1
|
Fong V, Kanuri B, Traubert O, Lui M, Patel SB. Behavioral and Metabolic Effects of ABCG4 KO in the APP swe,Ind (J9) Mouse Model of Alzheimer's Disease. J Mol Neurosci 2024; 74:49. [PMID: 38668787 PMCID: PMC11052713 DOI: 10.1007/s12031-024-02214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred Abcg4 knockout (KO) with the APPSwe,Ind (J9) mouse model of AD to test the hypothesis that loss of Abcg4 would exacerbate the AD phenotype. Unexpectedly, no differences were observed in novel object recognition (NOR) and novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between Abcg4 KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT), and insulin tolerance test (ITT) were also mostly similar between groups with only a few mild metabolic differences noted. Overall, these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.
Collapse
Affiliation(s)
- Vincent Fong
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Babunageswararao Kanuri
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Owen Traubert
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Min Lui
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shailendra B Patel
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Sun M, Chen WM, Wu SY, Zhang J. Protective Effects Against Dementia Undergo Different Statin Type, Intensity, and Cumulative Dose in Older Adult Type 2 Diabetes Mellitus Patients. J Am Med Dir Assoc 2024; 25:470-479.e1. [PMID: 38128583 DOI: 10.1016/j.jamda.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES This study investigated the relationship between statin use and dementia risk in older adults with type 2 diabetes (T2DM). It also assessed the impact of various statin types, dosage intensity, and cumulative doses on dementia risk. DESIGN Employing the inverse probability of treatment weighting (IPTW) Cox hazards model, this research explored the influence of statin utilization on dementia incidence. SETTING AND PARTICIPANTS The study included older adult T2DM patients aged 60 years or older who received statins (case group) and those who did not (control group) during the follow-up period. METHODS The IPTW Cox hazards model quantified the association between statin use and dementia incidence. Subgroup analyses investigated different statin types, usage intensity, and cumulative dose-dependent relationships with dementia risk, measured by adjusted hazard ratios (aHRs) with corresponding 95% CIs. RESULTS Statin users experienced a significant reduction in dementia risk (aHR: 0.47, 95% CI: 0.46-0.48). Subgroup analysis using IPTW Cox regression revealed varying dementia incidence reductions among users of different statin types, with aHRs (95% CIs) ranging from 0.09 to 0.69. Multivariate analyses unveiled a dose-dependent relationship, showing reduced dementia incidence based on cumulative defined daily doses (cDDDs) per year. The corresponding aHRs (95% CIs) were 0.20 to 0.72 across quartiles 4 to 1 of cDDD-years, with a significant trend (P < .001). The optimal daily statin use was 0.88 defined daily doses (DDDs), associated with the lowest dementia risk. CONCLUSIONS AND IMPLICATIONS Statins significantly reduced dementia risk in older adult T2DM patients. Higher cumulative defined daily doses (cDDD-years) were linked to more substantial risk reductions. This research underscores the clinical benefits of statin use in preventing dementia in this population and calls for further investigation into the underlying mechanisms. It also raises the possibility of influencing policy decisions to manage dementia risk in this vulnerable group.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan; Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Bian Z, Yu H, Hu X, Bian Y, Sun H, Tadokoro K, Takemoto M, Yunoki T, Nakano Y, Fukui Y, Morihara R, Abe K, Yamashita T. Tocovid Attenuated Oxidative Stress and Cognitive Decline by Inhibiting Amyloid-β-Induced NOX2 Activation in Alzheimer's Disease Mice. J Alzheimers Dis 2024; 99:S23-S33. [PMID: 36565115 DOI: 10.3233/jad-220761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background NADPH oxidase 2 (NOX2) is an important source of reactive oxygen species (ROS). Activated NOX2 may contribute to Alzheimer's disease (AD). Our previous studies showed that a novel vitamin E mixture, Tocovid, had potential neuroprotective effects in a stroke mice model and an AD cell model. Objective The aim of this study was two-fold: to assess whether long-term Tocovid treatment can regulate NOX2, and the therapeutic effects of long-term administration of Tocovid to an AD mice model. Methods Therapeutic effects of long-term administration of Tocovid (200 mg/kg /day) on an Aβ-overexpressed transgenic AD mice model (APP23, n = 8) was investigated. The therapeutic effect of Tocovid in 16-month-old mice compared with the no-treatment APP23 group (n = 9) was assessed. Results Tocovid treatment strongly improved motor and memory deficits of APP23 mice by attenuating NOX2 expression, oxidative stress, neuroinflammation, neurovascular unit dysfunction, synaptic alteration, and Aβ deposition after 16 months. Conclusion These findings suggest that NOX2 is a potential target in AD pathology. Long-term administration of Tocovid may be a promising candidate for AD treatment.
Collapse
Affiliation(s)
- Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Haibo Yu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Taijun Yunoki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Koji Abe
- National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
4
|
Collu R, Giunti E, Daley S, Chen M, Xia W. Angiotensin-converting enzyme inhibitors and statins therapies-induced changes in omics profiles in humans and transgenic tau mice. Biomed Pharmacother 2023; 168:115756. [PMID: 37865996 DOI: 10.1016/j.biopha.2023.115756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Hypertension and hyperlipidemia are considered risk factors for Alzheimer's disease (AD) and other related dementias. Clinically approved medications typically prescribed to manage these conditions have shown an association with reduced risk of developing AD and could be explored as potential repurposed therapeutics. OBJECTIVE We aimed to explore the effects of the pharmacological treatment with angiotensin-converting enzyme inhibitors (ACEI) and statins (STAT) on AD-related neuropathology and the potential benefits of their concurrent use. METHODS We investigated the effect of ACEI, STAT or combination of both by exploring the transcriptomic, proteomic and tau pathology profiles after treatment in both human patients and in P301S transgenic mice (PS19) modeling tauopathies and AD. We performed bioinformatic analysis of enriched pathways after treatment. RESULTS Proteomics and transcriptomics analysis revealed proteins and genes whose expression is significantly changed in subjects receiving treatment with ACEI, STAT or combined drugs. In mice, treatment with the ACEI lisinopril significantly decreased brain levels of total tau (Tau) and phosphorylated tau (pTau)-181, while the STAT atorvastatin significantly reduced the levels of pTau-396. The combined therapy with lisinopril and atorvastatin significantly decreased Tau. Moreover, brain levels of lisinopril were negatively correlated with Tau. Among the others, CD200, ADAM22, BCAN and NCAM1 were significantly affected by treatments in both human subjects and transgenic mice. CONCLUSIONS Our findings provide significant information that may guide future investigation of the potential use of ACEI, STAT, or the combination of the two drug classes as repurposed therapies or preventive strategies for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Roberto Collu
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States; Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Elisa Giunti
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States; Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Sarah Daley
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States; Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Mei Chen
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States; Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States; Department of Biological Sciences, University of Massachusetts Kennedy College of Science, Lowell, MA, United States.
| |
Collapse
|
5
|
Fong V, Kanuri B, Traubert O, Lui M, Patel SB. Behavioral and metabolic and effects of ABCG4 KO in the APPswe,Ind (J9) mouse model of Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-3014093. [PMID: 37333297 PMCID: PMC10275060 DOI: 10.21203/rs.3.rs-3014093/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS, and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred Abcg4 knockout (KO) with the APPSwe,Ind (J9) mouse model of AD to test the hypothesis that loss of Abcg4 would exacerbate the AD phenotype. Unexpectedly, no differences were observed in Novel object recognition (NOR) and Novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between Abcg4 KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT) and insulin tolerance test (ITT), were also mostly similar between groups with only a few mild metabolic differences noted. Overall these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.
Collapse
Affiliation(s)
- Vincent Fong
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati
| | - Babunageswararao Kanuri
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati
| | - Owen Traubert
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati
| | - Min Lui
- Department of Pathology & Laboratory Medicine, University of Cincinnati
| | - Shailendra B Patel
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati
| |
Collapse
|
6
|
Wu Y, Meng W, Guan M, Zhao X, Zhang C, Fang Q, Zhang Y, Sun Z, Cai M, Huang D, Yang X, Yu Y, Cui Y, He S, Chai R. Pitavastatin protects against neomycin-induced ototoxicity through inhibition of endoplasmic reticulum stress. Front Mol Neurosci 2022; 15:963083. [PMID: 35992197 PMCID: PMC9381809 DOI: 10.3389/fnmol.2022.963083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Irreversible injury to inner ear hair cells induced by aminoglycoside antibiotics contributes to the formation of sensorineural hearing loss. Pitavastatin (PTV), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, has been reported to exert neuroprotective effects. However, its role in aminoglycoside-induced hearing loss remains unknown. The objectives of this study were to investigate the beneficial effects, as well as the mechanism of action of PTV against neomycin-induced ototoxicity. We found that PTV remarkably reduced hair cell loss in mouse cochlear explants and promoted auditory HEI-OC1 cells survival after neomycin stimulation. We also observed that the auditory brainstem response threshold that was increased by neomycin was significantly reduced by pretreatment with PTV in mice. Furthermore, neomycin-induced endoplasmic reticulum stress in hair cells was attenuated by PTV treatment through inhibition of PERK/eIF2α/ATF4 signaling. Additionally, we found that PTV suppressed the RhoA/ROCK/JNK signal pathway, which was activated by neomycin stimulation in HEI-OC1 cells. Collectively, our results showed that PTV might serve as a promising therapeutic agent against aminoglycoside-induced ototoxicity.
Collapse
Affiliation(s)
- Yunhao Wu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, School of Life Sciences and Technology, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Wei Meng
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Nanjing Tongren Hospital, Southeast University, Nanjing, China
| | - Ming Guan
- Department of Otolaryngology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Zhao
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Neurobiology, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qiaojun Fang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, School of Life Sciences and Technology, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yuhua Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, School of Life Sciences and Technology, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Zihui Sun
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Nanjing Tongren Hospital, Southeast University, Nanjing, China
| | - Mingjing Cai
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Nanjing Tongren Hospital, Southeast University, Nanjing, China
| | - Dongdong Huang
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Nanjing Tongren Hospital, Southeast University, Nanjing, China
| | - Xuechun Yang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yafeng Yu
- Department of Otolaryngology, First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Yafeng Yu,
| | - Yong Cui
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, South Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- Yong Cui,
| | - Shuangba He
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Nanjing Tongren Hospital, Southeast University, Nanjing, China
- Shuangba He,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, School of Life Sciences and Technology, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Renjie Chai,
| |
Collapse
|
7
|
Feng T, Hu X, Fukui Y, Bian Z, Bian Y, Sun H, Takemoto M, Yunoki T, Nakano Y, Morihara R, Abe K, Yamashita T. Clinical and Pathological Benefits of Scallop-Derived Plasmalogen in a Novel Mouse Model of Alzheimer’s Disease with Chronic Cerebral Hypoperfusion. J Alzheimers Dis 2022; 86:1973-1982. [DOI: 10.3233/jad-215246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The oral ingestion of scallop-derived plasmalogen (sPlas) significantly improved cognitive function in Alzheimer’s disease (AD) patients. Objective: However, the effects and mechanisms of sPlas on AD with chronic cerebral hypoperfusion (CCH), a class of mixed dementia contributing to 20–30% among the dementia society, were still elusive. Methods: In the present study, we applied a novel mouse model of AD with CCH to investigate the potential effects of sPlas on AD with CCH. Results: The present study demonstrated that sPlas significantly recovered cerebral blood flow, improved motor and cognitive deficits, reduced amyloid-β pathology, regulated neuroinflammation, ameliorated neural oxidative stress, and inhibited neuronal loss in AD with CCH mice at 12 M. Conclusion: These findings suggest that sPlas possesses clinical and pathological benefits for AD with CCH in the novel model mice. Furthermore, sPlas could have promising prevention and therapeutic effects on patients of AD with CCH.
Collapse
Affiliation(s)
- Tian Feng
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Taijun Yunoki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Nedaei H, Rezaei-Ghaleh N, Giller K, Becker S, Karami L, Moosavi-Movahedi AA, Griesinger C, Saboury AA. The Calcium-free form of Atorvastatin inhibits amyloid-β(1-42) aggregation in vitro. J Biol Chem 2022; 298:101662. [PMID: 35104501 PMCID: PMC8898965 DOI: 10.1016/j.jbc.2022.101662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease is characterized by the presence of extraneuronal amyloid plaques composed of amyloid-beta (Aβ) fibrillar aggregates in the brains of patients. In mouse models, it has previously been shown that atorvastatin (Ator), a cholesterol-lowering drug, has some reducing effect on the production of cerebral Aβ. A meta-analysis on humans showed moderate effects in the short term but no improvement in the Alzheimer's Disease Assessment Scale—Cognitive Subscale behavioral test. Here, we explore a potential direct effect of Ator on Aβ42 aggregation. Using NMR-based monomer consumption assays and CD spectroscopy, we observed a promoting effect of Ator in its original form (Ator-calcium) on Aβ42 aggregation, as expected because of the presence of calcium ions. The effect was reversed when applying a CaCO3-based calcium ion scavenging method, which was validated by the aforementioned methods as well as thioflavin-T fluorescence assays and transmission electron microscopy. We found that the aggregation was inhibited significantly when the concentration of calcium-free Ator exceeded that of Aβ by at least a factor of 2. The 1H–15N heteronuclear single quantum correlation and saturation-transfer difference NMR data suggest that calcium-free Ator exerts its effect through interaction with the 16KLVF19 binding site on the Aβ peptide via its aromatic rings as well as hydroxyl and methyl groups. On the other hand, molecular dynamics simulations confirmed that the increasing concentration of Ator is necessary for the inhibition of the conformational transition of Aβ from an α-helix-dominant to a β-sheet-dominant structure.
Collapse
Affiliation(s)
- Hadi Nedaei
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Nasrollah Rezaei-Ghaleh
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Leila Karami
- Department of Cell and Molecular Biology, Kharazmi University, Tehran, Iran
| | - Ali Akbar Moosavi-Movahedi
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Bian Z, Liu X, Feng T, Yu H, Hu X, Hu X, Bian Y, Sun H, Tadokoro K, Takemoto M, Yunoki T, Nakano Y, Fukui Y, Morihara R, Abe K, Yamashita T. Protective Effect of Rivaroxaban Against Amyloid Pathology and Neuroinflammation Through Inhibiting PAR-1 and PAR-2 in Alzheimer's Disease Mice. J Alzheimers Dis 2022; 86:111-123. [PMID: 35001892 DOI: 10.3233/jad-215318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent studies have revealed that atrial fibrillation (AF) patients have a high risk of developing cognitive impairment, vascular dementia, and Alzheimer's disease (AD). Some reports suggest that the application of oral anticoagulant with an appropriate dose may have a preventive effect on AD. However, which oral anticoagulant drug is more appropriate for preventing AD and the underlying mechanism(s) is still unknown. OBJECTIVE The aim of the present study was to assess the treatment effect of rivaroxaban administration as well as investigate the roles of PAR-1 and PAR-2 in the AD + CAA mice model. METHODS In the present study, we compared a traditional oral anticoagulant, warfarin, and a direct oral anticoagulant (DOAC), rivaroxaban, via long-term administration to an AD with cerebral amyloid angiopathy (CAA) mice model. RESULTS Rivaroxaban treatment attenuated neuroinflammation, blood-brain barrier dysfunction, memory deficits, and amyloid-β deposition through PAR-1/PAR-2 inhibition in the AD + CAA mice model compared with warfarin and no-treatment groups. CONCLUSION The present study demonstrates that rivaroxaban can attenuate AD progress and can be a potential choice to prevent AD.
Collapse
Affiliation(s)
- Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Haibo Yu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Xiao Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Taijun Yunoki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Koji Abe
- National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
10
|
A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res 2021; 84:101127. [PMID: 34509516 DOI: 10.1016/j.plipres.2021.101127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are administered as first line therapy for hypercholesterolemia, both in primary and secondary prevention. There is a growing body of evidence showing that beyond their lipid-lowering effect, statins have a number of additional beneficial properties. Pitavastatin is a unique lipophilic statin with a strong effect on lowering plasma total cholesterol and triacylglycerol. It has been reported to have pleiotropic effects such as decreasing inflammation and oxidative stress, regulating angiogenesis and osteogenesis, improving endothelial function and arterial stiffness, and reducing tumor progression. Based on the available studies considering the risk of statin-associated muscle symptoms it seems to be also the safest statin. The unique lipid and non-lipid effects of pitavastatin make this molecule a particularly interesting option for the management of different human diseases. In this review, we first summarized the lipid effects of pitavastatin and then strive to unravel the diverse pleiotropic effects of this molecule.
Collapse
|
11
|
Ahmed MA, Kamel EO. Involvement of H 2 S, NO and BDNF-TrkB signalling pathway in the protective effects of simvastatin against pentylenetetrazole-induced kindling and cognitive impairments in mice. Basic Clin Pharmacol Toxicol 2020; 127:461-476. [PMID: 32562563 DOI: 10.1111/bcpt.13457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Cognitive dysfunction was observed in pentylenetetrazole (PTZ)-kindled mice. The potential effectiveness of simvastatin (SIM) on PTZ-induced kindling and cognitive impairments in mice was evaluated. The influence of SIM on hydrogen sulphide (H2 S), nitric oxide (NO), reactive aldehydes and brain-derived neurotrophic factor/tyrosine receptor kinase B (BDNF-TrkB) signalling was also investigated. Kindling and cognitive impairments in mice were induced by 12 ip injections of PTZ (35 mg/kg) once every alternate day. The levels of reactive aldehydes and nitrite were increased while H2 S was decreased in PTZ-treated mice. These results were accompanied by a reduction in the gene expression of aldehyde dehydrogenase 2, cystathionine β-synthase, BDNF and TrkB. In PTZ-kindled mice, a rise in brain inducible nitric oxide synthase protein expression associated with histopathological changes was observed. SIM administration (1, 5 and 10 mg/kg, daily orally) along with alternate day of PTZ (35 mg/kg) resulted in a decrease in PTZ-induced kindling with a dose-dependent improvement in cognitive function. SIM (10 mg/kg) prevented, to variable extent, the disturbances associated with PTZ-kindled mice with cortical, cerebellar and hippocampal structural improvement. These results suggested that SIM triggers multiple mechanisms that improve cognitive function in PTZ-kindled mice through modulation of oxidative stress, H2 S, NO and BDNF-TrkB signalling pathway.
Collapse
Affiliation(s)
- Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
12
|
Affiliation(s)
- Nadine E Stephenson
- School of Psychological Science, Faculty of Science, Technology and Engineering, La Trobe University,
| | - Simon F Crowe
- School of Psychological Science, Faculty of Science, Technology and Engineering, La Trobe University,
| |
Collapse
|
13
|
Fang J, Pieper AA, Nussinov R, Lee G, Bekris L, Leverenz JB, Cummings J, Cheng F. Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Med Res Rev 2020; 40:2386-2426. [PMID: 32656864 PMCID: PMC7561446 DOI: 10.1002/med.21709] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
Following two decades of more than 400 clinical trials centered on the "one drug, one target, one disease" paradigm, there is still no effective disease-modifying therapy for Alzheimer's disease (AD). The inherent complexity of AD may challenge this reductionist strategy. Recent observations and advances in network medicine further indicate that AD likely shares common underlying mechanisms and intermediate pathophenotypes, or endophenotypes, with other diseases. In this review, we consider AD pathobiology, disease comorbidity, pleiotropy, and therapeutic development, and construct relevant endophenotype networks to guide future therapeutic development. Specifically, we discuss six main endophenotype hypotheses in AD: amyloidosis, tauopathy, neuroinflammation, mitochondrial dysfunction, vascular dysfunction, and lysosomal dysfunction. We further consider how this endophenotype network framework can provide advances in computational and experimental strategies for drug-repurposing and identification of new candidate therapeutic strategies for patients suffering from or at risk for AD. We highlight new opportunities for endophenotype-informed, drug discovery in AD, by exploiting multi-omics data. Integration of genomics, transcriptomics, radiomics, pharmacogenomics, and interactomics (protein-protein interactions) are essential for successful drug discovery. We describe experimental technologies for AD drug discovery including human induced pluripotent stem cells, transgenic mouse/rat models, and population-based retrospective case-control studies that may be integrated with multi-omics in a network medicine methodology. In summary, endophenotype-based network medicine methodologies will promote AD therapeutic development that will optimize the usefulness of available data and support deep phenotyping of the patient heterogeneity for personalized medicine in AD.
Collapse
Affiliation(s)
- Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospital Case Medical Center; Department of Psychiatry, Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Lynn Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
14
|
Feng T, Yamashita T, Shang J, Shi X, Nakano Y, Morihara R, Tsunoda K, Nomura E, Sasaki R, Tadokoro K, Matsumoto N, Hishikawa N, Ohta Y, Abe K. Clinical and Pathological Benefits of Edaravone for Alzheimer's Disease with Chronic Cerebral Hypoperfusion in a Novel Mouse Model. J Alzheimers Dis 2020; 71:327-339. [PMID: 31403949 DOI: 10.3233/jad-190369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) and chronic cerebral hypoperfusion (CCH) often coexist in dementia patients in aging societies. The hallmarks of AD including amyloid-β (Aβ)/phosphorylated tau (pTau) and pathology-related events such as neural oxidative stress and neuroinflammation play critical roles in pathogenesis of AD with CCH. A large number of lessons from failures of drugs targeting a single target or pathway on this so complicated disease indicate that disease-modifying therapies targeting multiple key pathways hold potent potential in therapy of the disease. In the present study, we used a novel mouse model of AD with CCH to investigate a potential therapeutic effect of a free radical scavenger, Edaravone (EDA) on AD with CCH via examining motor and cognitive capacity, AD hallmarks, neural oxidative stress, and neuroinflammation. Compared with AD with CCH mice at 12 months of age, EDA significantly improved motor and cognitive deficits, attenuated neuronal loss, reduced Aβ/pTau accumulation, and alleviated neural oxidative stress and neuroinflammation. These findings suggest that EDA possesses clinical and pathological benefits for AD with CCH in the present mouse model and has a potential as a therapeutic agent for AD with CCH via targeting multiple key pathways of the disease pathogenesis.
Collapse
Affiliation(s)
- Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Keiichiro Tsunoda
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Namiko Matsumoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| |
Collapse
|
15
|
Pleiotropic effects of statins on brain cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183340. [PMID: 32387399 DOI: 10.1016/j.bbamem.2020.183340] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 01/06/2023]
Abstract
Starting with cholesterol homeostasis, the first part of the review addresses various aspects of cholesterol metabolism in neuronal and glial cells and the mutual crosstalk between the two cell types, particularly the transport of cholesterol from its site of synthesis to its target loci in neuronal cells, discussing the multiple mechanistic aspects and transporter systems involved. Statins are next analyzed from the point of view of their chemical structure and its impingement on their pharmacological properties and permeability through cell membranes and the blood-brain barrier in particular. The following section then discusses the transcriptional effects of statins and the changes they induce in brain cell genes associated with a variety of processes, including cell growth, signaling and trafficking, uptake and synthesis of cholesterol. We review the effects of statins at the cellular level, analyzing their impact on the cholesterol composition of the nerve and glial cell plasmalemma, neurotransmitter receptor mobilization, myelination, dendritic arborization of neurons, synaptic vesicle release, and cell viability. Finally, the role of statins in disease is exemplified by Alzheimer and Parkinson diseases and some forms of epilepsy, both in animal models and in the human form of these pathologies.
Collapse
|
16
|
Roy S, Hyman D, Ayyala S, Bakhshi A, Kim SH, Anoruo N, Weinstock J, Balogun A, D'Souza M, Filatova N, Penabad J, Shah P, Perez C, Mehta A, Hunter K. Cognitive Function Assessment in Patients on Moderate- or High-Intensity Statin Therapy. J Clin Med Res 2020; 12:255-265. [PMID: 32362974 PMCID: PMC7188372 DOI: 10.14740/jocmr4144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 01/21/2023] Open
Abstract
Background Cardiovascular diseases are the leading cause of death in the USA. Statin therapy reduces cardiovascular events significantly. Cognitive impairment has been reported with statin therapy but there is a lack of consensus. We analyzed the cognitive functions of adult patients who were on moderate-intensity statin therapy (MIST) or high-intensity statin therapy (HIST). Methods A total of 213 patients underwent cognitive assessment testing. Cognitive function scores were correlated with the durations of statin therapy, age, and level of education by using Pearson correlation. Independent t-test was used to compare the mean cognitive function score to the gender, race, type of statin therapy, and comorbid conditions. Results Mean age of all the patients was 55.4 years. Majority of the patients (66.2%) were on MIST while the rest (33.8%) were on HIST. Cognitive impairment was observed in 17.8% of the studied patients. A total of 41.7% of the patients in the HIST group and 5.7% in the MIST group had cognitive impairment (P < 0.001). There was no correlation between cognitive function score and age (r = -0.106), weakly positive correlation between the level of education and cognitive function score (r = 0.252), and weakly negative correlation between the duration of statin therapy and cognitive function score (r = -0.283). In the group of patients on HIST with cognitive impairment, the proportion of patients on atorvastatin 40 - 80 mg was significantly higher than the proportion of patients on rosuvastatin 20 - 40 mg (66.7% vs. 33.3%; P < 0.05). In the group of patients on MIST with cognitive impairment, atorvastatin 10 - 20 mg was the most commonly used statin therapy (50%), followed by rosuvastatin 10 mg (25%), simvastatin 20 - 40 mg (12.5%) and pravastatin 40 - 80 mg (12.5%). Conclusions We found a significantly higher association of cognitive impairment in patients who were on MIST or HIST compared to the general population. We found no correlation between cognitive function score and age, weakly positive correlation between the level of education and cognitive function score, and weakly negative correlation between the duration of statin therapy and cognitive function score. HIST was associated with a higher frequency of cognitive impairment compared to the MIST.
Collapse
Affiliation(s)
- Satyajeet Roy
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Daniel Hyman
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Srinivas Ayyala
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Aditya Bakhshi
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Sang Hoon Kim
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Nancy Anoruo
- Department of Medicine, University of Massachusetts Medical School-UMASS Memorial Medical Center, Worcester, MA, USA
| | - Joshua Weinstock
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Ayobamidele Balogun
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Michelle D'Souza
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Nika Filatova
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Jesus Penabad
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Pratik Shah
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Christopher Perez
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Anita Mehta
- Department of Medicine, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ, USA
| | - Krystal Hunter
- Cooper Research Institute, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
17
|
Xu C, Apostolova LG, Oblak AL, Gao S. Association of Hypercholesterolemia with Alzheimer's Disease Pathology and Cerebral Amyloid Angiopathy. J Alzheimers Dis 2020; 73:1305-1311. [PMID: 31929164 PMCID: PMC7489304 DOI: 10.3233/jad-191023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Animal studies have shown that diet-induced hypercholesterolemia (HC) increases amyloid-β (Aβ) accumulation and accelerates Alzheimer's disease (AD) pathology. However, the association of HC with AD in human studies has not been consistently established. OBJECTIVE We aimed to investigate the relationship between HC and risk of AD neuropathology in a large national sample with autopsies. METHODS This study used neuropathological and clinical data from 3,508 subjects from the National Alzheimer's Coordinating Center (NACC) who underwent autopsies from 2005 to 2017. Demographic and clinical characteristics, as well as neuropathological outcomes were compared between subjects with and without HC. Associations between HC and AD neuropathology were examined by multivariate ordinal logistic regressions adjusting for potential confounders. RESULTS HC was not associated with any AD neuropathology in a model only adjusting for demographic variables. However, HC was significantly associated with higher CERAD neuritic and diffuse plaque burden, higher Braak stage, and more severe cerebral amyloid angiopathy when analyzed in a multivariate model controlling for comorbidities. Additional adjusting for cerebrovascular conditions did not diminish these associations. The association between HC and increased risk of neuritic plaques weakened but remained significant even after controlling for ApoE genotype. CONCLUSION This study suggested that HC was associated with increased severity of AD pathology, which could only be partially accounted for by ApoE genotype. The associations were not mediated by cerebrovascular conditions.
Collapse
Affiliation(s)
- Chenjia Xu
- Department of Biostatistics, Indiana University School of Medicine and Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L. Oblak
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine and Fairbanks School of Public Health, Indianapolis, IN, USA
| |
Collapse
|
18
|
Matthews DG, Caruso M, Murchison CF, Zhu JY, Wright KM, Harris CJ, Gray NE, Quinn JF, Soumyanath A. Centella Asiatica Improves Memory and Promotes Antioxidative Signaling in 5XFAD Mice. Antioxidants (Basel) 2019; 8:antiox8120630. [PMID: 31817977 PMCID: PMC6943631 DOI: 10.3390/antiox8120630] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Centella asiatica (CA) herb is a traditional medicine, long reputed to provide cognitive benefits. We have reported that CA water extract (CAW) treatment improves cognitive function of aged Alzheimer’s disease (AD) model Tg2576 and wild-type (WT) mice, and induces an NRF2-regulated antioxidant response in aged WT mice. Here, CAW was administered to AD model 5XFAD female and male mice and WT littermates (age: 7.6 +/− 0.6 months), and object recall and contextual fear memory were tested after three weeks treatment. CAW’s impact on amyloid-β plaque burden, and markers of neuronal oxidative stress and synaptic density, was assessed after five weeks treatment. CAW antioxidant activity was evaluated via nuclear transcription factor (erythroid-derived 2)-like 2 (NRF2) and NRF2-regulated antioxidant response element gene expression. Memory improvement in both genders and genotypes was associated with dose-dependent CAW treatment without affecting plaque burden, and marginally increased synaptic density markers in the hippocampus and prefrontal cortex. CAW treatment increased Nrf2 in hippocampus and other NRF2 targets (heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit). Reduced plaque-associated SOD1, an indicator of oxidative stress, was observed in the hippocampi and cortices of CAW-treated 5XFAD mice. We postulate that CAW treatment leads to reduced oxidative stress, contributing to improved neuronal health and cognition.
Collapse
Affiliation(s)
- Donald G Matthews
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Maya Caruso
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Charles F Murchison
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer Y Zhu
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Kirsten M Wright
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Christopher J Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Correspondence: ; Tel.: +1-503-494-6878
| |
Collapse
|
19
|
Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci 2019; 21:21-35. [PMID: 31780819 DOI: 10.1038/s41583-019-0240-3] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
The global epidemic of Alzheimer disease (AD) is worsening, and no approved treatment can revert or arrest progression of this disease. AD pathology is characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain. Genetic data, as well as autopsy and neuroimaging studies in patients with AD, indicate that Aβ plaque deposition precedes cortical tau pathology. Because Aβ accumulation has been considered the initial insult that drives both the accumulation of tau pathology and tau-mediated neurodegeneration in AD, the development of AD therapeutics has focused mostly on removing Aβ from the brain. However, striking preclinical evidence from AD mouse models and patient-derived human induced pluripotent stem cell models indicates that tau pathology can progress independently of Aβ accumulation and arises downstream of genetic risk factors for AD and aberrant metabolic pathways. This Review outlines novel insights from preclinical research that implicate apolipoprotein E, the endocytic system, cholesterol metabolism and microglial activation as Aβ-independent regulators of tau pathology. These factors are discussed in the context of emerging findings from clinical pathology, functional neuroimaging and other approaches in humans. Finally, we discuss the implications of these new insights for current Aβ-targeted strategies and highlight the emergence of novel therapeutic strategies that target processes upstream of both Aβ and tau.
Collapse
|
20
|
Clinical and Pathological Benefit of Twendee X in Alzheimer's Disease Transgenic Mice with Chronic Cerebral Hypoperfusion. J Stroke Cerebrovasc Dis 2019; 28:1993-2002. [PMID: 31029568 DOI: 10.1016/j.jstrokecerebrovasdis.2019.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Multiple pathogeneses are involved in Alzheimer's disease (AD), such as amyloid-β accumulation, neuroinflammation, and oxidative stress. The pathological impact of chronic cerebral hypoperfusion on Alzheimer's disease is still poorly understood. METHODS APP23 mice were implanted to bilateral common carotid arteries stenosis with ameroid constrictors for slowly progressive chronic cerebral hypoperfusion (CCH). The effects of the administration of Twendee X (TwX) were evaluated by behavioral analysis, immunohistochemical analysis, and immunofluorescent histochemistry. RESULTS In the present study, chronic cerebral hypoperfusion, which is commonly found in aged Alzheimer's disease, significantly exacerbated motor dysfunction of APP23 mice from 5 months and cognitive deficit from 8 months of age, as well as neuronal loss, extracellular amyloid-β plaque and intracellular oligomer formations, and amyloid angiopathy at 12 months. Severe upregulations of oxidative markers and inflammatory markers were found in the cerebral cortex, hippocampus, and thalamus at 12 months. Twendee X treatment (20 mg/kg/d, from 4.5 to 12 months) substantially rescued the cognitive deficit and reduced the above amyloid-β pathology and neuronal loss, alleviated neuroinflammation and oxidative stress. CONCLUSIONS The present findings suggested a potential therapeutic benefit of Twendee X for Alzheimer's disease with chronic cerebral hypoperfusion.
Collapse
|
21
|
Xu GB, Yang LQ, Guan PP, Wang ZY, Wang P. Prostaglandin A1 Inhibits the Cognitive Decline of APP/PS1 Transgenic Mice via PPARγ/ABCA1-dependent Cholesterol Efflux Mechanisms. Neurotherapeutics 2019; 16:505-522. [PMID: 30627958 PMCID: PMC6554490 DOI: 10.1007/s13311-018-00704-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostaglandins (PGs) are early and key contributors to chronic neurodegenerative diseases. As one important member of classical PGs, PGA1 has been reported to exert potential neuroprotective effects. However, the mechanisms remain unknown. To this end, we are prompted to investigate whether PGA1 is a useful neurological treatment for Alzheimer's disease (AD) or not. Using high-throughput sequencing, we found that PGA1 potentially regulates cholesterol metabolism and lipid transport. Interestingly, we further found that short-term administration of PGA1 decreased the levels of the monomeric and oligomeric β-amyloid protein (oAβ) in a cholesterol-dependent manner. In detail, PGA1 activated the peroxisome proliferator-activated receptor-gamma (PPARγ) and ATP-binding cassette subfamily A member 1 (ABCA1) signalling pathways, promoting the efflux of cholesterol and decreasing the intracellular cholesterol levels. Through PPARγ/ABCA1/cholesterol-dependent pathway, PGA1 decreased the expression of presenilin enhancer protein 2 (PEN-2), which is responsible for the production of Aβ. More importantly, long-term administration of PGA1 remarkably decreased the formation of Aβ monomers, oligomers, and fibrils. The actions of PGA1 on the production and deposition of Aβ ultimately improved the cognitive decline of the amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice.
Collapse
Affiliation(s)
- Guo-Biao Xu
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Liu-Qing Yang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.
| |
Collapse
|
22
|
Eid A, Mhatre I, Richardson JR. Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. Pharmacol Ther 2019; 199:173-187. [PMID: 30877021 DOI: 10.1016/j.pharmthera.2019.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the United States and afflicts >5.7 million Americans in 2018. Therapeutic options remain extremely limited to those that are symptom targeting, while no drugs have been approved for the modification or reversal of the disease itself. Risk factors for AD including aging, the female sex, as well as carrying an APOE4 genotype. These risk factors have been extensively examined in the literature, while less attention has been paid to modifiable risk factors, including lifestyle, and environmental risk factors such as exposures to air pollution and pesticides. This review highlights the most recent data on risk factors in AD and identifies gene by environment interactions that have been investigated. It also provides a suggested framework for a personalized therapeutic approach to AD, by combining genetic, environmental and lifestyle risk factors. Understanding modifiable risk factors and their interaction with non-modifiable factors (age, susceptibility alleles, and sex) is paramount for designing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America
| | - Isha Mhatre
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America; Department of Neurosciences, School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason R Richardson
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
23
|
CD55 upregulation in astrocytes by statins as potential therapy for AQP4-IgG seropositive neuromyelitis optica. J Neuroinflammation 2019; 16:57. [PMID: 30851734 PMCID: PMC6408857 DOI: 10.1186/s12974-019-1448-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Neuromyelitis optica spectrum disorder (herein called NMO) is an inflammatory demyelinating disease that can be initiated by binding of immunoglobulin G autoantibodies (AQP4-IgG) to aquaporin-4 on astrocytes, causing complement-dependent cytotoxicity (CDC) and downstream inflammation. The increased NMO pathology in rodents deficient in complement regulator protein CD59 following passive transfer of AQP4-IgG has suggested the potential therapeutic utility of increasing the expression of complement regulator proteins. Methods A cell-based ELISA was developed to screen for pharmacological upregulators of endogenous CD55 and CD59 in a human astrocyte cell line. A statin identified from the screen was characterized in cell culture models and rodents for its action on complement regulator protein expression and its efficacy in models of seropositive NMO. Results Screening of ~ 11,500 approved and investigational drugs and nutraceuticals identified transcriptional upregulators of CD55 but not of CD59. Several statins, including atorvastatin, simvastatin, lovastatin, and fluvastatin, increased CD55 protein expression in astrocytes, including primary cultures, by three- to four-fold at 24 h, conferring significant protection against AQP4-IgG-induced CDC. Mechanistic studies revealed that CD55 upregulation involves inhibition of the geranylgeranyl transferase pathway rather than inhibition of cholesterol biosynthesis. Oral atorvastatin at 10–20 mg/kg/day for 3 days strongly increased CD55 immunofluorescence in mouse brain and spinal cord and reduced NMO pathology following intracerebral AQP4-IgG injection. Conclusion Atorvastatin or other statins may thus have therapeutic benefit in AQP4-IgG seropositive NMO by increasing CD55 expression, in addition to their previously described anti-inflammatory and immunomodulatory actions.
Collapse
|
24
|
A combination of indomethacin and atorvastatin ameliorates cognitive and pathological deterioration in PrP-hAβPPswe/PS1 ΔE9 transgenic mice. J Neuroimmunol 2019; 330:108-115. [PMID: 30870684 DOI: 10.1016/j.jneuroim.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
Mounting evidence has shown that inflammation might drive Alzheimer's disease (AD) pathology and contribute to its exacerbation. Previous studies have indicated that indomethacin or atorvastatin are beneficial in treating AD; however, no significant clinical effects have been shown. Furthermore, no study has investigated the efficacy of combining these agents for treating AD. This study sought to determine the effect of a combination of indomethacin and atorvastatin in the PrP-hAβPPswe/PS1ΔE9 (APP/PS1) transgenic AD mouse model. Treatment with indomethacin and atorvastatin ameliorated impairments in spatial learning and memory, and the active avoidance response in APP/PS1 mice. Moreover, we found a suppression of Aβ plaques and decreased concentration of Aβ1-42 in the hippocampus of APP/PS1 mice following treatment. In addition, indomethacin and atorvastatin ameliorated abnormal cytokine secretion, lymphocyte subset disorder, and hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axis imbalances in APP/PS1 mice. The combination of indomethacin and atorvastatin restored immune and neuroendocrine processes, attenuated pathologic changes and cognitive impairments in APP/PS1 transgenic mice, and could thus be a potential therapeutic agent for AD.
Collapse
|
25
|
Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the Brain: More than Lipid Lowering Agents? Curr Neuropharmacol 2019; 17:59-83. [PMID: 28676012 PMCID: PMC6341496 DOI: 10.2174/1570159x15666170703101816] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Segatto
- Address correspondence to this author at the Department of Sense Organs, Sapienza University, viale del Policlinico 155, 00186 Rome, Italy; E-mail:
| |
Collapse
|
26
|
Li HH, Lin CL, Huang CN. Neuroprotective effects of statins against amyloid β-induced neurotoxicity. Neural Regen Res 2018; 13:198-206. [PMID: 29557360 PMCID: PMC5879882 DOI: 10.4103/1673-5374.226379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence suggests that disruption of the homeostasis of lipid metabolism affects the pathogenesis of Alzheimer's disease (AD). In particular, dysregulation of cholesterol homeostasis in the brain has been reported to considerably increase the risk of developing AD. Thus, dysregulation of lipid homeostasis may increase the amyloid β (Aβ) levels by affecting amyloid precursor protein (APP) cleavage, which is the most important risk factor involved in the pathogenesis of AD. Previous research demonstrated that Aβ can trigger neuronal insulin resistance, which plays an important role in response to Aβ-induced neurotoxicity in AD. Epidemiological studies also suggested that statin use is associated with a decreased incidence of AD. Therefore, statins are believed to be a good candidate for conferring neuroprotective effects against AD. Statins may play a beneficial role in reducing Aβ-induced neurotoxicity. Their effect involves a putative mechanism beyond its cholesterol-lowering effects in preventing Aβ-induced neurotoxicity. However, the underlying molecular mechanisms of the protective effect of statins have not been clearly determined in Aβ-induced neurotoxicity. Given that statins may provide benefits beyond the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, these drugs may also improve the brain. Thus, statins may have beneficial effects on impaired insulin signaling by activating AMP-activated protein kinase (AMPK) in neuronal cells. They play a potential therapeutic role in targeting Aβ-mediated neurotoxicity.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, China
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, China
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, China
| |
Collapse
|
27
|
Di Domenico F, Tramutola A, Butterfield DA. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders. Free Radic Biol Med 2017; 111:253-261. [PMID: 27789292 DOI: 10.1016/j.freeradbiomed.2016.10.490] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 01/21/2023]
Abstract
Oxidative stress is involved in various and numerous pathological states including several age-related neurodegenerative diseases. Peroxidation of the membrane lipid bilayer is one of the major sources of free radical-mediated injury that directly damages neurons causing increased membrane rigidity, decreased activity of membrane-bound enzymes, impairment of membrane receptors and altered membrane permeability and eventual cell death. Moreover, the peroxidation of polyunsaturated fatty acids leads to the formation of aldehydes, which can act as toxic by-products. One of the most abundant and cytotoxic lipid -derived aldehydes is 4-hydroxy 2-nonenal (HNE). HNE toxicity is mainly due to the alterations of cell functions by the formation of covalent adducts of HNE with proteins. A key marker of lipid peroxidation, HNE-protein adducts, were found to be elevated in brain tissues and body fluids of Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis subjects and/or models of the respective age-related neurodegenerative diseases. Although only a few proteins were identified as common targets of HNE modification across all these listed disorders, a high overlap of these proteins occurs concerning the alteration of common pathways, such as glucose metabolism or mitochondrial function that are known to contribute to cognitive decline. Within this context, despite the different etiological and pathological mechanisms that lead to the onset of different neurodegenerative diseases, the formation of HNE-protein adducts might represent the shared leit-motif, which aggravates brain damage contributing to disease specific clinical presentation and decline in cognitive performance observed in each case.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
28
|
Roy S, Weinstock JL, Ishino AS, Benites JF, Pop SR, Perez CD, Gumbs EA, Rosenbaum JA, Roccato MK, Shah H, Contino G, Hunter K. Association of Cognitive Impairment in Patients on 3-Hydroxy-3-Methyl-Glutaryl-CoA Reductase Inhibitors. J Clin Med Res 2017; 9:638-649. [PMID: 28611866 PMCID: PMC5458663 DOI: 10.14740/jocmr3066w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular diseases are the leading cause of death in the United States. A reduction in cholesterol with 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statin) significantly reduces mortality and morbidity. Statins may be associated with cognitive impairment or dementia. Our aim was to study the association of cognitive impairment or dementia in patients who were on a statin. METHODS Electronic medical records of 3,500 adult patients in our suburban internal medicine office were reviewed. RESULTS There were 720 (20.6%) patients in the statin treatment group. Dementia or cognitive impairment was an associated comorbid condition in 7.9% patients in the statin treatment group compared to 3.1% patients in the non-statin group (P < 0.001). Analysis of all of the patients with cognitive impairment or dementia showed that among the age ranges of 51 years through 100 years, the patients in the statin treatment group had a higher prevalence of cognitive impairment or dementia compared to the non-statin group. In the statin treatment group, we found significantly higher prevalence of hyperlipidemia (86.3%), hypertension (69.6%), diabetes mellitus (36.0%), osteoarthritis (31.5%), coronary artery disease (26.1%), hypothyroidism (21.5%) and depression (19.3%) compared to the non-statin group (P < 0.001). About 39.9% of the patients with dementia or cognitive impairment were on statin therapy compared to 18.9% patients who had no dementia or cognitive impairment and were on statin therapy (P < 0.001). Among the patients with cognitive deficit or dementia in the statin treatment group, the majority of the patients were either on atorvastatin (43.9%) or simvastatin (35.1%), followed by rosuvastatin (12.2%) and pravastatin (8.8%). We found greater odds of dementia or cognitive impairment with each year increase in age (1.3 times), in women (2.2 times), African American race (2.7 times), non-consumption of moderate amount of alcohol (two times), diabetes mellitus (1.6 times), hypothyroidism (1.7 times), cerebrovascular accident (3.2 times), and other rheumatological diseases (1.8 times). CONCLUSIONS The association of dementia or cognitive impairment was significantly higher in the patients who were on statin therapy compared to the patients who were not on a statin.
Collapse
Affiliation(s)
- Satyajeet Roy
- Department of Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, USA
| | | | | | | | | | | | | | | | | | - Hely Shah
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | | | - Krystal Hunter
- Cooper Research Institute, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
29
|
Theobald RJ. Role of centrally active cardiovascular agents in cognitive disorders. Curr Opin Pharmacol 2017; 33:70-75. [DOI: 10.1016/j.coph.2017.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 01/09/2023]
|
30
|
Simvastatin enhances the hippocampal klotho in a rat model of streptozotocin-induced cognitive decline. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:87-94. [PMID: 27687042 DOI: 10.1016/j.pnpbp.2016.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
Brain oxidative status is a crucial factor in the development of sporadic Alzheimer's disease (AD). Klotho, an anti-aging protein, diminishes oxidative stress by the induction of manganese superoxide dismutase (MnSOD). Thus, the substances that increase klotho expression could be considered as a potential treatment for Alzheimer's disease when the oxidative imbalance is present. Statins are suggested to up-regulate klotho expression. We examined the effect of simvastatin (5mg/kg, daily for 3weeks) on hippocampal klotho and MnSOD expression in the cognitive declined animal model induced by intracerebroventricular (ICV)-streptozotocin (STZ) administration. Cognitive assessment was performed by the Morris Water Maze (MWM) test. The results indicated that mean escape latency and distance were prolonged in the ICV-STZ group compared with the control group. The expression of klotho and MnSOD were also down regulated in the hippocampus. Furthermore, improved spatial performance was observed in simvastatin-treated animals. This effect could be related to increase in oxidative stress tolerance as evidenced by klotho and MnSOD up-regulation. Our current study indicates that klotho upregulation may be a neuroprotective mechanism of simvastatin against cognitive decline in AD.
Collapse
|
31
|
Zhai Y, Yamashita T, Nakano Y, Sun Z, Shang J, Feng T, Morihara R, Fukui Y, Ohta Y, Hishikawa N, Abe K. Chronic Cerebral Hypoperfusion Accelerates Alzheimer’s Disease Pathology with Cerebrovascular Remodeling in a Novel Mouse Model. J Alzheimers Dis 2016; 53:893-905. [DOI: 10.3233/jad-160345] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Golive A, Jared Bunch T. Editorial Commentary: Are statins a solution to reduce the risk of cognitive decline or lower the risk of dementia? Trends Cardiovasc Med 2016; 26:566-7. [DOI: 10.1016/j.tcm.2016.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/27/2022]
|
33
|
Li C, Wang J, Zhao J, Wang Y, Liu Z, Guo FL, Wang XF, Vreugdenhil M, Lu CB. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices. Eur J Neurosci 2016; 44:2236-46. [PMID: 27336700 DOI: 10.1111/ejn.13322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/16/2023]
Abstract
Atorvastatin has been shown to affect cognitive functions in rodents and humans. However, the underlying mechanism is not fully understood. Because hippocampal gamma oscillations (γ, 20-80 Hz) are associated with cognitive functions, we studied the effect of atorvastatin on persistent kainate-induced γ oscillation in the CA3 area of rat hippocampal slices. The involvement of NMDA receptors and multiple kinases was tested before and after administration of atorvastatin. Whole-cell current-clamp and voltage-clamp recordings were made from CA3 pyramidal neurons and interneurons before and after atorvastatin application. Atorvastatin increased γ power by ~ 50% in a concentration-dependent manner, without affecting dominant frequency. Whereas atorvastatin did not affect intrinsic properties of both pyramidal neurons and interneurons, it increased the firing frequency of interneurons but not that of pyramidal neurons. Furthermore, whereas atorvastatin did not affect synaptic current amplitude, it increased the frequency of spontaneous inhibitory post-synaptic currents, but did not affect the frequency of spontaneous excitatory post-synaptic currents. The atorvastatin-induced enhancement of γ oscillations was prevented by pretreatment with the PKA inhibitor H89, the ERK inhibitor U0126, or the PI3K inhibitor wortmanin, but not by the NMDA receptor antagonist D-AP5. Taken together, these results demonstrate that atorvastatin enhanced the kainate-induced γ oscillation by increasing interneuron excitability, with an involvement of multiple intracellular kinase pathways. Our study suggests that the classical cholesterol-lowering agent atorvastatin may improve cognitive functions compromised in disease, via the enhancement of hippocampal γ oscillations.
Collapse
Affiliation(s)
- Chengzhang Li
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Jiangang Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Jianhua Zhao
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yali Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Zhihua Liu
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Fang Li Guo
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Xiao Fang Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Martin Vreugdenhil
- Department of Psychology, Xinxiang Medical University, Xinxiang, China.,School of Health and Education, Birmingham City University, Birmingham, UK
| | - Cheng Biao Lu
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| |
Collapse
|
34
|
Zhou D, Liu H, Li C, Wang F, Shi Y, Liu L, Zhao X, Liu A, Zhang J, Wang C, Chen Z. Atorvastatin ameliorates cognitive impairment, Aβ1-42 production and Tau hyperphosphorylation in APP/PS1 transgenic mice. Metab Brain Dis 2016; 31:693-703. [PMID: 26883430 DOI: 10.1007/s11011-016-9803-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Amyloid-beta (Aβ) interacts with the serine/threonine protein kinase AKT (also known as protein kinase B)/glycogen synthase kinase 3β (GSK3β) pathway and deactivates GSK3β signaling, which result in microtubule protein tau phosphorylation. Atorvastatin, a HMG-CoA reductase inhibitor, has been proven to improve learning and memory performance, reduce Aβ and phosphorylated tau levels in mouse model of Alzheimer's disease (AD). However, it still remains unclear whether atorvastatin is responsible for regulation of AKT/GSK3β signaling and contributes to subsequent down-regulation of Aβ1-42 and phosphorylated tau in APP/PS1 transgenic (Tg APP/PS1) mice. Herein, we aimed to investigate the possible impacts of atorvastatin (10 mg/kg, p.o.) on the memory deficit by behavioral tests and changes of AKT/GSK3β signaling in hippocampus and prefrontal cortex by western blot test in Tg APP/PS1 mice. The results showed that treatment with atorvastatin significantly reversed the memory deficit in the Tg APP/PS1 mice in a novel object recognition and the Morris water maze tests. Moreover, atorvastatin significantly attenuated Aβ1-42 accumulation and phosphorylation of tau (Ser396) in the hippocampus and prefrontal cortex of Tg APP/PS1 mice. In addition, atorvastatin treatment also increased phosphorylation of AKT, inhibited GSK3β activity by increasing phosphorylation of GSK3β (Ser9) and decreasing the beta-site APP cleaving enzyme 1 (BACE1) expression. These results indicated that the memory ameliorating effect of atorvastatin may be, in part, by regulation the AKT/GSK3β signaling which may contribute to down-regulation of Aβ1-42 and tau hyperphosphorylation.
Collapse
Affiliation(s)
- Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315210, People's of Republic China
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Huaxia Liu
- School of Nursing, Taishan Medical University, Taian, Shandong, 271016, People's of Republic China
| | - Chenli Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Fangyan Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Yaosheng Shi
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315210, People's of Republic China
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Lingjiang Liu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315210, People's of Republic China
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Xin Zhao
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Aiming Liu
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Junfang Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China.
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's of Republic China.
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China.
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's of Republic China.
| | - Zhongming Chen
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315210, People's of Republic China.
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China.
| |
Collapse
|
35
|
Hamel E, Royea J, Ongali B, Tong XK. Neurovascular and Cognitive failure in Alzheimer's Disease: Benefits of Cardiovascular Therapy. Cell Mol Neurobiol 2016; 36:219-32. [PMID: 26993506 DOI: 10.1007/s10571-015-0285-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and multifaceted disease for which we currently have very little to offer since there is no curative therapy, with only limited disease-modifying drugs. Recent studies in AD mouse models that recapitulate the amyloid-β (Aβ) pathology converge to demonstrate that it is possible to salvage cerebrovascular function with a variety of drugs and, particularly, therapies used to treat cardiovascular diseases such as hypercholesterolemia and hypertension. These drugs can reestablish dilatory function mediated by various endothelial and smooth muscle ion channels as well as nitric oxide availability, benefits that result in normalized brain perfusion. These cerebrovascular benefits would favor brain perfusion, which may help maintain neuronal function and, possibly, delay cognitive failure. However, restoring cerebrovascular function in AD mouse models was not necessarily accompanied by rescue of cognitive deficits related to spatial learning and memory. The results with cardiovascular therapies rather suggest that drugs originally designed to treat cardiovascular diseases that concurrently restore cerebrovascular and cognitive function do so through their pleiotropic effects. Specifically, recent findings suggest that these drugs act directly on brain cells and neuronal pathways involved in memory formation, hence, working simultaneously albeit independently on neuronal and vascular targets. These findings may help select medications for patients with cardiovascular diseases at risk of developing AD with increasing age. Further, they may identify molecular targets for recovering memory pathways that bear potential for new therapeutic avenues.
Collapse
Affiliation(s)
- Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada.
| | - Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| | - Brice Ongali
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| | - Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
36
|
Statin Therapy and the Development of Cerebral Amyloid Angiopathy--A Rodent in Vivo Approach. Int J Mol Sci 2016; 17:ijms17010126. [PMID: 26797603 PMCID: PMC4730367 DOI: 10.3390/ijms17010126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/24/2022] Open
Abstract
Background: Cerebral amyloid angiopathy (CAA) is characterized by vascular deposition of amyloid β (Aβ) with a higher incidence of cerebral microbleeds (cMBs) and spontaneous hemorrhage. Since statins are known for their benefit in vascular disease we tested for the effect on CAA. Methods: APP23-transgenic mice received atorvastatin-supplemented food starting at the age of eight months (n = 13), 12 months (n = 7), and 16 months (n = 6), respectively. Controls (n = 16) received standard food only. At 24 months of age cMBs were determined with T2*-weighted 9.4T magnetic resonance imaging and graded by size. Results: Control mice displayed an average of 35 ± 18.5 cMBs (mean ± standard deviation), compared to 29.3 ± 9.8 in mice with eight months (p = 0.49), 24.9 ± 21.3 with 12 months (p = 0.26), and 27.8 ± 15.4 with 16 months of atorvastatin treatment (p = 0.27). In combined analysis treated mice showed lower absolute numbers (27.4 ± 15.6, p = 0.16) compared to controls and also after adjustment for cMB size (p = 0.13). Conclusion: Despite to a non-significant trend towards fewer cMBs our results failed to provide evidence for beneficial effects of long-term atorvastatin treatment in the APP23-transgenic mouse model of CAA. A higher risk for bleeding complications was not observed.
Collapse
|
37
|
Peters DG, Connor JR, Meadowcroft MD. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides of the same coin. Neurobiol Dis 2015; 81:49-65. [PMID: 26303889 DOI: 10.1016/j.nbd.2015.08.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/04/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
The dysregulation of iron metabolism in Alzheimer's disease is not accounted for in the current framework of the amyloid cascade hypothesis. Accumulating evidence suggests that impaired iron homeostasis is an early event in Alzheimer's disease progression. Iron dyshomeostasis leads to a loss of function in several enzymes requiring iron as a cofactor, the formation of toxic oxidative species, and the elevated production of beta-amyloid proteins. Several common genetic polymorphisms that cause increased iron levels and dyshomeostasis have been associated with Alzheimer's disease but the pathoetiology is not well understood. A full picture is necessary to explain how heterogeneous circumstances lead to iron loading and amyloid deposition. There is evidence to support a causative interplay between the concerted loss of iron homeostasis and amyloid plaque formation. We hypothesize that iron misregulation and beta-amyloid plaque pathology are synergistic in the process of neurodegeneration and ultimately cause a downward cascade of events that spiral into the manifestation of Alzheimer's disease. In this review, we amalgamate recent findings of brain iron metabolism in healthy versus Alzheimer's disease brains and consider unique mechanisms of iron transport in different brain cells as well as how disturbances in iron regulation lead to disease etiology and propagate Alzheimer's pathology.
Collapse
Affiliation(s)
- Douglas G Peters
- Department of Neurosurgery, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Neural and Behavioral Sciences, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mark D Meadowcroft
- Department of Neurosurgery, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Radiology, The Center for NMR Research, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
38
|
Abstract
Dementia is a major public health concern, affecting an estimated 7% of the population over 65 and 30% over 80 years of age. There is mounting evidence in the literature from meta-analyses of high-quality prospective cohort studies that statins may have a positive impact in reducing the incidence of dementia. Little is known, however, on whether certain types of statins are more impactful than others. This narrative review specifically explores the various properties of different statin types and whether these differences lead to a clinically significant differential impact on cognitive function. We critically evaluate the literature, emphasizing interesting and important new findings, and overall aim to bring the reader up-to-date on evidence-based recommendations.
Collapse
|
39
|
Are microRNAs the Molecular Link Between Metabolic Syndrome and Alzheimer's Disease? Mol Neurobiol 2015; 53:2320-38. [PMID: 25976367 DOI: 10.1007/s12035-015-9201-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in people over 65 years of age. At present, treatment options for AD address only its symptoms, and there are no available treatments for the prevention or delay of the disease process. Several preclinical and epidemiological studies have linked metabolic risk factors such as hypertension, obesity, dyslipidemia, and diabetes to the pathogenesis of AD. However, the molecular mechanisms that underlie this relationship are not fully understood. Considering that less than 1% of cases of AD are attributable to genetic factors, the identification of new molecular targets linking metabolic risk factors to neuropathological processes is necessary for improving the diagnosis and treatment of AD. The dysregulation of microRNAs (miRNAs), small non-coding RNAs that regulate several biological processes, has been implicated in the development of different pathologies. In this review, we summarize some of the relevant evidence that points to the role of miRNAs in metabolic syndrome (MetS) and AD and propose that miRNAs may be a molecular link in the complex relationship between both diseases.
Collapse
|
40
|
Sui HJ, Zhang LL, Liu Z, Jin Y. Atorvastatin prevents Aβ oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage. Acta Pharmacol Sin 2015; 36:553-64. [PMID: 25891085 DOI: 10.1038/aps.2014.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/10/2014] [Indexed: 01/01/2023] Open
Abstract
AIM The proteolytic cleavage of Tau is involved in Aβ-induced neuronal dysfunction and cell death. In this study, we investigated whether atorvastatin could prevent Tau cleavage and hence prevent Aβ1-42 oligomer (AβO)-induced neurotoxicity in cultured cortical neurons. METHODS Cultured rat hippocampal neurons were incubated in the presence of AβOs (1.25 μmol/L) with or without atorvastatin pretreatment. ATP content and LDH in the culture medium were measured to assess the neuronal viability. Caspase-3/7 and calpain protease activities were detected. The levels of phospho-Akt, phospho-Erk1/2, phospho-GSK3β, p35 and Tau proteins were measured using Western blotting. RESULTS Treatment of the neurons with AβO significantly decreased the neuronal viability, induced rapid activation of calpain and caspase-3/7 proteases, accompanied by Tau degradation and relatively stable fragments generated in the neurons. AβO also suppressed Akt and Erk1/2 kinase activity, while increased GSK3β and Cdk5 activity in the neurons. Pretreatment with atorvastatin (0.5, 1, 2.5 μmol/L) dose-dependently inhibited AβO-induced activation of calpain and caspase-3/7 proteases, and effectively diminished the generation of Tau fragments, attenuated synaptic damage and increased neuronal survival. Atorvastatin pretreatment also prevented AβO-induced decreases in Akt and Erk1/2 kinase activity and the increases in GSK3β and Cdk5 kinase activity. CONCLUSION Atorvastatin prevents AβO-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting calpain- and caspase-mediated Tau cleavage.
Collapse
|
41
|
Ng F, Wijaya L, Tang BL. SIRT1 in the brain-connections with aging-associated disorders and lifespan. Front Cell Neurosci 2015; 9:64. [PMID: 25805970 PMCID: PMC4353374 DOI: 10.3389/fncel.2015.00064] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/11/2015] [Indexed: 01/23/2023] Open
Abstract
The silent mating type information regulation 2 proteins (sirtuins) 1 of class III histone deacetylases (HDACs) have been associated with health span and longevity. SIRT1, the best studied member of the mammalian sirtuins, has a myriad of roles in multiple tissues and organs. However, a significant part of SIRT1's role that impinges on aging and lifespan may lie in its activities in the central nervous system (CNS) neurons. Systemically, SIRT1 influences energy metabolism and circadian rhythm through its activity in the hypothalamic nuclei. From a cell biological perspective, SIRT1 is a crucial component of multiple interconnected regulatory networks that modulate dendritic and axonal growth, as well as survival against stress. This neuronal cell autonomous activity of SIRT1 is also important for neuronal plasticity, cognitive functions, as well as protection against aging-associated neuronal degeneration and cognitive decline. We discuss recent findings that have shed light on the various activities of SIRT1 in the brain, which collectively impinge on aging-associated disorders and lifespan.
Collapse
Affiliation(s)
- Fanny Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System Singapore, Singapore
| | - Laura Wijaya
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System Singapore, Singapore
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System Singapore, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore Singapore, Singapore
| |
Collapse
|
42
|
McFarland AJ, Anoopkumar-Dukie S, Arora DS, Grant GD, McDermott CM, Perkins AV, Davey AK. Molecular mechanisms underlying the effects of statins in the central nervous system. Int J Mol Sci 2014; 15:20607-37. [PMID: 25391045 PMCID: PMC4264186 DOI: 10.3390/ijms151120607] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins’ effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins’ effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins’ possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.
Collapse
Affiliation(s)
| | | | - Devinder S Arora
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| | - Gary D Grant
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| | | | - Anthony V Perkins
- Griffith Health Institute, Griffith University, Queensland 4222, Australia.
| | - Andrew K Davey
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| |
Collapse
|
43
|
Honarmand AR, Pourtabatabaei N, Rahimi N, Dehpour AR, Javadi-Paydar M. Suppression of memory acquisition following co-administration of lithium and atorvastatin through nitric oxide pathway in mice. Pharmacol Biochem Behav 2014; 122:203-11. [PMID: 24708995 DOI: 10.1016/j.pbb.2014.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/28/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE The aim of this study was to investigate the interactive effect of lithium and atorvastatin on cognitive performance and the role of NO as a potential mechanism involved in this interaction. MATERIALS AND METHODS Memory performance was evaluated in a two-trial recognition Y-maze test and a step-through passive avoidance task in mice. Lithium (5, 10, 20 or 40 mg/kg, i.p.) and atorvastatin (1 mg/kg, p.o.) were administered 1 h before each trial, L-NAME, a non-specific NO synthase inhibitor (3, 10 mg/kg, i.p.); aminoguanidine, a specific inducible NO synthase (iNOS) inhibitor (100 mg/kg); and L-arginine, a NO precursor (750 mg/kg) were administered 30 min before training sessions. The level of plasma NO end-products (NOx) was determined using Griess reagent protocol. RESULTS 1) Lithium (40 mg/kg) impaired the acquisition of spatial recognition memory; 2) lithium did not affect the retrieval phase of spatial memory; 3) atorvastatin (1 mg/kg) significantly impaired the memory performance, when co-administered with the sub-effective dose of lithium (10 mg/kg), but did not affect the status when administered with lithium (5 mg/kg); 4) L-NAME (10 mg/kg) and aminoguanidine (100 mg/kg) dramatically decreased memory performance in mice received sub-effective doses of both lithium (5 mg/kg) and atorvastatin (1 mg/kg); 5) L-arginine (750 mg/kg) improved the memory acquisition in mice administered lithium (10 mg/kg) and atorvastatin (1 mg/kg); 6) lithium did not affect the cognitive performance in the passive avoidance test. All results were compatible and confirmed with in vitro determination of plasma NOx levels. CONCLUSIONS Lithium, dose dependently, impaired acquisition phase of spatial recognition memory. Lithium and atorvastatin co-administration impaired spatial recognition memory mediating by nitrergic pathway. In addition to L-arginine, our data from L-NAME and aminoguanidine also support the involvement of NO pathway in this interaction.
Collapse
Affiliation(s)
- Amir Reza Honarmand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Brain and Spinal Cord Injury Repair Research Center, Tehran University of Medical Sciences, Iran
| | - Nasim Pourtabatabaei
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Brain and Spinal Cord Injury Repair Research Center, Tehran University of Medical Sciences, Iran
| | - Nastaran Rahimi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrak Javadi-Paydar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Brain and Spinal Cord Injury Repair Research Center, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
44
|
Kurata T, Lukic V, Kozuki M, Wada D, Miyazaki K, Morimoto N, Ohta Y, Deguchi K, Yamashita T, Hishikawa N, Matsuzono K, Ikeda Y, Kamiya T, Abe K. Long-term Effect of Telmisartan on Alzheimer’s Amyloid Genesis in SHR-SR After tMCAO. Transl Stroke Res 2014; 6:107-15. [DOI: 10.1007/s12975-013-0321-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/28/2022]
|
45
|
Wang BW, Wu GJ, Cheng WP, Shyu KG. MicroRNA-208a increases myocardial fibrosis via endoglin in volume overloading heart. PLoS One 2014; 9:e84188. [PMID: 24392114 PMCID: PMC3879305 DOI: 10.1371/journal.pone.0084188] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/13/2013] [Indexed: 01/15/2023] Open
Abstract
MicroRNA-208a (mir-208a) is essential for cardiac hypertrophy and fibrosis. Endoglin, a co-receptor of transforming growth factor-β is also essential for cardiac fibrosis. Endoglin has been shown to be a target of mir-208a in the in vitro mechanical stress model. Volume overload can lead to heart failure and cardiac fibrosis. The role of mir-208a and endoglin in volume overload heart failure is well known. We sought to investigate the mechanism of regulation of mir-208a and endoglin in volume overload-induced heart failure. Aorta-caval (AV) shunt was performed in adult Sprague-Dawley rats to induce volume overload. Heart weight and heart weight/body weight ratio significantly increased in AV shunt animals. AV shunt significantly increased left ventricular end-diastolic dimension as compared to sham group. Mir-208a was significantly induced by AV shunt from 3 to 14 days. Endoglin, myosin heavy chain-β and brain natriuretic peptide were significantly induced by AV shunt from 3 to 14 days. Overexpression of mir-208a in the sham group without AV shunt significantly increased endoglin expression similar to the AV shunt group. Antagomir-208a attenuated the endoglin expression induced by AV shunt. Pretreatment with atorvastatin also attenuated the endoglin expression induced by AV shunt. AV shunt significantly increased myocardial fibrosis as compared to sham group. Overexpression of mir-208a in the sham group significantly increased myocardial fibrosis. Antagomir-208a and atorvastatin significantly attenuated the myocardial fibrosis induced by AV shunt. In conclusion, mir-208a increased endoglin expression to induce myocardial fibrosis in volume overloaded heart failure. Treatment with atorvastatin can attenuate the myocardial fibrosis induced by volume overload through inhibition of endoglin expression.
Collapse
Affiliation(s)
- Bao-Wei Wang
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwa
| | - Gong-Jhe Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Wen-Ping Cheng
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwa
| | - Kou-Gi Shyu
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwa
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
46
|
Papadopoulos P, Tong XK, Hamel E. Selective benefits of simvastatin in bitransgenic APPSwe,Ind/TGF-β1 mice. Neurobiol Aging 2014; 35:203-12. [DOI: 10.1016/j.neurobiolaging.2013.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 06/13/2013] [Accepted: 07/15/2013] [Indexed: 01/19/2023]
|
47
|
Maggo S, Ashton JC. Effects of HMG-CoA reductase inhibitors on learning and memory in the guinea pig. Eur J Pharmacol 2013; 723:294-304. [PMID: 24296319 DOI: 10.1016/j.ejphar.2013.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023]
Abstract
Statins reduce the risk of death from cardiovascular disease in millions of people worldwide. Recent pharmacovigilance data has suggested that people taking statins have an increased risk of psychiatric adverse events such as amnesia and anxiety. This study aimed to investigate the possibility of statin-induced amnesia through animal models of memory and learning. We conducted extracellular field recordings of synaptic transmission in area CA1 of hippocampal slices to examine the effects of acute cholesterol lowering with lipid lowering drugs. We also assessed the effect of six weeks of simvastatin (2mg/kg/d) and atorvastatin (1mg/kg/d) treatment using the Morris water maze. Long Term Potentiation (LTP) was significantly diminished in the presence of 3µM atorvastatin or simvastatin and by the cholesterol sequestering agent methyl-β-cyclodextrin (MBCD). The effects were reversed in the MBCD but not the statin treated slices by the addition of cholesterol. In the water maze, statin treatment did not cause any deficits in the first five days of reference memory testing, but statin treated guinea pigs preformed significantly worse than control animals in a working memory test. The deficits observed in our experiments in water maze performance and hippocampal LTP are suggestive of statin induced changes in hippocampal plasticity. The effects on LTP are independent of cholesterol regulation, and occur at concentrations that may be relevant to clinical use. Our results may help to explain some of the behavioural changes reported in some people after beginning statin treatment.
Collapse
Affiliation(s)
- Simran Maggo
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - John C Ashton
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| |
Collapse
|
48
|
Eradication of Helicobacter pylori Is Associated with the Progression of Dementia: A Population-Based Study. Gastroenterol Res Pract 2013; 2013:175729. [PMID: 24371435 PMCID: PMC3859120 DOI: 10.1155/2013/175729] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
Objective. To evaluate the effect of eradication of Helicobacter pylori (H. pylori) on the progression of dementia in Alzheimer's disease (AD) patients with peptic ulcer.
Methods. Participants with the diagnosis of AD and peptic ulcer were recruited between 2001 and 2008. We examined the association between eradication of H. pylori and the progression of AD using the multiple regression models. Medication shift from Donepezil, Rivastgmine, and Galantamine to Mematine is defined as progression of dementia according to the insurance of National Health Insurance (NHI) under expert review. Results. Among the 30142 AD patients with peptic ulcers, the ratio of medication shift in AD patients with peptic ulcers is 79.95%. There were significant lower incidence comorbidities (diabetes mellitus, hypertension, cerebrovascular disease, coronary artery disease, congestive heart failure and hyperlipidemia) in patients with H. pylori eradication as compared with no H. pylori eradication. Eradication of H. pylori was associated with a decreased risk of AD progression (odds ratio [OR] 0.35 [0.23–0.52]) as compared with no H. pylori eradication, which was not modified by comorbidities. Conclusions. Eradication of H. pylori was associated with a decreased progression of dementia as compared to no eradication of H. pylori in AD patients with peptic ulcers.
Collapse
|
49
|
Kurata T, Miyazaki K, Morimoto N, Kawai H, Ohta Y, Ikeda Y, Abe K. Atorvastatin and pitavastatin reduce oxidative stress and improve IR/LDL-R signals in Alzheimer’s disease. Neurol Res 2013; 35:193-205. [DOI: 10.1179/1743132812y.0000000127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Tomoko Kurata
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazunori Miyazaki
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobutoshi Morimoto
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiromi Kawai
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshio Ikeda
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
50
|
Kurata T, Miyazaki K, Kozuki M, Morimoto N, Ohta Y, Ikeda Y, Abe K. Atorvastatin and pitavastatin reduce senile plaques and inflammatory responses in a mouse model of Alzheimer’s disease. Neurol Res 2013; 34:601-10. [DOI: 10.1179/1743132812y.0000000054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|