1
|
Kim I, Yang S, Kim CY, Kim S, Jung YS, Chung HY, Lee J. Assessment of the neurotoxicity of monosodium glutamate on neural stem cells and hippocampal neurogenesis in a rodent model. Food Chem Toxicol 2025; 195:115136. [PMID: 39581299 DOI: 10.1016/j.fct.2024.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Monosodium glutamate (MSG) is a widely used flavor enhancer in processed foods and valued for its ability to enhance the savory taste known as umami. MSG is classified as non-toxic and recognized as a safe food additive with no specific usage restrictions in many countries. However, neurotoxic studies on MSG have primarily focused on neurons, and the effects of MSG on neural stem cells (NSCs) have not been reported. This study aimed to evaluate the neurotoxic effect of MSG on NSCs and hippocampal neurogenesis in a rodent model. In vitro studies showed that MSG induces cytotoxicity in primary neuron cultures but has no toxic effect on NSCs. Furthermore, in vivo studies on 4-week-old male C57BL/6 mice orally administered MSG and sodium chloride (NaCl) for two weeks revealed that neither MSG nor NaCl induced changes in the expressions of neuronal markers or glutamate receptors in the hippocampus. In addition, no differences in NSC proliferation or survival were detected, and MSG did not adversely affect the neuronal differentiation of NSCs. Moreover, neurobehavioral tests showed that MSG treatment did not impair spatial learning and memory. These findings provide a first assessment of the neurotoxic effects of MSG on NSCs and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ilwoo Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Chang Yup Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
García Juárez AM, Carrillo González NJ, Campos-Ordoñez T, Gasca Martínez Y, Gudiño-Cabrera G. Neuronal splicing regulator RBFOX3 (NeuN) distribution and organization are modified in response to monosodium glutamate in rat brain at postnatal day 14. Acta Histochem 2024; 126:152207. [PMID: 39427608 DOI: 10.1016/j.acthis.2024.152207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Neuronal splicing regulator RNA binding protein, fox-1 homolog 3 (NeuN/RbFox3), is expressed in postmitotic neurons and distributed heterogeneously in the cell. During excitotoxicity events caused by the excess glutamate, several alterations that culminate in neuronal death have been described. However, NeuN/RbFox3 organization and distribution are still unknown. Therefore, our objective was to analyze the nucleocytoplasmic distribution and organization of NeuN/RbFox3 in hippocampal and cortical neurons using an excitotoxicity model with monosodium glutamate salt (MSG). We used neonatal Wistar rats administered subcutaneously with 4 MSG mg/kg during the postnatal day (PND) 1, 3, 5, and 7. The control group was rats without MSG administration. On 14 PND, the brain was removed, and coronal sections were used for immunodetection with the antibody NeuN, DAPI, and the propidium iodide staining for histological evaluation. The results indicate that in the control group, NeuN/RbFox3 was organized into macromolecular condensates inside and outside the nucleus, forming defined nuclear compartments. Additionally, NeuN/RbFox3 was distributed proximal to the nucleus in the cytoplasm. In contrast, in the group treated with MSG, the distribution was diffuse and dispersed in the nucleus and cytoplasm without the formation of compartments in the nucleus. Our findings, which highlight the significant impact of MSG administration in the neonatal period on the distribution and organization of NeuN/RbFox3 of neurons in the hippocampus and cerebral cortex, offer a new perspective to investigate MSG alterations in the developmental brain.
Collapse
Affiliation(s)
- Anaís Monzerrat García Juárez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Nidia Jannette Carrillo González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Tania Campos-Ordoñez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Yadira Gasca Martínez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Graciela Gudiño-Cabrera
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico.
| |
Collapse
|
3
|
Kilic EB, Koksal E. The Interaction Between Attention Deficit and Hyperactivity Disorder and Nutrition. Curr Nutr Rep 2024; 14:1. [PMID: 39508912 DOI: 10.1007/s13668-024-00592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore the relationship between Attention Deficit Hyperactivity Disorder (ADHD) and nutrition. ADHD, a neurodevelopmental disorder, has been examined in relation to dietary factors through various metabolic pathways, with a focus on the role of nutrition in symptom management. Unhealthy dietary patterns, particularly those characteristics of Western diets, are believed to exacerbate ADHD symptoms through these mechanisms. In contrast, dietary interventions such as intermittent fasting, which offer greater flexibility in application, have been proposed as potential strategies to alleviate ADHD symptoms. While further research in this area is expected to contribute significantly to the field, this review also provides researchers with a brief perspective on the challenges and limitations associated with experimental ADHD studies. Therefore, this study aims to offer a comprehensive evaluation of the interaction between ADHD and nutrition, providing researchers with an integrative approach to the topic. RECENT FINDINGS Western dietary patterns have been found to negatively impact gut barrier integrity, synaptic plasticity, insulin resistance, and oxidative stress. On the other hand, the intermittent fasting diet model, which offers practical flexibility, is thought to be a potentially supportive treatment in managing ADHD. Furthermore, it has been concluded that various experimental models are available for ADHD research, and researchers must work within these limitations. Western diets, particularly in their negative impact on synaptic plasticity and other key metabolic pathways involved in ADHD, can worsen the disorder's symptoms. Intermittent fasting emerges as a promising dietary alternative that may mitigate these adverse effects.
Collapse
Affiliation(s)
- Enes Bahadir Kilic
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep, 27310, Turkey.
| | - Eda Koksal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, 06490, Turkey
| |
Collapse
|
4
|
Soltani Z, Shariatpanahi M, Aghsami M, Owliaey H, Kheradmand A. Investigating the effect of exposure to monosodium glutamate during pregnancy on development of autism in male rat offspring. Food Chem Toxicol 2024; 185:114464. [PMID: 38244665 DOI: 10.1016/j.fct.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
In present study, we investigated the relationship between the pregnancy exposure to monosodium glutamate (MSG) and autism development in male offspring of rats. Pregnant Wistar rats were allocated into five groups. The first group was control group that pregnant animals received normal saline orally from day 1-18 of pregnancy. Group 2, 3 and 4 pregnant rats received different doses (1.5, 5 and 10 g/kg) of MSG by the same way respectively. Group 5 received 500 mg/kg of Valproic acid (VPA) on the 12.5th day of pregnancy. Different behavioral tests including marble burying, self-grooming, and Barnes maze test were performed on offspring. The levels of glutamate and GSH markers were also measured. The results showed that MSG similar to VPA led to induction of autistic anxiety and repetitive behaviors. It could also deteriorate the spatial memory. Besides we found that behavioral symptoms potentiated with increasing the MSG dosage. Similarly, we had an increase in glutamate and a reduction in GSH levels in offspring. Findings indicated that MSG was able to induce autism in offspring of rats in a dose-dependent way. This effect could be through increasing of glutamate and reduction of GSH. Consequently, MSG should be avoided during pregnancy.
Collapse
Affiliation(s)
- Zohreh Soltani
- School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Owliaey
- Department of Forensic Medicine & Clinical Toxicology, Yazd Branch, Islamic Azad University, Yaz, Iran
| | - Afshin Kheradmand
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Boyko M, Gruenbaum BF, Oleshko A, Merzlikin I, Zlotnik A. Diet's Impact on Post-Traumatic Brain Injury Depression: Exploring Neurodegeneration, Chronic Blood-Brain Barrier Destruction, and Glutamate Neurotoxicity Mechanisms. Nutrients 2023; 15:4681. [PMID: 37960334 PMCID: PMC10649677 DOI: 10.3390/nu15214681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Traumatic brain injury (TBI) has a profound impact on cognitive and mental functioning, leading to lifelong impairment and significantly diminishing the quality of life for affected individuals. A healthy blood-brain barrier (BBB) plays a crucial role in guarding the brain against elevated levels of blood glutamate, making its permeability a vital aspect of glutamate regulation within the brain. Studies have shown the efficacy of reducing excess glutamate in the brain as a treatment for post-TBI depression, anxiety, and aggression. The purpose of this article is to evaluate the involvement of dietary glutamate in the development of depression after TBI. We performed a literature search to examine the effects of diets abundant in glutamate, which are common in Asian populations, when compared to diets low in glutamate, which are prevalent in Europe and America. We specifically explored these effects in the context of chronic BBB damage after TBI, which may initiate neurodegeneration and subsequently have an impact on depression through the mechanism of chronic glutamate neurotoxicity. A glutamate-rich diet leads to increased blood glutamate levels when contrasted with a glutamate-poor diet. Within the context of chronic BBB disruption, elevated blood glutamate levels translate to heightened brain glutamate concentrations, thereby intensifying neurodegeneration due to glutamate neurotoxicity.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84101, Israel
| | - Benjamin F Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Oleshko
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, Sumy 40002, Ukraine
| | - Igor Merzlikin
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, Sumy 40002, Ukraine
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84101, Israel
| |
Collapse
|
6
|
Kayode OT, Bello JA, Oguntola JA, Kayode AAA, Olukoya DK. The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon 2023; 9:e19675. [PMID: 37809920 PMCID: PMC10558944 DOI: 10.1016/j.heliyon.2023.e19675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Monosodium glutamate (MSG) is one of the most popular food additives in the world and is often ingested with commercially processed foods. It can be described as a sodium salt of glutamic acid with the IUPAC name - Sodium 2-aminopentanedioate and is ionized by water to produce free sodium ions and glutamic acid. MSG use has significantly increased over the past 30 years, its global demand stands huge at over three million metric tons which is worth over $4.5 billion. Asia was responsible for more than three quarter of world MSG consumption with the country China also leading in global consumption as well as production and export to other countries. Prior to year 2020, global demand for MSG increased by almost four percent each year with the highest significant increase in demand for MSG predicted to rise in Thailand, Indonesia, Vietnam and China, followed by Brazil and Nigeria. However, several researches featured in this review has identified MSG consumption as a major contributor to the development and progression of some metabolic disorders such as obesity, which is a risk factor for other metabolic syndromes like hypertension, diabetes mellitus and cancer initiation. The mechanism by which MSG induce obesity involves induction of hypothalamic lesion, hyperlipidemia, oxidative stress, leptin resistance and increased expression of peroxisome proliferator-activated receptors (PPARs) Gamma and Alpha. Similarly for induction of diabetes mellitus, MSG consumption resulted in decreased pancreatic beta cell mass, increased oxidative stress and metabolic rates, reduced glucose and insulin transport to adipose tissue and skeletal muscles, insulin insensitivity, reduced insulin receptors and induced severe hyperinsulinemia. Dietary salt, an active component of MSG is also found to be a major risk factor for high blood pressure (which may lead to hypertension). MSG is used to enhance the taste of tobacco, causing smokers to consume the product in excess and thereby increasing the risk of cancer development. Depending on the amount consumed, MSG has both positive and negative effects. Despite the controversy surrounding MSG's safety and its probable contribution to risk of development and progression of metabolic disorders, its global consumption is still very high. Therefore, this article will sensitize the public on the need for cautious use of MSG in foods and also aid regulatory agencies to further review the daily MSG consumption limit based on metabolic toxicities observed at the varied dosages reported in this review.
Collapse
Affiliation(s)
- Omowumi T Kayode
- Department of Biochemistry, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
| | - Jemilat A Bello
- Department of Biochemistry, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, Lagos State University, Lagos, Nigeria
| | - Jamiu A Oguntola
- Department of Biochemistry, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
- Department of Anatomy, College of Medicine, Lagos State University, Lagos, Nigeria
| | - Abolanle A A Kayode
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Nigeria
| | - Daniel K Olukoya
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
| |
Collapse
|
7
|
Zayed AA, Seleem MM, Darwish HA, Shaheen AA. Role of long noncoding RNAs; BDNF-AS and 17A and their relation to GABAergic dysfunction in Egyptian epileptic patients. Metab Brain Dis 2023; 38:1193-1204. [PMID: 36807083 PMCID: PMC10110666 DOI: 10.1007/s11011-023-01182-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked seizures. Lately, long noncoding RNAs (lncRNAs) have been increasingly appreciated as regulators of epilepsy-related processes, however, their functional role in its pathogenesis is still to be explored. This study investigated the expression levels of lncRNAs; BDNF-AS and 17A in the sera of Egyptian patients with idiopathic generalized and symptomatic focal epilepsy and correlated their levels with brain-derived neurotrophic factor (BDNF), phosphorylated cAMP reaction element -binding protein (p-CREB), gamma- aminobutyric acid (GABA) and glutamate, to underline their related molecular mechanism. A total of 70 epileptic patients were divided into two clinical types, besides 30 healthy controls of matched age and sex. The expression levels of both lncRNAs were markedly upregulated in epileptic groups versus the healthy control group with predominance in the symptomatic focal one. Epileptic patients showed significantly lower levels of BDNF, p-CREB, GABA along with significant increase of glutamate levels and glutamate/ GABA ratio, especially in symptomatic focal versus idiopathic generalized epileptic ones. The obtained data raised the possibility that these lncRNAs might be involved in the pathogenesis of epilepsy via inhibition of GABA/p-CREB/BDNF pathway. The study shed light on the putative role of these lncRNAs in better diagnosis of epilepsy, particularly symptomatic focal epilepsy.
Collapse
Affiliation(s)
- Aya A Zayed
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mae M Seleem
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hebatallah A Darwish
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Amira A Shaheen
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Castañeda-Cabral JL, Orozco-Suárez SA, Beas-Zárate C, Fajardo-Fregoso BF, Flores-Soto ME, Ureña-Guerrero ME. Inhibition of VEGFR-2 by SU5416 increases neonatally glutamate-induced neuronal damage in the cerebral motor cortex and hippocampus. J Biochem Mol Toxicol 2023; 37:e23315. [PMID: 36732937 DOI: 10.1002/jbt.23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 07/23/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Vascular endothelial growth factor (VEGF) exerts neuroprotective or proinflammatory effects, depending on what VEGF forms (A-E), receptor types (VEGFR1-3), and intracellular signaling pathways are involved. Neonatal monosodium glutamate (MSG) treatment triggers neuronal death by excitotoxicity, which is commonly involved in different neurological disorders, including neurodegenerative diseases. This study was designed to evaluate the effects of VEGFR-2 inhibition on neuronal damage triggered by excitotoxicity in the cerebral motor cortex (CMC) and hippocampus (Hp) after neonatal MSG treatment. MSG was administered at a dose of 4 g/kg of body weight (b.w.) subcutaneously on postnatal days (PD) 1, 3, 5, and 7, whereas the VEGFR-2 inhibitor SU5416 was administered at a dose of 10 mg/kg b.w. subcutaneously on PD 5 and 7, 30 min before the MSG treatment. Neuronal damage was assessed using hematoxylin and eosin staining, fluoro-Jade staining, and TUNEL assay. Additionally, western blot assays for some proteins of the VEGF-A/VEGFR-2 signaling pathway (VEGF-A, VEGFR-2, PI3K, Akt, and iNOS) were carried out. All assays were performed on PD 6, 8, 10, and 14. Inhibition of VEGFR-2 signaling by SU5416 increases the neuronal damage induced by neonatal MSG treatment in both the CMC and Hp. Moreover, neonatal MSG treatment increased the expression levels of the studied VEGF-A/VEGFR-2 signaling pathway proteins, particularly in the CMC. We conclude that VEGF-A/VEGFR-2 signaling pathway activation could be part of the neuroprotective mechanisms that attempt to compensate for neuronal damage induced by neonatal MSG treatment and possibly also in other conditions involving excitotoxicity.
Collapse
Affiliation(s)
- José Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Sandra A Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, México
| | - Carlos Beas-Zárate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Blanca F Fajardo-Fregoso
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Mario E Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), IMSS, Guadalajara, México
| | - Mónica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| |
Collapse
|
9
|
Bölükbaş F, Öznurlu Y. Determining the effects of in ovo administration of monosodium glutamate on the embryonic development of brain in chickens. Neurotoxicology 2023; 94:87-97. [PMID: 36400230 DOI: 10.1016/j.neuro.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Monosodium glutamate (MSG) is a popular flavor enhancer largely used in the food industry. Although numerous studies have reported the neurotoxic effects of MSG on humans and animals, there is limited information about how it affects embryonic brain development. Thus, this study aimed to determine the effects of in ovo administered MSG on embryonic brain development in chickens. For this purpose, 410 fertilized chicken eggs were divided into 5 groups as control, distilled water, 0.12, 0.6 and 1.2 mg/g egg MSG, and injections were performed via the egg yolk. On days 15, 18, and 21 of the incubation period, brain tissue samples were taken from all embryos and chicks. The mortality rates of MSG-treated groups were significantly higher than those of the control and distilled water groups. The MSG-treated groups showed embryonic growth retardation and various structural abnormalities such as abdominal hernia, unilateral anophthalmia, hemorrhage, brain malformation, and the curling of legs and fingers. The relative embryo and body weights of the MSG-treated groups were significantly lower than those of the control group on incubation days 18 and 21. Histopathological evaluations revealed that MSG caused histopathological changes such as necrosis, neuronophagia, and gliosis in brain on incubation days 15, 18, and 21. There was a significant increase in the number of necrotic neurons in the MSG-treated groups compared to the control and distilled water groups in the hyperpallium, optic tectum and hippocampus regions. Proliferating cell nuclear antigen (PCNA) positive cells in brain were found in the hyperpallium, optic tectum, and hippocampus regions; there were more PCNA(+) immunoreactive cells in MSG-treated groups than in control and distilled water groups. In conclusion, it was determined that in ovo MSG administered could adversely affect embryonic growth and development in addition to causing necrosis in the neurons in the developing brain.
Collapse
Affiliation(s)
- Ferhan Bölükbaş
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Yasemin Öznurlu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
10
|
Abu-Elfotuh K, Abdel-Sattar SA, Abbas AN, Mahran YF, Alshanwani AR, Hamdan AME, Atwa AM, Reda E, Ahmed YM, Zaghlool SS, El-Din MN. The protective effect of thymoquinone or/and thymol against monosodium glutamate-induced attention-deficit/hyperactivity disorder (ADHD)-like behavior in rats: Modulation of Nrf2/HO-1, TLR4/NF-κB/NLRP3/caspase-1 and Wnt/β-Catenin signaling pathways in rat model. Biomed Pharmacother 2022; 155:113799. [PMID: 36271575 DOI: 10.1016/j.biopha.2022.113799] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Both thymoquinone (TQ) and thymol (T) have been proved to possess a positive impact on human health. In this research, we aimed to investigate the effect of these compounds separately and together on the Attention-deficit/hyperactivity disorder (ADHD)-like behavior induced by monosodium glutamate (MSG) in rats. Forty male, Spargue Dawley rat pups (postnatal day 21), were randomly allocated into five groups: Normal saline (NS), MSG, MSG+TQ, MSG+T, and MSG+TQ+T. MSG (0.4 mg/kg/day), TQ (10 mg/kg/day) and T (30 mg/kg/day) were orally administered for 8 weeks. The behavioral tests proved that rats treated with TQ and/or T showed improved locomotor, attention and cognitive functions compared to the MSG group with more pronounced effect displayed with their combination. All treated groups showed improvement in MSG-induced aberrations in brain levels of GSH, IL-1β, TNF-α, GFAP, glutamate, calcium, dopamine, norepinephrine, Wnt3a, β-Catenin and BDNF. TQ and/or T treatment also enhanced the mRNA expression of Nrf2, HO-1 and Bcl2 while reducing the protein expression of TLR4, NFκB, NLRP3, caspase 1, Bax, AIF and GSK3β as compared to the MSG group. However, the combined therapy showed more significant effects in all measured parameters. All of these findings were further confirmed by the histopathological examinations. Current results concluded that the combined therapy of TQ and T had higher protective effects than their individual supplementations against MSG-induced ADHD-like behavior in rats.
Collapse
|
11
|
Antioxidant and Anticholinesterase Properties of the Aqueous Extract of Balanites aegyptiaca L. Delile Fruit Pulp on Monosodium Glutamate-Induced Excitotoxicity in Swiss Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7576132. [PMID: 35449814 PMCID: PMC9017515 DOI: 10.1155/2022/7576132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/26/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Balanites aegyptiaca L. Delile (B. aegyptiaca) is used in traditional medicine for the treatment of memory impairment. This work aims to evaluate the antioxidant and anticholinesterase potential of BA fruit pulp extract on excitotoxicity induced by monosodium glutamate (MSG). MSG was administered 30 minutes after treatment with B. aegyptiaca aqueous fruit pulp extract (50, 125, 250, and 500 mg/kg) and vitamin C (100 mg/kg) for 30 days. The negative control group received only MSG, while the control group was given distilled water daily. Behavioral tests parameters (using the novel object recognition, Y-maze, and Barnes maze tests), oxidative stress biomarkers (malondialdehyde, superoxide dismutase, and catalase), nitric oxide, and acetylcholinesterase activity and hippocampal architecture were evaluated. Results obtained revealed that different doses of B. aegyptiaca significantly reversed the deleterious effect of MSG on memory. This was displayed by a significant (
) increment in the percentage of spontaneous alternation in the Y-maze test and a significant (
) increase in discrimination index in novel object recognition observed with 500 mg/kg extract dose. Moreover, the extract (250 and 500 mg/kg doses) significantly (
) increased direct search strategy and significantly decreased (
) the time taken to find the target hole in the Barnes maze. A modulation of hyperactivity was observed after administration of all extract doses compared to the negative control group in the open arena. Furthermore, the highest dose of the extract caused a significant (
) improvement in antioxidant enzymes activity, associated with a significant (
) decrement in nitric oxide and malondialdehyde concentrations and a significant (
) decrease in acetylcholinesterase activity. Treatment with the extract also restored normal hippocampal cell architecture. B. aegyptiaca fruit pulp extract could thus confer neuroprotection through its antioxidant and anticholinesterase potential.
Collapse
|
12
|
PEKMEZEKMEK A. MONOSODYUM GLUTAMAT, LEZZET ARTTIRICI MI, ÖLDÜREN LEZZET Mİ? KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2022. [DOI: 10.17517/ksutfd.1067018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Monosodium glutamat (MSG) 1800’lü yıllardan beri lezzet artırıcı katkı maddesi olarak, işlenmiş ve paketlenmiş tuzlu veya tatlı gıdalarda kullanılmaktadır. Yapılan birçok çalışma MSG kullanımının çok sayıda yapısal ve fonksiyonel bozukluklara yol açabileceğini ortaya çıkarmıştır. Son yıllarda MSG kullanımının çok artması gıda güvenliği konusunda endişelerinde artmasına neden olmuştur.
Collapse
|
13
|
Biney RP, Djankpa FT, Osei SA, Egbenya DL, Aboagye B, Karikari AA, Ussif A, Wiafe GA, Nuertey D. Effects of in utero exposure to monosodium glutamate on locomotion, anxiety, depression, memory and KCC2 expression in offspring. Int J Dev Neurosci 2021; 82:50-62. [PMID: 34755371 DOI: 10.1002/jdn.10158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 11/11/2022] Open
Abstract
In pregnancy, there is a significant risk for developing embryos to be adversely affected by everyday chemicals such as food additives and environmental toxins. In recent times, several studies have documented the detrimental effect of exposure to such chemicals on the behaviour and neurodevelopment of the offspring. This study evaluated the influence of the food additive, monosodium glutamate (MSG), on behaviour and development in mice. Pregnant dams were exposed to MSG 2 or 4 g/kg or distilled water from gestation day 10-20. On delivery, postnatal day 1 (PN 1), 3 pups were sacrificed and whole brain samples assayed for KCC2 expression by western blot. The remaining pups were housed until PN 43 before commencing behavioural assessment. Their weights were measured at birth and at 3 days intervals until PN 42. The impact of prenatal exposure to MSG on baseline exploratory, anxiety and depression behaviours as well as spatial and working memory was assessed. In utero exposure to 4 g/kg MSG significantly reduced exploratory drive and increased depression-like behaviours but did not exert any significant impact on anxiety-like behaviours (p < 0.01). Additionally, there was a two-fold increase in KCC2 expression in both 2 and 4 g/kg MSG-exposed offspring. CONCLUSION: This study indicates that, in utero exposure to MSG increases the expression of KCC2 and causes significant effect on locomotion and depression-like behaviours but only marginally affects memory function.
Collapse
Affiliation(s)
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Silas Acheampong Osei
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Daniel Lawer Egbenya
- Department of Anatomy and Cell Biology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Aboagye
- Department of Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Akua Afriyie Karikari
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Abdala Ussif
- Department of Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Gideon Akuamoah Wiafe
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David Nuertey
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
14
|
Ahangar-Sirous R, Poudineh M, Ansari A, Nili A, Dana SMMA, Nasiri Z, Hosseini ZS, Karami D, Mokhtari M, Deravi N. Pharmacotherapeutic Potential of Garlic in Age-Related Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:377-398. [PMID: 34579639 DOI: 10.2174/1871527320666210927101257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
Age-related neurological disorders [ANDs] involve neurodegenerative diseases [NDDs] such as Alzheimer's disease [AD], the most frequent kind of dementia in elderly people, and Parkinson's disease [PD], and also other disorders like epilepsy and migraine. Although ANDs are multifactorial, Aging is a principal risk factor for them. The common and most main pathologic features among ANDs are inflammation, oxidative stress, and misfolded proteins accumulation. Since failing brains caused by ANDs impose a notable burden on public health and their incidence is increasing, a lot of works has been done to overcome them. Garlic, Allium sativum, has been used for different medical purposes globally and more than thousands of publications have reported its health benefits. Garlic and aged garlic extract are considered potent anti-inflammatory and antioxidants agents and can have remarkable neuroprotective effects. This review is aimed to summarize knowledge on the pharmacotherapeutic potential of garlic and its components in ANDs.
Collapse
Affiliation(s)
| | | | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Ali Nili
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | | | - Zahra Nasiri
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | | | - Dariush Karami
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Melika Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran. Iran
| | - Niloofar Deravi
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
15
|
Sarlo GL, Holton KF. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure 2021; 91:213-227. [PMID: 34233236 DOI: 10.1016/j.seizure.2021.06.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
An imbalance between excitation and inhibition has been a longstanding proposed mechanism regarding ictogenesis and epileptogenesis. This imbalance is related to increased extracellular glutamate in the brain and/or reduction in GABA concentrations, leading to excitotoxicity, seizures, and cell death. This review aims to summarize the microdialysis and magnetic resonance spectroscopy (MRS) literature investigating glutamate and GABA concentrations in epilepsy patients, present limitations, and suggest future directions to help direct the search for novel epilepsy treatments. The majority of microdialysis studies demonstrated increased glutamate in epileptic regions either compared to control regions or to baseline levels; however, sample sizes were small, with some statistical comparisons missing. For the MRS research, two of six studies reported significant changes in glutamate levels compared to controls, though the results were mixed, with one reporting increased and the other reporting decreased glutamate levels. Eleven of 20 studies reported significant changes in Glx (glutamate + glutamine) or Glx ratios, with most reporting increased levels, except for a few epilepsy syndromes where reduced levels were reported. Few studies investigated GABA concentrations, with one microdialysis and four spectroscopy studies reporting increased GABA levels, and one study reporting decreased GABA in a different brain region. Based on this review, future research should account for medication use; include measurements of GABA, glutamate, and glutamine; use high-tesla strength MRI; and further evaluate the timing of microdialysis. Understanding the importance of brain glutamate and GABA levels in epilepsy may provide direction for future therapies and treatments.
Collapse
Affiliation(s)
- Gabrielle L Sarlo
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington DC, United States
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington DC, United States; Center for Behavioral Neuroscience, American University, Washington DC, United States.
| |
Collapse
|
16
|
GIM SA, PARK DJ, KANG JB, SHAH FA, KOH PO. Identification of regulated proteins by resveratrol in glutamate-induced cortical injury of newborn rats. J Vet Med Sci 2021; 83:724-733. [PMID: 33716268 PMCID: PMC8111349 DOI: 10.1292/jvms.21-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
Glutamate induces neuronal damage by generating oxidative stress and neurotoxicities. The neurological damage caused by glutamate is more severe during brain development in newborns than in adults. Resveratrol is naturally present in a variety of fruits and medicinal plants and exerts a neuroprotective effect against brain damage. The goal of this study was to evaluate the neuroprotective effects of resveratrol and to identify changed proteins in response to resveratrol treatment during glutamate-induced neonatal cortical damage. Sprague-Dawley rat pups (7 days old) were randomly divided into vehicle, resveratrol, glutamate, and glutamate and resveratrol groups. The animals were intraperitoneally injected with glutamate (10 mg/kg) and/or resveratrol (20 mg/kg) and their brain tissue was collected 4 hr after drug administration. Glutamate exposure caused severe histopathological changes, while resveratrol attenuated this damage. We identified regulated proteins by resveratrol in glutamate-induced cortical damaged tissue using two-dimensional gel electrophoresis and mass spectrometry. Among identified proteins, we focused on eukaryotic initiation factor 4A2, γ-enolase, protein phosphatase 2A subunit B, and isocitrate dehydrogenase. These proteins decreased in the glutamate-treated group, whereas the combination treatment of glutamate and resveratrol attenuated these protein reductions. These proteins are anti-oxidant proteins and anti-apoptotic proteins. These results suggest that glutamate induces brain cortical damage in newborns; resveratrol exerts a neuroprotective effect by controlling expression of various proteins with anti-oxidant and anti-apoptotic functions.
Collapse
Affiliation(s)
- Sang-A GIM
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju,
52828, South Korea
| | - Dong-Ju PARK
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju,
52828, South Korea
| | - Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju,
52828, South Korea
| | - Fawad-Ali SHAH
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju,
52828, South Korea
- Current affiliation: Riphah Institute of Pharmaceutical
Sciences, Riphah International University, near Hajj Complex, I-14, Islamabad, Islamabad
Capital Territory 46000, Pakistan
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju,
52828, South Korea
| |
Collapse
|
17
|
Boga Pekmezekmek A, Emre M, Tunc E, Sertdemir Y. L-Glutamic acid monosodium salt reduces the harmful effect of lithium on the development of Xenopus laevis embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42124-42132. [PMID: 32705564 DOI: 10.1007/s11356-020-10155-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Many xenobiotics in the environment affect the human body in various ways. Among those xenobiotics, lithium chloride (Li, LiCl) and monosodium glutamate (L-glutamic acid monosodium salt, MSG) compounds affect the crucial processes of stem cell differentiation, cell proliferation, developmental gene expression, and overall development in animals. In this study, we aimed to examine the developmental effects of exposure to flavor enhancer MSG and LiCI medicament on Xenopus embryos using the frog embryo teratogenesis assay of Xenopus test. To this purpose, Xenopus laevis embryos were exposed to four different concentrations of MSG (120, 500, 750, 1000 mg/dL) and Li (0.02 g/L) alone and in combinations for a period of 96 h, and then normal, abnormal, and death ratios were determined in all exposure groups. Besides, length values of all groups and membrane potentials of fertilized and non-fertilized oocyte groups treated with 120- and 500-mg/dL MSG doses and 0.02-g/L LiCI dose were measured. Treatment with ADI (acceptable daily intake) dose of MSG alone did not lead to a substantial effect on the development of Xenopus laevis embryos. But, exposure to daily doses exceeding the ADI level (500, 750, 1000 mg/dL) caused significant harmful effects. Besides, Li-involving treatments caused dramatic deleterious effects on embryo development. MSG attenuated harmful effects of Li in MSG+Li combined treatments. Membrane potentials of non-fertilized oocytes and fertilized eggs were significantly changed in all groups that their membrane potentials were measured. Extrapolating these results into humans require similarly designed studies conducted on human embryos.
Collapse
Affiliation(s)
- Ayper Boga Pekmezekmek
- Department of Physiology, School of Medicine, Çukurova University, Balcalı, 01330, Adana, Turkey.
| | - Mustafa Emre
- Department of Biophysics, School of Medicine, Çukurova University, Adana, Turkey
| | - Erdal Tunc
- Department of Medical Biology and Genetics, School of Medicine, Çukurova University, Adana, Turkey
| | - Yasar Sertdemir
- Department of Biostatistics, School of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
18
|
Castañeda-Cabral JL, López-Ortega JG, Fajardo-Fregoso BF, Beas-Zárate C, Ureña-Guerrero ME. Glutamate induced neonatal excitotoxicity modifies the expression level of EAAT1 (GLAST) and EAAT2 (GLT-1) proteins in various brain regions of the adult rat. Neurosci Lett 2020; 735:135237. [PMID: 32645399 DOI: 10.1016/j.neulet.2020.135237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 02/08/2023]
Abstract
Glutamate-mediated excitatory synaptic signalling is primarily controlled by excitatory amino acid transporters (EAATs), such as EAAT1 and EAAT2, which are located mostly on astrocytes and, together, uptake more than 95 % of extracellular glutamate. Alterations in the functional expression levels of EAATs can lead to excessive extracellular glutamate accumulation, potentially triggering excitotoxicity and seizures, among other neurological disorders. Excitotoxicity induced in early developmental stages can lead to lasting changes in several neurotransmission systems, including the glutamatergic system, which could make the brain more susceptible to a second insult. In this study, the expression levels of EAAT1 (GLAST) and EAAT2 (GLT-1) proteins were assessed in the cerebral motor cortex (CMC), striatum, hippocampus and entorhinal cortex (EC) of male adult rats following the neonatal excitotoxic process triggered by monosodium glutamate (MSG)-treatment (4 g/kg of body weight at postnatal days 1,3,5 and 7, subcutaneously). Western blot analysis showed that neonatal MSG-treatment decreased EAAT1 expression levels in the CMC, striatum and hippocampus, while EAAT2 levels were increased in the striatum and EC and decreased in the CMC. Immunofluorescence staining confirmed the changes in EAAT1 and EAAT2 expression induced by neonatal MSG-treatment, which were accompanied by an increase in the glial fibrillary acidic protein (GFAP) immunofluorescence signalthat was particularly significant in the hippocampus. Our results show that a neonatal excitotoxic processes can induce lasting changes in the expression levels of EAAT1 and EAAT2 proteins and suggest that although astrogliosis occurs, glutamate uptake could be deficient, particularly in the CMC and hippocampus.
Collapse
Affiliation(s)
- José Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - José Guadalupe López-Ortega
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Blanca Fabiola Fajardo-Fregoso
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Carlos Beas-Zárate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Mónica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico.
| |
Collapse
|
19
|
Neuroprotective Potential of Allium sativum against Monosodium Glutamate-Induced Excitotoxicity: Impact on Short-Term Memory, Gliosis, and Oxidative Stress. Nutrients 2020; 12:nu12041028. [PMID: 32290031 PMCID: PMC7230314 DOI: 10.3390/nu12041028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the neuroprotective potential of Allium sativum against monosodium glutamate (MSG)-induced neurotoxicity with respect to its impact on short-term memory in rats. Forty male Wistar albino rats were assigned into four groups. The control group received distilled water. The second group was administered Allium sativum powder (200 mg/kg of body weight) orally for 7 successive days, then was left without treatment until the 30th day. The third group was injected intraperitoneally with MSG (4 g/kg of body weight) for 7 successive days, then left without treatment until the 30th day. The fourth group was injected with MSG in the same manner as the third group and was treated with Allium sativum powder in the same manner as the second group, simultaneously. Phytochemical analysis of Allium sativum powder identified the presence of diallyl disulphide, carvone, diallyl trisulfide, and allyl tetrasulfide. MSG-induced excitotoxicity and cognitive deficit were represented by decreased distance moved and taking a long time to start moving from the center in the open field, as well as lack of curiosity in investigating the novel object and novel arm. Moreover, MSG altered hippocampus structure and increased MDA concentration and protein expression of glial fibrillary acidic protein (GFAP), calretinin, and caspase-3, whereas it decreased superoxide dismutase (SOD) activity and protein expression of Ki-67 in brain tissue. However, Allium sativum powder prevented MSG-induced neurotoxicity and improved short-term memory through enhancing antioxidant activity and reducing lipid peroxidation. In addition, it decreased protein expression of GFAP, calretinin, and caspase-3 and increased protein expression of Ki-67 in brain tissues and retained brain tissue architecture. This study indicated that Allium sativum powder ameliorated MSG-induced neurotoxicity through preventing oxidative stress-induced gliosis and apoptosis of brain tissue in rats.
Collapse
|
20
|
Liao R, Wood TR, Nance E. Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity. J Biol Eng 2020; 14:3. [PMID: 32042309 PMCID: PMC7001228 DOI: 10.1186/s13036-020-0226-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022] Open
Abstract
Background Knowledge of glutamate excitotoxicity has increased substantially over the past few decades, with multiple proposed pathways involved in inflicting damage. We sought to develop a monosodium glutamate (MSG) exposed ex vivo organotypic whole hemisphere (OWH) brain slice model of excitotoxicity to study excitotoxic processes and screen the efficacy of superoxide dismutase (SOD). Results The OWH model is a reproducible platform with high cell viability and retained cellular morphology. OWH slices exposed to MSG induced significant cytotoxicity and downregulation of neuronal excitation-related gene expression. The OWH brain slice model has enabled us to isolate and study components of excitotoxicity, distinguishing the effects of glutamate excitation, hyperosmolar stress, and inflammation. We find that extracellularly administered SOD is significantly protective in inhibiting cell death and restoring healthy mitochondrial morphology. SOD efficacy suggests that superoxide scavenging is a promising therapeutic strategy in excitotoxic injury. Conclusions Using OWH brain slice models, we can obtain a better understanding of the pathological mechanisms of excitotoxic injury, and more rapidly screen potential therapeutics.
Collapse
Affiliation(s)
- Rick Liao
- 1Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA 98195 USA
| | - Thomas R Wood
- 2Department of Pediatrics, University of Washington, Seattle, WA USA
| | - Elizabeth Nance
- 1Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA 98195 USA.,3Department of Radiology, University of Washington, Seattle, WA USA.,4Center on Human Development and Disability, University of Washington, Seattle, WA USA
| |
Collapse
|
21
|
Hassaan PS, Dief AE, Zeitoun TM, Baraka AM, Deacon RMJ, Elshorbagy A. Cortical tau burden and behavioural dysfunctions in mice exposed to monosodium glutamate in early life. PLoS One 2019; 14:e0220720. [PMID: 31412065 PMCID: PMC6693749 DOI: 10.1371/journal.pone.0220720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/22/2019] [Indexed: 01/30/2023] Open
Abstract
Although monosodium glutamate (MSG)-induced neurotoxicity has been recognized for decades, the potential similarities of the MSG model to Alzheimer’s disease (AD)-type neuropathology have only recently been investigated. MSG-treated mice were examined behaviourally and histologically in relation to some features of AD. Four-week old mice received 5 subcutaneous MSG (2 g/kg) injections on alternate days, or saline. At age 10–12 weeks, they were given a battery of behavioural tests for species-typical behaviours and working memory. The mice were killed at 12 weeks and the brains excised. Accumulation of hyperphosphorylated tau protein was assessed in cortical and hippocampal neurons by immunohistochemistry, and in cerebral cortical homogenates. A 78% increase in cortical concentrations of phosphorylated tau protein was observed in the MSG mice. Intracellular hyperphosphorylated tau immunostaining was observed diffusely in the cortex and hippocampus, together with cortical atrophic neurons, extensive vacuolation and dysmorphic neuropil suggestive of spongiform neurodegeneration. Nest-building was significantly impaired, and spontaneous T-maze alternation was reduced, suggesting defective short-term working memory. Subcutaneous MSG treatment also induced a 56% reduction in exploratory head dips in a holeboard (P = 0.009), and a non-significant tendency for decreased burrowing behaviour (P = 0.085). These effects occurred in the absence of MSG-induced obesity or gross locomotor deficits. The findings point to subcutaneous MSG administration in early life as a cause of tau pathology and compromised species-typical behaviour in rodents. Determining whether MSG can be useful in modelling AD requires further studies of longer duration and full behavioural characterization.
Collapse
Affiliation(s)
- Passainte S. Hassaan
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Abeer E. Dief
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- * E-mail:
| | - Teshreen M. Zeitoun
- Department of Medical Histology and Cell Biology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Azza M. Baraka
- Department of Clinical Pharmacology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Robert M. J. Deacon
- Basic Sciences Division, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Amany Elshorbagy
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
22
|
López-Vázquez MÁ, Gama-García CE, Estrada-Reyes Y, Gaytán-Tocavén L, Alfaro JMC, Olvera-Cortés ME. Neonatal Monosodium Glutamate Administration Disrupts Place Learning and Alters Hippocampal-Prefrontal Learning-Related Theta Activity in the Adult Rat. Neuroscience 2019; 414:228-244. [PMID: 31299349 DOI: 10.1016/j.neuroscience.2019.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/30/2023]
Abstract
Neonatal treatment with monosodium glutamate causes profound deficits in place learning and memory in adult rats evaluated in the Morris maze. Theta activity has been related to hippocampal learning, and increased high-frequency theta activity occurs through efficient place learning training in the Morris maze. We wondered whether the place learning deficits observed in adult rats that had been neonatally treated with monosodium glutamate (MSG), were related to altered theta patterns in the hippocampus and prelimbic cortex, which were recorded during place learning training in the Morris maze. The MSG-treated group had a profound deficit in place learning ability, with a marginal reduction in escape latencies during the final days of training. Learning-related changes were observed in the relative power distribution in control and MSG-treated groups in the hippocampal EEG, but not in the prelimbic cortex. Increased prefrontal and reduced hippocampal absolute power that appeared principally during the final days of training, and reduced coherence between regions throughout the training (4-12 Hz), were observed in the MSG-treated rats, thereby suggesting a misfunction of the circuits rather than a hyperexcitable general state. In conclusion, neonatal administration of MSG, which caused a profound deficit in place learning at the adult age, also altered the theta pattern both in the hippocampus and prelimbic cortex.
Collapse
Affiliation(s)
- Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex-Hacienda de San José de la Huerta, C.P., 58341, Morelia, Michoacán, México.
| | - Carla Estefanía Gama-García
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex-Hacienda de San José de la Huerta, C.P., 58341, Morelia, Michoacán, México
| | - Yoana Estrada-Reyes
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex-Hacienda de San José de la Huerta, C.P., 58341, Morelia, Michoacán, México
| | - Lorena Gaytán-Tocavén
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex-Hacienda de San José de la Huerta, C.P., 58341, Morelia, Michoacán, México
| | - José Miguel Cervantes Alfaro
- Laboratorio de Neurociencias, Departamento de Postgrado, Facultad de Medicina "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Rafael Carrillo esq. Salvador González Herrejón S/N. C.P., 58000, Colonia Centro, Morelia, Michoacán, México
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex-Hacienda de San José de la Huerta, C.P., 58341, Morelia, Michoacán, México
| |
Collapse
|
23
|
Zhang Y, Zhang L, Venkitasamy C, Pan Z, Ke H, Guo S, Wu D, Wu W, Zhao L. Potential effects of umami ingredients on human health: Pros and cons. Crit Rev Food Sci Nutr 2019; 60:2294-2302. [PMID: 31272187 DOI: 10.1080/10408398.2019.1633995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Umami taste is the most recent confirmed basic taste in addition to sour, sweet, bitter, and salty. It has been controversial because of its effects on human nutritional benefit. Based on the available literatures, this review categorized 13 positive and negative effects of umami taste on human health. On the positive side, umami taste can improve food flavor and consumption, improve nutrition intake of the elderly and patients, protect against duodenal cancer, reduce ingestion of sodium chloride, decrease consumption of fat, and improve oral functions. On the other hand, umami taste can also induce hepatotoxicity, cause asthma, induce migraine headaches, damage the nervous system, and promote obesity. Due to its novelty, there are many functions and effects of umami taste waiting to be discovered. With further investigation, more information regarding the effects of umami taste on human health will be discerned.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Longyi Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Chandrasekar Venkitasamy
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA.,Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, USA
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA.,Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, USA
| | - Huan Ke
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Siya Guo
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Di Wu
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Wanxia Wu
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Liming Zhao
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China.,State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
24
|
Inaloo S, Pirsalami F, Dastgheib M, Moezi L. The effects of dairy products on seizure tendency in mice. Heliyon 2019; 5:e01331. [PMID: 30911694 PMCID: PMC6416732 DOI: 10.1016/j.heliyon.2019.e01331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/01/2019] [Accepted: 03/06/2019] [Indexed: 11/18/2022] Open
Abstract
Epilepsy is a common neurological disorder which occurs as a result of a spontaneous electrical discharge in the brain. According to recent studies there might be a relationship between specific diet and seizure occurrence. Casein is an important protein of milk which often causes hypersensitivity. It seems the release of inflammatory cytokines during the process of immune system response alter the blood-brain-barrier (BBB) integrity and lead to neuronal inflammation which could constitute on epileptogenic focus. On the other hand, several studies represent full-fat milk or higher fat dairy products as an effective anti-inflammatory factor which elevate seizure threshold. The aim of present study was investigation of acute and chronic effects of dairy products including dough (a yogurt-based beverage), cheese, low and high fat yogurt and milk on pentylenetetrazole (PTZ)-induced seizures or electroshock in mice. The results of study indicated that lower fat dairy products reduced seizure threshold in intravenous PTZ-induced seizure as well as reduction in myoclonic and clonic jerk latencies in intraperitoneal PTZ-induced seizure. High fat products or cheese reduced seizure activity in both PTZ-induced models. Meanwhile both acute and chronic administration of dairy products had no effect on an electroshock-induced seizure. Therefore, diet-related seizures may depend upon the method which seizures are provoked.
Collapse
Affiliation(s)
- Soroor Inaloo
- Neonatal Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatema Pirsalami
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Dastgheib
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Corresponding author.
| |
Collapse
|
25
|
Rivera-Cervantes MC, Jarero-Basulto JJ, Murguía-Castillo J, Marín-López AG, Gasca-Martínez Y, Cornelio-Martínez S, Beas-Zárate C. The Recombinant Human Erythropoietin Administered in Neonatal Rats After Excitotoxic Damage Induces Molecular Changes in the Hippocampus. Front Neurosci 2019; 13:118. [PMID: 30837834 PMCID: PMC6390204 DOI: 10.3389/fnins.2019.00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
In vitro and in vivo experimental evidence has contributed important knowledge regarding the antiapoptotic effect mediated by EPO signaling in the damaged brain, particularly through different models with a hypoxic component. However, little emphasis has been placed on the effectiveness of rhEPO administration against cellular alterations caused by in vivo excitotoxicity or on the molecular mechanism that regulates this effect. In this study, we investigated the effects of a single dose of rhEPO on hippocampal damage induced by subcutaneous application of monosodium glutamate (MSG) on postnatal days 1, 3, 5 and 7 in neonatal rats. We found that a dose of 1000 IU/kg of b.w. administered 24 h after MSG had the greatest protective effect. In addition, we analyzed changes in gene expression, particularly in 3 key molecules involved in EPO-mediated signaling (EPO, EPOR and βcR). We observed that the expression of EPO and EPOR was differentially modified at both the mRNA and protein levels under the evaluated conditions, while the expression of the βcR gene was substantially increased. Our data suggest that a low dose of rhEPO is sufficient to induce cellular protection under these experimental conditions and that the molecular changes could be a positive feedback mechanism, mediated by reactive astrocytes in association with in vivo neuroprotective mechanisms.
Collapse
Affiliation(s)
- Martha Catalina Rivera-Cervantes
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Mexico
| | - José Jaime Jarero-Basulto
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Mexico
| | - Justo Murguía-Castillo
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Mexico
| | - Alejandra Guadalupe Marín-López
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Mexico
| | - Yadira Gasca-Martínez
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Mexico
| | - Sergio Cornelio-Martínez
- Regeneration and Neural Development Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Mexico
| | - Carlos Beas-Zárate
- Regeneration and Neural Development Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Mexico
| |
Collapse
|
26
|
Rosa SG, Chagas PM, Pesarico AP, Nogueira CW. Monosodium glutamate induced nociception and oxidative stress dependent on time of administration, age of rats and susceptibility of spinal cord and brain regions. Toxicol Appl Pharmacol 2018; 351:64-73. [DOI: 10.1016/j.taap.2018.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022]
|
27
|
Jarero-Basulto JJ, Gasca-Martínez Y, Rivera-Cervantes MC, Ureña-Guerrero ME, Feria-Velasco AI, Beas-Zarate C. Interactions Between Epilepsy and Plasticity. Pharmaceuticals (Basel) 2018; 11:ph11010017. [PMID: 29414852 PMCID: PMC5874713 DOI: 10.3390/ph11010017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Undoubtedly, one of the most interesting topics in the field of neuroscience is the ability of the central nervous system to respond to different stimuli (normal or pathological) by modifying its structure and function, either transiently or permanently, by generating neural cells and new connections in a process known as neuroplasticity. According to the large amount of evidence reported in the literature, many stimuli, such as environmental pressures, changes in the internal dynamic steady state of the organism and even injuries or illnesses (e.g., epilepsy) may induce neuroplasticity. Epilepsy and neuroplasticity seem to be closely related, as the two processes could positively affect one another. Thus, in this review, we analysed some neuroplastic changes triggered in the hippocampus in response to seizure-induced neuronal damage and how these changes could lead to the establishment of temporal lobe epilepsy, the most common type of focal human epilepsy.
Collapse
Affiliation(s)
- José J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Yadira Gasca-Martínez
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Martha C Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Mónica E Ureña-Guerrero
- Neurotransmission Biology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Alfredo I Feria-Velasco
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Carlos Beas-Zarate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| |
Collapse
|
28
|
Vitor-de-Lima SM, Medeiros LDB, Benevides RDDL, Dos Santos CN, Lima da Silva NO, Guedes RCA. Monosodium glutamate and treadmill exercise: Anxiety-like behavior and spreading depression features in young adult rats. Nutr Neurosci 2017; 22:435-443. [PMID: 29125056 DOI: 10.1080/1028415x.2017.1398301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The route of administration is an important factor in determining the action of some drugs. We previously demonstrated that subcutaneous monosodium glutamate (MSG) accelerated cortical spreading depression (CSD) in the rat and that treadmill exercise attenuated this effect. This study evaluated whether other routes of administration exert the same action by testing orogastric (gavage) and topical cortical MSG administration in treadmill-exercised and sedentary rats. Additionally, in the orogastric treatment we tested anxiety-like behavior. METHODS Exercised and sedentary rats received per gavage water or MSG (1 or 2 g/kg) daily from postnatal (P) day 7 to 27. Behavioral tests (open field and elevated plus-maze) occurred at P53 ± 3. At P56 ± 3, we analyzed CSD parameters (velocity, amplitude, and duration of the negative potential change). Other three groups of rats received an MSG solution (25, 50 or 75 mg/ml) topically to the intact dura mater during CSD recording. RESULTS MSG-gavage increased anxiety-like behavior and the CSD velocities compared with water-treated controls (P < 0.05). Exercise decelerated CSD. In contrast to gavage, which accelerated CSD, topical MSG dose-dependently and reversibly impaired CSD propagation, reduced CSD amplitude and increased CSD duration (P < 0.05). CONCLUSIONS The exercise-dependent attenuation of the effects of MSG confirms our previous results in rats treated subcutaneously with MSG. CSD results suggest two distinct mechanisms for gavage and topical MSG administration. Additionally, data suggest that exercise can help protect the developing and adult brain against the deleterious actions of MSG.
Collapse
|
29
|
Selenofuranoside improves long-term memory deficits in rats after exposure to monosodium glutamate: Involvement of Na +, K +-ATPase activity. Physiol Behav 2017; 184:27-33. [PMID: 29097195 DOI: 10.1016/j.physbeh.2017.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 11/21/2022]
Abstract
Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects of this additive, including functional, learning, and behavioral alterations, have been observed in experimental animals and humans. Studies have shown learning and memory impairment in adult animals exposed to MSG. However, studies relating exposure to MSG to acetylcholinesterase (AChE) and Na+, K+-ATPase activities and memory damage are still scarce in the literature. The aim of the present study was to assess the possible protective effects of selenofuranoside, an organoselenium compound, against the impairment of long-term memory, Na+, K+-ATPase and AChE activities, and oxidative stress after MSG exposure in rats. MSG (2g/kg) and/or selenofuranoside (5mg/kg) were administered orally to 5-week-old male Wistar rats for 10days. On the 10th day, after the administration of last dose of the drug(s), the rats were subjected to behavioral tests: the open-field test and step-down passive avoidance task (SDPA). The blood, liver, kidney, cortex, and hippocampus were removed to determine the oxidative stress parameters, such as the levels of reactive species, lipid peroxidation, antioxidant enzyme activities, and endogenous nonenzymatic antioxidant content. Furthermore, the cortex and hippocampus were used to determine the Na+, K+-ATPase and AChE activities. The results demonstrate that the administration of MSG led to long-term memory impairment, as shown in the SDPA task, and also hippocampal and cortical Na+, K+-ATPase inhibition. There were no alterations in the AChE activity and oxidative stress parameters. Treatment with selenofuranoside attenuated memory impairment associated with MSG exposure by improving the hippocampal Na+, K+-ATPase activity.
Collapse
|
30
|
Rivera-Carvantes MC, Jarero-Basulto JJ, Feria-Velasco AI, Beas-Zárate C, Navarro-Meza M, González-López MB, Gudiño-Cabrera G, García-Rodríguez JC. Changes in the expression level of MAPK pathway components induced by monosodium glutamate-administration produce neuronal death in the hippocampus from neonatal rats. Neuroscience 2017; 365:57-69. [PMID: 28954212 DOI: 10.1016/j.neuroscience.2017.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 11/18/2022]
Abstract
Excessive Glutamate (Glu) release may trigger excitotoxic cellular death by the activation of intracellular signaling pathways that transduce extracellular signals to the cell nucleus, which determines the onset of a death program. One such signaling pathway is the mitogen-activated protein kinases (MAPK), which is involved in both survival and cell death. Experimental evidences from the use of specific inhibitors supports the participation of some MAPK pathway components in the excitotoxicity mechanism, but the complete process of this activation, which terminates in cell damage and death, is not clearly understood. The present work, we investigated the changes in the expression level of some MAPK-pathway components in hippocampal excitotoxic cell death in the neonatal rats using an experimental model of subcutaneous monosodium glutamate (MSG) administration on postnatal days (PD) 1, 3, 5 and 7. Data were collected at different ages through PD 14. Cell viability was evaluated using fluorescein diacetate mixed with propidium iodide (FDA-PI), and the Nissl-staining technique was used to evaluate histological damage. Transcriptional changes were also investigated in 98 components of the MAPK pathway that are associated with cell damage. These results are an evidence of that repetitive use of MSG, in neonatal rats, induces cell damage-associated transcriptional changes of MAPK components, that might reflect a differential stage of both biochemical and molecular brain maturation. This work also suggests that some of the proteins evaluated such as phosphorylated retinoblastoma (pRb) protein, which was up-regulated, could regulate the response to excitotoxic through modulation of the process of re-entry into the cell cycle in the hippocampus of rats treated with MSG.
Collapse
Affiliation(s)
- Martha Catalina Rivera-Carvantes
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico.
| | - José Jaime Jarero-Basulto
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Alfredo Ignacio Feria-Velasco
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Carlos Beas-Zárate
- Regeneration and Neural Development Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Mónica Navarro-Meza
- Department of Health and Wellness, CUSur, University of Guadalajara, Ciudad Guzman, Jal., Mexico
| | - Mariana Berenice González-López
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Graciela Gudiño-Cabrera
- Regeneration and Neural Development Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | | |
Collapse
|
31
|
Castañeda-Cabral JL, Beas-Zarate C, Gudiño-Cabrera G, Ureña-Guerrero ME. Glutamate Neonatal Excitotoxicity Modifies VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 Protein Expression Profiles During Postnatal Development of the Cerebral Cortex and Hippocampus of Male Rats. J Mol Neurosci 2017; 63:17-27. [PMID: 28755050 DOI: 10.1007/s12031-017-0952-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF) exerts both neuroprotective and proinflammatory effects in the brain, depending on the VEGF (A-E) and VEGF receptor (VEGFR1-3) types involved. Neonatal monosodium glutamate (MSG) treatment triggers an excitotoxic degenerative process associated with several neuropathological conditions, and VEGF messenger RNA (mRNA) expression is increased at postnatal day (PD) 14 in rat hippocampus (Hp) following the treatment. The aim of this work was to establish the changes in immunoreactivity to VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 proteins induced by neonatal MSG treatment (4 g/kg, subcutaneous, at PD1, 3, 5 and 7) in the cerebral motor cortex (CMC) and Hp. Samples collected from PD2 to PD60 from control and MSG-treated male Wistar rats were assessed by western blotting for each protein. Considering that immunoreactivity measured by western blotting is related to the protein expression level, we found that each protein in each cerebral region has a specific expression profile throughout the studied ages, and all profiles were differentially modified by MSG. Specifically, neonatal MSG treatment significantly increased the immunoreactivity to the following: (1) VEGF-A at PD8-PD10 in the CMC and at PD6-PD8 in the Hp; (2) VEGF-B at PD2, PD6 and PD10 in the CMC and at PD8-PD9 in the Hp; and (3) VEGFR-2 at PD6-PD8 in the CMC and at PD21-PD60 in the Hp. Also, MSG significantly reduced the immunoreactivity to the following: (1) VEGF-B at PD8-PD9 and PD45-PD60 in the CMC; and (2) VEGFR-1 at PD4-PD6 and PD14-PD21 in the CMC and at PD4, PD9-PD10 and PD60 in the Hp. Our results indicate that VEGF-mediated signalling is involved in the excitotoxic process triggered by neonatal MSG treatment and should be further characterized.
Collapse
Affiliation(s)
- Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Carlos Beas-Zarate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico. .,Laboratorio de Regeneración y Desarrollo Neural, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, 45221, Zapopan, Jalisco, Mexico.
| | - Graciela Gudiño-Cabrera
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Monica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico. .,Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, 45221, Zapopan, Jalisco, Mexico.
| |
Collapse
|
32
|
Kazmi Z, Fatima I, Perveen S, Malik SS. Monosodium glutamate: Review on clinical reports. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1295260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zehra Kazmi
- Microbiology and Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Iffat Fatima
- Department of Animal Sciences, Quaid-e-Azam University, Islamabad, Pakistan
| | - Shaghufta Perveen
- Microbiology and Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Saima Shakil Malik
- Microbiology and Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
33
|
Rosa SG, Quines CB, Stangherlin EC, Nogueira CW. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters. Physiol Behav 2016; 155:1-8. [DOI: 10.1016/j.physbeh.2015.11.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
|
34
|
Quines CB, Rosa SG, Velasquez D, Da Rocha JT, Neto JSS, Nogueira CW. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity. Behav Brain Res 2015; 301:161-7. [PMID: 26738966 DOI: 10.1016/j.bbr.2015.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022]
Abstract
Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats.
Collapse
Affiliation(s)
- Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Suzan G Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Daniela Velasquez
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Juliana T Da Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - José S S Neto
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil.
| |
Collapse
|
35
|
Rosa SG, Quines CB, da Rocha JT, Bortolatto CF, Duarte T, Nogueira CW. Antinociceptive action of diphenyl diselenide in the nociception induced by neonatal administration of monosodium glutamate in rats. Eur J Pharmacol 2015; 758:64-71. [DOI: 10.1016/j.ejphar.2015.03.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
36
|
Gudiño-Cabrera G, Ureña-Guerrero ME, Rivera-Cervantes MC, Feria-Velasco AI, Beas-Zárate C. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood-brain barrier function. Arch Med Res 2014; 45:653-9. [PMID: 25431840 DOI: 10.1016/j.arcmed.2014.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022]
Abstract
It is likely that monosodium glutamate (MSG) is the excitotoxin that has been most commonly employed to characterize the process of excitotoxicity and to improve understanding of the ways that this process is related to several pathological conditions of the central nervous system. Excitotoxicity triggered by neonatal MSG treatment produces a significant pathophysiological impact on adulthood, which could be due to modifications in the blood-brain barrier (BBB) permeability and vice versa. This mini-review analyzes this topic through brief descriptions about excitotoxicity, BBB structure and function, role of the BBB in the regulation of Glu extracellular levels, conditions that promote breakdown of the BBB, and modifications induced by neonatal MSG treatment that could alter the behavior of the BBB. In conclusion, additional studies to better characterize the effects of neonatal MSG treatment on excitatory amino acids transporters, ionic exchangers, and efflux transporters, as well as the role of the signaling pathways mediated by erythropoietin and vascular endothelial growth factor in the cellular elements of the BBB, should be performed to identify the mechanisms underlying the increase in neurovascular permeability associated with excitotoxicity observed in several diseases and studied using neonatal MSG treatment.
Collapse
Affiliation(s)
- Graciela Gudiño-Cabrera
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Monica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Martha C Rivera-Cervantes
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Alfredo I Feria-Velasco
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Carlos Beas-Zárate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México; División de Neurociencias, CIBO, IMSS, Guadalajara, Jalisco, México.
| |
Collapse
|
37
|
Abstract
Food elimination diets are defined and the history of their investigation in relation to attention-deficit/hyperactivity disorder (ADHD) is reviewed. After noting that a consensus has emerged that an elimination diet produces a small but reliable aggregate effect, the present review provides updated quantitative estimates of effect size and clinical response rates to elimination diets. It then highlights key issues that require research attention, in particular characterization of dietary responders. Finally, because some children may benefit, clinical guidelines at the present state of knowledge are summarized. It is concluded that updated trials of elimination diets are sorely needed for ADHD.
Collapse
|
38
|
Szabadfi K, Kiss P, Reglodi D, Fekete EM, Tamas A, Danyadi B, Atlasz T, Gabriel R. Urocortin 2 treatment is protective in excitotoxic retinal degeneration. ACTA ACUST UNITED AC 2014; 101:67-76. [PMID: 24311224 DOI: 10.1556/aphysiol.100.2013.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Urocortin 2 (Ucn 2) is a corticotrop releasing factor paralog peptide with many physiological functions and it has widespread distribution. There are some data on the cytoprotective effects of Ucn 2, but less is known about its neuro- and retinoprotective actions. We have previously shown that Ucn 2 is protective in ischemia-induced retinal degeneration. The aim of the present study was to examine the protective potential of Ucn 2 in monosodium-glutamate (MSG)-induced retinal degeneration by routine histology and to investigate cell-type specific effects by immunohistochemistry. Rat pups received MSG applied on postnatal days 1, 5 and 9 and Ucn 2 was injected intravitreally into one eye. Retinas were processed for histology and immunocytochemistry after 3 weeks. Immunolabeling was determined for glial fibrillary acidic protein, vesicular glutamate transporter 1, protein kinase Cα, calbindin, parvalbumin and calretinin. Retinal tissue from animals treated with MSG showed severe degeneration compared to normal retinas, but intravitreal Ucn 2 treatment resulted in a retained retinal structure both at histological and neurochemical levels: distinct inner retinal layers and rescued inner retinal cells (different types of amacrine and rod bipolar cells) could be observed. These findings support the neuroprotective function of Ucn 2 in MSG-induced retinal degeneration.
Collapse
Affiliation(s)
- K Szabadfi
- University of Pécs Department of Experimental Zoology and Neurobiology, Faculty of Sciences Ifjúság útja 6 H-7624 Pécs Hungary
| | - P Kiss
- PTE-MTA "Lendület" PACAP Research Team Department of Anatomy Pécs Hungary
| | - D Reglodi
- PTE-MTA "Lendület" PACAP Research Team Department of Anatomy Pécs Hungary
| | - E M Fekete
- The Scripps Research Institute La Jolla CA USA University of Wisconsin-Madison Department of Psychiatry Madison WI USA
| | - A Tamas
- PTE-MTA "Lendület" PACAP Research Team Department of Anatomy Pécs Hungary
| | - B Danyadi
- PTE-MTA "Lendület" PACAP Research Team Department of Anatomy Pécs Hungary
| | - T Atlasz
- University of Pécs Department of Sportbiology Pécs Hungary
| | - R Gabriel
- University of Pécs Department of Experimental Zoology and Neurobiology, Faculty of Sciences Ifjúság útja 6 H-7624 Pécs Hungary
| |
Collapse
|
39
|
Soares GDSF, Lima CB, Cavalcanti LC, Villacampa N, Castellano B, Guedes RCA. Brain effects of the lectin from Canavalia ensiformis in adult rats previously suckled in favorable and unfavorable conditions: A spreading depression and microglia immunolabeling study. Nutr Neurosci 2014; 18:307-15. [PMID: 24819023 DOI: 10.1179/1476830514y.0000000128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To evaluate in adult rats, previously suckled under favorable and unfavorable conditions, the brain electrophysiological and microglial effects of the treatment early in life with the lectin (ConA) from Canavalia ensiformis. METHODS Male Wistar newborn rats (n = 89) were suckled under favorable or unfavorable conditions, represented by litters with 6-7 pups or 12-14 pups (groups N6 and N12, respectively). From postnatal days 5-24, they were treated intraperitoneally with 1 or 10 mg/kg ConA (groups L1 and L10, respectively), or with saline solution (group Sal), or no treatment (group Naïve). At 90-120 days of age, cortical spreading depression (CSD) was recorded at two parietal points for 4 hours, and CSD parameters (velocity of propagation and amplitude and duration of the DC slow potential change) were measured. Fixative-perfused brain sections were reacted with anti-Iba1 antibodies to quantify immunolabeled microglia. RESULTS Compared with the control groups, ConA-treated animals dose-dependently presented with reduced CSD propagation velocities and increased amplitude and duration of the CSD slow potential change. Microglia Iba-1 immunoreactivity was lower in both nutritional groups treated with ConA, in comparison with the control groups. The CSD hemisphere presented with higher immunoreactivity compared with the CSD-free hemisphere. DISCUSSION Attenuation in CSD propagation and microglia reaction was associated in adulthood with ConA treatment during brain development, indicating that the lectin can affect the electrophysiological and microglial development, and suggesting long-lasting protective action of the lectin on the rat brain, which is not impeded by the unfavorable suckling condition.
Collapse
|
40
|
Quines CB, Rosa SG, Da Rocha JT, Gai BM, Bortolatto CF, Duarte MMMF, Nogueira CW. Monosodium glutamate, a food additive, induces depressive-like and anxiogenic-like behaviors in young rats. Life Sci 2014; 107:27-31. [PMID: 24802127 DOI: 10.1016/j.lfs.2014.04.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Monosodium glutamate (MSG) has been the target of research due to its toxicological effects. AIMS We investigated the depressive- and anxiogenic-like behaviors in rats exposed to neonatal subcutaneous injection of MSG. The involvement of the serotonergic system, by measuring [(3)H] serotonin (5-HT) uptake in cerebral cortices, and the hypothalamic pituitary adrenal (HPA) axis, by determining serum adrenocorticotropic hormone (ACTH) and corticosterone levels, was also examined. MATERIALS AND METHODS Male and female newborn Wistar rats were divided into control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 5th postnatal day. The behavioral tests [spontaneous locomotor activity, contextual fear conditioning, and forced swimming test (FST)] were performed from the 60th to 64th postnatal day. MSG-treated animals showed alteration in the spontaneous locomotor activity, an increase in the number of fecal pellets and the number of animal's vocalizations and urine occurrence, and a decrease in the grooming time. KEY FINDINGS The MSG exposure increased the immobility time in the FST and the freezing reaction in the contextual fear conditioning. Additionally, MSG treatment increased the [(3)H]5-HT uptake in the cerebral cortices of rats and induced a deregulation of HPA axis function (by increasing serum ACTH and corticosterone levels). SIGNIFICANCE In conclusion MSG-treated rats are more susceptible to develop anxiogenic- and depressive-like behaviors, which could be related to a dysfunction in the serotonergic system.
Collapse
Affiliation(s)
- Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Suzan G Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Juliana T Da Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Bibiana M Gai
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Cristiani F Bortolatto
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Marta Maria M F Duarte
- Departamento de Ciências da Saúde, Universidade Luterana do Brasil, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil.
| |
Collapse
|
41
|
Dief AE, Kamha ES, Baraka AM, Elshorbagy AK. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: A potential role for cyclic AMP protein kinase. Neurotoxicology 2014; 42:76-82. [DOI: 10.1016/j.neuro.2014.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/25/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
42
|
Lima CB, Soares GDSF, Vitor SM, Andrade-da-Costa BLDS, Castellano B, Guedes RCA. Spreading depression features and Iba1 immunoreactivity in the cerebral cortex of developing rats submitted to treadmill exercise after treatment with monosodium glutamate. Int J Dev Neurosci 2013; 33:98-105. [PMID: 24374255 DOI: 10.1016/j.ijdevneu.2013.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/09/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022] Open
Abstract
Physical exercise and excessive consumption of monosodium glutamate (MSG) can affect the morphological and electrophysiological organization of the brain during development. However, the interaction of both factors remains unclear. We analyzed the effect of this interaction on the excitability-related phenomenon known as cortical spreading depression (CSD) and the microglial reaction expressed as Iba1-immunolabeled cells in the rat motor cortex. MSG (2g/kg or 4g/kg) was administered every other day during the first 14 postnatal days. Treadmill exercise started at 21-23 days of life and lasted 3 weeks, 5 days/week, for 30min/day. At 45-60 days, CSD was recorded for 4h at two cortical points and the CSD parameters (velocity, amplitude, and duration of the negative potential change) calculated. Confirming previous observations, exercised rats presented with lower CSD velocities (3.29±0.18mm/min) than the sedentary group (3.80±0.18mm/min; P<0.05). MSG increased CSD velocities in the exercised rats compared to saline-treated and exercised animals in a dose-dependent manner (3.49±0.19, 4.05±0.18, and 3.27±0.26 for 2g/kg MSG, 4g/kg MSG, and saline, respectively; P<0.05). The amplitude (ranging from 14.3±5.9 to 18.7±6.2mV) and duration (46.7±11.1 to 60.5±11.6s) of the negative slow potential shift of the CSD were similar in all groups. Both exercise and MSG treatment increased Iba1 immunolabeling. The results confirm that physical exercise decelerates CSD propagation. However, it does not impede the CSD-accelerating action of MSG. These effects were accompanied by a cortical microglia reaction. Therefore, the data suggest that treadmill exercise early in life can influence the development of cortical electrical activity.
Collapse
Affiliation(s)
- Cássia Borges Lima
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, 50670901 Recife, Brazil
| | | | - Suênia Marcele Vitor
- Department of Nutrition, Universidade Federal de Pernambuco, 50670901 Recife, Brazil
| | | | - Bernardo Castellano
- Unit of Medical Histology, Institute of Neuroscience and Dept Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Spain
| | | |
Collapse
|
43
|
Neonatal treatment with monosodium glutamate lastingly facilitates spreading depression in the rat cortex. Life Sci 2013; 93:388-92. [DOI: 10.1016/j.lfs.2013.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/18/2013] [Accepted: 07/10/2013] [Indexed: 11/17/2022]
|
44
|
Zayachkivsky A, Lehmkuhle MJ, Fisher JH, Ekstrand JJ, Dudek FE. Recording EEG in immature rats with a novel miniature telemetry system. J Neurophysiol 2012; 109:900-11. [PMID: 23114207 DOI: 10.1152/jn.00593.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serial EEG recordings from immature rat pups are extremely difficult to obtain but important for analyzing animal models of neonatal seizures and other pediatric neurological conditions as well as normal physiology. In this report, we describe the features and applications of a novel miniature telemetry system designed to record EEG in rat pups as young as postnatal day 6 (P6). First, we have recorded electrographic seizure activity in two animal models of neonatal seizures, hypoxia- and kainate-induced seizures at P7. Second, we describe a viable approach for long-term continuous EEG monitoring of naturally reared rat pups implanted with EEG at P6. Third, we have used serial EEG recordings to record age-dependent changes in the background EEG signal as the animals matured from P7 to P11. The important advantages of using miniature wireless EEG technology are: 1) minimally invasive surgical implantation; 2) a device form-factor that is compatible with housing of rat pups with the dam and littermates; 3) serial recordings of EEG activity; and 4) low power consumption of the unit, theoretically allowing continuous monitoring for up to 2 yr without surgical reimplantation. The miniature EEG telemetry system provides a technical advance that allows researchers to record continuous and serial EEG recordings in neonatal rodent models of human neurological disorders, study the progression of the disease, and then assess possible therapies using quantitative EEG as an outcome measure. This new technical approach should improve animal models of human conditions that rely on EEG monitoring for diagnosis and therapy.
Collapse
Affiliation(s)
- A Zayachkivsky
- Dept. of Physiology, Univ. of Utah School of Medicine, Salt Lake City, UT 84108-6500, USA
| | | | | | | | | |
Collapse
|
45
|
López-Pérez S, Morales-Villagrán A, Ventura-Valenzuela J, Medina-Ceja L. Short- and long-term changes in extracellular glutamate and acetylcholine concentrations in the rat hippocampus following hypoxia. Neurochem Int 2012; 61:258-65. [DOI: 10.1016/j.neuint.2012.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/08/2012] [Accepted: 03/13/2012] [Indexed: 01/25/2023]
|
46
|
Morales-Villagrán A, Beltrán-Ramírez R, López-Pérez SJ, Palomera-Ávalos V, Medina-Ceja L. A Capillary Fraction Collector Coupled to a Fluorescence Reader: A Novel Device to Continuously Quantify Glutamate During Microdialysis. Neurochem Res 2012; 37:1457-64. [DOI: 10.1007/s11064-012-0736-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/12/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
47
|
Medina-Ceja L, Sandoval-García F, Pardo-Peña K. Effect of Early Glutamate Exposure on EAAT-3 and GAT-1 Protein Expression in Cells of the Dentate Gyrus and CA1 Region of the Adult Rat Hippocampus. Arch Med Res 2011; 42:433-8. [DOI: 10.1016/j.arcmed.2011.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|