developmental origin (Nkx2.1-lineage neurons) are absent from the LS. Using a combination of circuit tracing and behavioral analyses, we found that these neurons receive inputs from the perifornical area of the anterior hypothalamus (PeFAH) and are specifically activated in stressful contexts. Mice lacking Nkx2.1-lineage LS neurons display increased exploratory behavior even under stressful conditions. Our study extends the current knowledge about how defined neuronal populations within the LS can evaluate contextual information to select appropriate behavioral responses. This is a necessary step towards understanding the crucial role that the LS plays in neuropsychiatric conditions where defensive behavior is dysregulated, such as anxiety and aggression disorders.
Collapse
Affiliation(s)
- Miguel Turrero García
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Diana N. Tran
- Department of Neurobiology, Harvard Medical School; Boston, MA
| | | | | | - Sarah M. Hanson
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Christopher M. Reid
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
- Ph.D. Program in Neuroscience, Harvard University; Boston, MA
| | - Yajun Xie
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Steve Vu
- Department of Neurobiology, Harvard Medical School; Boston, MA
| | - Corey C. Harwell
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
- Chan Zuckerberg Biohub San Francisco; San Francisco, CA
- Lead contact
| |
Collapse
|
2
|
Siddiqi F, Trakimas AL, Joseph DJ, Lippincott ML, Marsh ED, Wolfe JH. Islet1 Precursors Contribute to Mature Interneuron Subtypes in Mouse Neocortex. Cereb Cortex 2021; 31:5206-5224. [PMID: 34228108 PMCID: PMC8491676 DOI: 10.1093/cercor/bhab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/15/2022] Open
Abstract
Cortical interneurons (GABAergic cells) arise during embryogenesis primarily from the medial and caudal ganglionic eminences (MGE and CGE, respectively) with a small population generated from the preoptic area (POA). Progenitors from the lateral ganglionic eminence (LGE) are thought to only generate GABAergic medium spiny neurons that populate the striatum and project to the globus pallidus. Here, we report evidence that neuronal precursors that express the LGE-specific transcription factor Islet1 (Isl1) can give rise to a small population of cortical interneurons. Lineage tracing and homozygous deletion of Nkx2.1 in Isl1 fate-mapped mice showed that neighboring MGE/POA-specific Nkx2.1 cells and LGE-specific Isl1 cells make both common and distinct lineal contributions towards cortical interneuron fate. Although the majority of cells had overlapping transcriptional domains between Nkx2.1 and Isl1, a population of Isl1-only derived cells also contributed to the adult cerebral cortex. The data indicate that Isl1-derived cells may originate from both the LGE and the adjacent LGE/MGE boundary regions to generate diverse neuronal progeny. Thus, a small population of neocortical interneurons appear to originate from Isl-1-positive precursors.
Collapse
Affiliation(s)
- Faez Siddiqi
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Alexandria L Trakimas
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald J Joseph
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Eric D Marsh
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John H Wolfe
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
López JM, Jiménez S, Morona R, Lozano D, Moreno N. Analysis of Islet-1, Nkx2.1, Pax6, and Orthopedia in the forebrain of the sturgeon Acipenser ruthenus identifies conserved prosomeric characteristics. J Comp Neurol 2021; 530:834-855. [PMID: 34547112 DOI: 10.1002/cne.25249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
The distribution patterns of a set of conserved brain developmental regulatory transcription factors were analyzed in the forebrain of the basal actinopterygian fish Acipenser ruthenus, consistent with the prosomeric model. In the telencephalon, the pallium was characterized by ventricular expression of Pax6. In the subpallium, the combined expression of Nkx2.1/Islet-1 (Isl1) allowed to propose ventral and dorsal areas, as the septo-pallidal (Nkx2.1/Isl1+) and striatal derivatives (Isl1+), respectively, and a dorsal portion of the striatal derivatives, ventricularly rich in Pax6 and devoid of Isl1 expression. Dispersed Orthopedia (Otp) cells were found in the supracommissural and posterior nuclei of the ventral telencephalon, related to the medial portion of the amygdaloid complex. The preoptic area was identified by the Nkx2.1/Isl1 expression. In the alar hypothalamus, an Otp-expressing territory, lacking Nkx2.1/Isl1, was identified as the paraventricular domain. The adjacent subparaventricular domain (Spa) was subdivided in a rostral territory expressing Nkx2.1 and an Isl1+ caudal one. In the basal hypothalamus, the tuberal region was defined by the Nkx2.1/Isl1 expression and a rostral Otp-expressing domain was identified. Moreover, the Otp/Nkx2.1 combination showed an additional zone lacking Isl1, tentatively identified as the mamillary area. In the diencephalon, both Pax6 and Isl1 defined the prethalamic domain, and within the basal prosomere 3, scattered Pax6- and Isl1-expressing cells were observed in the posterior tubercle. Finally, a small group of Pax6 cells was observed in the pretectal area. These results improve the understanding of the forebrain evolution and demonstrate that its basic bauplan is present very early in the vertebrate lineage.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| |
Collapse
|
4
|
Liao J, Coffman KA, Locker J, Padiath QS, Nmezi B, Filipink RA, Hu J, Sathanoori M, Madan-Khetarpal S, McGuire M, Schreiber A, Moran R, Friedman N, Hoffner L, Rajkovic A, Yatsenko SA, Surti U. Deletion of conserved non-coding sequences downstream from NKX2-1: A novel disease-causing mechanism for benign hereditary chorea. Mol Genet Genomic Med 2021; 9:e1647. [PMID: 33666368 PMCID: PMC8123744 DOI: 10.1002/mgg3.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by early‐onset non‐progressive involuntary movements. Although NKX2‐1 mutations or deletions are the cause of BHC, some BHC families do not have pathogenic alterations in the NKX2‐1 gene, indicating that mutations of non‐coding regulatory elements of NKX2‐1 may also play a role. Methods and Results By using whole‐genome microarray analysis, we identified a 117 Kb founder deletion in three apparently unrelated BHC families that were negative for NKX2‐1 sequence variants. Targeted next generation sequencing analysis confirmed the deletion and showed that it was part of a complex local genomic rearrangement. In addition, we also detected a 648 Kb de novo deletion in an isolated BHC case. Both deletions are located downstream from NKX2‐1 on chromosome 14q13.2‐q13.3 and share a 33 Kb smallest region of overlap with six previously reported cases. This region has no gene but contains multiple evolutionarily highly conserved non‐coding sequences. Conclusion We propose that the deletion of potential regulatory elements necessary for NKX2‐1 expression in this critical region is responsible for BHC phenotype in these patients, and this is a novel disease‐causing mechanism for BHC.
Collapse
Affiliation(s)
- Jun Liao
- Pittsburgh Cytogenetics Laboratory, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keith A Coffman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Quasar S Padiath
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce Nmezi
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robyn A Filipink
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jie Hu
- Pittsburgh Cytogenetics Laboratory, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Malini Sathanoori
- Pittsburgh Cytogenetics Laboratory, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Marianne McGuire
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Rocio Moran
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Neil Friedman
- Center for Pediatric Neurology, Cleveland Clinic, Cleveland, OH, USA
| | - Lori Hoffner
- Magee Womens Research Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aleksandar Rajkovic
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.,Magee Womens Research Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Svetlana A Yatsenko
- Pittsburgh Cytogenetics Laboratory, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.,Magee Womens Research Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Urvashi Surti
- Pittsburgh Cytogenetics Laboratory, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.,Magee Womens Research Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Turrero García M, Stegmann SK, Lacey TE, Reid CM, Hrvatin S, Weinreb C, Adam MA, Nagy MA, Harwell CC. Transcriptional profiling of sequentially generated septal neuron fates. eLife 2021; 10:71545. [PMID: 34851821 PMCID: PMC8694698 DOI: 10.7554/elife.71545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single-cell RNA sequencing, histology, and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity, and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.
Collapse
Affiliation(s)
| | - Sarah K Stegmann
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Tiara E Lacey
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,Biological and Biomedical Sciences PhD program at Harvard UniversityCambridgeUnited States
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Caleb Weinreb
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States,PhD Program in Systems Biology at Harvard UniversityCambridgeUnited States
| | - Manal A Adam
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
6
|
Chellappa K, Brinkman JA, Mukherjee S, Morrison M, Alotaibi MI, Carbajal KA, Alhadeff AL, Perron IJ, Yao R, Purdy CS, DeFelice DM, Wakai MH, Tomasiewicz J, Lin A, Meyer E, Peng Y, Arriola Apelo SI, Puglielli L, Betley JN, Paschos GK, Baur JA, Lamming DW. Hypothalamic mTORC2 is essential for metabolic health and longevity. Aging Cell 2019; 18:e13014. [PMID: 31373126 PMCID: PMC6718533 DOI: 10.1111/acel.13014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/26/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet-induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2-inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.
Collapse
Affiliation(s)
- Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jacqueline A. Brinkman
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Mark Morrison
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Mohammed I. Alotaibi
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Endocrinology and Reproductive Physiology Graduate Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kathryn A. Carbajal
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Amber L. Alhadeff
- Department of Biology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Isaac J. Perron
- Center for Sleep and Circadian Neurobiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Rebecca Yao
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Cole S. Purdy
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Denise M. DeFelice
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Matthew H. Wakai
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Jay Tomasiewicz
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Amy Lin
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Emma Meyer
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Yajing Peng
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Sebastian I. Arriola Apelo
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Luigi Puglielli
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - J. Nicholas Betley
- Department of Biology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Georgios K. Paschos
- Center for Sleep and Circadian Neurobiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- The Institute for Translational Medicine and Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Dudley W. Lamming
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Endocrinology and Reproductive Physiology Graduate Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
7
|
Magno L, Barry C, Schmidt-Hieber C, Theodotou P, Häusser M, Kessaris N. NKX2-1 Is Required in the Embryonic Septum for Cholinergic System Development, Learning, and Memory. Cell Rep 2017; 20:1572-1584. [PMID: 28813670 PMCID: PMC5565637 DOI: 10.1016/j.celrep.2017.07.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/30/2017] [Accepted: 07/19/2017] [Indexed: 02/01/2023] Open
Abstract
The transcription factor NKX2-1 is best known for its role in the specification of subsets of cortical, striatal, and pallidal neurons. We demonstrate through genetic fate mapping and intersectional focal septal deletion that NKX2-1 is selectively required in the embryonic septal neuroepithelium for the development of cholinergic septohippocampal projection neurons and large subsets of basal forebrain cholinergic neurons. In the absence of NKX2-1, these neurons fail to develop, causing alterations in hippocampal theta rhythms and severe deficiencies in learning and memory. Our results demonstrate that learning and memory are dependent on NKX2-1 function in the embryonic septum and suggest that cognitive deficiencies that are sometimes associated with pathogenic mutations in NKX2-1 in humans may be a direct consequence of loss of NKX2-1 function.
Collapse
Affiliation(s)
- Lorenza Magno
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Christoph Schmidt-Hieber
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Polyvios Theodotou
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
8
|
Burmeister MA, Ayala JE, Smouse H, Landivar-Rocha A, Brown JD, Drucker DJ, Stoffers DA, Sandoval DA, Seeley RJ, Ayala JE. The Hypothalamic Glucagon-Like Peptide 1 Receptor Is Sufficient but Not Necessary for the Regulation of Energy Balance and Glucose Homeostasis in Mice. Diabetes 2017; 66:372-384. [PMID: 27908915 PMCID: PMC5248999 DOI: 10.2337/db16-1102] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022]
Abstract
Pharmacological activation of the hypothalamic glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) promotes weight loss and improves glucose tolerance. This demonstrates that the hypothalamic GLP-1R is sufficient but does not show whether it is necessary for the effects of exogenous GLP-1R agonists (GLP-1RA) or endogenous GLP-1 on these parameters. To address this, we crossed mice harboring floxed Glp1r alleles to mice expressing Nkx2.1-Cre to knock down Glp1r expression throughout the hypothalamus (GLP-1RKDΔNkx2.1cre). We also generated mice lacking Glp1r expression specifically in two GLP-1RA-responsive hypothalamic feeding nuclei/cell types, the paraventricular nucleus (GLP-1RKDΔSim1cre) and proopiomelanocortin neurons (GLP-1RKDΔPOMCcre). Chow-fed GLP-1RKDΔNkx2.1cre mice exhibited increased food intake and energy expenditure with no net effect on body weight. When fed a high-fat diet, these mice exhibited normal food intake but elevated energy expenditure, yielding reduced weight gain. None of these phenotypes were observed in GLP-1RKDΔSim1cre and GLP-1RKDΔPOMCcre mice. The acute anorectic and glucose tolerance effects of peripherally dosed GLP-1RA exendin-4 and liraglutide were preserved in all mouse lines. Chronic liraglutide treatment reduced body weight in chow-fed GLP-1RKDΔNkx2.1cre mice, but this effect was attenuated with high-fat diet feeding. In sum, classic homeostatic control regions are sufficient but not individually necessary for the effects of GLP-1RA on nutrient homeostasis.
Collapse
Affiliation(s)
- Melissa A Burmeister
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Jennifer E Ayala
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Hannah Smouse
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Adriana Landivar-Rocha
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Jacob D Brown
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Doris A Stoffers
- Department of Medicine, University of Pennsylvania, Pennsylvania, PA
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI
| | - Randy J Seeley
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI
| | - Julio E Ayala
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| |
Collapse
|
9
|
Allaway KC, Machold R. Developmental specification of forebrain cholinergic neurons. Dev Biol 2016; 421:1-7. [PMID: 27847324 DOI: 10.1016/j.ydbio.2016.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/17/2023]
Abstract
Striatal cholinergic interneurons and basal forebrain cholinergic projection neurons, which together comprise the forebrain cholinergic system, regulate attention, memory, reward pathways, and motor activity through the neuromodulation of multiple brain circuits. The importance of these neurons in the etiology of neurocognitive disorders has been well documented, but our understanding of their specification during embryogenesis is still incomplete. All forebrain cholinergic projection neurons and interneurons appear to share a common developmental origin in the embryonic ventral telencephalon, a region that also gives rise to GABAergic projection neurons and interneurons. Significant progress has been made in identifying the key intrinsic and extrinsic factors that promote a cholinergic fate in this precursor population. However, how cholinergic interneurons and projection neurons differentiate from one another during development, as well as how distinct developmental programs contribute to heterogeneity within those two classes, is not yet well understood. In this review we summarize the transcription factors and signaling molecules known to play a role in the specification and early development of striatal and basal forebrain cholinergic neurons. We also discuss the heterogeneity of these populations and its possible developmental origins.
Collapse
Affiliation(s)
- Kathryn C Allaway
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Robert Machold
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
10
|
Aratani S, Fujita H, Kuroiwa Y, Usui C, Yokota S, Nakamura I, Nishioka K, Nakajima T. Murine hypothalamic destruction with vascular cell apoptosis subsequent to combined administration of human papilloma virus vaccine and pertussis toxin. Sci Rep 2016; 6:36943. [PMID: 27833142 PMCID: PMC5105142 DOI: 10.1038/srep36943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022] Open
Abstract
Vaccination is the most powerful way to prevent human beings from contracting infectious diseases including viruses. In the case of the human papillomavirus (HPV) vaccine, an unexpectedly novel disease entity, HPV vaccination associated neuro-immunopathetic syndrome (HANS), has been reported and remains to be carefully verified. To elucidate the mechanism of HANS, we applied a strategy similar to the active experimental autoimmune encephalitis (EAE) model - one of the most popular animal models used to induce maximum immunological change in the central nervous system. Surprisingly, mice vaccinated with pertussis toxin showed neurological phenotypes that include low responsiveness of the tail reflex and locomotive mobility. Pathological analyses revealed the damage to the hypothalamus and circumventricular regions around the third ventricle, and these regions contained apoptotic vascular endothelial cells. These data suggested that HPV-vaccinated donners that are susceptible to the HPV vaccine might develop HANS under certain environmental factors. These results will give us the new insight into the murine pathological model of HANS and help us to find a way to treat of patients suffering from HANS.
Collapse
Affiliation(s)
- Satoko Aratani
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.,Department of Future Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.,Physician, Student and Researcher Support Center, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hidetoshi Fujita
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.,Department of Future Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yoshiyuki Kuroiwa
- Department of Neurology and Stroke Center, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University Nerima Hospital, Nerima-ku, Tokyo, Japan
| | - Shumpei Yokota
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Ikuro Nakamura
- Japan Medical Research Foundation, Chiyoda-ku, Tokyo, Japan
| | - Kusuki Nishioka
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Toshihiro Nakajima
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.,Department of Future Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.,Integrated Gene Editing Section (iGES), Tokyo Medical University Hospital, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
11
|
Malt EA, Juhasz K, Malt UF, Naumann T. A Role for the Transcription Factor Nk2 Homeobox 1 in Schizophrenia: Convergent Evidence from Animal and Human Studies. Front Behav Neurosci 2016; 10:59. [PMID: 27064909 PMCID: PMC4811959 DOI: 10.3389/fnbeh.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas.
Collapse
Affiliation(s)
- Eva A Malt
- Department of Adult Habilitation, Akershus University HospitalLørenskog, Norway; Institute of Clinical Medicine, Ahus Campus University of OsloOslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital Lørenskog, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of OsloOslo, Norway; Department of Research and Education, Institution of Oslo University HospitalOslo, Norway
| | - Thomas Naumann
- Centre of Anatomy, Institute of Cell Biology and Neurobiology, Charite Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
12
|
Abstract
Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called "prototypic" and "arkypallidal" neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a "persistent" sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe.
Collapse
|
13
|
Monti S, Nicoletti A, Cantasano A, Krude H, Cassio A. NKX2.1-Related Disorders: a novel mutation with mild clinical presentation. Ital J Pediatr 2015; 41:45. [PMID: 26103969 PMCID: PMC4477322 DOI: 10.1186/s13052-015-0150-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/09/2015] [Indexed: 12/16/2022] Open
Abstract
Background A highly variable phenotype characterized by thyroid, respiratory and neurological defects has been reported in an already established group of disorders namely NKX2.1-related disorders. We describe here the case of an infant with a novel mutation of the NKX2.1 gene characterized by mild clinical presentation. Aim of the study was to elucidate the genotype-phenotype correlation in our patient. Methods We performed genetic analysis of the NKX2.1 gene in an infant with no neonatal respiratory distress and near-normal results at neonatal screening test for congenital hypothyroidism, choreoathetosis, ataxia and delayed independent walking. Results A novel mutation of the NKX2.1 gene has been identified, that is responsible for a mild framework of congenital hypothyroidism and neurological symptoms. Conclusions The frequency of congenital hypothyroidism cases associated with NKX2.1 mutations is expected to be higher in a subgroup of patients, selected according to the neurological presentation. In these patients the analysis of NKX2.1 mutational status is recommended.
Collapse
Affiliation(s)
- Sara Monti
- Department of Medical and Surgical Sciences, Pediatric Unit, University of Bologna, Bologna, Italy.
| | - Annalisa Nicoletti
- Department of Medical and Surgical Sciences, Pediatric Unit, University of Bologna, Bologna, Italy.
| | - Antonella Cantasano
- Department of Medical and Surgical Sciences, Pediatric Unit, University of Bologna, Bologna, Italy.
| | - Heiko Krude
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany.
| | - Alessandra Cassio
- Department of Medical and Surgical Sciences, Pediatric Unit, University of Bologna, Bologna, Italy. .,Policlinico S.Orsola- Malpighi, U.O. Pediatria, Via Massarenti 9, 40138, Bologna, BO, Italy.
| |
Collapse
|
14
|
Dodson PD, Larvin JT, Duffell JM, Garas FN, Doig NM, Kessaris N, Duguid IC, Bogacz R, Butt SJB, Magill PJ. Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron 2015; 86:501-13. [PMID: 25843402 PMCID: PMC4416107 DOI: 10.1016/j.neuron.2015.03.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 01/23/2015] [Accepted: 02/14/2015] [Indexed: 01/12/2023]
Abstract
Transcriptional codes initiated during brain development are ultimately realized in adulthood as distinct cell types performing specialized roles in behavior. Focusing on the mouse external globus pallidus (GPe), we demonstrate that the potential contributions of two GABAergic GPe cell types to voluntary action are fated from early life to be distinct. Prototypic GPe neurons derive from the medial ganglionic eminence of the embryonic subpallium and express the transcription factor Nkx2-1. These neurons fire at high rates during alert rest, and encode movements through heterogeneous firing rate changes, with many neurons decreasing their activity. In contrast, arkypallidal GPe neurons originate from lateral/caudal ganglionic eminences, express the transcription factor FoxP2, fire at low rates during rest, and encode movements with robust increases in firing. We conclude that developmental diversity positions prototypic and arkypallidal neurons to fulfil distinct roles in behavior via their disparate regulation of GABA release onto different basal ganglia targets. Arkypallidal and prototypic GPe cells have distinct origins and transcriptional codes Arkypallidal neurons rapidly and robustly increase firing rate at movement onset Movement is accurately encoded by single arkypallidal or prototypic neurons Two GPe cell types are fated to affect different targets in distinct ways in behavior
Collapse
Affiliation(s)
- Paul D Dodson
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QX, UK.
| | - Joseph T Larvin
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - James M Duffell
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Farid N Garas
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Natalie M Doig
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ian C Duguid
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Rafal Bogacz
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Simon J B Butt
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QX, UK.
| |
Collapse
|
15
|
Impaired selenoprotein expression in brain triggers striatal neuronal loss leading to co-ordination defects in mice. Biochem J 2014; 462:67-75. [PMID: 24844465 DOI: 10.1042/bj20140423] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Secisbp2 [SECIS (selenocysteine insertion sequence)-binding protein 2] binds to SECIS elements located in the 3'-UTR region of eukaryotic selenoprotein mRNAs. It facilitates the incorporation of the rare amino acid selenocysteine in response to UGA codons. Inactivation of Secisbp2 in hepatocytes greatly reduced selenoprotein levels. Neuron-specific inactivation of Secisbp2 (CamK-Cre; Secisbp2fl/fl) reduced cerebral expression of selenoproteins to a lesser extent than inactivation of tRNA[Ser]Sec. This allowed us to study the development of cortical PV (parvalbumin)+ interneurons, which are completely lost in tRNA[Ser]Sec mutants. PV+ interneuron density was reduced in the somatosensory cortex, hippocampus and striatum. In situ hybridization for Gad67 (glutamic acid decarboxylase 67) confirmed the reduction of GABAergic (where GABA is γ-aminobutyric acid) interneurons. Because of the obvious movement phenotype involving a broad dystonic gait, we suspected basal ganglia dysfunction. Tyrosine hydroxylase expression was normal in substantia nigra neurons and their striatal terminals. However the densities of striatal PV+ and Gad67+ neurons were decreased by 65% and 49% respectively. Likewise, the density of striatal cholinergic neurons was reduced by 68%. Our observations demonstrate that several classes of striatal interneurons depend on selenoprotein expression. These findings may offer an explanation for the movement phenotype of selenoprotein P-deficient mice and the movement disorder and mental retardation described in a patient carrying SECISBP2 mutations.
Collapse
|
16
|
Merkle FT, Fuentealba LC, Sanders TA, Magno L, Kessaris N, Alvarez-Buylla A. Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nat Neurosci 2014; 17:207-14. [PMID: 24362763 PMCID: PMC4100623 DOI: 10.1038/nn.3610] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Abstract
Throughout life, neural stem cells (NSCs) in different domains of the ventricular-subventricular zone (V-SVZ) of the adult rodent brain generate several subtypes of interneurons that regulate the function of the olfactory bulb. The full extent of diversity among adult NSCs and their progeny is not known. Here, we report the generation of at least four previously unknown olfactory bulb interneuron subtypes that are produced in finely patterned progenitor domains in the anterior ventral V-SVZ of both the neonatal and adult mouse brain. Progenitors of these interneurons are responsive to sonic hedgehog and are organized into microdomains that correlate with the expression domains of the Nkx6.2 and Zic family of transcription factors. This work reveals an unexpected degree of complexity in the specification and patterning of NSCs in the postnatal mouse brain.
Collapse
Affiliation(s)
- Florian T. Merkle
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Departments of Molecular and Cellular Biology, and Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Luis C. Fuentealba
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
| | - Timothy A. Sanders
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
| | - Lorenza Magno
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
| |
Collapse
|
17
|
Duan L, Bhattacharyya BJ, Belmadani A, Pan L, Miller RJ, Kessler JA. Stem cell derived basal forebrain cholinergic neurons from Alzheimer's disease patients are more susceptible to cell death. Mol Neurodegener 2014; 9:3. [PMID: 24401693 PMCID: PMC3896712 DOI: 10.1186/1750-1326-9-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/03/2014] [Indexed: 12/20/2022] Open
Abstract
An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a constant feature of Alzheimer’s disease (AD) and is associated with deficits in spatial learning and memory. Induced pluripotent stem cells (iPSCs) derived from patients with AD as well as from normal controls could be efficiently differentiated into neurons with characteristics of BFCNs. We used BFCNs derived from iPSCs to model sporadic AD with a focus on patients with ApoE3/E4 genotypes (AD-E3/E4). BFCNs derived from AD-E3/E4 patients showed typical AD biochemical features evidenced by increased Aβ42/Aβ40 ratios. AD-E3/E4 neurons also exhibited altered responses to treatment with γ-secretase inhibitors compared to control BFCNs or neurons derived from patients with familial AD. BFCNs from patients with AD-E3/E4 also exhibited increased vulnerability to glutamate-mediated cell death which correlated with increased intracellular free calcium upon glutamate exposure. The ability to generate BFCNs with an AD phenotype is a significant step both for understanding disease mechanisms and for facilitating screening for agents that promote synaptic integrity and neuronal survival.
Collapse
Affiliation(s)
- Lishu Duan
- Departments of Neurology, Northwestern University's Feinberg School of Medicine, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Pizzi M, Fassan M, Ludwig K, Cassina M, Gervasi MT, Salmaso R. Congenital pulmonary airway malformation (CPAM) [congenital cystic adenomatoid malformation] associated with tracheoesophageal fistula and agensesis of the corpus callosum. Fetal Pediatr Pathol 2012; 31:169-75. [PMID: 22414029 DOI: 10.3109/15513815.2012.659392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congenital pulmonary airway malformations (CPAM) are a family of hamartomatous disorders due to the uncontrolled overgrowth of the terminal bronchioles. Congenital pulmonary airway malformations can co-exist with cardiovascular and/or urogenital malformations, but their association with thoracopulmonary malformations is extremely rare. We report the first case of CPAM type I, co-existing with tracheo-esophageal fistula and corpus callosum agenesis.
Collapse
Affiliation(s)
- Marco Pizzi
- Department of Medical Diagnostic Sciences & Special Therapies, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Yun CH, Kim JG, Park BS, Lee HM, Kim DH, Kim EO, Park JJ, Park JW, Damante G, Kim YI, Lee BJ. TTF-1 action on the transcriptional regulation of cyclooxygenase-2 gene in the rat brain. PLoS One 2011; 6:e28959. [PMID: 22174936 PMCID: PMC3236776 DOI: 10.1371/journal.pone.0028959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/17/2011] [Indexed: 12/04/2022] Open
Abstract
We have recently found that thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is postnatally expressed in discrete areas of the hypothalamus and closely involved in neuroendocrine functions. We now report that transcription of cyclooxygenase-2 (COX-2), the rate limiting enzyme in prostaglandin biosynthesis, was inhibited by TTF-1. Double immunohistochemistry demonstrated that TTF-1 was expressed in the astrocytes and endothelial cells of blood vessel in the hypothalamus. Promoter assays and electrophoretic mobility shift assays showed that TTF-1 inhibited COX-2 transcription by binding to specific binding domains in the COX-2 promoter. Furthermore, blocking TTF-1 synthesis by intracerebroventricular injection of an antisense oligomer induced an increase of COX-2 synthesis in non-neuronal cells of the rat hypothalamus, and resulted in animals' hyperthermia. These results suggest that TTF-1 is physiologically involved in the control of thermogenesis by regulating COX-2 transcription in the brain.
Collapse
Affiliation(s)
- Chang Ho Yun
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jae Geun Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Byong Seo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Hye Myeong Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Eun Ok Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Joong Jean Park
- Department of Physiology, College of Medicine, Korea University, Seoul, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Giuseppe Damante
- Department of Biomedical Sciences and Technologies, University of Udine, Udine, Italy
| | - Young Il Kim
- Department of Internal Medicine, Ulsan University Hospital, Ulsan, South Korea
- * E-mail: (YIK); (BJL)
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- * E-mail: (YIK); (BJL)
| |
Collapse
|
20
|
Uematsu M, Haginoya K, Kikuchi A, Nakayama T, Kakisaka Y, Numata Y, Kobayashi T, Hino-Fukuyo N, Fujiwara I, Kure S. Hypoperfusion in caudate nuclei in patients with brain-lung-thyroid syndrome. J Neurol Sci 2011; 315:77-81. [PMID: 22166853 DOI: 10.1016/j.jns.2011.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 11/11/2011] [Accepted: 11/15/2011] [Indexed: 02/02/2023]
Abstract
Mutations in NKX2-1 cause neurological, pulmonary, and thyroid hormone impairment. Recently, the disease was named brain-lung-thyroid syndrome. Here, we report three patients with brain-lung-thyroid syndrome. All patients were unable to walk until 24 months of age, and still have a staggering gait, without mental retardation. They have also had choreoathetosis since early infancy. Genetic analysis of NKX2-1 revealed a novel missense mutation (p.Val205Phe) in two patients who were cousins and their maternal families, and a novel 2.6-Mb deletion including NKX2-1 on chromosome 14 in the other patient. Congenital hypothyroidism was not detected on neonatal screening in the patient with the missense mutation, and frequent respiratory infections were observed in the patient with the deletion in NKX2-1. Oral levodopa did not improve the gait disturbance or involuntary movement. The results of (99m)Tc-ECD single-photon emission computed tomography (ECD-SPECT) analyzed using the easy Z-score imaging system showed decreased cerebral blood flow in the bilateral basal ganglia, especially in the caudate nuclei, in all three patients, but no brain magnetic resonance imaging (MRI) abnormalities. These brain nuclear image findings indicate that NKX2-1 haploinsufficiency causes dysfunction of the basal ganglia, especially the caudate nuclei, resulting in choreoathetosis and gait disturbance in this disease.
Collapse
Affiliation(s)
- Mitsugu Uematsu
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Marín O. A postnatal function for Nkx2-1 in basal forebrain integrity (Commentary on Magno et al.). Eur J Neurosci 2011; 34:1766. [PMID: 22122382 DOI: 10.1111/j.1460-9568.2011.07931.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Av Ramón y Cajal s/n, 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
22
|
Magno L, Kretz O, Bert B, Ersözlü S, Vogt J, Fink H, Kimura S, Vogt A, Monyer H, Nitsch R, Naumann T. The integrity of cholinergic basal forebrain neurons depends on expression of Nkx2-1. Eur J Neurosci 2011; 34:1767-82. [PMID: 22098391 DOI: 10.1111/j.1460-9568.2011.07890.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcription factor Nkx2-1 belongs to the homeobox-encoding family of proteins that have essential functions in prenatal brain development. Nkx2-1 is required for the specification of cortical interneurons and several neuronal subtypes of the ventral forebrain. Moreover, this transcription factor is involved in migratory processes by regulating the expression of guidance molecules. Interestingly, Nkx2-1 expression was recently detected in the mouse brain at postnatal stages. Using two transgenic mouse lines that allow prenatal or postnatal cell type-specific deletion of Nkx2-1, we show that continuous expression of the transcription factor is essential for the maturation and maintenance of cholinergic basal forebrain neurons in mice. Notably, prenatal deletion of Nkx2-1 in GAD67-expressing neurons leads to a nearly complete loss of cholinergic neurons and parvalbumin-containing GABAergic neurons in the basal forebrain. We also show that postnatal mutation of Nkx2-1 in choline acetyltransferase-expressing cells causes a striking reduction in their number. These degenerative changes are accompanied by partial denervation of their target structures and results in a discrete impairment of spatial memory.
Collapse
Affiliation(s)
- Lorenza Magno
- Institute of Cell Biology and Neurobiology, Centre of Anatomy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsiani D, Kvitsani D, Fu Y, Lu J, Lin Y, Miyoshi G, Shima Y, Fishell G, Nelson SB, Huang ZJ. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 2011; 71:995-1013. [PMID: 21943598 PMCID: PMC3779648 DOI: 10.1016/j.neuron.2011.07.026] [Citation(s) in RCA: 1403] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
A key obstacle to understanding neural circuits in the cerebral cortex is that of unraveling the diversity of GABAergic interneurons. This diversity poses general questions for neural circuit analysis: how are these interneuron cell types generated and assembled into stereotyped local circuits and how do they differentially contribute to circuit operations that underlie cortical functions ranging from perception to cognition? Using genetic engineering in mice, we have generated and characterized approximately 20 Cre and inducible CreER knockin driver lines that reliably target major classes and lineages of GABAergic neurons. More select populations are captured by intersection of Cre and Flp drivers. Genetic targeting allows reliable identification, monitoring, and manipulation of cortical GABAergic neurons, thereby enabling a systematic and comprehensive analysis from cell fate specification, migration, and connectivity, to their functions in network dynamics and behavior. As such, this approach will accelerate the study of GABAergic circuits throughout the mammalian brain.
Collapse
Affiliation(s)
- Hiroki Taniguchi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|