1
|
Drollette ES, Pasupathi PA, Slutsky-Ganesh AB, Etnier JL. Take a Break for Memory Sake! Effects of Short Physical Activity Breaks on Inhibitory Control, Episodic Memory, and Event-Related Potentials in Children. Brain Sci 2024; 14:626. [PMID: 39061367 PMCID: PMC11274896 DOI: 10.3390/brainsci14070626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The pervasive sedentary lifestyle exacerbated by the COVID-19 pandemic has significantly reduced physical activity (PA) among school-age children, necessitating innovative strategies to evaluate short PA breaks that are feasible in a classroom setting. This study explored the cognitive and neurophysiological (electroencephalography; EEG) impacts of short bouts of different PA modalities on inhibitory control (flanker task) and episodic memory (word recognition task) in children. Utilizing a within-participants cross-over design, thirty-six children (n = 36; 9-12 years old) attended the lab on three separate days with each visit including either a 9 min bout of sustained moderate-intensity cycling, high-intensity interval exercise (HIIE), or seated rest. Event-related potentials (ERPs) were assessed during the flanker task (P3 component) and the word recognition task (LPC and FN400 components) to elucidate the neural mechanisms underpinning behavioral outcomes. Findings indicated no differences in flanker performance but greater episodic memory recall for HIIE compared to seated rest. Neurophysiological results revealed no differences for P3, but notably larger amplitude for LPC and FN400 postcycling, particularly over parietal electrode sites. These results underscore the potential of short PA breaks to improve cognitive and neurocognitive function in children, offering a feasible integration strategy into daily school routines without extensive time commitment.
Collapse
Affiliation(s)
- Eric S. Drollette
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC 27412, USA; (P.A.P.); (A.B.S.-G.); (J.L.E.)
| | | | | | | |
Collapse
|
2
|
Kuo HI, Sun JL, Nitsche M, Chang JC. An investigation of the acute effects of aerobic exercise on executive function and cortical excitability in adolescents with attention deficit hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02467-x. [PMID: 38727819 DOI: 10.1007/s00787-024-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 09/28/2024]
Abstract
Previous studies have shown that aerobic exercise has beneficial effects on executive function in adolescents with attention-deficit hyperactivity disorder (ADHD). The underlying mechanisms could be partially due to aerobic exercise-induced cortical excitability modulation. The aim of this study was to explore the effects of acute aerobic exercise on executive functions and cortical excitability and the association between these phenomena in adolescents with ADHD. The study was conducted using a complete crossover design. Executive functions (inhibitory control, working memory, and planning) and cortical excitability were assessed in twenty-four drug-naïve adolescents with ADHD before and after acute aerobic exercise or a control intervention. Inhibitory control, working memory, and planning improved after acute aerobic exercise in adolescents with ADHD. Moreover, cortical excitability monitored by transcranial magnetic stimulation (TMS) decreased after intervention in this population. Additionally, improvements in inhibitory control and working memory performance were associated with enhanced cortical inhibition. The findings provide indirect preliminary evidence for the assumption that changes in cortical excitability induced by aerobic exercise partially contribute to improvements in executive function in adolescents with ADHD.
Collapse
Affiliation(s)
- Hsiao-I Kuo
- School and graduate institute of physical therapy, College of Medicine, National Taiwan University, No.17, Xu-Zhou Road, Taipei, 10055, Taiwan.
| | - Jia-Ling Sun
- School and graduate institute of physical therapy, College of Medicine, National Taiwan University, No.17, Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Michael Nitsche
- Department Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Jung-Chi Chang
- Department of Psychiatry, National Taiwan University Hospital, No. 7, Zhongshan S Road, Taipei, 10055, Taiwan
| |
Collapse
|
3
|
He LW, Guo XJ, Zhao C, Rao JS. Rehabilitation Training after Spinal Cord Injury Affects Brain Structure and Function: From Mechanisms to Methods. Biomedicines 2023; 12:41. [PMID: 38255148 PMCID: PMC10813763 DOI: 10.3390/biomedicines12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal cord injury (SCI) is a serious neurological insult that disrupts the ascending and descending neural pathways between the peripheral nerves and the brain, leading to not only functional deficits in the injured area and below the level of the lesion but also morphological, structural, and functional reorganization of the brain. These changes introduce new challenges and uncertainties into the treatment of SCI. Rehabilitation training, a clinical intervention designed to promote functional recovery after spinal cord and brain injuries, has been reported to promote activation and functional reorganization of the cerebral cortex through multiple physiological mechanisms. In this review, we evaluate the potential mechanisms of exercise that affect the brain structure and function, as well as the rehabilitation training process for the brain after SCI. Additionally, we compare and discuss the principles, effects, and future directions of several rehabilitation training methods that facilitate cerebral cortex activation and recovery after SCI. Understanding the regulatory role of rehabilitation training at the supraspinal center is of great significance for clinicians to develop SCI treatment strategies and optimize rehabilitation plans.
Collapse
Affiliation(s)
- Le-Wei He
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing 100068, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| |
Collapse
|
4
|
Gan Y, Dong Y, Dai S, Shi H, Li X, Wang F, Fu Y, Dong Y. The different cell-specific mechanisms of voluntary exercise and forced exercise in the nucleus accumbens. Neuropharmacology 2023; 240:109714. [PMID: 37690678 DOI: 10.1016/j.neuropharm.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Physical inactivity is a global epidemic. People who take the initiative to exercise will feel pleasure during the exercise process and stick with it for a long time, while people who passively ask for exercise will feel pain and cannot stick with it. However, the neural mechanisms underlying voluntary and forced exercise remain unclear. Here, we report that voluntary running increased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSC) but decreased membrane excitability in D1R-MSNs, whereas D2R-MSNs did not change in mEPSC and membrane excitability. Forced running increased the frequency of mEPSC and membrane excitability in D2R-MSNs, but D1R-MSNs did not change, which may be the mechanism by which forced exercise has a non-rewarding effect. These findings provide new insights into how voluntary and forced exercise mediate reward and non-reward effects.
Collapse
Affiliation(s)
- Yixia Gan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yigang Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Shanghua Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Haifeng Shi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xinyi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Fanglin Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yi Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Lim JS, Lee J, Kang Y, Park HT, Kim DE, Cha JK, Park TH, Heo JH, Lee KB, Park JM, Oh MS, Kim EG, Chang DI, Heo SH, Park MS, Park H, Yi S, Lee YB, Park KY, Lee SJ, Kim JG, Lee J, Cho KH, Rha JH, Kim YI, Lee JH, Choi JC, Oh KM, Kwon JH, Kim C, Park JH, Jung KH, Sung SM, Chung JW, Lee YS, Kim HY, Cho HJ, Park JW, Moon WJ, Bae HJ. Efficacy and safety of oxiracetam in patients with vascular cognitive impairment: A multicenter, randomized, double-blinded, placebo-controlled, phase IV clinical trial. Contemp Clin Trials 2023; 126:107108. [PMID: 36724841 DOI: 10.1016/j.cct.2023.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Oxiracetam may have a modest effect on preventing cognitive decline. Exercise can also enhance cognitive function. This trial aims to investigate the effect of oxiracetam on post-stroke cognitive impairment and explore whether this effect is modified by exercise. Furthermore, the mechanisms that mediate this effect will be investigated through a neural network analysis. METHODS This is a multicenter, randomized, double-blind, placebo-controlled phase IV trial. Patients who complained of cognitive decline 3 months after stroke and had a high risk of cognitive decline were eligible. Patients were randomly assigned to receive either 800 mg of oxiracetam or placebo twice daily for 36 weeks. After randomization, a predetermined exercise protocol was provided to each participant, and the degree of physical activity was assessed using wrist actigraphy at 4, 12, 24, and 36 weeks. Resting-state functional MRI was obtained in baseline and 36-week follow-up. Co-primary endpoints are changes in the Mini-Mental State Examination and Clinical Dementia Rating-Sum of Boxes. Secondary endpoints include changes in the NINDS-CSN VCIHS-Neuropsychology Protocol, Euro QoL, patient's global assessment, and functional network connectivity. If there is a significant difference in physical activity between the two groups, the interaction effect between physical activity and the treatment group will be examined. A total of 500 patients were enrolled from February 2018, and the last patient's final follow-up was completed in September 2022. CONCLUSION This trial is meaningful not only to prove the efficacy of oxiracetam, but also evaluate whether exercise can modify the effects of medication and how cognitive function can be restored. Trial registrationhttp://cris.nih.go.kr (KCT0005137).
Collapse
Affiliation(s)
- Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Juneyoung Lee
- Department of Biostatistics, Korea University, Seoul, Republic of Korea
| | - Yeonwook Kang
- Department of Psychology, Hallym University, Chuncheon, Republic of Korea
| | - Hyun-Tae Park
- Department of Health Sciences, Graduate School, Dong-A University, Busan, Republic of Korea
| | - Dong-Eog Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Ilsan, Republic of Korea
| | - Jae-Kwan Cha
- Department of Neurology, Dong-A University Hospital, Busan, Republic of Korea
| | - Tai Hwan Park
- Department of Neurology, Seoul Medical Center, Seoul, Republic of Korea
| | - Jae-Hyuk Heo
- Department of Neurology, Seoul Medical Center, Seoul, Republic of Korea
| | - Kyung Bok Lee
- Department of Neurology, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Jong-Moo Park
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Republic of Korea
| | - Mi Sun Oh
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Eung-Gyu Kim
- Department of Neurology, Inje University Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Dae-Il Chang
- Department of Neurology, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sung Hyuk Heo
- Department of Neurology, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Man-Seok Park
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - HyunYoung Park
- Department of Neurology, Wonkwang University Hospital, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - SangHak Yi
- Department of Neurology, Wonkwang University Hospital, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Yeong Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Kwang-Yeol Park
- Department of Neurology, Chung-Ang University Medical Center, Chung-Ang University College of Medicine, Republic of Korea
| | - Soo Joo Lee
- Department of Neurology, Daejeon Eulji Medical Center, Eulji University, School of Medicine, Daejeon, Republic of Korea
| | - Jae Guk Kim
- Department of Neurology, Daejeon Eulji Medical Center, Eulji University, School of Medicine, Daejeon, Republic of Korea
| | - Jun Lee
- Department of Neurology, Yeungnam University Hospital, Yeungnam University School of Medicine, Daegu, Republic of Korea
| | - Kyung-Hee Cho
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joung-Ho Rha
- Department of Neurology, Inha University Hospital, Inha University College of Medicine, Incheon, Republic of Korea
| | - Yeong-In Kim
- Department of Neurology, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Jun Hong Lee
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Ilsan, Republic of Korea
| | - Jay Chol Choi
- Department of Neurology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Kyung-Mi Oh
- Department of Neurology, Korea Univeristy Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jee-Hyun Kwon
- Department of Neurology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, Republic of Korea
| | - Chulho Kim
- Department of Neurology, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jong-Ho Park
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Min Sung
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Republic of Korea
| | - Jong-Won Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Seok Lee
- Department of Neurology, Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hahn Young Kim
- Department of Neurology, Konkuk University Hospital, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Ji Cho
- Department of Neurology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Jeong Wook Park
- Department of Neurology, Uijeongbu St. Mary's Hospital, Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
6
|
Hu J, Liu PL, Hua Y, Gao BY, Wang YY, Bai YL, Chen C. Constraint-induced movement therapy enhances AMPA receptor-dependent synaptic plasticity in the ipsilateral hemisphere following ischemic stroke. Neural Regen Res 2021; 16:319-324. [PMID: 32859791 PMCID: PMC7896237 DOI: 10.4103/1673-5374.290900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Constraint-induced movement therapy (CIMT) can promote the recovery of motor function in injured upper limbs following stroke, which may be associated with upregulation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) at synapses in the ipsilateral sensorimotor cortex in our previous study. However, AMPAR distribution is tightly regulated, and only AMPARs on the postsynaptic membrane can mediate synaptic transmission. We speculated that synaptic remodeling induced by movement-associated synaptic activity can promote functional recovery from stroke. To test this hypothesis, we compared AMPAR expression on the postsynaptic membrane surface in a rat model of ischemic stroke induced by middle cerebral artery occlusion (MCAO) with versus without CIMT, which consisted of daily running wheel training for 2 weeks starting on day 7 after MCAO. The results showed that CIMT increased the number of glutamate receptor (GluR)2-containing functional synapses in the ipsilateral sensorimotor cortex, and reduced non-GluR2 AMPARs in the ipsilateral sensorimotor cortex and hippocampal CA3 region. In addition, CIMT enhanced AMPAR expression on the surface of post-synaptic membrane in the ipsilateral sensorimotor cortex and hippocampus. Thus, CIMT promotes the recovery of motor function of injured upper limbs following stroke by enhancing AMPAR-mediated synaptic transmission in the ischemic hemisphere. These findings provide supporting evidence for the clinical value of CIMT for restoring limb movement in stroke patients. All experimental procedures and protocols were approved by the Department of Laboratory Animal Science of Fudan University, China (approval No. 201802173S) on March 3, 2018.
Collapse
Affiliation(s)
- Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Pei-Le Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bei-Yao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Long Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chan Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Effects of exercise on proactive interference in memory: potential neuroplasticity and neurochemical mechanisms. Psychopharmacology (Berl) 2020; 237:1917-1929. [PMID: 32488351 DOI: 10.1007/s00213-020-05554-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Proactive interference occurs when consolidated memory traces inhibit new learning. This kind of interference decreases the efficiency of new learning and also causes memory errors. Exercise has been shown to facilitate some types of cognitive function; however, whether exercise reduces proactive interference to enhance learning efficiency is not well understood. Thus, this review discusses the effects of exercise on proactive memory interference and explores potential mechanisms, such as neurogenesis and neurochemical changes, mediating any effect.
Collapse
|
8
|
Hu J, Li C, Hua Y, Liu P, Gao B, Wang Y, Bai Y. Constraint-induced movement therapy improves functional recovery after ischemic stroke and its impacts on synaptic plasticity in sensorimotor cortex and hippocampus. Brain Res Bull 2020; 160:8-23. [PMID: 32298779 DOI: 10.1016/j.brainresbull.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 01/28/2023]
Abstract
Constraint-induced movement therapy (CIMT) has proven to be an effective way to restore functional deficits following stroke in human and animal studies, but its underlying neural plasticity mechanism remains unknown. Accumulating evidence indicates that rehabilitation after stroke is closely associated with synaptic plasticity. We therefore investigated the impact of CIMT on synaptic plasticity in ipsilateral and contralateral brain of rats following stroke. Rats were subjected to 90 minutes of transient middle cerebral artery occlusion (MCAO). CIMT was performed from 7 days after stroke and lasted for two weeks. Modified Neurology Severity Score (mNSS) and the ladder rung walking task tests were conducted at 7,14 and 21 days after stroke. Golgi-Cox staining was used to observe the plasticity changes of dendrites and dendritic spines. The expression of glutamate receptors (GluR1, GluR2 and NR1) were examined by western blot. Our data suggest that the dendrites and dendritic spines are damaged to varying degrees in bilateral sensorimotor cortex and hippocampus after acute stroke. CIMT treatment enhances the plasticity of dendrites and dendritic spines in the ipsilateral and contralateral sensorimotor cortex, increases the expression of synaptic GluR2 in ipsilateral sensorimotor cortex, which may be mechanisms for CIMT to improve functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peile Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beiyao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuyuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Havekes R, Aton SJ. Impacts of Sleep Loss versus Waking Experience on Brain Plasticity: Parallel or Orthogonal? Trends Neurosci 2020; 43:385-393. [PMID: 32459991 DOI: 10.1016/j.tins.2020.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Recent studies on the effects of sleep deprivation on synaptic plasticity have yielded discrepant results. Sleep deprivation studies using novelty exposure as a means to keep animals awake suggests that sleep (compared with wake) leads to widespread reductions in net synaptic strength. By contrast, sleep deprivation studies using approaches avoiding novelty-induced arousal (i.e., gentle handling) suggest that sleep can promote synaptic growth and strengthening. How can these discrepant findings be reconciled? Here, we discuss how varying methodologies for the experimental disruption of sleep (with differential introduction of novel experiences) could fundamentally alter the experimental outcome with regard to synaptic plasticity. Thus, data from experiments aimed at assessing the relative impact of sleep versus wake on the brain may instead reflect the quality of the waking experience itself. The highlighted work suggests that brain plasticity resulting from novel experiences versus wake per se has unique and distinct features.
Collapse
Affiliation(s)
- Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, Groningen, The Netherlands.
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Swenson S, Blum K, McLaughlin T, Gold MS, Thanos PK. The therapeutic potential of exercise for neuropsychiatric diseases: A review. J Neurol Sci 2020; 412:116763. [PMID: 32305746 DOI: 10.1016/j.jns.2020.116763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Exercise is known to have a myriad of health benefits. There is much to be learned from the effects of exercise and its potential for prevention, attenuation and treatment of multiple neuropsychiatric diseases and behavioral disorders. Furthermore, recent data and research on exercise benefits with respect to major health crises, such as, that of opioid and general substance use disorders, make it very important to better understand and review the mechanisms of exercise and how it could be utilized for effective treatments or adjunct treatments for these diseases. In addition, mechanisms, epigenetics and sex differences are examined and discussed in terms of future research implications.
Collapse
Affiliation(s)
- Sabrina Swenson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Western Univesity Health Sciences, Graduate College, Pomona, CA, USA
| | | | - Mark S Gold
- Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Hiroki Abe
- From the Department of Physiology, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan (H.A., S.J., T.T.).,Department of Neurology, National Center of Neurology and Psychiatry Hospital, Tokyo, Japan (H.A.)
| | - Susumu Jitsuki
- From the Department of Physiology, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan (H.A., S.J., T.T.)
| | - Takuya Takahashi
- From the Department of Physiology, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan (H.A., S.J., T.T.)
| |
Collapse
|
12
|
Kartinah NT, Yolanda S, Bariroh T. The effects of intensity and duration of aerobic exercise on spatial memory function in male Wistar rats. MEDICAL JOURNAL OF INDONESIA 2019. [DOI: 10.13181/mji.v28i3.1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Memory is a vital function of the brain. Aerobic exercise has a positive effect on memory’s function, but the appropriate combination of intensity and duration of aerobic exercise is still unknown. This study was aimed to investigate the effect of optimum combinations of intensity and duration of aerobic exercise on spatial memory function.
METHODS In this study, the authors performed in vivo experiment using 20 male Wistar rats (6-month-old). They were randomly divided into four groups: (1) low-intensity and short duration aerobic exercise group (L–S); (2) low-intensity and long duration aerobic exercise group (L–L); (3) high-intensity and short duration aerobic exercise group (H– S); and (4) high-intensity and long duration aerobic exercise group (H–L). The aerobic exercise treatment of each group was conducted for three weeks with a frequency of five days a week. The memory function was assessed with the help of water-E-maze on week 0, 1, 2, and 3 (a total of four times).
RESULTS This study indicates that the central nervous system responds to aerobic exercise as an external stimulus differently depending on the combinations of intensity and duration. Moreover, this study demonstrates that changes in memory functions are best observed in the group with low-intensity and long duration aerobic exercise.
CONCLUSIONS The combination of low-intensity and long duration of aerobic exercise for animal study can improve spatial memory functions better than any other combinations of intensity and duration of aerobic exercises in male Wistar rats.
Collapse
|
13
|
Sanchez V, Bakhti-Suroosh A, Chen A, Brunzell DH, Erisir A, Lynch WJ. Exercise during abstinence normalizes ultrastructural synaptic plasticity associated with nicotine-seeking following extended access self-administration. Eur J Neurosci 2019; 50:2707-2721. [PMID: 30888721 PMCID: PMC6742551 DOI: 10.1111/ejn.14408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
Abstract
Nicotine-craving progressively increases, or incubates, over abstinence following extended access self-administration. While not yet examined for nicotine, the incubation of cocaine-seeking is accompanied by changes in synaptic plasticity in the nucleus accumbens. Here, we determined whether such changes also accompany enhanced nicotine-seeking following extended access self-administration and abstinence, and whether exercise, a potential intervention for nicotine addiction, may exert its efficacy by normalizing these changes. Given that in humans, tobacco/nicotine use begins during adolescence, we used an adolescent-onset model. Nicotine-seeking was assessed in male rats following extended access nicotine or saline self-administration (23-hr/day, 10 days) and 10 days of abstinence, conditions known to induce the incubation of nicotine-seeking, using a within-session extinction/cue-induced reinstatement procedure. A subset of rats had 2-hr/day access to a running wheel during abstinence. Ultrastructural alterations of synapses in the nucleus accumbens core and shell were examined using electron microscopy. Nicotine-seeking was elevated following extended access self-administration and abstinence (in sedentary group), and levels of seeking were associated with an increase in the density of asymmetric (excitatory) and symmetric (inhibitory) synapses onto dendrites in the core, as well as longer asymmetric synapses onto spines, a marker of synaptic potentiation, in both the core and shell. Exercise normalized each of these changes; however, in the shell, exercise and nicotine similarly increased the synapse length. Together, these findings indicate an association between nicotine-seeking and synaptic plasticity in the nucleus accumbens, particularly the core, and indicate that the efficacy of exercise to reduce nicotine-seeking may be mediated by reversing these adaptations.
Collapse
Affiliation(s)
- Victoria Sanchez
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Andrew Chen
- Department of Psychology, University of Virginia, Charlottesville, Virginia
| | - Darlene H Brunzell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, Virginia
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
14
|
A Single Session of Aerobic Exercise Mediates Plasticity-Related Phosphorylation in both the Rat Motor Cortex and Hippocampus. Neuroscience 2019; 412:160-174. [PMID: 31181370 DOI: 10.1016/j.neuroscience.2019.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/23/2022]
Abstract
A single session of aerobic exercise may offer one means to "prime" motor regions to be more receptive to the acquisition of a motor skill; however, the mechanisms whereby this priming may occur are not clear. One possible explanation may be related to the post-translational modification of plasticity-related receptors and their associated intracellular signaling molecules, given that these proteins are integral to the development of synaptic plasticity. In particular, phosphorylation governs the biophysical properties (e.g., Ca2+ conductance) and the migratory patterns (i.e., trafficking) of plasticity-related receptors by altering the relative density of specific receptor subunits at synapses. We hypothesized that a single session of exercise would alter the subunit phosphorylation of plasticity-related receptors (AMPA receptors, NMDA receptors) and signaling molecules (PKA, CaMKII) in a manner that would serve to prime motor cortex. Young, male Sprague-Dawley rats (n = 24) were assigned to either exercise (Moderate, Exhaustion), or non-exercising (Sedentary) groups. Immediately following a single session of treadmill exercise, whole tissue homogenates were prepared from both the motor cortex and hippocampus. We observed a robust (1.2-2.0× greater than sedentary) increase in tyrosine phosphorylation of AMPA (GluA1,2) and NMDA (GluN2A,B) receptor subunits, and a clear indication that exercise preferentially affects pPKA over pCaMKII. The changes were found, specifically, following moderate, but not maximal, acute aerobic exercise in both motor cortex and hippocampus. Given the requirement for these proteins during the early phases of plasticity induction, the possibility exists that exercise-induced priming may occur by altering the phosphorylation of plasticity-related proteins.
Collapse
|
15
|
Leem YH, Park JS, Chang H, Park J, Kim HS. Exercise Prevents Memory Consolidation Defects Via Enhancing Prolactin Responsiveness of CA1 Neurons in Mice Under Chronic Stress. Mol Neurobiol 2019; 56:6609-6625. [DOI: 10.1007/s12035-019-1560-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
|
16
|
Barros L, Eichwald T, Solano AF, Scheffer D, da Silva RA, Gaspar JM, Latini A. Epigenetic modifications induced by exercise: Drug-free intervention to improve cognitive deficits associated with obesity. Physiol Behav 2019; 204:309-323. [PMID: 30876771 DOI: 10.1016/j.physbeh.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Obesity and metabolic disorders are increasing worldwide and are associated with brain atrophy and dysfunction, which are risk factors for late-onset dementia and Alzheimer's disease. Epidemiological studies demonstrated that changes in lifestyle, including the frequent practice of physical exercise are able to prevent and treat not only obesity/metabolic disorders, but also to improve cognitive function and dementia. Several biochemical pathways and epigenetic mechanisms have been proposed to understand the beneficial effects of physical exercise on cognition. This manuscript revised central ongoing research on epigenetic mechanisms induced by exercise and the beneficial effects on obesity-associated cognitive decline, highlighting potential mechanistic mediators.
Collapse
Affiliation(s)
- Leonardo Barros
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alexandre Francisco Solano
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Débora Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rodrigo Augusto da Silva
- Departamento de Química e Bioquímica, Laboratório de Bioensaios e Dinâmica Celular, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Botucatu, Botucatu, Brazil
| | - Joana M Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Programa de Pós-Graduação em Bioquímica, UFSC, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
17
|
Thacker JS, Yeung D, Chambers PJ, Tupling AR, Staines WR, Mielke JG. Single session, high-intensity aerobic exercise fails to affect plasticity-related protein expression in the rat sensorimotor cortex. Behav Brain Res 2019; 359:853-860. [DOI: 10.1016/j.bbr.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/25/2022]
|
18
|
Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast 2018; 4:17-52. [PMID: 30564545 PMCID: PMC6296262 DOI: 10.3233/bpl-180069] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 02/06/2023] Open
Abstract
Physical activity plays an essential role in maintaining a healthy body, yet it also provides unique benefits for the vascular and cellular systems that sustain a healthy brain. While the benefit of exercise has been observed in humans of all ages, the availability of preclinical models has permitted systematic investigations into the mechanisms by which exercise supports and protects the brain. Over the past twenty-five years, rodent models have shown that increased physical activity elevates neurotrophic factors in the hippocampal and cortical areas, facilitating neurotransmission throughout the brain. Increased physical activity (such as by the voluntary use of a running wheel or regular, timed sessions on a treadmill) also promotes proliferation, maturation and survival of cells in the dentate gyrus, contributing to the process of adult hippocampal neurogenesis. In this way, rodent studies have tremendous value as they demonstrate that an 'active lifestyle' has the capacity to ameliorate a number of age-related changes in the brain, including the decline in adult neurogenesis. Moreover, these studies have shown that greater physical activity may protect the brain health into advanced age through a number of complimentary mechanisms: in addition to upregulating factors in pro-survival neurotrophic pathways and enhancing synaptic plasticity, increased physical activity promotes brain health by supporting the cerebrovasculature, sustaining the integrity of the blood-brain barrier, increasing glymphatic clearance and proteolytic degradation of amyloid beta species, and regulating microglia activation. Collectively, preclinical studies demonstrate that exercise initiates diverse and powerful neuroprotective pathways that may converge to promote continued brain health into old age. This review will draw on both seminal and current literature that highlights mechanisms by which exercise supports the functioning of the brain, and aids in its protection.
Collapse
Affiliation(s)
- Laura M. Vecchio
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Ying Meng
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Kristiana Xhima
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Nir Lipsman
- Institute of Medical Sciences, University of Toronto, ON, Canada
- Physical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
| | - Clement Hamani
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
19
|
Wingate S, Crawford L, Frith E, Loprinzi PD. Experimental investigation of the effects of acute exercise on memory interference. Health Promot Perspect 2018; 8:208-214. [PMID: 30087844 PMCID: PMC6064757 DOI: 10.15171/hpp.2018.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/19/2018] [Indexed: 01/11/2023] Open
Abstract
Background: Among other factors, including the decay theory, interfering stimuli (proactive and retroactive interference; PI and RI) may influence the encoding and consolidation of target information. Acute exercise can enhance episodic memory function, but no experiments have evaluated whether exercise can attenuate PI and RI effects on memory, which was the purpose of this experiment. Methods: Twenty young adults were randomized (via computer program) into one of 6 experimental groups (N=120, n=20 per group), including 3 PI (G1, G2, and G3) and 3 RI groups (G4, G5, and G6). Those in G1 and G4 exercised prior to a 10-list AB/AC paradigm with interference; G2 and G5 did not exercise but had interference; and G3 and G6 were the control groups with no exercise and no interference. Results: The mean (95% CI) number of correctly recalled word pairs across the 6 respective groups was 2.4 (1.2-3.5), 2.4 (1.3-3.5), 5.1 (3.9-6.3), 6.9 (5.7-8.0), 5.0 (4.2-5.8), and 6.1 (5.1-6.9) (FANOVA=11.7; P<0.001; η2=0.33). For PI, the control group (group 3) correctly recalled more word pairs (5.1) when compared to the exercise interference group (2.4; group 1) or the non-exercise interference group (2.4; group 2). The difference between group 1 and 3 (2.4 vs.5.1) was significant (P=0.003), as was group 2 vs. 3 (P=0.002). For the RI groups (groups 4-6),group 4 differed from group 5 (6.9 vs. 5.0; P=0.01), but there was no difference between group 4 and group 6 (P=0.25) or group 5 and group 6 (P=0.09). Conclusion: These preliminary findings suggest that acute exercise may be more beneficial for RI compared to PI, but additional experimental work is needed.
Collapse
Affiliation(s)
- Savanna Wingate
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA
| | - Lindsay Crawford
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA
| | - Emily Frith
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA
| | - Paul D Loprinzi
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
20
|
Loprinzi PD, Sng E, Frith E. 'Memorcise': implications for patient compliance and medication adherence. PHYSICIAN SPORTSMED 2018; 46:21-23. [PMID: 29111867 DOI: 10.1080/00913847.2018.1402664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Paul D Loprinzi
- a Department of Health, Exercise Science, and Recreation Management , The University of Mississippi , Oxford , MS , USA
| | - Eveleen Sng
- a Department of Health, Exercise Science, and Recreation Management , The University of Mississippi , Oxford , MS , USA
| | - Emily Frith
- a Department of Health, Exercise Science, and Recreation Management , The University of Mississippi , Oxford , MS , USA
| |
Collapse
|
21
|
Leem YH. The potential role of exercise in chronic stress-related changes in AMPA receptor phenotype underlying synaptic plasticity. J Exerc Nutrition Biochem 2017; 21:11-15. [PMID: 29370668 PMCID: PMC6373914 DOI: 10.20463/jenb.2017.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/31/2017] [Indexed: 11/26/2022] Open
Abstract
[Purpose] Chronic stress can cause disturbances in synaptic plasticity, such as longterm potentiation, along with behavioral defects including memory deficits. One major mechanism sustaining synaptic plasticity involves the dynamics and contents of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in the central nervous system. In particular, chronic stress-induced disruption of AMPARs includes it abnormal expression, trafficking, and calcium conductance at glutamatergic synapses, which contributes to synaptic plasticity at excitatory synapses. Exercise has the effect of promoting synaptic plasticity in neurons. However, the contribution of exercise to AMPAR behavior under chronic stressful maladaptation remains unclear. [Methods] The present article reviews the information about the chronic stress-related synaptic plasticity and the role of exercise from the previous-published articles. [Results] AMPAR-mediated synaptic transmission is an important for chronic stress-related changes of synaptic plasticity, and exercise may at least partly contribute to these episodes. [Conclusion] The present article discusses the relationship between AMPARs and synaptic plasticity in chronic stress, as well as the potential role of exercise.
Collapse
|
22
|
Leem YH, Chang H. Arc/Arg3.1 protein expression in dorsal hippocampal CA1, a candidate event as a biomarker for the effects of exercise on chronic stress-evoked behavioral abnormalities. J Exerc Nutrition Biochem 2017; 21:45-51. [PMID: 29370673 PMCID: PMC5772070 DOI: 10.20463/jenb.2017.0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/16/2017] [Indexed: 12/19/2022] Open
Abstract
[Purpose] Chronic stress is a risk factor for behavioral deficits, including impaired memory processing and depression. Exercise is well known to have beneficial impacts on brain health. [Methods] Mice were forced to treadmill running (4-week) during chronic restraint stress (6h/21d), and then behavioral tests were conducted by Novel object recognition, forced swimming test: FST, sociality test: SI. Dissected brain was stained with anti-calbindin-d28k and anti-Arc antibodies. Also, mice were treated with CX546 intraperitoneally during chronic restraint stress, and behavioral tests were assessed using Morris water maze, FST, and SI. Dissected brain was stained with anti-Arc antibody. [Results] The current study demonstrated that chronic stress-induced impairment of memory consolidation and depression-like behaviors, along with the changes in calbindin-d28k and Arc protein levels in the hippocampal CA1 area, were attenuated by regular treadmill running. Further, prolonged ampakine treatment prevented chronic stress-evoked behavioral abnormalities and nuclear Arc levels in hippocampal CA1 neurons. Nuclear localization of Arc protein in hippocampal CA1 neurons, but not total levels, was correlated with behavioral outcome in chronically stressed mice in response to a regular exercise regimen. [Conclusion] These results suggest that nuclear levels of Arc are strongly associated with behavioral changes, and highlight the role of exercise acting through an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated mechanisms in a chronic stress-induced maladaptive condition.
Collapse
|
23
|
Frith E, Sng E, Loprinzi PD. Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory. Eur J Neurosci 2017; 46:2557-2564. [PMID: 28922507 DOI: 10.1111/ejn.13719] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022]
Abstract
The broader purpose of this study was to examine the temporal effects of high-intensity exercise on learning, short-term and long-term retrospective memory and prospective memory. Among a sample of 88 young adult participants, 22 were randomized into one of four different groups: exercise before learning, control group, exercise during learning, and exercise after learning. The retrospective assessments (learning, short-term and long-term memory) were assessed using the Rey Auditory Verbal Learning Test. Long-term memory including a 20-min and 24-hr follow-up assessment. Prospective memory was assessed using a time-based procedure by having participants contact (via phone) the researchers at a follow-up time period. The exercise stimulus included a 15-min bout of progressive maximal exertion treadmill exercise. High-intensity exercise prior to memory encoding (vs. exercise during memory encoding or consolidation) was effective in enhancing long-term memory (for both 20-min and 24-h follow-up assessments). We did not observe a differential temporal effect of high-intensity exercise on short-term memory (immediate post-memory encoding), learning or prospective memory. The timing of high-intensity exercise may play an important role in facilitating long-term memory.
Collapse
Affiliation(s)
- Emily Frith
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, 38677, USA
| | - Eveleen Sng
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, 38677, USA
| | - Paul D Loprinzi
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
24
|
Motor Skills Training Enhances α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Subunit mRNA Expression in the Ipsilateral Sensorimotor Cortex and Striatum of Rats Following Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2017; 26:2232-2239. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 01/22/2023] Open
|
25
|
Loprinzi PD, Edwards MK, Frith E. Potential avenues for exercise to activate episodic memory-related pathways: a narrative review. Eur J Neurosci 2017; 46:2067-2077. [PMID: 28700099 DOI: 10.1111/ejn.13644] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
Memory function plays an important role in activities of daily living, and consequently, quality and quantity of life. In this narrative review, we discuss the anatomical components of episodic memory, including the structure of the hippocampus and the routes of communication to and from this structure. We also highlight cellular traces of memory, such as the engram cell and pathway. To provide etiological insight, the biological mechanisms of episodic memory are discussed, including factors subserving memory encoding (e.g., cognitive attention, neuroelectrical indices), consolidation (i.e., synaptic and brain systems level), and retrieval (e.g., availability of cues, context-dependent, state-dependent, and cognitive processing). Central to this manuscript, we highlight how exercise may influence each of these aforementioned parameters (e.g., exercise-induced hippocampal growth, synaptic plasticity, and cue retrieval) and then discuss the implications of these findings to enhance and preserve memory function. Collectively, this narrative review briefly summarizes potential mechanisms of episodic memory, and how exercise may activate these mechanistic pathways.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Jackson Heart Study Vanguard Center at Oxford, Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Meghan K Edwards
- Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Emily Frith
- Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| |
Collapse
|
26
|
Mazur FG, Oliveira LFG, Cunha MP, Rodrigues ALS, Pértile RAN, Vendruscolo LF, Izídio GS. Effects of physical exercise and social isolation on anxiety-related behaviors in two inbred rat strains. Behav Processes 2017; 142:70-78. [PMID: 28602748 DOI: 10.1016/j.beproc.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
We investigated the effects of physical exercise (PE) on locomotor activity and anxiety-like behavior in Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) male rats. Rats received either four weeks of forced training, 5days/week, on a treadmill (experiment 1) or were given 21days of free access to running wheels (experiment 2). We also tested the effects of social isolation (SI) (seven days of isolation - experiment 3) on behavior. In experiment 1, 20% of LEW rats and 63% of SHR rats completed the training protocol. PE significantly increased central and peripheral locomotion in the open field (OF) and entries into the open arms in the elevated plus-maze (EPM) in both strains. In experiment 2, the distance traveled by SHR rats on running wheels was significantly higher compared with LEW rats. PE on running wheels also increased the time spent in the center of the OF in SHR rats only. In experiment 3, SI decreased central and peripheral locomotion in the OF in both strains. In summary, forced PE on a treadmill reduced anxiety-like behavior and increased locomotion in male rats of both strains, whereas voluntary PE on running wheels decreased anxiety-like behavior in SHR rats only. SI decreased locomotion in both strains in the OF. This study suggests that spontaneous activity levels are genotype-dependent and the effects of PE depend on the type of exercise performed.
Collapse
Affiliation(s)
- F G Mazur
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - L F G Oliveira
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - M P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - A L S Rodrigues
- Department of Biochemistry, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - R A N Pértile
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil; Queensland Brain Institute, University of Queensland, 4072, Brisbane, Queensland, Australia
| | - L F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, MD 21224, Baltimore, USA
| | - G S Izídio
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
27
|
Stoykov ME, Corcos DM, Madhavan S. Movement-Based Priming: Clinical Applications and Neural Mechanisms. J Mot Behav 2017; 49:88-97. [PMID: 28277966 DOI: 10.1080/00222895.2016.1250716] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Priming can be described as behavior change generated by preceding stimuli. Although various types of priming have been long studied in the field of psychology, priming that targets motor cortex is a relatively new topic of research in the fields of motor control and rehabilitation. In reference to a rehabilitation intervention, priming is categorized as a restorative approach. There are a myriad of possible priming approaches including noninvasive brain stimulation, motor imagery, and sensory-based priming, to name a few. The authors report on movement-based priming which, compared to other priming types, is less frequently examined and under reported. Movement-based priming includes, but is not limited to, bilateral motor priming, unilateral priming, and aerobic exercise. Clinical and neural mechanistic aspects of movement-based priming techniques are explored.
Collapse
Affiliation(s)
| | - Daniel Montie Corcos
- b Department of Physical Therapy & Human Movement Sciences , Northwestern University , Chicago , Illinois
| | - Sangeetha Madhavan
- c Department of Physical Therapy , University of Illinois at Chicago , Chicago , Illinois
| |
Collapse
|
28
|
Li Y, Zhao L, Gu B, Cai J, Lv Y, Yu L. Aerobic exercise regulates Rho/cofilin pathways to rescue synaptic loss in aged rats. PLoS One 2017; 12:e0171491. [PMID: 28152068 PMCID: PMC5289643 DOI: 10.1371/journal.pone.0171491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/20/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose The role of exercise to prevent or reverse aging-induced cognitive decline has been widely reported. This neuroprotection is associated with changes in the synaptic structure plasticity. However, the mechanisms of exercise-induced synaptic plasticity in the aging brain are still unclear. Thus, the aim of the present study is to investigate the aging-related alterations of Rho-GTPase and the modulatory influences of exercise training. Methods Young and old rats were used in this study. Old rats were subjected to different schedules of aerobic exercise (12 m/min, 60 min/d, 3d/w or 5d/w) or kept sedentary for 12 w. After 12 w of aerobic exercise, the synapse density in the cortex and hippocampus was detected with immunofluorescent staining using synaptophysin as a marker. The total protein levels of RhoA, Rac1, Cdc42 and cofilin in the cortex and hippocampus were detected with Western Blot. The activities of RhoA, Rac1 and Cdc42 were determined using a pull down assay. Results We found that synapse loss occurred in aging rats. However, the change of expression and activity of RhoA, Rac1 and Cdc42 was different in the cortex and hippocampus. In the cortex, the expression and activity of Rac1 and Cdc42 was greatly increased with aging, whereas there were no changes in the expression and activity of RhoA. In the hippocampus, the expression and activity of Rac1 and Cdc42 was greatly decreased and there were no changes in the expression and activity of RhoA. As a major downstream substrate of the Rho GTPase family, the increased expression of cofilin was only observed in the cortex. High frequency exercise ameliorated all aging-related changes in the cortex and hippocampus. Conclusions These data suggest that aerobic exercise reverses synapse loss in the cortex and hippocampus in aging rats, which might be related to the regulation of Rho GTPases.
Collapse
Affiliation(s)
- Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- * E-mail:
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Jiajia Cai
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Laikang Yu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
29
|
Stubbs B, Vancampfort D, Mänty M, Svärd A, Rahkonen O, Lahti J. Bidirectional longitudinal relationship between leisure-time physical activity and psychotropic medication usage: A register linked follow-up study. Psychiatry Res 2017; 247:208-213. [PMID: 27918971 DOI: 10.1016/j.psychres.2016.11.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/03/2016] [Accepted: 11/25/2016] [Indexed: 01/22/2023]
Abstract
This study aimed to examine the bidirectional relationship between psychotropic medication use and changes in leisure-time physical activity (LTPA) among a population cohort study. Phase 1 data were collected by mail surveys in 2000-2002 among 40-60-year-old employees of the City of Helsinki, Finland, and phase 2 follow up survey was conducted in 2007. Based on self-report, the respondents were classified as inactive and active (≥14.75 MET-hours/week) at the phases 1 and 2. Hazard ratios (HR) were calculated for subsequent (2007-10) psychotropic medication purchasing according to changes in physical activity (phases 1-2). Odds ratios (OR) for physical inactivity at phase 2 were calculated according to the amount of psychotropic medication between phases 1-2. Overall, 5361 respondents were included (mean age 50 years, 80% women). Compared with the persistently active, the persistently inactive, those decreasing and adopting LTPA had an increased risk for psychotropic medication. Only the persistently inactive remained at increased risk for psychotropic medication use, following the adjustment for prior psychotropic medication use. Compared with those having no medication, the risk for physical inactivity increased as the psychotropic medication increased. Our data suggest that physical activity has an important role in maintaining wellbeing and reducing psychotropic medication usage.
Collapse
Affiliation(s)
- Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, United Kingdom; Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London Box SE5 8AF, United Kingdom
| | - Davy Vancampfort
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium; KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Leuven-Kortenberg, Belgium
| | - Minna Mänty
- Department of Public Health, University of Helsinki, P.O. Box 20, FIN-00014 Helsinki, Finland
| | - Anna Svärd
- Department of Public Health, University of Helsinki, P.O. Box 20, FIN-00014 Helsinki, Finland
| | - Ossi Rahkonen
- Department of Public Health, University of Helsinki, P.O. Box 20, FIN-00014 Helsinki, Finland
| | - Jouni Lahti
- Department of Public Health, University of Helsinki, P.O. Box 20, FIN-00014 Helsinki, Finland.
| |
Collapse
|
30
|
Nie J, Yang X. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation. Cell Mol Neurobiol 2017; 37:5-16. [PMID: 26910247 DOI: 10.1007/s10571-016-0348-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.
Collapse
Affiliation(s)
- Jingjing Nie
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China
| | - Xiaosu Yang
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China.
| |
Collapse
|
31
|
Salame S, Garcia PC, Real CC, Borborema J, Mota-Ortiz SR, Britto LR, Pires RS. Distinct neuroplasticity processes are induced by different periods of acrobatic exercise training. Behav Brain Res 2016; 308:64-74. [DOI: 10.1016/j.bbr.2016.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022]
|
32
|
Venezia AC, Guth LM, Sapp RM, Spangenburg EE, Roth SM. Sex-dependent and independent effects of long-term voluntary wheel running on Bdnf mRNA and protein expression. Physiol Behav 2016; 156:8-15. [PMID: 26752611 PMCID: PMC4753141 DOI: 10.1016/j.physbeh.2015.12.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED The beneficial effects of physical activity on brain health (synaptogenesis, neurogenesis, enhanced synaptic plasticity, improved learning and memory) appear to be mediated through changes in region-specific expression of neurotrophins, transcription factors, and postsynaptic receptors, though investigations of sex differences in response to long-term voluntary wheel running are limited. PURPOSE To examine the effect of five months of voluntary wheel running on hippocampal mRNA and protein expression of factors critical for exercise-induced structural and functional plasticity in male and female adult mice. METHODS At 8weeks of age, male and female C57BL/6 mice were individually housed with (PA; n=20; 10 male) or without (SED; n=20; 10 male) access to a computer monitored voluntary running wheel. At 28weeks, all mice were sacrificed and hippocampi removed. Total RNA was isolated from the hippocampus and expression of total Bdnf, Bdnf transcript IV, tPA, Pgc-1a, GluR1, NR2A, and NR2B were assessed with quantitative RT-PCR and total and mature Bdnf protein were assessed with ELISA. RESULTS We found significantly higher Bdnf IV mRNA expression in PA males (p=0.03) and females (p=0.03) compared to SED animals. Total Bdnf mRNA expression was significantly greater in PA males compared to SED males (p=0.01), but there was no difference in females. Similarly, we observed significantly higher mature Bdnf protein in PA males compared to SED males (p=0.04), but not in females. CONCLUSION These findings indicate that the impact of long-term voluntary wheel running on transcriptional and post-translational regulation of Bdnf may be sex-dependent, though the activity-dependent Bdnf IV transcript is sensitive to exercise independent of sex.
Collapse
Affiliation(s)
- Andrew C Venezia
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Lisa M Guth
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Ryan M Sapp
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Espen E Spangenburg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Stephen M Roth
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.
| |
Collapse
|
33
|
Petzinger GM, Holschneider DP, Fisher BE, McEwen S, Kintz N, Halliday M, Toy W, Walsh JW, Beeler J, Jakowec MW. The Effects of Exercise on Dopamine Neurotransmission in Parkinson's Disease: Targeting Neuroplasticity to Modulate Basal Ganglia Circuitry. Brain Plast 2015; 1:29-39. [PMID: 26512345 PMCID: PMC4621077 DOI: 10.3233/bpl-150021] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Animal studies have been instrumental in providing evidence for exercise-induced neuroplasticity of corticostriatal circuits that are profoundly affected in Parkinson’s disease. Exercise has been implicated in modulating dopamine and glutamate neurotransmission, altering synaptogenesis, and increasing cerebral blood flow. In addition, recent evidence supports that the type of exercise may have regional effects on brain circuitry, with skilled exercise differentially affecting frontal-striatal related circuits to a greater degree than pure aerobic exercise. Neuroplasticity in models of dopamine depletion will be reviewed with a focus on the influence of exercise on the dorsal lateral striatum and prefrontal related circuitry underlying motor and cognitive impairment in PD. Although clearly more research is needed to address major gaps in our knowledge, we hypothesize that the potential effects of exercise on inducing neuroplasticity in a circuit specific manner may occur through synergistic mechanisms that include the coupling of an increasing neuronal metabolic demand and increased blood flow. Elucidation of these mechanisms may provide important new targets for facilitating brain repair and modifying the course of disease in PD.
Collapse
Affiliation(s)
- G M Petzinger
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
| | - D P Holschneider
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Department of Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, CA, 90033
| | - B E Fisher
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
| | - S McEwen
- Andrus Gerontology, University of Southern California, Los Angeles, CA, 90033, and Department of Psychiatry & Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90095
| | - N Kintz
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033
| | - M Halliday
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033
| | - W Toy
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033
| | - J W Walsh
- Andrus Gerontology, University of Southern California, Los Angeles, CA, 90033, and Department of Psychiatry & Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90095
| | - J Beeler
- Department of Psychology, CUNY, New York
| | - M W Jakowec
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
| |
Collapse
|
34
|
Somkuwar SS, Staples MC, Fannon MJ, Ghofranian A, Mandyam CD. Evaluating Exercise as a Therapeutic Intervention for Methamphetamine Addiction-Like Behavior. Brain Plast 2015; 1:63-81. [PMID: 29765835 PMCID: PMC5928557 DOI: 10.3233/bpl-150007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The need for effective treatments for addiction and dependence to the illicit stimulant methamphetamine in primary care settings is increasing, yet no effective medications have been FDA approved to reduce dependence [1]. This is partially attributed to the complex and dynamic neurobiology underlying the various stages of addiction [2]. Therapeutic strategies to treat methamphetamine addiction, particularly the relapse stage of addiction, could revolutionize methamphetamine addiction treatment. In this context, preclinical studies demonstrate that voluntary exercise (sustained physical activity) could be used as an intervention to reduce methamphetamine addiction. Therefore, it appears that methamphetamine disrupts normal functioning in the brain and this disruption is prevented or reduced by engaging in exercise. This review discusses animal models of methamphetamine addiction and sustained physical activity and the interactions between exercise and methamphetamine behaviors. The review highlights how methamphetamine and exercise affect neuronal plasticity and neurotoxicity in the adult mammalian striatum, hippocampus, and prefrontal cortex, and presents the emerging mechanisms of exercise in attenuating intake and in preventing relapse to methamphetamine seeking in preclinical models of methamphetamine addiction.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - McKenzie J Fannon
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Atoosa Ghofranian
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
35
|
Real CC, Garcia PC, Britto LR, Pires RS. Different protocols of treadmill exercise induce distinct neuroplastic effects in rat brain motor areas. Brain Res 2015; 1624:188-198. [DOI: 10.1016/j.brainres.2015.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 12/14/2022]
|
36
|
Wang Z, Guo Y, Myers KG, Heintz R, Holschneider DP. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise. Neurobiol Dis 2015; 77:71-87. [PMID: 25747184 DOI: 10.1016/j.nbd.2015.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/18/2015] [Accepted: 02/21/2015] [Indexed: 11/29/2022] Open
Abstract
Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yumei Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kalisa G Myers
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ryan Heintz
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel P Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA; Departments of Biomedical Engineering, Neurology, Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Peng YH, Heintz R, Wang Z, Guo Y, Myers KG, Scremin OU, Maarek JMI, Holschneider DP. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain. FRONTIERS IN PHYSICS 2014; 2:72. [PMID: 25745629 PMCID: PMC4347897 DOI: 10.3389/fphy.2014.00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface "Cx-2D" allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex-changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.
Collapse
Affiliation(s)
- Yu-Hao Peng
- Department of Biomedical Engineering, Viterbi School of Engineering, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan Heintz
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhuo Wang
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yumei Guo
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kalisa G. Myers
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Oscar U. Scremin
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Physiology Department, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jean-Michel I. Maarek
- Department of Biomedical Engineering, Viterbi School of Engineering, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel P. Holschneider
- Department of Biomedical Engineering, Viterbi School of Engineering, School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
38
|
Wang Z, Guo Y, Myers KG, Heintz R, Peng YH, Maarek JMI, Holschneider DP. Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats. Neurobiol Aging 2014; 36:536-44. [PMID: 25219465 DOI: 10.1016/j.neurobiolaging.2014.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 07/28/2014] [Accepted: 08/12/2014] [Indexed: 01/23/2023]
Abstract
Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson's disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (1) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (2) emergence of the ventrolateral striatum as a new broadly connected network hub; and (3) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the parkinsonian rats, which could underlie recovery in motor functions observed in these animals.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yumei Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kalisa G Myers
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ryan Heintz
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yu-Hao Peng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jean-Michel I Maarek
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Daniel P Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Neurology, University of Southern California, Los Angeles, CA, USA; Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Sumiyoshi A, Taki Y, Nonaka H, Takeuchi H, Kawashima R. Regional gray matter volume increases following 7days of voluntary wheel running exercise: a longitudinal VBM study in rats. Neuroimage 2014; 98:82-90. [PMID: 24816532 DOI: 10.1016/j.neuroimage.2014.04.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023] Open
Abstract
The effects of physical exercise on brain morphology in rodents have been well documented in histological studies. However, to further understand when and where morphological changes occur in the whole brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the effects of 7days of voluntary wheel running exercise on regional gray matter volume (rGMV) using longitudinal voxel-based morphometry (VBM) in rats. Eighteen pairs of adult male naïve Wistar rats were randomized to the exercise or control condition (one rat for each condition from each pair). Each rat was scanned in a 7.0-T MRI scanner at three time points: before exercise, after 7days of exercise, and after 7days of follow-up. The T2-weighted MRI images were segmented using the rat brain tissue priors that were recently published by our laboratory, and the intra- and inter-subject template creation steps were followed. Longitudinal VBM analysis revealed significant increases in rGMV in the motor, somatosensory, association, and visual cortices in the exercise group. Among these brain regions, rGMV changes in the motor cortex were positively correlated with the total distance that was run during the 7days of exercise. In addition, the effects of 7days of exercise on rGMV persisted after 7days of follow-up. These results support the utility of a longitudinal VBM study in rats and provide new insights into experience-dependent structural brain plasticity in naïve adult animals.
Collapse
Affiliation(s)
- Akira Sumiyoshi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; Division of Medical Image Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Hiroi Nonaka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
40
|
Alò R, Avolio E, Mele M, Storino F, Canonaco A, Carelli A, Canonaco M. Excitatory/inhibitory equilibrium of the central amygdala nucleus gates anti-depressive and anxiolytic states in the hamster. Pharmacol Biochem Behav 2014; 118:79-86. [DOI: 10.1016/j.pbb.2014.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/19/2013] [Accepted: 01/17/2014] [Indexed: 12/12/2022]
|
41
|
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev 2013; 37:1622-44. [PMID: 23806439 PMCID: PMC3788047 DOI: 10.1016/j.neubiorev.2013.06.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/29/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022]
Abstract
Physical activity, and specifically exercise, has been suggested as a potential treatment for drug addiction. In this review, we discuss clinical and preclinical evidence for the efficacy of exercise at different phases of the addiction process. Potential neurobiological mechanisms are also discussed focusing on interactions with dopaminergic and glutamatergic signaling and chromatin remodeling in the reward pathway. While exercise generally produces an efficacious response, certain exercise conditions may be either ineffective or lead to detrimental effects depending on the level/type/timing of exercise exposure, the stage of addiction, the drug involved, and the subject population. During drug use initiation and withdrawal, its efficacy may be related to its ability to facilitate dopaminergic transmission, and once addiction develops, its efficacy may be related to its ability to normalize glutamatergic and dopaminergic signaling and reverse drug-induced changes in chromatin via epigenetic interactions with brain-derived neurotrophic factor (BDNF) in the reward pathway. We conclude with future directions, including the development of exercise-based interventions alone or as an adjunct to other strategies for treating drug addiction.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 1670 Discovery Drive, Charlottesville, VA 22911, USA.
| | | | | | | | | |
Collapse
|
42
|
Aguiar A, Moreira E, Hoeller A, Oliveira P, Córdova F, Glaser V, Walz R, Cunha R, Leal R, Latini A, Prediger R. Exercise attenuates levodopa-induced dyskinesia in 6-hydroxydopamine-lesioned mice. Neuroscience 2013; 243:46-53. [DOI: 10.1016/j.neuroscience.2013.03.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/02/2013] [Accepted: 03/23/2013] [Indexed: 11/15/2022]
|
43
|
BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of Parkinson’s disease. Neuroscience 2013; 237:118-29. [DOI: 10.1016/j.neuroscience.2013.01.060] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/13/2023]
|
44
|
Vivar C, Potter MC, van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci 2013; 15:189-210. [PMID: 22847651 PMCID: PMC4565722 DOI: 10.1007/7854_2012_220] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Accumulating evidence from animal and human research shows exercise benefits learning and memory, which may reduce the risk of neurodegenerative diseases, and could delay age-related cognitive decline. Exercise-induced improvements in learning and memory are correlated with enhanced adult hippocampal neurogenesis and increased activity-dependent synaptic plasticity. In this present chapter we will highlight the effects of physical activity on cognition in rodents, as well as on dentate gyrus (DG) neurogenesis, synaptic plasticity, spine density, neurotransmission and growth factors, in particular brain-derived nerve growth factor (BDNF).
Collapse
Affiliation(s)
- Carmen Vivar
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, NIA/NIH Biomedical Research Center, Suite 100, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | | | | |
Collapse
|
45
|
Garcia PC, Real CC, Ferreira AF, Alouche SR, Britto LR, Pires RS. Different protocols of physical exercise produce different effects on synaptic and structural proteins in motor areas of the rat brain. Brain Res 2012; 1456:36-48. [DOI: 10.1016/j.brainres.2012.03.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/13/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
|
46
|
Costa MS, Ardais AP, Fioreze GT, Mioranzza S, Botton PHS, Portela LV, Souza DO, Porciúncula LO. Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:198-204. [PMID: 22064330 DOI: 10.1016/j.pnpbp.2011.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors.
Collapse
Affiliation(s)
- Marcelo S Costa
- Laboratory of Studies on the Purinergic System, Graduation Program in Biological Sciences/Biochemistry, Federal University of Rio Grande do Sul, Health and Basic Sciences Institute, Department of Biochemistry, Porto Alegre/RS 90035-003, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ferreira AFB, Real CC, Rodrigues AC, Alves AS, Britto LRG. Short-term, moderate exercise is capable of inducing structural, BDNF-independent hippocampal plasticity. Brain Res 2011; 1425:111-22. [PMID: 22035567 DOI: 10.1016/j.brainres.2011.10.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 09/12/2011] [Accepted: 10/02/2011] [Indexed: 12/28/2022]
Abstract
Exercise is known to improve cognitive functions and to induce neuroprotection. In this study we used a short-term, moderate intensity treadmill exercise protocol to investigate the effects of exercise on usual markers of hippocampal synaptic and structural plasticity, such as synapsin I (SYN), synaptophysin (SYP), neurofilaments (NF), microtubule-associated protein 2 (MAP2), glutamate receptor subunits GluR1 and GluR2/3, brain-derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP). Immunohistochemistry, Western blotting and real-time PCR were used. We also evaluated the number of cells positive for the proliferation marker 5-bromo-2-deoxyuridine (BrdU), the neurogenesis marker doublecortin (DCX) and the plasma corticosterone levels. Adult male Wistar rats were adapted to a treadmill and divided into 4 groups: sedentary (SED), 3-day exercise (EX3), 7-day exercise (EX7) and 15-day exercise (EX15). The protein changes detected were increased levels of NF68 and MAP2 at EX3, of SYN at EX7 and of GFAP at EX15, accompanied by a decreased level of GluR1 at EX3. Immunohistochemical findings revealed a similar pattern of changes. The real-time PCR analysis disclosed only an increase of MAP2 mRNA at EX7. We also observed an increased number of BrdU-positive cells and DCX-positive cells in the subgranular zone of the dentate gyrus at all time points and increased corticosterone levels at EX3 and EX7. These results reveal a positive effect of short-term, moderate treadmill exercise on hippocampal plasticity. This effect was in general independent of transcriptional processes and of BDNF upregulation, and occurred even in the presence of increased corticosterone levels.
Collapse
Affiliation(s)
- Ana F B Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
48
|
Ferreira AF, Real CC, Rodrigues AC, Alves AS, Britto LR. Moderate exercise changes synaptic and cytoskeletal proteins in motor regions of the rat brain. Brain Res 2010; 1361:31-42. [DOI: 10.1016/j.brainres.2010.09.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 12/24/2022]
|