1
|
Valladão SC, França AP, Pandolfo P, Dos Santos-Rodrigues A. Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: Current findings. Neurosci Biobehav Rev 2024; 164:105771. [PMID: 38880409 DOI: 10.1016/j.neubiorev.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.
Collapse
Affiliation(s)
- Sofia Corrêa Valladão
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Angela Patricia França
- Graduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Brazil; Graduate Program in Medical Sciences, Centre of Health Sciences, Federal University of Santa Catarina, Brazil.
| | - Pablo Pandolfo
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Alexandre Dos Santos-Rodrigues
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
2
|
Rabin BM, Miller MG, Shukitt-Hale B. Effects of preexposure to a subthreshold dose of helium particles on the changes in performance produced by exposure to helium particles. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:88-96. [PMID: 37087183 DOI: 10.1016/j.lssr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
On exploratory class missions, such as a mission to Mars, astronauts will be exposed to doses of particles of high energy and charge and protons up to 30 - 40 cGy. These exposures will most likely occur at random intervals across the estimated 3-yr duration of the mission. As such, the possibility of an interaction between particles must be taken into account: a prior subthreshold exposure to one particle may prevent or minimize the effect of a subsequent exposure (adaptation), or there may be an additive effect such that the prior exposure may sensitize the individual to a subsequent exposure of the same or different radiations. Two identical replications were run in which rats were exposed to a below threshold dose of 4He particles and 2, 24 or 72 h later given either a second below threshold or an above threshold dose of 4He particles and tested for performance on an operant task. The results indicate that preexposure to a subthreshold dose of 4He particles can either sensitize or attenuate the effects of the subsequent dose, depending upon the interval between exposures and the doses. These results suggest that exposure to multiple doses of heavy particles may have implications for astronaut health on exploratory class missions.
Collapse
Affiliation(s)
- Bernard M Rabin
- Department of Psychology, UMBC, Baltimore, MD 21250, United States of America.
| | - Marshall G Miller
- Duke Molecular Physiology Institute and Center for the Study of Aging and Human Development, Duke Univ., Durham, NC 27710, United States of America
| | - Barbara Shukitt-Hale
- Human Nutrition Research Center on Aging, USDA, Tufts Univ., Boston, MA 02111, United States of America
| |
Collapse
|
3
|
Lee WS, Yoon BE. Necessity of an Integrative Animal Model for a Comprehensive Study of Attention-Deficit/Hyperactivity Disorder. Biomedicines 2023; 11:biomedicines11051260. [PMID: 37238931 DOI: 10.3390/biomedicines11051260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Animal models of attention-deficit/hyperactivity disorder (ADHD) have been used to study and understand the behavioral, neural, and physiological mechanisms underlying ADHD. These models allow researchers to conduct controlled experiments and manipulate specific brain regions or neurotransmitter systems to investigate the underlying causes of ADHD and test potential drug targets or treatments. However, it is essential to note that while these models can provide valuable insights, they do not ideally mimic the complex and heterogeneous nature of ADHD and should be interpreted cautiously. Additionally, since ADHD is a multifactorial disorder, environmental and epigenetic factors should be considered simultaneously. In this review, the animal models of ADHD reported thus far are classified into genetic, pharmacological, and environmental models, and the limitations of the representative models are discussed. Furthermore, we provide insights into a more reliable alternative model for the comprehensive study of ADHD.
Collapse
Affiliation(s)
- Won-Seok Lee
- Department of Molecular Biology, Dankook University, Cheonan 31116, Chungcheongnam-do, Republic of Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Motallebzadeh E, Aghighi F, Vakili Z, Talaei SA, Mohseni M. Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats. Res Pharm Sci 2023; 18:202-209. [PMID: 36873276 PMCID: PMC9976052 DOI: 10.4103/1735-5362.367798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 09/11/2022] [Indexed: 01/20/2023] Open
Abstract
Background and purpose Alpha-lipoic acid (ALA) is an antioxidant with radioprotective properties. We designed the current work to assess the neuroprotective function of ALA in the presence of oxidative stress induced by radiation in the brainstem of rats. Experimental approach Whole-brain radiations (X-rays) was given at a single dose of 25 Gy with or without pretreatment with ALA (200 mg/kg BW). Eighty rats were categorized into four groups: vehicle control (VC), ALA, radiation-only (RAD), and radiation + ALA (RAL). The rats were given ALA intraperitoneally 1 h before radiation and killed following 6 h, thereafter superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and total antioxidant capacity (TAC) in the brainstem were measured. Furthermore, a pathological examination was carried out after 24 h, 72 h, and five days to determine tissue damage. Findings/Results The findings indicated that MDA levels in the brainstem were 46.29 ± 1.64 μM in the RAD group and decreased in the VC group (31.66 ± 1.72 μM). ALA pretreatment reduced MDA levels while simultaneously increasing SOD and CAT activity and TAC levels (60.26 ± 5.47 U/mL, 71.73 ± 2.88 U/mL, and 227.31 ± 9.40 mol/L, respectively). The greatest pathological changes in the rat's brainstems were seen in RAD animals compared to the VC group after 24 h, 72 h, and 5 days. As a result, karyorrhexis, pyknosis, vacuolization, and Rosenthal fibers vanished in the RAL group in three periods. Conclusion and implications ALA exhibited substantial neuroprotectivity following radiation-induced brainstem damage.
Collapse
Affiliation(s)
- Elham Motallebzadeh
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Aghighi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zarichehr Vakili
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mehran Mohseni
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
5
|
Winters TA, Cassatt DR, Harrison-Peters JR, Hollingsworth BA, Rios CI, Satyamitra MM, Taliaferro LP, DiCarlo AL. Considerations of Medical Preparedness to Assess and Treat Various Populations During a Radiation Public Health Emergency. Radiat Res 2023; 199:301-318. [PMID: 36656560 PMCID: PMC10120400 DOI: 10.1667/rade-22-00148.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
During a radiological or nuclear public health emergency, given the heterogeneity of civilian populations, it is incumbent on medical response planners to understand and prepare for a potentially high degree of interindividual variability in the biological effects of radiation exposure. A part of advanced planning should include a comprehensive approach, in which the range of possible human responses in relation to the type of radiation expected from an incident has been thoughtfully considered. Although there are several reports addressing the radiation response for special populations (as compared to the standard 18-45-year-old male), the current review surveys published literature to assess the level of consideration given to differences in acute radiation responses in certain sub-groups. The authors attempt to bring clarity to the complex nature of human biology in the context of radiation to facilitate a path forward for radiation medical countermeasure (MCM) development that may be appropriate and effective in special populations. Consequently, the focus is on the medical (as opposed to logistical) aspects of preparedness and response. Populations identified for consideration include obstetric, pediatric, geriatric, males, females, individuals of different race/ethnicity, and people with comorbidities. Relevant animal models, biomarkers of radiation injury, and MCMs are highlighted, in addition to underscoring gaps in knowledge and the need for consistent and early inclusion of these populations in research. The inclusion of special populations in preclinical and clinical studies is essential to address shortcomings and is an important consideration for radiation public health emergency response planning. Pursuing this goal will benefit the population at large by considering those at greatest risk of health consequences after a radiological or nuclear mass casualty incident.
Collapse
Affiliation(s)
- Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Jenna R. Harrison-Peters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
6
|
Perez WD, Perez-Torres CJ. Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. Int J Radiat Biol 2023; 99:119-137. [PMID: 35511499 DOI: 10.1080/09553002.2022.2074167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiation-induced brain injury is a common long-term side effect for brain cancer survivors, leading to a reduced quality of life. Although there is growing research pertaining to this topic, the relationship between cognitive and radiologically detected lesions of radiation-induced brain injury in humans remains unclear. Furthermore, clinically translatable similarities between rodent models and human findings are also undefined. The objective of this review is to then identify the current evidence of radiation-induced brain injury in humans and to compare these findings to current rodent models of radiation-induced brain injury. METHODS This review includes an examination of the current literature on cognitive and radiological characteristics of radiation-induced brain injury in humans and rodents. A thorough search was conducted on PubMed, Web of Science, and Scopus to identify studies that performed cognitive assessments and magnetic resonance imaging techniques on either humans or rodents after cranial radiation therapy. A qualitative synthesis of the data is herein reported. RESULTS A total of 153 studies pertaining to cognitively or radiologically detected radiation injury of the brain are included in this systematic review; 106 studies provided data on humans while 47 studies provided data on rodents. Cognitive deficits in humans manifest across multiple domains after brain irradiation. Radiological evidence in humans highlight various neuroimaging-detectable changes post-irradiation. It is unclear, however, whether these findings reflect ground truth or research interests. Additionally, rodent models do not comprehensively reproduce characteristics of cognitive and radiological injury currently identified in humans. CONCLUSION This systematic review demonstrates that associations between and within cognitive and radiological radiation-induced brain injuries often rely on the type of assessment. Well-designed studies that evaluate the spectrum of potential injury are required for a precise understanding of not only the clinical significance of radiation-induced brain injury in humans, but also how to replicate injury development in pre-clinical models.
Collapse
Affiliation(s)
- Whitney D Perez
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
7
|
The emerging roles of absent in melanoma 2 (AIM2) inflammasome in central nervous system disorders. Neurochem Int 2021; 149:105122. [PMID: 34284076 DOI: 10.1016/j.neuint.2021.105122] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
As a double-stranded DNA (dsDNA) sensor, the PYHIN family member absent in melanoma 2 (AIM2) is an essential component of the inflammasome families. Activation of AIM2 by dsDNA leads to the assembly of cytosolic multimolecular complexes termed the AIM2 inflammasome, resulting in activation of caspase-1, the maturation and secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-18, and pyroptosis. Multiple central nervous system (CNS) diseases are accompanied by immune responses and inflammatory cascade. As the resident macrophage cells, microglia cells act as the first and main form of active immune defense in the CNS. AIM2 is highly expressed in microglia as well as astrocytes and neurons and is essential in neurodevelopment. In this review, we highlight the recent progress on the role of AIM2 inflammasome in CNS disorders, including cerebral stroke, brain injury, neuropsychiatric disease, neurodegenerative diseases, and glioblastoma.
Collapse
|
8
|
Rahi V, Kumar P. Animal models of attention-deficit hyperactivity disorder (ADHD). Int J Dev Neurosci 2021; 81:107-124. [PMID: 33428802 DOI: 10.1002/jdn.10089] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous neuropsychiatric disorder characterized by three primary symptoms hyperactivity, attention deficit, and impulsiveness, observed in both children and adults. In childhood, this disorder is more common in boys than in girls, and at least 75% will continue to suffer from the disorder until adulthood. Individuals with ADHD generally have poor academic, occupational, and social functioning resulting from developmentally inappropriate levels of hyperactivity and impulsivity, as well as impaired ability to maintain attention on motivationally relevant tasks. Very few drugs available in clinical practice altogether abolish the symptoms of ADHD, therefore, to find new drugs and target it is essential to understand the neuropathological, neurochemical, and genetic alterations that lead to the progression of ADHD. With this contrast, an animal study is the best approach because animal models provide relatively fast invasive manipulation, rigorous hypothesis testing, as well as it provides a better angle to understand the pathological mechanisms involved in disease progression. Moreover, animal models, especially for ADHD, serve with good predictive validity would allow the assessment and development of new therapeutic interventions, with this aim, the present review collect the various animal models on a single platform so that the research can select an appropriate model to pursue his study.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
9
|
Molina SJ, Buján GE, Guelman LR. Noise-induced hippocampal oxidative imbalance and aminoacidergic neurotransmitters alterations in developing male rats: Influence of enriched environment during adolescence. Dev Neurobiol 2021; 81:164-188. [PMID: 33386696 DOI: 10.1002/dneu.22806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022]
Abstract
Living in big cities might involuntarily expose people to high levels of noise causing auditory and/or extra-auditory impairments, including adverse effects on central nervous system (CNS) areas such as the hippocampus. In particular, CNS development is a very complex process that can be altered by environmental stimuli. We have previously shown that noise exposure of developing rats can induce hippocampal-related behavioral alterations. However, noise-induced biochemical alterations had not been studied yet. Thus, the aim of this work was to assess whether early noise exposure can affect rat hippocampal oxidative state and aminoacidergic neurotransmission tone. Additionally, the effectiveness of an enriched environment (EE) as a neuroprotective strategy was evaluated. Male Wistar rats were exposed to different noise schemes at 7 or 15 days after birth. Upon weaning, some animals were transferred to an EE whereas others were kept in standard cages. Short- and long-term measurements were performed to evaluate reactive oxygen species, thioredoxins levels and catalase activity as indicators of hippocampal oxidative status as well as glutamic acid decarboxylase and a subtype of glutamate transporter to evaluate aminoacidergic neurotransmission tone. Results showed noise-induced changes in hippocampal oxidative state and aminoacidergic neurotransmission markers that lasted until adolescence and differed according to the scheme and the age of exposure. Finally, EE housing was effective in preventing some of these changes. These findings suggest that CNS development seems to be sensitive to the effects of stressors such as noise, as well as those of an environmental stimulation, favoring prompt and lasting molecular changes.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
10
|
Li X, Zhuang YY, Wu L, Xie M, Gu HF, Wang B, Tang XQ. Hydrogen Sulfide Ameliorates Cognitive Dysfunction in Formaldehyde-Exposed Rats: Involvement in the Upregulation of Brain-Derived Neurotrophic Factor. Neuropsychobiology 2020; 79:119-130. [PMID: 31550727 DOI: 10.1159/000501294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/04/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate whether hydrogen sulfide (H2S) counteracts formaldehyde (FA)-induced cognitive defects and whether the underlying mechanism is involved in the upregulation of hippocampal brain-derived neurotrophic factor (BDNF) expression. METHODS The cognitive function of rats was evaluated by the Morris water maze (MWM) test and the novel object recognition test. The content of superoxide dismutase (SOD) and malondialdehyde (MDA) in the hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The neuronal apoptosis in the hippocampal CA1 region was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end (TUNEL) staining. The expression of the BDNF protein was detected by Western blot and immunohistochemistry. RESULTS We found that sodium hydrosulfide (NaHS, a donor of H2S) significantly reversed the impairment in the function of learning and memory in the MWM test and the novel objective recognition task induced by intracerebroventricular injection of FA. We also showed that NaHS significantly reduced the level of MDA, elevated the level of SOD, and decreased the amount of TUNEL-positive neurons in the hippocampus of FA-exposed rats. Moreover, NaHS markedly increased the expression of hippocampal BDNF in FA-exposed rats. CONCLUSIONS H2S attenuates FA-induced dysfunction of cognition and the underlying mechanism is involved in the reduction of hippocampal oxidative damage and apoptosis as well as upregulation of hippocampal BDNF.
Collapse
Affiliation(s)
- Xiang Li
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yuan-Yuan Zhuang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Lei Wu
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Ming Xie
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Hong-Feng Gu
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China, .,Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China, .,Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China,
| |
Collapse
|
11
|
Buján GE, Serra HA, Molina SJ, Guelman LR. Oxidative Stress-Induced Brain Damage Triggered by Voluntary Ethanol Consumption during Adolescence: A Potential Target for Neuroprotection? Curr Pharm Des 2020; 25:4782-4790. [PMID: 31814553 DOI: 10.2174/1381612825666191209121735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022]
Abstract
Alcohol consumption, in particular ethanol (EtOH), typically begins in human adolescence, often in a "binge like" manner. However, although EtOH abuse has a high prevalence at this stage, the effects of exposure during adolescence have been less explored than prenatal or adult age exposure. Several authors have reported that EtOH intake during specific periods of development might induce brain damage. Although the mechanisms are poorly understood, it has been postulated that oxidative stress may play a role. In fact, some of these studies revealed a decrease in brain antioxidant enzymes' level and/or an increase in reactive oxygen species (ROS) production. Nevertheless, although existing literature shows a number of studies in which ROS were measured in developing animals, fewer reported the measurement of ROS levels after EtOH exposure in adolescence. Importantly, neuroprotective agents aimed to these potential targets may be relevant tools useful to reduce EtOH-induced neurodegeneration, restore cognitive function and improve treatment outcomes for alcohol use disorders (AUDs). The present paper reviews significant evidences about the mechanisms involved in EtOH-induced brain damage, as well as the effect of different potential neuroprotectants that have shown to be able to prevent EtOH-induced oxidative stress. A selective inhibitor of the endocannabinoid anandamide metabolism, a flavonol present in different fruits (quercetin), an antibiotic with known neuroprotective properties (minocycline), a SOD/catalase mimetic, a potent antioxidant and anti-inflammatory molecule (resveratrol), a powerful ROS scavenger (melatonin), an isoquinoline alkaloid (berberine), are some of the therapeutic strategies that could have some clinical relevance in the treatment of AUDs. As most of these works were performed in adult animal models and using EtOH-forced paradigms, the finding of neuroprotective tools that could be effective in adolescent animal models of voluntary EtOH intake should be encouraged.
Collapse
Affiliation(s)
- Gustavo E. Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1 Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBACONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Hector A. Serra
- Universidad de Buenos Aires, Facultad de Medicina, 1 Cátedra de Farmacología, Buenos Aires, Argentina
| | - Sonia J. Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBACONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Laura R. Guelman
- Universidad de Buenos Aires, Facultad de Medicina, 1 Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBACONICET), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
12
|
Omidi G, Rezvani-Kamran A, Ganji A, Komaki S, Etaee F, Asadbegi M, Komaki A. Effects of Hypericum scabrum extract on dentate gyrus synaptic plasticity in high fat diet-fed rats. J Physiol Sci 2020; 70:19. [PMID: 32209056 PMCID: PMC7093352 DOI: 10.1186/s12576-020-00747-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/09/2020] [Indexed: 01/09/2023]
Abstract
High-fat diet (HFD) can induce deficits in neural function, oxidative stress, and decrease hippocampal neurogenesis. Hypericum (H.) scabrum extract (Ext) contains compounds that could treat neurological disorders. This study aimed to examine the neuroprotective impacts of the H. scabrum Ext on hippocampal synaptic plasticity in rats that were fed HFD. Fifty-four male Wistar rats (220 ± 10 g) were randomly arranged in six groups: (1) HFD group; (2) HFD + Ext300 group; (3) HFD + Ext100 group; (4) Control group; (5) Ext 300 mg/kg group; (6) Ext 100 mg/kg group. These protocols were administrated for 3 months. After this stage, a stimulating electrode was implanted in the perforant pathway (PP), and a bipolar recording electrode was embedded into the dentate gyrus (DG). Long-term potentiation (LTP) was provoked by high-frequency stimulation (HFS) of the PP. Field excitatory postsynaptic potentials (EPSP) and population spikes (PS) were recorded at 5, 30, and 60 min after HFS. The HFD group exhibited a large and significant decrease in their PS amplitude and EPSP slope as compared to the control and extract groups. In reverse, H. scabrum administration in the HFD + Ext rats reversed the effect of HFD on the PS amplitude and EPSP slope. The results of the study support that H. scabrum Ext can inhibit diminished synaptic plasticity caused by the HFD. These effects are probably due to the extreme antioxidant impacts of the Ext and its capability to scavenge free radicals.
Collapse
Affiliation(s)
- Ghazaleh Omidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ganji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Rahe Sabz Addiction Rehabilitation Clinic, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Asadbegi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran.
| |
Collapse
|
13
|
Molina SJ, Buján GE, Rodriguez Gonzalez M, Capani F, Gómez-Casati ME, Guelman LR. Exposure of Developing Male Rats to One or Multiple Noise Sessions and Different Housing Conditions: Hippocampal Thioredoxin Changes and Behavioral Alterations. Front Behav Neurosci 2019; 13:182. [PMID: 31456671 PMCID: PMC6700388 DOI: 10.3389/fnbeh.2019.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023] Open
Abstract
Exposure of developing rats to noise has shown to induce hippocampal-related behavioral alterations that were prevented after a week of housing in an enriched environment. However, neither the effect of repeated exposures nor its impact on key endogenous antioxidants had been studied yet. Thus, the aim of the present work was to reveal novel data about hippocampal oxidative state through the measurement of possible age-related differences in the levels of hippocampal thioredoxins in rats exposed to noise at different developmental ages and subjected to different schemes and housing conditions. In addition, the possibility that oxidative changes could underlie hippocampal-related behavioral changes was also analyzed. Developing male Wistar rats were exposed to noise for 2 h, either once or for 5 days. Upon weaning, some animals were transferred to an enriched cage for 1 week, whereas others were kept in standard cages. One week later, auditory and behavioral assessments, as well as measurement of hippocampal thioredoxin, were performed. Whereas no changes in the auditory function were observed, significant behavioral differences were found, that varied according to the age, scheme of exposure and housing condition. In addition, a significant increase in Trx-1 levels was found in all noise-exposed groups housed in standard cages. Housing animals in an enriched environment for 1 week was effective in preventing most of these changes. These findings suggest that animals become less susceptible to undergo behavioral alterations after repeated exposure to an environmental challenge, probably due to the ability of adaptation to an unfavorable condition. Moreover, it could be hypothesized that damage to younger individuals could be more easily prevented by a housing manipulation.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Francisco Capani
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Cardiológicas (ININCA, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile
| | | | - Laura Ruth Guelman
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Mesenchymal Stem Cells Attenuate Radiation-Induced Brain Injury by Inhibiting Microglia Pyroptosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1948985. [PMID: 30009163 PMCID: PMC6020670 DOI: 10.1155/2017/1948985] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023]
Abstract
Radiation-induced brain injury (RI) commonly occurs in patients who received head and neck radiotherapy. However, the mechanism of RI remains unclear. We aimed to evaluate whether pyroptosis was involved in RI and the impact of mesenchymal stem cells (MSCs) on it. BALB/c male mice (6–8 weeks) were cranially irradiated (15 Gy), and MSCs were transplanted into the bilateral cortex 2 days later; then mice were sacrificed 1 month later. Meanwhile, irradiated BV-2 microglia cells (10 Gy) were cocultured with MSCs for 24 hours. We observed that irradiated mice brains presented NLRP3 and caspase-1 activation. RT-PCR then indicated that it mainly occurred in microglia cells but not in neurons. Further, irradiated BV-2 cells showed pyroptosis and increased production of IL-18 and IL-1β. RT-PCR also demonstrated an increased expression of several inflammasome genes in irradiated BV-2 cells, including NLRP3 and AIM2. Particularly, NLRP3 was activated. Knockdown of NLRP3 resulted in decreased LDH release. Noteworthily, in vivo, MSCs transplantation alleviated radiation-induced NLRP3 and caspase-1 activation. Moreover, in vitro, MSCs could decrease caspase-1 dependent pyroptosis, NLRP3 inflammasome activation, and ROS production induced by radiation. Thus, our findings proved that microglia pyroptosis occurred in RI. MSCs may act as a potent therapeutic tool in attenuating pyroptosis.
Collapse
|
15
|
Rezvani-Kamran A, Salehi I, Shahidi S, Zarei M, Moradkhani S, Komaki A. Effects of the hydroalcoholic extract of Rosa damascena on learning and memory in male rats consuming a high-fat diet. PHARMACEUTICAL BIOLOGY 2017; 55:2065-2073. [PMID: 28832226 PMCID: PMC6130717 DOI: 10.1080/13880209.2017.1362010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT High-fat diet (HFD) can cause deficits in learning and memory through oxidative stress and increase Alzheimer disease risk. Rosa damascena Mill. (Rosaceae) extract possesses potent antioxidant properties. OBJECTIVE This study investigated the effects of the hydroalcoholic extracts of petals of R. damascena on learning and memory in male rats consuming an HFD. MATERIALS AND METHODS Forty male Wistar rats (200-250 g) were randomly assigned to four groups: control, R. damascena extract, HFD and HFD + extract. The extract (1 g/kg bw daily) was administered by oral gavage for 1 month. Animals were allowed free access to high-fat chow for 3 months. The Morris water maze and the passive avoidance learning tests were used to assess learning and memory. RESULTS In the passive avoidance learning test, the step-through latencies in the retention test (STLr) of the extract (147.4 ± 23.3) and HFD (150.3 ± 25.2) groups were significantly lower than those of the control group (270.4 ± 10.5) (respectively, p < 0.001 and p < 0.01). STLr was significantly higher in the HFD + extract group (265.3 ± 10.6) than in the HFD group (150.3 ± 25.2) (p < 0.01). Time spent in the dark compartment (TDC) in the HFD + extract group (5.3 ± 2.6) was significantly lower than that in the HFD group (85.8 ± 19.1) (p < 0.05). DISCUSSION AND CONCLUSION Our results indicate that, while HFD or R. damascena extract alone leads to memory deficits, R. damascena extract exerted a positive effect on HFD-induced memory deficits. We hypothesize that the observed effects of R. damascena extract are likely due to its strong antioxidant properties.
Collapse
Affiliation(s)
- Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
Sharma P, Singla N, Dhawan DK. Evidence of Zinc in Affording Protection Against X-Ray-Induced Brain Injury in Rats. Biol Trace Elem Res 2017; 179:247-258. [PMID: 28261760 DOI: 10.1007/s12011-017-0976-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
In the present world, X-rays have been regarded as one of the most efficient tools in medicine, industry and research. On the contrary, extensive human exposure to these rays is responsible for causing detrimental effects on physiological system. The aim of the present study was to investigate the role of zinc (Zn), if any, in mitigating the adverse effects induced by fractionated X-irradiation on rat brain. Female Sprague-Dawley rats weighing 170-200 g were divided into four different groups viz.: (a) normal control, (b) X-irradiated (21Gy), (c) zinc treated (227 mg/L in drinking water) and (d) X-irradiated + zinc treated. The skulls of animals belonging to groups (b) and (d) were exposed to X-rays in 30 fractions. Each fraction delivered a radiation dose of 70 rads, and rats were exposed to two fractions every day for 15 days, consecutively. X-ray treatment resulted in significant alterations in the neurobehavior, neurotransmitter levels and neuro-histoarchitecture of rats, whereas zinc co-treatment with X-rays resulted in significant improvement in these parameters. X-ray exposure also caused a significant increase in the levels of lipid peroxidation as well as activities of catalase and superoxide dismutase, which however were decreased upon simultaneous Zn treatment. On the contrary, X-ray treatment down-regulated the glutathione system, which were found to be up-regulated by zinc co-treatment. Further, protein expressions of p53 and NF-ҚB were found to be significantly elevated after X-irradiation, which were reversed following Zn supplementation. Hence, Zn seems to be an effective agent in mitigating the detrimental effects caused by exposure to X-rays.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - D K Dhawan
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Ribeiro MC, Bezerra TDS, Soares AC, Boechat-Ramos R, Carneiro FP, Vianna LMDS, Faro LRF, Silva MVD, Vieira MP, Monteiro IDO, Ferreira VM. Hippocampal and cerebellar histological changes and their behavioural repercussions caused by brain ischaemic hypoxia experimentally induced by sodium nitrite. Behav Brain Res 2017; 332:223-232. [PMID: 28606628 DOI: 10.1016/j.bbr.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Brain ischaemic hypoxia can produce severe neurological damage that leads to behavioural disorders. This research analysed the hippocampal and cerebellar histological alterations caused by brain ischaemic hypoxia experimentally induced by sodium nitrite (NaNO2) and possible direct repercussions of this hypoxia on behaviour. METHODOLOGY An experimental study was carried out by administering 60mg/kg NaNO2 to 10 Wistar rats at 3 months of age for 15 consecutive days. Ten control rats did not receive NaNO2. To assess behavioural repercussions, the animals were evaluated in Open Field, Elevated Plus-Maze (EPM), and Forced Swim tests before and after injury to evaluate locomotion, anxiety, and depression, respectively. Markers of stress were evaluated by measuring the blood levels of cortisol, glucose, cholesterol, and lactate. The presence of hippocampal lesions was verified by histologically studying the CA1-CA4 areas. Sections of the cerebellum were also evaluated because Purkinje cells are highly sensitive to ischaemic hypoxia and may serve as markers for this process. RESULTS The number of neurons with lesions was significantly higher in animals exposed to NaNO2 in the hippocampus areas CA2, CA3, and CA4. The cerebellum was also very vulnerable to hypoxia, presenting extensive lesion áreas. These results are correlated with the parameters of the anxiety and depression tests. CONCLUSION NaNO2 promoted brain damage due to ischaemic hypoxia in rats. Intoxicated animals showed decreased brain weights; damage in hippocampus and cerebellum; and anxiogenic and depressive behaviour.
Collapse
Affiliation(s)
- Mara Cláudia Ribeiro
- University of Brasília, Campus Universitário Darcy Ribeiro, s/n, Brasília-DF, 70910-900, Brazil
| | | | - Aluízio Carlos Soares
- University of Brasília, Campus Universitário Darcy Ribeiro, s/n, Brasília-DF, 70910-900, Brazil
| | - Raphael Boechat-Ramos
- University of Brasília, Campus Universitário Darcy Ribeiro, s/n, Brasília-DF, 70910-900, Brazil
| | - Fabiana Pirani Carneiro
- University of Brasília, Campus Universitário Darcy Ribeiro, s/n, Brasília-DF, 70910-900, Brazil
| | | | - Lilian Rosana Ferreira Faro
- University of Vigo, Faculty of Biology, Department of Functional Biology and Health Sciences, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Mônica Valero da Silva
- University of Brasília, Campus Universitário Darcy Ribeiro, s/n, Brasília-DF, 70910-900, Brazil
| | - Matheus Papa Vieira
- University of Brasília, Campus Universitário Darcy Ribeiro, s/n, Brasília-DF, 70910-900, Brazil
| | | | - Vania Moraes Ferreira
- University of Brasília, Campus Universitário Darcy Ribeiro, s/n, Brasília-DF, 70910-900, Brazil.
| |
Collapse
|
18
|
Kim NT, Lee DS, Chowdhury A, Lee H, Cha BY, Woo JT, Woo ER, Jang JH. Acerogenin C from Acer nikoense exhibits a neuroprotective effect in mouse hippocampal HT22 cell lines through the upregulation of Nrf-2/HO-1 signaling pathways. Mol Med Rep 2017; 16:1537-1543. [DOI: 10.3892/mmr.2017.6682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/28/2017] [Indexed: 11/06/2022] Open
|
19
|
Liao G, Li R, Chen X, Zhang W, Du S, Yuan Y. Sodium valproate prevents radiation-induced injury in hippocampal neurons via activation of the Nrf2/HO-1 pathway. Neuroscience 2016; 331:40-51. [DOI: 10.1016/j.neuroscience.2016.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 11/30/2022]
|
20
|
Villasana LE, Weber S, Akinyeke T, Raber J. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species. J Neurochem 2016; 138:896-908. [PMID: 27412623 DOI: 10.1111/jnc.13737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice.
Collapse
Affiliation(s)
- Laura E Villasana
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Sydney Weber
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Tunde Akinyeke
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Jacob Raber
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA. .,Division of Neuroscience, Departments of Neurology and Radiation Medicine, ONPRC, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
21
|
Zhang Y, Cheng Z, Wang C, Ma H, Meng W, Zhao Q. Neuroprotective Effects of Kukoamine a against Radiation-induced Rat Brain Injury through Inhibition of Oxidative Stress and Neuronal Apoptosis. Neurochem Res 2016; 41:2549-2558. [DOI: 10.1007/s11064-016-1967-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
|
22
|
Yang L, Yang J, Li G, Li Y, Wu R, Cheng J, Tang Y. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury. Mol Neurobiol 2016; 54:1022-1032. [PMID: 26797684 PMCID: PMC5310567 DOI: 10.1007/s12035-015-9628-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.
Collapse
Affiliation(s)
- Lianhong Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianhua Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guoqian Li
- Department of Neurology, Fujian Provincical Quanzhou First Hospital, Quanzhou, Fujian Province, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rong Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China. .,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Radio-neuroprotective effect of L-alpha-glycerylphosphorylcholine (GPC) in an experimental rat model. J Neurooncol 2014; 119:253-61. [PMID: 24880750 DOI: 10.1007/s11060-014-1489-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 05/19/2014] [Indexed: 02/06/2023]
Abstract
Ionizing radiation plays a major role in the treatment of brain tumors, but side-effects may restrict the efficacy of therapy. In the present study, our goals were to establish whether the administration of L-alpha-glycerylphosphorylcholine (GPC) can moderate or prevent any of the irradiation-induced functional and morphological changes in a rodent model of hippocampus irradiation. Anesthetized adult (6-weeks-old) male Sprague-Dawley rats were subjected to 40 Gy irradiation of one hemisphere of the brain, without or with GPC treatment (50 mg/kg bw by gavage), the GPC treatment continuing for 4 months. The effects of this partial rat brain irradiation on the spatial orientation and learning ability of the rats were assessed with the repeated Morris water maze (MWM) test. Histopathologic (HP) evaluation based on hematoxylin-eosin and Luxol blue staining was performed 4 months after irradiation. The 40 Gy irradiation resulted in a moderate neurological deficit at the levels of both cognitive function and morphology 4 months after the irradiation. The MWM test proved to be a highly sensitive tool for the detection of neurofunctional impairment. The site navigation of the rats was impaired by the irradiation, but the GPC treatment markedly decreased the cognitive impairment. HP examination revealed lesser amounts of macrophage density, reactive gliosis, calcification and extent of demyelination in the GPC-treated group. GPC treatment led to significant protection against the cognitive decline and cellular damage, evoked by focal brain irradiation at 40 Gy dose level. Our study warrants further research on the protective or mitigating effects of GPC on radiation injuries.
Collapse
|
24
|
Brunn J, Wiroth V, Kowalski M, Runge U, Sabolek M. Valproic acid in normal therapeutic concentration has no neuroprotective or differentiation influencing effects on long term expanded murine neural stem cells. Epilepsy Res 2014; 108:623-33. [DOI: 10.1016/j.eplepsyres.2014.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 01/31/2014] [Accepted: 02/08/2014] [Indexed: 01/15/2023]
|
25
|
Development of a modelling to correlate site and diameter of brain metastases with hippocampal sparing using volumetric modulated Arc therapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:568597. [PMID: 24224171 PMCID: PMC3810061 DOI: 10.1155/2013/568597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/29/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022]
Abstract
Purpose. To correlate site and diameter of brain metastases with hippocampal sparing in patients treated by RapidArc (RA) technique on whole brain with simultaneously integrated boost (SIB). Methods and Materials. An RA plan was calculated for brain metastases of 1-2-3 cm of diameter. The whole brain dose was 32.25 Gy (15 fractions), and SIB doses to brain metastases were 63 Gy (2 and 3 cm) or 70.8 Gy (1 cm). Plans were optimized and evaluated for conformity, target coverage, prescription isodose to target volume, homogeneity index, and hippocampal sparing. Results. Fifteen brain lesions and RA plan were generated. Hippocampal volume was 4.09 cm3, and hippocampal avoidance volume was 17.50 cm3. Related to site of metastases, the mean hippocampal dose was 9.68 Gy2 for occipital lobe, 10.56 Gy2 for frontal lobe, 10.56 Gy2 for parietal lobe, 10.94 Gy2 for deep brain structures, and 40.44 Gy2 for temporal lobe. The mean hippocampal dose was 9.45 Gy2, 10.15 Gy2, and 11.70 Gy2 for diameter's metastases of 1.2 and 3 cm, respectively, excluding results relative to temporal brain lesions. Conclusions. Location more than size of metastases can adversely influence the hippocampus sparing. Further investigation is necessary to meet definitive considerations.
Collapse
|
26
|
Caceres LG, Cid MP, Uran SL, Zorrilla Zubilete MA, Salvatierra NA, Guelman LR. Pharmacological alterations that could underlie radiation-induced changes in associative memory and anxiety. Pharmacol Biochem Behav 2013; 111:37-43. [PMID: 23958578 DOI: 10.1016/j.pbb.2013.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 11/30/2022]
Abstract
It is widely known that ionizing radiation is a physical agent broadly used to kill tumor cells during human cancer therapy. Unfortunately, adjacent normal tissues can concurrently undergo undesirable cell injury. Previous data of our laboratory demonstrated that exposure of developing rats to ionizing radiations induced a variety of behavioral differences respect to controls, including changes in associative memory and in anxiety state. However, there is a lack of data concerning modifications in different related pharmacological intermediaries. Therefore, the aim of the present study was to investigate whether the behavioral differences observed in young animals irradiated at birth might be underlain by early changes in PKCß1 levels which, in turn, could lead to changes in hippocampal GABAergic neurotransmission. Male Wistar rats were irradiated with 5Gy of X rays between 24 and 48 h after birth. Different pharmacological markers related to the affected behavioral tasks were assessed in control and irradiated hippocampus at 15 and 30 days, namely GABAA receptor, GAD65-67, ROS and PKCß1. Results showed that all measured parameters were increased in the hippocampus of 30-days-old irradiated animals. In contrast, in the hippocampus of 15-days-old irradiated animals only the levels of PKCß1 were decreased. These data suggest that PKCß1 might constitute a primary target for neonatal radiation damage on the hippocampus. Therefore, it could be hypothesized that an initial decrease in the levels of this protein can trigger a subsequent compensatory increase that, in turn, could be responsible for the plethora of biochemical changes that might underlie the previously observed behavioral alterations.
Collapse
Affiliation(s)
- L G Caceres
- 1ª Cátedra de Farmacología, Facultad de Medicina, UBA-CEFyBO-CONICET, Paraguay 2155, piso 15, (1121) Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
27
|
Tang XQ, Zhuang YY, Zhang P, Fang HR, Zhou CF, Gu HF, Zhang H, Wang CY. Formaldehyde impairs learning and memory involving the disturbance of hydrogen sulfide generation in the hippocampus of rats. J Mol Neurosci 2012; 49:140-9. [PMID: 23108488 DOI: 10.1007/s12031-012-9912-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 12/17/2022]
Abstract
Formaldehyde (FA), a well-known indoor and outdoor pollutant, has been implicated as the responsible agent in the development of neurocognitive disorders. Hydrogen sulfide (H(2)S), the third gasotransimitter, is an endogenous neuromodulator, which facilitates the induction of hippocampal long-term potentiation, involving the functions of learning and memory. In the present study, we analyzed the effects of intracerebroventricular injection of FA on the formation of learning and memory and the generation of endogenous H(2)S in the hippocampus of rats. We found that the intracerebroventricular injection of FA in rats impairs the function of learning and memory in the Morris water maze and novel object recognition test and increases the formation of apoptosis and lipid peroxidation in the hippocampus. We also showed that FA exposure inhibits the expression of cystathionine β-synthase, the major enzyme responsible for endogenous H(2)S generation in hippocampus and decreases the production of endogenous H(2)S in hippocampus in rats. These results suggested that FA-disturbed generation of endogenous H(2)S in hippocampus leads to the oxidative stress-mediated neuron damage, ultimately impairing the function of learning and memory. Our findings imply that the disturbance of endogenous H(2)S generation in hippocampus is a potential contributing mechanism underling FA-caused learning and memory impairment.
Collapse
Affiliation(s)
- Xiao-Qing Tang
- Department of Physiology, Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001 Hunan, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Inverardi F, Chikhladze M, Donzelli A, Moroni RF, Regondi MC, Pennacchio P, Zucca I, Corradini I, Braida D, Sala M, Franceschetti S, Frassoni C. Cytoarchitectural, behavioural and neurophysiological dysfunctions in the BCNU-treated rat model of cortical dysplasia. Eur J Neurosci 2012; 37:150-62. [PMID: 23095101 DOI: 10.1111/ejn.12032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 11/27/2022]
Abstract
Cortical dysplasias (CDs) include a spectrum of cerebral lesions resulting from cortical development abnormalities during embryogenesis that lead to cognitive disabilities and epilepsy. The experimental model of CD obtained by means of in utero administration of BCNU (1-3-bis-chloroethyl-nitrosurea) to pregnant rats on embryonic day 15 mimics the histopathological abnormalities observed in many patients. The aim of this study was to investigate the behavioural, electrophysiological and anatomical profile of BCNU-treated rats in order to determine whether cortical and hippocampal lesions can directly lead to cognitive dysfunction. The BCNU-treated rats showed impaired short-term working memory but intact long-term aversive memory, whereas their spontaneous motor activity and anxiety-like response were normal. The histopathological and immunohistochemical analyses, made after behavioural tests, revealed the disrupted integrity of neuronal populations and connecting fibres in hippocampus and prefrontal and entorhinal cortices, which are involved in memory processes. An electrophysiological evaluation of the CA1 region of in vitro hippocampal slices indicated a decrease in the efficiency of excitatory synaptic transmission and impaired paired pulse facilitation, but enhanced long-term potentiation (LTP) associated with hyperexcitability in BCNU-treated rats compared with controls. The enhanced LTP, associated with hyperexcitability, may indicate a pathological distortion of long-term plasticity. These findings suggest that prenatal developmental insults at the time of peak cortical neurogenesis can induce anatomical abnormalities associated with severe impairment of spatial working memory in adult BCNU-treated rats and may help to clarify the pathophysiological mechanisms of cognitive dysfunction that is often associated with epilepsy in patients with CD.
Collapse
Affiliation(s)
- Francesca Inverardi
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Uran S, Aon-Bertolino M, Caceres L, Capani F, Guelman L. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels. Brain Res 2012; 1471:1-12. [DOI: 10.1016/j.brainres.2012.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
|
30
|
Prokic V, Wiedenmann N, Fels F, Schmucker M, Nieder C, Grosu AL. Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: a planning study on treatment concepts. Int J Radiat Oncol Biol Phys 2012; 85:264-70. [PMID: 22516808 DOI: 10.1016/j.ijrobp.2012.02.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 11/29/2022]
Abstract
PURPOSE To develop a new treatment planning strategy in patients with multiple brain metastases. The goal was to perform whole brain irradiation (WBI) with hippocampal sparing and dose escalation on multiple brain metastases. Two treatment concepts were investigated: simultaneously integrated boost (SIB) and WBI followed by stereotactic fractionated radiation therapy sequential concept (SC). METHODS AND MATERIALS Treatment plans for both concepts were calculated for 10 patients with 2-8 brain metastases using volumetric modulated arc therapy. In the SIB concept, the prescribed dose was 30 Gy in 12 fractions to the whole brain and 51 Gy in 12 fractions to individual brain metastases. In the SC concept, the prescription was 30 Gy in 12 fractions to the whole brain followed by 18 Gy in 2 fractions to brain metastases. All plans were optimized for dose coverage of whole brain and lesions, simultaneously minimizing dose to the hippocampus. The treatment plans were evaluated on target coverage, homogeneity, and minimal dose to the hippocampus and organs at risk. RESULTS The SIB concept enabled more successful sparing of the hippocampus; the mean dose to the hippocampus was 7.55±0.62 Gy and 6.29±0.62 Gy, respectively, when 5-mm and 10-mm avoidance regions around the hippocampus were used, normalized to 2-Gy fractions. In the SC concept, the mean dose to hippocampus was 9.8±1.75 Gy. The mean dose to the whole brain (excluding metastases) was 33.2±0.7 Gy and 32.7±0.96 Gy, respectively, in the SIB concept, for 5-mm and 10-mm hippocampus avoidance regions, and 37.23±1.42 Gy in SC. CONCLUSIONS Both concepts, SIB and SC, were able to achieve adequate whole brain coverage and radiosurgery-equivalent dose distributions to individual brain metastases. The SIB technique achieved better sparing of the hippocampus, especially when a10-mm hippocampal avoidance region was used.
Collapse
Affiliation(s)
- Vesna Prokic
- Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Al-Shorbagy MY, El Sayeh BM, Abdallah DM. Diverse effects of variant doses of dexamethasone in lithium–pilocarpine induced seizures in rats. Can J Physiol Pharmacol 2012; 90:13-21. [DOI: 10.1139/y11-096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Corticosteroids are used in the management of several epileptic aliments; however, their effectiveness in combating seizures remains controversial, with pro- and anti-convulsive effects ascribed. The current study aimed to address the modulatory effect of dexamethasone (DEX) utilizing 3 dose levels (5, 10, and 20 mg/kg body mass of male Wistar rat) in the rat lithium–pilocarpine (Li-PIL) epilepsy model. Li-PIL induced seizures that were associated with neuronal cell loss in the CA3 region, and increased prostaglandin (PG)E2, tumor necrosis factor (TNF)-α, interleukin (IL)-10, nitric oxide, and neutrophil infiltration in the hippocampus. However, Li-PIL compromised the oxidant–antioxidant balance of the hippocampus. Effective anticonvulsant activity was only observed with10 mg DEX/kg body mass, which reduced seizure production and incidence, as well as neuronal cell loss in the CA3 region. At this anticonvulsant dose, enhancements in the antioxidant system and IL-10, as well as suppression of altered inflammatory markers were observed. Conversely, doubling the dose showed a tendency to shorten seizure latency, and neither affected seizure incidence nor CA3 neuronal cell loss. These effects were associated with an increase in levels of PGE2 and TNF-α. The present study found a lack of protection at 5 mg DEX/kg body mass, an anticonvulsant effect at 10 mg/kg, and a loss of protection at 20 mg/kg in the Li-PIL epilepsy model, which indicates that there is an optimal dose of DEX for preventing the induction of seizures.
Collapse
Affiliation(s)
- Muhammad Y. Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Str, 11562 Cairo, Egypt
| | - Bahia M. El Sayeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Str, 11562 Cairo, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Str, 11562 Cairo, Egypt
| |
Collapse
|
32
|
Long-lasting effects of maternal separation on an animal model of post-traumatic stress disorder: effects on memory and hippocampal oxidative stress. Neurochem Res 2011; 37:700-7. [PMID: 22108759 DOI: 10.1007/s11064-011-0660-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/09/2011] [Accepted: 11/16/2011] [Indexed: 01/24/2023]
Abstract
Adverse early life events, such as periodic maternal separation, may alter the normal pattern of brain development and subsequently the vulnerability to a variety of mental disorders in adulthood. Patients with a history of early adversities show higher frequency of post-traumatic stress disorder (PTSD). This study was undertaken to verify if repeated long-term separation of pups from dams would affect memory and oxidative stress parameters after exposure to an animal model of PTSD. Nests of Wistar rats were divided into intact and subjected to maternal separation (incubator at 32°C, 3 h/day) during post-natal days 1-10. When adults, the animals were subdivided into exposed or not to a PTSD model consisting of exposure to inescapable footshock, followed by situational reminders. One month after exposure to the shock, the animals were exposed to a memory task (Morris water maze) and another month later animals were sacrificed and DNA breaks and antioxidant enzymes activities were measured in the hippocampus. Rats exposed to shock or maternal separation plus shock showed long-lasting effects on spatial memory, spending more time in the opposite quadrant of the water maze. This effect was higher in animals subjected to both maternal separation and shock. Both shock and maternal separation induced a higher score of DNA breaks in the hippocampus. No differences were observed on antioxidant enzymes activities. In conclusion, periodic maternal separation may increase the susceptibility to the effects of a stressor applied in adulthood on performance in the water maze. Increased DNA breaks in hippocampus was induced by both, maternal separation and exposure to shock.
Collapse
|
33
|
Caceres LG, Uran SL, Zorrilla Zubilete MA, Romero JI, Capani F, Guelman LR. An early treatment with 17-β-estradiol is neuroprotective against the long-term effects of neonatal ionizing radiation exposure. J Neurochem 2011; 118:626-35. [PMID: 21631508 DOI: 10.1111/j.1471-4159.2011.07334.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ionizing radiations can induce oxidative stress on target tissues, acting mainly through reactive oxygen species (ROS). The aim of this work was to investigate if 17-β-estradiol (βE) was able to prevent hippocampal-related behavioral and biochemical changes induced by neonatal ionizing radiation exposure and to elucidate a potential neuroprotective mechanism. Male Wistar rats were irradiated with 5 Gy of X-rays between 24 and 48 h after birth. A subset of rats was subcutaneously administered with successive injections of βE or 17-α-estradiol (αE), prior and after irradiation. Rats were subjected to different behavioral tasks to evaluate habituation and associative memory as well as anxiety levels. Hippocampal ROS levels and protein kinase C (PKC) activity were also assessed. Results show that although βE was unable to prevent radiation-induced hippocampal PKC activity changes, most behavioral abnormalities were reversed. Moreover, hippocampal ROS levels in βE-treated irradiated rats approached control values. In addition, αE administered to irradiated animals was effective in preventing radiation-induced alterations. In conclusion, βE was able to counteract behavioral and biochemical changes induced in irradiated animals, probably acting through an antioxidant mechanism.
Collapse
Affiliation(s)
- Lucila G Caceres
- 1ª Cátedra de Farmacología, Facultad de Medicina, UBA, CEFYBO-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
34
|
Zhang HM, Lin N, Dong Y, Su Q, Luo M. Effect of perinatal thyroid hormone deficiency on expression of rat hippocampal conventional protein kinase C isozymes. Mol Cell Biochem 2011; 353:65-71. [DOI: 10.1007/s11010-011-0775-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/24/2011] [Indexed: 11/30/2022]
|
35
|
Uran S, Caceres L, Guelman L. Effects of loud noise on hippocampal and cerebellar-related behaviors. Brain Res 2010; 1361:102-14. [DOI: 10.1016/j.brainres.2010.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 11/28/2022]
|