1
|
Mohamed ZI, Sivalingam M, Radhakrishnan AK, Jaafar F, Zainal Abidin SA. Chronic unpredictable stress (CUS) reduced phoenixin expression, induced abnormal sperm and testis morphology in male rats. Neuropeptides 2024; 107:102447. [PMID: 38870753 DOI: 10.1016/j.npep.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Chronic stress caused by prolonged emotional pressure can lead to various physiological issues, including reproductive dysfunction. Although reproductive problems can also induce chronic stress, the impact of chronic stress-induced reproductive dysfunction remains contentious. This study investigates the effects of chronic unpredictable stress (CUS) on reproductive neuropeptides, sperm quality, and testicular morphology. Sixteen twelve-week-old Sprague Dawley rats were divided into two groups: a non-stress control group and a CUS-induced group. The CUS regimen involved various stressors over 28 days, with both groups undergoing behavioural assessments through sucrose-preference and forced-swim tests. Hypothalamic gene expression levels of CRH, PNX, GPR173, kisspeptin, GnRH, GnIH, and spexin neuropeptides were measured via qPCR, while plasma cortisol, luteinizing hormone (LH), and testosterone concentrations were quantified using ELISA. Seminal fluid and testis samples were collected for sperm analysis and histopathological evaluation, respectively. Results showed altered behaviours in CUS-induced rats, reflecting stress impacts. Hypothalamic corticotropin-releasing hormone (CRH) expression and plasma cortisol levels were significantly higher in CUS-induced rats compared to controls (p < 0.05). Conversely, phoenixin (PNX) expression decreased in the CUS group (p < 0.05), while kisspeptin, spexin, and gonadotropin-inhibitory hormone (GnIH) levels showed no significant differences between groups. Despite a significant increase in GnRH expression (p < 0.05), plasma LH and testosterone concentrations were significantly lower (p < 0.05) in CUS-induced rats. Histopathological analysis revealed abnormal testis morphology in CUS-induced rats, including disrupted architecture, visible interstitial spaces between seminiferous tubules, and absence of spermatogenesis. In conclusion, CUS affects reproductive function by modulating PNX and GnRH expression, influencing cortisol levels, and subsequently reducing plasma LH and testosterone concentrations. This study highlights the complex interplay between chronic stress and reproductive health, emphasizing the significant impact of stress on reproductive functions.
Collapse
Affiliation(s)
- Zahra Isnaini Mohamed
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Mageswary Sivalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Højgaard K, Kaadt E, Mumm BH, Pereira VS, Elfving B. Dysregulation of circadian clock gene expression patterns in a treatment-resistant animal model of depression. J Neurochem 2024; 168:1826-1841. [PMID: 38970299 DOI: 10.1111/jnc.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Circadian rhythm (CR) disturbances are among the most commonly observed symptoms during major depressive disorder, mostly in the form of disrupted sleeping patterns. However, several other measurable parameters, such as plasma hormone rhythms and differential expression of circadian clock genes (ccgs), are also present, often referred to as circadian phase markers. In the recent years, CR disturbances have been recognized as an essential aspect of depression; however, most of the known animal models of depression have yet to be evaluated for their eligibility to model CR disturbances. In this study, we investigate the potential of adrenocorticotropic hormone (ACTH)-treated animals as a disease model for research in CR disturbances in treatment-resistant depression. For this purpose, we evaluate the changes in several circadian phase markers, including plasma concentrations of corticosterone, ACTH, and melatonin, as well as gene expression patterns of 13 selected ccgs at 3 different time points, in both peripheral and central tissues. We observed no impact on plasma corticosterone and melatonin concentrations in the ACTH rats compared to vehicle. However, the expression pattern of several ccgs was affected in the ACTH rats compared to vehicle. In the hippocampus, 10 ccgs were affected by ACTH treatment, whereas in the adrenal glands, 5 ccgs were affected and in the prefrontal cortex, hypothalamus and liver 4 ccgs were regulated. In the blood, only 1 gene was affected. Individual tissues showed changes in different ccgs, but the expression of Bmal1, Per1, and Per2 were most generally affected. Collectively, the results presented here indicate that the ACTH animal model displays dysregulation of a number of phase markers suggesting the model may be appropriate for future studies into CR disturbances.
Collapse
Affiliation(s)
- Kristoffer Højgaard
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Erik Kaadt
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Birgitte Hviid Mumm
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vitor Silva Pereira
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Betina Elfving
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Sarrazin DH, Gardner W, Marchese C, Balzinger M, Ramanathan C, Schott M, Rozov S, Veleanu M, Vestring S, Normann C, Rantamäki T, Antoine B, Barrot M, Challet E, Bourgin P, Serchov T. Prefrontal cortex molecular clock modulates development of depression-like phenotype and rapid antidepressant response in mice. Nat Commun 2024; 15:7257. [PMID: 39179578 PMCID: PMC11344080 DOI: 10.1038/s41467-024-51716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Depression is associated with dysregulated circadian rhythms, but the role of intrinsic clocks in mood-controlling brain regions remains poorly understood. We found increased circadian negative loop and decreased positive clock regulators expression in the medial prefrontal cortex (mPFC) of a mouse model of depression, and a subsequent clock countermodulation by the rapid antidepressant ketamine. Selective Bmal1KO in CaMK2a excitatory neurons revealed that the functional mPFC clock is an essential factor for the development of a depression-like phenotype and ketamine effects. Per2 silencing in mPFC produced antidepressant-like effects, while REV-ERB agonism enhanced the depression-like phenotype and suppressed ketamine action. Pharmacological potentiation of clock positive modulator ROR elicited antidepressant-like effects, upregulating plasticity protein Homer1a, synaptic AMPA receptors expression and plasticity-related slow wave activity specifically in the mPFC. Our data demonstrate a critical role for mPFC molecular clock in regulating depression-like behavior and the therapeutic potential of clock pharmacological manipulations influencing glutamatergic-dependent plasticity.
Collapse
Affiliation(s)
- David H Sarrazin
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
| | - Wilf Gardner
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | - Carole Marchese
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | - Martin Balzinger
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | | | - Marion Schott
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
| | - Stanislav Rozov
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maxime Veleanu
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Neuromodulation, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Benedicte Antoine
- Sorbonne Université, INSERM, Centre de Recherches St-Antoine (CRSA), Paris, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | - Etienne Challet
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
| | - Patrice Bourgin
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, Strasbourg, France
| | - Tsvetan Serchov
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Li Y, Lu L, Levy JL, Anthony TG, Androulakis IP. Computational modeling of the synergistic role of GCN2 and the HPA axis in regulating the integrated stress response in the central circadian timing system. Physiol Genomics 2024; 56:531-543. [PMID: 38881429 DOI: 10.1152/physiolgenomics.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
The circadian timing system and integrated stress response (ISR) systems are fundamental regulatory mechanisms that maintain body homeostasis. The central circadian pacemaker in the suprachiasmatic nucleus (SCN) governs daily rhythms through interactions with peripheral oscillators via the hypothalamus-pituitary-adrenal (HPA) axis. On the other hand, ISR signaling is pivotal for preserving cellular homeostasis in response to physiological changes. Notably, disrupted circadian rhythms are observed in cases of impaired ISR signaling. In this work, we examine the potential interplay between the central circadian system and the ISR, mainly through the SCN and HPA axis. We introduce a semimechanistic mathematical model to delineate SCN's capacity for indirectly perceiving physiological stress through glucocorticoid-mediated feedback from the HPA axis and orchestrating a cellular response via the ISR mechanism. Key components of our investigation include evaluating general control nonderepressible 2 (GCN2) expression in the SCN, the effect of physiological stress stimuli on the HPA axis, and the interconnected feedback between the HPA and SCN. Simulation revealed a critical role for GCN2 in linking ISR with circadian rhythms. Experimental findings have demonstrated that a Gcn2 deletion in mice leads to rapid re-entrainment of the circadian clock following jetlag as well as to an elongation of the circadian period. These phenomena are well replicated by our model, which suggests that both the swift re-entrainment and prolonged period can be ascribed to a reduced robustness in neuronal oscillators. Our model also offers insights into phase shifts induced by acute physiological stress and the alignment/misalignment of physiological stress with external light-dark cues. Such understanding aids in strategizing responses to stressful events, such as nutritional status changes and jetlag.NEW & NOTEWORTHY This study is the first theoretical work to investigate the complex interaction between integrated stress response (ISR) sensing and central circadian rhythm regulation, encompassing the suprachiasmatic nucleus (SCN) and hypothalamus-pituitary-adrenal (HPA) axis. The findings carry implications for the development of dietary or pharmacological interventions aimed at facilitating recovery from stressful events, such as jetlag. Moreover, they provide promising prospects for potential therapeutic interventions that target circadian rhythm disruption and various stress-related disorders.
Collapse
Affiliation(s)
- Yannuo Li
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, United States
| | - Lingjun Lu
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, United States
| | - Jordan L Levy
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Tracy G Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, United States
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States
- Department of Surgery, Rutgers-Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| |
Collapse
|
5
|
Harvey-Carroll J, Stevenson TJ, Bussière LF, Spencer KA. Pre-natal exposure to glucocorticoids causes changes in developmental circadian clock gene expression and post-natal behaviour in the Japanese quail. Horm Behav 2024; 163:105562. [PMID: 38810363 DOI: 10.1016/j.yhbeh.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The embryonic environment is critical in shaping developmental trajectories and consequently post-natal phenotypes. Exposure to elevated stress hormones during this developmental stage is known to alter a variety of post-natal phenotypic traits, and it has been suggested that pre-natal stress can have long term effects on the circadian rhythm of glucocorticoid hormone production. Despite the importance of the circadian system, the potential impact of developmental glucocorticoid exposure on circadian clock genes, has not yet been fully explored. Here, we showed that pre-natal exposure to corticosterone (CORT, a key glucocorticoid) resulted in a significant upregulation of two key hypothalamic circadian clock genes during the embryonic period in the Japanese quail (Coturnix japonica). Altered expression was still present 10 days into post-natal life for both genes, but then disappeared by post-natal day 28. At post-natal day 28, however, diel rhythms of eating and resting were influenced by exposure to pre-natal CORT. Males exposed to pre-natal CORT featured an earlier acrophase, alongside spending a higher proportion of time feeding. Females exposed to pre-natal CORT featured a less pronounced shift in acrophase and spent less time eating. Both males and females exposed to pre-natal CORT spent less time inactive during the day. Pre-natal CORT males appeared to feature a delay in peak activity levels. Our novel data suggest that these circadian clock genes and aspects of diurnal behaviours are highly susceptible to glucocorticoid disruption during embryonic development, and these effects are persistent across developmental stages, at least into early post-natal life.
Collapse
Affiliation(s)
- Jessica Harvey-Carroll
- School of Psychology and Neuroscience, University of St Andrews, Scotland; Department of Biological and Environmental Sciences & Gothenburg Global Biodiversity Centre, University of Gothenburg, Sweden.
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, United Kingdom of Great Britain and Northern Ireland
| | - Luc F Bussière
- Department of Biological and Environmental Sciences & Gothenburg Global Biodiversity Centre, University of Gothenburg, Sweden
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, Scotland
| |
Collapse
|
6
|
Ding K, Wang F, Wang K, Feng X, Yang M, Han B, Li G, Li S. Environmental stress during adolescence promotes depression-like behavior and endocrine abnormalities in rats. Behav Brain Res 2024; 457:114710. [PMID: 37832605 DOI: 10.1016/j.bbr.2023.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To assess the ability of environmental stress (ES) during adolescence on depression-like behaviors and endocrinology in rats. METHODS Male and female Sprague-Dawley rats before or during puberty were divided into three groups: control group (CON), low-frequency ES group (LF), and high-frequency ES group (HF). ES included water/food deprivation and reversal of day and night. After 4 weeks of ES, the behavioral tests were performed. Plasma concentrations of hormones and peptides were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS ES induced a significant decrease in sucrose preference value in female adolescent rats but not males. In prepubertal rats, the reductions in sucrose preference upon ES were observed without a sex-specific effect. Compared with the CON group, female adolescent rats showed a significant increase, while male adolescent rats showed a significant decrease in plasma corticosterone (CORT) after ES. Also, ES significantly increased plasma leptin in female and male adolescent rats. Moreover, ES significantly increased plasma cholecystokinin (CCK), neuropeptide Y (NPY), and testosterone (TS) levels in adolescent female rats but not in males. No significant differences were found in plasma progesterone and E2 among adolescent rats. The prepubertal male rats showed significant plasma E2 and TS increase after ES, while there were no significant differences between groups in plasma CORT, leptin, CCK, NPY, and progesterone. CONCLUSIONS ES may cause depression-like behaviors in adolescent female rats. Our findings supplement the scientific basis for formulating strategies to treat and prevent adolescent depression.
Collapse
Affiliation(s)
- Kaimo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China; Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Fei Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China; The First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Ke Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Xuezhu Feng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Min Yang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Daping, Yuzhong, Chongqing 400042, China
| | - Bai Han
- The First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Guohai Li
- Zhenjiang Mental Health Center, Jiangsu 212000, China.
| | - Suxia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Imamura K, Bota A, Shirafuji T, Takumi T. The blues and rhythm. Neurosci Res 2023:S0168-0102(23)00199-2. [PMID: 38000448 DOI: 10.1016/j.neures.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
Most organisms, including humans, show daily rhythms in many aspects of physiology and behavior, and abnormalities in the rhythms are potential risk factors for various diseases. Mood disorders such as depression are no exception. Accumulating evidence suggests strong associations between circadian disturbances and the development of depression. Numerous studies have shown that interventions to circadian rhythms trigger depression-like phenotypes in human cases and animal models. Conversely, mood changes can affect circadian rhythms as symptoms of depression. Our preliminary data suggest that the phosphorylation signal pathway of the clock protein may act as a common pathway for mood and clock regulation. We hypothesize that mood regulation and circadian rhythms may influence each other and may share a common regulatory mechanism. This review provides an overview of circadian disturbances in animal models and human patients with depression.
Collapse
Affiliation(s)
- Kiyomichi Imamura
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Ayaka Bota
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Toshihiko Shirafuji
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan; RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe 650-0047, Japan.
| |
Collapse
|
8
|
Torres Soler C, Kanders SH, Rehn M, Olofsdotter S, Åslund C, Nilsson KW. A Three-Way Interaction of Sex, PER2 rs56013859 Polymorphism, and Family Maltreatment in Depressive Symptoms in Adolescents. Genes (Basel) 2023; 14:1723. [PMID: 37761863 PMCID: PMC10531402 DOI: 10.3390/genes14091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The prevalence of depressive symptoms in adolescents is 12-18% and is twice as frequent in females. Sleep problems and thoughts of death are depressive symptoms or co-occurrent phenomena. Family maltreatment is a risk factor for later depressive symptoms and the period circadian regulator (PER) has been studied in relation to neurotransmitters, adaptation to stress, and winter depression. The purpose of this work was to study the relation of the three-way interactions of sex, PER2 rs56013859, and family maltreatment in relation to core depressive symptoms, sleep complaints, and thoughts of death and suicide in self-reports from a cohort of Swedish adolescents in 2012, 2015, and 2018. Cross-sectional and longitudinal analyses with linear and logistic regressions were used to study the relationships to the three outcomes. The three-way interaction was related to core depressive symptoms at both baseline and six years later. In contrast, the model did not show any relation to the other dependent variables. At 13-15 years, a sex-related differential expression was observed: females with the minor allele C:C/C:T exposed to family maltreatment showed higher levels of core depressive symptoms. Six years later, the trend was inverted among carriers of minor alleles.
Collapse
Affiliation(s)
- Catalina Torres Soler
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
| | - Sofia H. Kanders
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
| | - Mattias Rehn
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
| | - Susanne Olofsdotter
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
- Department of Psychology, Uppsala University, 751 05 Uppsala, Sweden
| | - Cecilia Åslund
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, 751 05 Uppsala, Sweden
| | - Kent W. Nilsson
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
- Department of Neuroscience, Uppsala University, 751 05 Uppsala, Sweden
- The School of Health, Care and Social Welfare, Mälardalen University, 721 23 Västerås, Sweden
| |
Collapse
|
9
|
Teglas T, Torices S, Taylor M, Coker D, Toborek M. Exposure to polychlorinated biphenyls selectively dysregulates endothelial circadian clock and endothelial toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131499. [PMID: 37126901 PMCID: PMC10202419 DOI: 10.1016/j.jhazmat.2023.131499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) are lipophilic and persistent environmental toxicants, which pose health threats to the exposed population. Among several organs and cell types, vascular tissue and endothelial cells are especially prone to PCB-induced toxicity. Exposure to PCBs can exert detrimental impacts on biological pathways, expression of transcription factors, and tight junction proteins that are integral to the functionality of endothelial cells. Because biological and cellular processes are tightly regulated by circadian rhythms, and disruption of the circadian system may cause several diseases, we evaluated if exposure to PCBs can alter the expression of the major endothelial circadian regulators. In addition, we studied if dysregulation of circadian rhythms by silencing the brain and muscle ARNT-like 1 (Bmal1) gene can contribute to alterations of brain endothelial cells in response to PCB treatment. We demonstrated that diminished expression of Bmal1 enhances PCB-induced dysregulation of tight junction complexes, such as the expression of occludin, JAM-2, ZO-1, and ZO-2 especially at pathologically relevant longer PCB exposure times. Overall, the obtained results imply that dysregulation of the circadian clock is involved in endothelial toxicity of PCBs. The findings provide new insights for toxicological studies focused on the interactions between environmental pollutants and regulation of circadian rhythms.
Collapse
Affiliation(s)
- Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Madison Taylor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Desiree Coker
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA; Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
10
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
11
|
Yao Y, Silver R. Mutual Shaping of Circadian Body-Wide Synchronization by the Suprachiasmatic Nucleus and Circulating Steroids. Front Behav Neurosci 2022; 16:877256. [PMID: 35722187 PMCID: PMC9200072 DOI: 10.3389/fnbeh.2022.877256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Steroids are lipid hormones that reach bodily tissues through the systemic circulation, and play a major role in reproduction, metabolism, and homeostasis. All of these functions and steroids themselves are under the regulation of the circadian timing system (CTS) and its cellular/molecular underpinnings. In health, cells throughout the body coordinate their daily activities to optimize responses to signals from the CTS and steroids. Misalignment of responses to these signals produces dysfunction and underlies many pathologies. Questions Addressed To explore relationships between the CTS and circulating steroids, we examine the brain clock located in the suprachiasmatic nucleus (SCN), the daily fluctuations in plasma steroids, the mechanisms producing regularly recurring fluctuations, and the actions of steroids on their receptors within the SCN. The goal is to understand the relationship between temporal control of steroid secretion and how rhythmic changes in steroids impact the SCN, which in turn modulate behavior and physiology. Evidence Surveyed The CTS is a multi-level organization producing recurrent feedback loops that operate on several time scales. We review the evidence showing that the CTS modulates the timing of secretions from the level of the hypothalamus to the steroidogenic gonadal and adrenal glands, and at specific sites within steroidogenic pathways. The SCN determines the timing of steroid hormones that then act on their cognate receptors within the brain clock. In addition, some compartments of the body-wide CTS are impacted by signals derived from food, stress, exercise etc. These in turn act on steroidogenesis to either align or misalign CTS oscillators. Finally this review provides a comprehensive exploration of the broad contribution of steroid receptors in the SCN and how these receptors in turn impact peripheral responses. Conclusion The hypothesis emerging from the recognition of steroid receptors in the SCN is that mutual shaping of responses occurs between the brain clock and fluctuating plasma steroid levels.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Psychology, Columbia University, New York City, NY, United States
- *Correspondence: Yifan Yao,
| | - Rae Silver
- Department of Psychology, Columbia University, New York City, NY, United States
- Department of Neuroscience, Barnard College, New York City, NY, United States
- Department of Psychology, Barnard College, New York City, NY, United States
- Department of Pathology and Cell Biology, Graduate School, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
12
|
Yang Y, Han W, Zhang A, Zhao M, Cong W, Jia Y, Wang D, Zhao R. Chronic corticosterone disrupts the circadian rhythm of CRH expression and m 6A RNA methylation in the chicken hypothalamus. J Anim Sci Biotechnol 2022; 13:29. [PMID: 35255992 PMCID: PMC8902767 DOI: 10.1186/s40104-022-00677-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH), the major secretagogue of the hypothalamic-pituitary-adrenal (HPA) axis, is intricately intertwined with the clock genes to regulate the circadian rhythm of various body functions. N6-methyladenosine (m6A) RNA methylation is involved in the regulation of circadian rhythm, yet it remains unknown whether CRH expression and m6A modification oscillate with the clock genes in chicken hypothalamus and how the circadian rhythms change under chronic stress. RESULTS Chronic exposure to corticosterone (CORT) eliminated the diurnal patterns of plasma CORT and melatonin levels in the chicken. The circadian rhythms of clock genes in hippocampus, hypothalamus and pituitary are all disturbed to different extent in CORT-treated chickens. The most striking changes occur in hypothalamus in which the diurnal fluctuation of CRH mRNA is flattened, together with mRNA of other feeding-related neuropeptides. Interestingly, hypothalamic m6A level oscillates in an opposite pattern to CRH mRNA, with lowest m6A level after midnight (ZT18) corresponding to the peak of CRH mRNA before dawn (ZT22). CORT diminished the circadian rhythm of m6A methylation with significantly increased level at night. Further site-specific m6A analysis on 3'UTR of CRH mRNA indicates that higher m6A on 3'UTR of CRH mRNA coincides with lower CRH mRNA at night (ZT18 and ZT22). CONCLUSIONS Our results indicate that chronic stress disrupts the circadian rhythms of CRH expression in hypothalamus, leading to dysfunction of HPA axis in the chicken. RNA m6A modification is involved in the regulation of circadian rhythms in chicken hypothalamus under both basal and chronic stress conditions.
Collapse
Affiliation(s)
- Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wanwan Han
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Aijia Zhang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mindie Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wei Cong
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Deyun Wang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
13
|
Đukanović N, La Spada F, Emmenegger Y, Niederhäuser G, Preitner F, Franken P. Depriving Mice of Sleep also Deprives of Food. Clocks Sleep 2022; 4:37-51. [PMID: 35225952 PMCID: PMC8884003 DOI: 10.3390/clockssleep4010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Both sleep-wake behavior and circadian rhythms are tightly coupled to energy metabolism and food intake. Altered feeding times in mice are known to entrain clock gene rhythms in the brain and liver, and sleep-deprived humans tend to eat more and gain weight. Previous observations in mice showing that sleep deprivation (SD) changes clock gene expression might thus relate to altered food intake, and not to the loss of sleep per se. Whether SD affects food intake in the mouse and how this might affect clock gene expression is, however, unknown. We therefore quantified (i) the cortical expression of the clock genes Per1, Per2, Dbp, and Cry1 in mice that had access to food or not during a 6 h SD, and (ii) food intake during baseline, SD, and recovery sleep. We found that food deprivation did not modify the SD-incurred clock gene changes in the cortex. Moreover, we discovered that although food intake during SD did not differ from the baseline, mice lost weight and increased food intake during subsequent recovery. We conclude that SD is associated with food deprivation and that the resulting energy deficit might contribute to the effects of SD that are commonly interpreted as a response to sleep loss.
Collapse
Affiliation(s)
- Nina Đukanović
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
| | - Francesco La Spada
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
| | - Guy Niederhäuser
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (G.N.); (F.P.)
| | - Frédéric Preitner
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (G.N.); (F.P.)
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
- Correspondence:
| |
Collapse
|
14
|
Vadnie CA, Petersen KA, Eberhardt LA, Hildebrand MA, Cerwensky AJ, Zhang H, Burns JN, Becker-Krail DD, DePoy LM, Logan RW, McClung CA. The Suprachiasmatic Nucleus Regulates Anxiety-Like Behavior in Mice. Front Neurosci 2022; 15:765850. [PMID: 35126036 PMCID: PMC8811036 DOI: 10.3389/fnins.2021.765850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023] Open
Abstract
Individuals suffering from mood and anxiety disorders often show significant disturbances in sleep and circadian rhythms. Animal studies indicate that circadian rhythm disruption can cause increased depressive- and anxiety-like behavior, but the underlying mechanisms are unclear. One potential mechanism to explain how circadian rhythms are contributing to mood and anxiety disorders is through dysregulation of the suprachiasmatic nucleus (SCN) of the hypothalamus, known as the "central pacemaker." To investigate the role of the SCN in regulating depressive- and anxiety-like behavior in mice, we chronically manipulated the neural activity of the SCN using two optogenetic stimulation paradigms. As expected, chronic stimulation of the SCN late in the active phase (circadian time 21, CT21) resulted in a shortened period and dampened amplitude of homecage activity rhythms. We also repeatedly stimulated the SCN at unpredictable times during the active phase of mice when SCN firing rates are normally low. This resulted in dampened, fragmented, and unstable homecage activity rhythms. In both chronic SCN optogenetic stimulation paradigms, dampened homecage activity rhythms (decreased amplitude) were directly correlated with increased measures of anxiety-like behavior. In contrast, we only observed a correlation between behavioral despair and homecage activity amplitude in mice stimulated at CT21. Surprisingly, the change in period of homecage activity rhythms was not directly associated with anxiety- or depressive-like behavior. Finally, to determine if anxiety-like behavior is affected during a single SCN stimulation session, we acutely stimulated the SCN in the active phase (zeitgeber time 14-16, ZT14-16) during behavioral testing. Unexpectedly this also resulted in increased anxiety-like behavior. Taken together, these results indicate that SCN-mediated dampening of rhythms is directly correlated with increased anxiety-like behavior. This work is an important step in understanding how specific SCN neural activity disruptions affect depressive- and anxiety-related behavior.
Collapse
Affiliation(s)
- Chelsea A. Vadnie
- Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| | - Kaitlyn A. Petersen
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauren A. Eberhardt
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mariah A. Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Allison J. Cerwensky
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hui Zhang
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer N. Burns
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darius D. Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauren M. DePoy
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Lu Q, Kim JY. Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J 2021; 289:6589-6604. [PMID: 34657394 DOI: 10.1111/febs.16233] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
The brain has a complex structure composed of hundreds of regions, forming networks to cooperate body functions. Therefore, understanding how various brain regions communicate with each other and with peripheral organs is important to understand human physiology. The suprachiasmatic nucleus (SCN) in the brain is the circadian pacemaker. The SCN receives photic information from the environment and conveys this to other parts of the brain and body to synchronize all circadian clocks. The circadian clock is an endogenous oscillator that generates daily rhythms in metabolism and physiology in almost all cells via a conserved transcriptional-translational negative feedback loop. So, the information flow from the environment to the SCN to other tissues synchronizes locally distributed circadian clocks to maintain homeostasis. Thus, understanding the circadian networks and how they adjust to environmental changes will better understand human physiology. This review will focus on circadian networks mediated by the SCN to understand how the environment, brain, and peripheral tissues form networks for cooperation.
Collapse
Affiliation(s)
- Qingqing Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Tung Foundation Biomedical Sciences Centre, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
16
|
Ota SM, Kong X, Hut R, Suchecki D, Meerlo P. The impact of stress and stress hormones on endogenous clocks and circadian rhythms. Front Neuroendocrinol 2021; 63:100931. [PMID: 34192588 DOI: 10.1016/j.yfrne.2021.100931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
In mammals, daily rhythms in physiology and behavior are under control of a circadian pacemaker situated in the suprachiasmatic nucleus (SCN). This master clock receives photic input from the retina and coordinates peripheral oscillators present in other tissues, maintaining all rhythms in the body synchronized to the environmental light-dark cycle. In line with its function as a master clock, the SCN appears to be well protected against unpredictable stressful stimuli. However, available data indicate that stress and stress hormones at certain times of day are capable of shifting peripheral oscillators in, e.g., liver, kidney and heart, which are normally under control of the SCN. Such shifts of peripheral oscillators may represent a temporary change in circadian organization that facilitates adaptation to repeated stress. Alternatively, these shifts of internal rhythms may represent an imbalance between precisely orchestrated physiological and behavioral processes that may have severe consequences for health and well-being.
Collapse
Affiliation(s)
- Simone Marie Ota
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands; Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Xiangpan Kong
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Roelof Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Peter Meerlo
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands.
| |
Collapse
|
17
|
Liu H, Rastogi A, Narain P, Xu Q, Sabanovic M, Alhammadi AD, Guo L, Cao JL, Zhang H, Aqel H, Mlambo V, Rezgui R, Radwan B, Chaudhury D. Blunted diurnal firing in lateral habenula projections to dorsal raphe nucleus and delayed photoentrainment in stress-susceptible mice. PLoS Biol 2021; 19:e3000709. [PMID: 33690628 PMCID: PMC7984642 DOI: 10.1371/journal.pbio.3000709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/22/2021] [Accepted: 02/04/2021] [Indexed: 01/29/2023] Open
Abstract
Daily rhythms are disrupted in patients with mood disorders. The lateral habenula (LHb) and dorsal raphe nucleus (DRN) contribute to circadian timekeeping and regulate mood. Thus, pathophysiology in these nuclei may be responsible for aberrations in daily rhythms during mood disorders. Using the 15-day chronic social defeat stress (CSDS) paradigm and in vitro slice electrophysiology, we measured the effects of stress on diurnal rhythms in firing of LHb cells projecting to the DRN (cellsLHb→DRN) and unlabeled DRN cells. We also performed optogenetic experiments to investigate if increased firing in cellsLHb→DRN during exposure to a weak 7-day social defeat stress (SDS) paradigm induces stress-susceptibility. Last, we investigated whether exposure to CSDS affected the ability of mice to photoentrain to a new light–dark (LD) cycle. The cellsLHb→DRN and unlabeled DRN cells of stress-susceptible mice express greater blunted diurnal firing compared to stress-näive (control) and stress-resilient mice. Daytime optogenetic activation of cellsLHb→DRN during SDS induces stress-susceptibility which shows the direct correlation between increased activity in this circuit and putative mood disorders. Finally, we found that stress-susceptible mice are slower, while stress-resilient mice are faster, at photoentraining to a new LD cycle. Our findings suggest that exposure to strong stressors induces blunted daily rhythms in firing in cellsLHb→DRN, DRN cells and decreases the initial rate of photoentrainment in susceptible-mice. In contrast, resilient-mice may undergo homeostatic adaptations that maintain daily rhythms in firing in cellsLHb→DRN and also show rapid photoentrainment to a new LD cycle. Daily rhythms are disrupted in patients suffering from mood disorders, and it is known that the lateral habenula and dorsal raphe nucleus contribute to circadian timekeeping and regulate mood. This study shows that stress-susceptible mice have blunted and inverted diurnal firing rhythms in lateral habenula cells that project to the dorsal raphe nucleus, and have a slow rate of photoentrainment to a new light cycle.
Collapse
Affiliation(s)
- He Liu
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, The Xuzhou Medical University, Xuzhou, China
| | - Ashutosh Rastogi
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Priyam Narain
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Qing Xu
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Merima Sabanovic
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Lihua Guo
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Jun-Li Cao
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Hongxing Zhang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hala Aqel
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vongai Mlambo
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Rachid Rezgui
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Basma Radwan
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Dipesh Chaudhury
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- * E-mail:
| |
Collapse
|
18
|
Dinel AL, Lucas C, Le Faouder J, Bouvret E, Pallet V, Layé S, Joffre C. Supplementation with low molecular weight peptides from fish protein hydrolysate reduces acute mild stress-induced corticosterone secretion and modulates stress responsive gene expression in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
19
|
Agorastos A, Olff M. Traumatic stress and the circadian system: neurobiology, timing and treatment of posttraumatic chronodisruption. Eur J Psychotraumatol 2020; 11:1833644. [PMID: 33408808 PMCID: PMC7747941 DOI: 10.1080/20008198.2020.1833644] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Humans have an evolutionary need for a well-preserved internal 'clock', adjusted to the 24-hour rotation period of our planet. This intrinsic circadian timing system enables the temporal organization of numerous physiologic processes, from gene expression to behaviour. The human circadian system is tightly and bidirectionally interconnected to the human stress system, as both systems regulate each other's activity along the anticipated diurnal challenges. The understanding of the temporal relationship between stressors and stress responses is critical in the molecular pathophysiology of stress-and trauma-related diseases, such as posttraumatic stress disorder (PTSD). Objectives/Methods: In this narrative review, we present the functional components of the stress and circadian system and their multilevel interactions and discuss how traumatic stress can affect the harmonious interplay between the two systems. Results: Circadian dysregulation after trauma exposure (posttraumatic chronodisruption) may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of traumatic stress through a loss of the temporal order at different organizational levels. Posttraumatic chronodisruption may, thus, affect fundamental properties of neuroendocrine, immune and autonomic systems, leading to a breakdown of biobehavioral adaptive mechanisms with increased stress sensitivity and vulnerability. Given that many traumatic events occur in the late evening or night hours, we also describe how the time of day of trauma exposure can differentially affect the stress system and, finally, discuss potential chronotherapeutic interventions. Conclusion: Understanding the stress-related mechanisms susceptible to chronodisruption and their role in PTSD could deliver new insights into stress pathophysiology, provide better psychochronobiological treatment alternatives and enhance preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
| | - Miranda Olff
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.,ARQ Psychotrauma Expert Group, Diemen, The Netherlands
| |
Collapse
|
20
|
Liu H, Rastogi A, Sabanovic M, Alhammadi AD, Xu Q, Guo L, Cao J, Zhang H, Narain P, Aqel H, Mlambo V, Rezgui R, Radwan B, Chaudhury D. Blunted Diurnal Firing in Lateral Habenula Projections to Dorsal Raphe Nucleus and Delayed Photoentrainment in Stress-Susceptible Mice.. [DOI: 10.1101/2020.03.19.998732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
ABSTRACTDaily rhythms are disrupted in patients suffering from mood disorders. The lateral habenula (LHb) and dorsal raphe nucleus (DRN) contribute to circadian timekeeping and regulate mood. Thus, pathophysiology in these nuclei may be responsible for aberrations in daily rhythms during mood disorders. Using the chronic social defeat stress (CSDS) paradigm and in-vitro slice electrophysiology we measured the effects of stress on diurnal rhythms in firing of LHb cells projecting to the DRN (cellsLHb→DRN) and DRN cells alone. We also performed optogenetic experiments to investigate if increased firing in cellsLHb→DRN during exposure to subthreshold social defeat stress (SSDS), induces stress-susceptibility. Last we investigated whether exposure to CSDS affected the ability of mice to phototentrain to a new LD cycle. The cellsLHb→DRN and DRN cells alone of stress-susceptible mice express greater blunted diurnal firing compared to stress-naive (control) and stress-resilient mice. Day-time optogenetic activation of cellsLHb→DRN during SSDS induces stress-susceptibility which shows the direct correlation between increased activity in this circuit and putative mood disorders. Finally, we found that stress-susceptible mice are slower, while stress-resilient mice are faster, at photoentraining to a new LD cycle. Our findings suggest that CSDS induces blunted daily rhythms in firing in cellsLHb→DRN and slow rate of photoentrainment in susceptible-mice. In contrast, resilientmice may undergo homeostatic adaptations that maintain daily rhythms in firing in cellsLHb→DRN and also show rapid photoentrainment to a new LD-cycle.
Collapse
|
21
|
Mendoza J. Circadian insights into the biology of depression: Symptoms, treatments and animal models. Behav Brain Res 2019; 376:112186. [PMID: 31473283 DOI: 10.1016/j.bbr.2019.112186] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
In depression, symptoms range from loss of motivation and energy to suicidal thoughts. Moreover, in depression alterations might be also observed in the sleep-wake cycle and in the daily rhythms of hormonal (e.g., cortisol, melatonin) secretion. Both, the sleep-wake cycle and hormonal rhythms, are regulated by the internal biological clock within the hypothalamic suprachiasmatic nucleus (SCN). Therefore, a dysregulation of the internal mechanism of the SCN might lead in the disturbance of temporal physiology and depression. Hence, circadian symptoms in mood disorders can be used as important biomarkers for the prevention and treatment of depression. Disruptions of daily rhythms in physiology and behavior are also observed in animal models of depression, giving thus an important tool of research for the understanding of the circadian mechanisms implicated in mood disorders. This review discusses the alterations of daily rhythms in depression, and how circadian perturbations might lead in mood changes and depressive-like behavior in humans and rodents respectively. The use of animal models with circadian disturbances and depressive-like behaviors will help to understand the central timing mechanisms underlying depression, and how treating the biological clock(s) it may be possible to improve mood.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212 University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
22
|
Daut RA, Fonken LK. Circadian regulation of depression: A role for serotonin. Front Neuroendocrinol 2019; 54:100746. [PMID: 31002895 PMCID: PMC9826732 DOI: 10.1016/j.yfrne.2019.04.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023]
Abstract
Synchronizing circadian (24 h) rhythms in physiology and behavior with the environmental light-dark cycle is critical for maintaining optimal health. Dysregulation of the circadian system increases susceptibility to numerous pathological conditions including major depressive disorder. Stress is a common etiological factor in the development of depression and the circadian system is highly interconnected to stress-sensitive neurotransmitter systems such as the serotonin (5-hydroxytryptamine, 5-HT) system. Thus, here we propose that stress-induced perturbation of the 5-HT system disrupts circadian processes and increases susceptibility to depression. In this review, we first provide an overview of the basic components of the circadian system. Next, we discuss evidence that circadian dysfunction is associated with changes in mood in humans and rodent models. Finally, we provide evidence that 5-HT is a critical factor linking dysregulation of the circadian system and mood. Determining how these two systems interact may provide novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Rachel A Daut
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura K Fonken
- University of Texas at Austin, Division of Pharmacology and Toxicology, Austin, TX 78712, USA.
| |
Collapse
|
23
|
Radwan B, Liu H, Chaudhury D. The role of dopamine in mood disorders and the associated changes in circadian rhythms and sleep-wake cycle. Brain Res 2019; 1713:42-51. [DOI: 10.1016/j.brainres.2018.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/24/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022]
|
24
|
Wang XL, Yuan K, Zhang W, Li SX, Gao GF, Lu L. Regulation of Circadian Genes by the MAPK Pathway: Implications for Rapid Antidepressant Action. Neurosci Bull 2019; 36:66-76. [PMID: 30859414 DOI: 10.1007/s12264-019-00358-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that the circadian rhythm plays a critical role in mood regulation, and circadian disturbances are often found in patients with major depressive disorder (MDD). The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is involved in mediating entrainment of the circadian system. Furthermore, the MAPK/ERK signaling pathway has been shown to be involved in the pathogenesis of MDD and the rapid onset of action of antidepressant therapies, both pharmaceutical and non-pharmaceutical. This review provides an overview of the involvement of the MAPK/ERK pathway in modulating the circadian system in the rapid action of antidepressant therapies. This pathway holds much promise for the development of novel, rapid-onset-of-action therapeutics for MDD.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Kai Yuan
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China.
| | - George Fu Gao
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China. .,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Lin Lu
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China. .,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China. .,National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China. .,Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, 100191, China.
| |
Collapse
|
25
|
Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front Psychiatry 2019; 10:1003. [PMID: 32047446 PMCID: PMC6997541 DOI: 10.3389/fpsyt.2019.01003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The dramatic fluctuations in energy demands by the rhythmic succession of night and day on our planet has prompted a geophysical evolutionary need for biological temporal organization across phylogeny. The intrinsic circadian timing system (CS) represents a highly conserved and sophisticated internal "clock," adjusted to the 24-h rotation period of the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from gene expression to behavior. The human CS is tightly and bidirectionally interconnected to the stress system (SS). Both systems are fundamental for survival and regulate each other's activity in order to prepare the organism for the anticipated cyclic challenges. Thereby, the understanding of the temporal relationship between stressors and stress responses is critical for the comprehension of the molecular basis of physiology and pathogenesis of disease. A critical loss of the harmonious timed order at different organizational levels may affect the fundamental properties of neuroendocrine, immune, and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms with increased stress sensitivity and vulnerability. In this review, following an overview of the functional components of the SS and CS, we present their multilevel interactions and discuss how traumatic stress can alter the interplay between the two systems. Circadian dysregulation after traumatic stress exposure may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of trauma through maladaptive stress regulation. Understanding the mechanisms susceptible to circadian dysregulation and their role in stress-related disorders could provide new insights into disease mechanisms, advancing psychochronobiological treatment possibilities and preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilios P Bozikas
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P Chrousos
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
26
|
Lehmann ML, Weigel TK, Cooper HA, Elkahloun AG, Kigar SL, Herkenham M. Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility. Sci Rep 2018; 8:11240. [PMID: 30050134 PMCID: PMC6062609 DOI: 10.1038/s41598-018-28737-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/19/2018] [Indexed: 01/26/2023] Open
Abstract
An animal's ability to cope with or succumb to deleterious effects of chronic psychological stress may be rooted in the brain's immune responses manifested in microglial activity. Mice subjected to chronic social defeat (CSD) were categorized as susceptible (CSD-S) or resilient (CSD-R) based on behavioral phenotyping, and their microglia were isolated and analyzed by microarray. Microglia transcriptomes from CSD-S mice were enriched for pathways associated with inflammation, phagocytosis, oxidative stress, and extracellular matrix remodeling. Histochemical experiments confirmed the array predictions: CSD-S microglia showed elevated phagocytosis and oxidative stress, and the brains of CSD-S but not CSD-R or non-stressed control mice showed vascular leakage of intravenously injected fluorescent tracers. The results suggest that the inflammatory profile of CSD-S microglia may be precipitated by extracellular matrix degradation, oxidative stress, microbleeds, and entry and phagocytosis of blood-borne substances into brain parenchyma. We hypothesize that these CNS-centric responses contribute to the stress-susceptible behavioral phenotype.
Collapse
Affiliation(s)
- Michael L Lehmann
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA.
| | - Thaddeus K Weigel
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Hannah A Cooper
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Abdel G Elkahloun
- Division of Intramural Research Programs Microarray Core Facility, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stacey L Kigar
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
27
|
Kim M, de la Peña JB, Cheong JH, Kim HJ. Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2. Biomol Ther (Seoul) 2018; 26:358-367. [PMID: 29223143 PMCID: PMC6029676 DOI: 10.4062/biomolther.2017.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - June Bryan de la Peña
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
28
|
Time of Administration of Acute or Chronic Doses of Imipramine Affects its Antidepressant Action in Rats. J Circadian Rhythms 2018; 16:5. [PMID: 30210565 PMCID: PMC6083812 DOI: 10.5334/jcr.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis and therapeutics of depression are linked to the operation of the circadian system. Here, we studied the chronopharmacological action of a tricyclic antidepressant, imipramine. Male adult Wistar–Hannover rats were administered imipramine acutely or chronically in the morning or in the evening. The antidepressant action of imipramine was analyzed using the forced swim test (FST). A single dose of imipramine (30 mg/kg) in the morning, but not in the evening, reduced immobility and increased climbing in the FST. The plasma concentrations of imipramine and its metabolite, desipramine, were slightly higher in the morning than in the evening, which might explain the dosing time-dependent action of imipramine. Next, we analyzed the effect of chronic imipramine treatment. Rats received imipramine in the morning or in the evening for 2 weeks. The morning treatment resulted in larger effects in the FST than the evening treatment, and was effective at a dose that was ineffective when administered acutely. The levels of brain α-adrenergic receptors tended to decrease after chronic imipramine treatment. Imipramine might interact with noradrenergic neurons, and this interaction might chronically alter receptor expression. This alteration seemed greater in the morning than in the evening, which might explain the dosing time-dependent action of imipramine.
Collapse
|
29
|
Olejníková L, Polidarová L, Sumová A. Stress affects expression of the clock gene Bmal1 in the suprachiasmatic nucleus of neonatal rats via glucocorticoid-dependent mechanism. Acta Physiol (Oxf) 2018; 223:e13020. [PMID: 29266826 DOI: 10.1111/apha.13020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/13/2017] [Accepted: 12/08/2017] [Indexed: 11/27/2022]
Abstract
AIM The reactivity of the circadian clock in the suprachiasmatic nuclei (SCN) to stressful stimuli has been controversial but most studies have confirmed the resilience of the SCN to stress. We tested the hypothesis that during a critical period shortly after birth, the developing SCN clock is affected by glucocorticoids. METHODS Mothers of 2 rat strains with different sensitivities to stress, that is Wistar rats and spontaneously hypertensive rats (SHR), and their pups were exposed to stressful stimuli every day from delivery, and clock gene expression profiles were detected in the 4-day-old pups' SCN. Levels of glucocorticoids in plasma were measured by LC-MS/MS. The glucocorticoid receptors antagonist mifepristone was administered to pups to block the effect of the glucocorticoids. RESULTS The glucocorticoid receptors were detected at the mRNA and protein levels in the SCN of 4-day-old pups. The exposure of mothers to stressful stimuli elevated their plasma glucocorticoid levels. In Wistar rat pups, combination of daily maternal stress with their manipulation increased the plasma glucocorticoid levels and shifted the Bmal1 rhythm in the SCN which was completely blocked by mifepristone. In contrast, in SHR pups, maternal stress on its own caused phase shift of the Bmal1 expression rhythm in the SCN but the effect was mediated via glucocorticoid-independent mechanism. The Per1 and Per2 expression profiles remained phase-locked to the light/dark cycle. CONCLUSION The results demonstrate that the SCN is sensitive to stressful stimuli early after birth in pups maintained under light/dark conditions and the effect is mediated via glucocorticoid-dependent pathways.
Collapse
Affiliation(s)
- L. Olejníková
- Department of Neurohumoral Regulations; Institute of Physiology of the Czech Academy of Sciences; Prague Czech Republic
- 2 Faculty of Medicine; Charles University; Prague Czech Republic
| | - L. Polidarová
- Department of Neurohumoral Regulations; Institute of Physiology of the Czech Academy of Sciences; Prague Czech Republic
| | - A. Sumová
- Department of Neurohumoral Regulations; Institute of Physiology of the Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
30
|
Spencer RL, Chun LE, Hartsock MJ, Woodruff ER. Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Front Neuroendocrinol 2018; 49:52-71. [PMID: 29288075 DOI: 10.1016/j.yfrne.2017.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
Abstract
Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body. Stress-induced glucocorticoid secretion also modulates the state of these same cells in response to both physiological and psychological stressors. We review the strong functional interrelationships between glucocorticoids and the circadian system, and discuss how these interactions optimize the appropriate cellular and systems response to stress throughout the day. We also discuss clinical implications of this dual aspect of glucocorticoid signaling, especially for conditions of circadian and HPA axis dysregulation.
Collapse
Affiliation(s)
- Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lauren E Chun
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
31
|
Stagl M, Bozsik M, Karow C, Wertz D, Kloehn I, Pillai S, Gasser PJ, Gilmartin MR, Evans JA. Chronic stress alters adrenal clock function in a sexually dimorphic manner. J Mol Endocrinol 2018; 60:55-69. [PMID: 29378866 DOI: 10.1530/jme-17-0146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/08/2022]
Abstract
Glucocorticoid production is gated at the molecular level by the circadian clock in the adrenal gland. Stress influences daily rhythms in behavior and physiology, but it remains unclear how stress affects the function of the adrenal clock itself. Here, we examine the influence of stress on adrenal clock function by tracking PERIOD2::LUCIFERASE (PER2::LUC) rhythms in vitro Relative to non-stressed controls, adrenals from stressed mice displayed marked changes in PER2::LUC rhythms. Interestingly, the effect of stress on adrenal rhythms varied by sex and the type of stress experienced in vivo To investigate the basis of sex differences in the adrenal response to stress, we next stimulated male and female adrenals in vitro with adrenocorticotropic hormone (ACTH). ACTH shifted phase and increased amplitude of adrenal PER2::LUC rhythms. Both phase and amplitude responses were larger in female adrenals than in male adrenals, an observation consistent with previously described sex differences in the physiological response to stress. Lastly, we reversed the sex difference in adrenal clock function using stress and sex hormone manipulations to test its role in driving adrenal responses to ACTH. We find that adrenal responsiveness to ACTH is inversely proportional to the amplitude of adrenal PER2::LUC rhythms. This suggests that larger ACTH responses from female adrenals may be driven by their lower amplitude molecular rhythms. Collectively, these results indicate a reciprocal relationship between stress and the adrenal clock, with stress influencing adrenal clock function and the state of the adrenal clock gating the response to stress in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Matthew Stagl
- Department of Biomedical SciencesMarquette University, Milwaukee, Wisconsin, USA
| | - Mary Bozsik
- Department of Biomedical SciencesMarquette University, Milwaukee, Wisconsin, USA
| | - Christopher Karow
- Department of Biomedical SciencesMarquette University, Milwaukee, Wisconsin, USA
| | - David Wertz
- Department of Biomedical SciencesMarquette University, Milwaukee, Wisconsin, USA
| | - Ian Kloehn
- Department of Biomedical SciencesMarquette University, Milwaukee, Wisconsin, USA
| | - Savin Pillai
- Department of Biomedical SciencesMarquette University, Milwaukee, Wisconsin, USA
| | - Paul J Gasser
- Department of Biomedical SciencesMarquette University, Milwaukee, Wisconsin, USA
| | - Marieke R Gilmartin
- Department of Biomedical SciencesMarquette University, Milwaukee, Wisconsin, USA
| | - Jennifer A Evans
- Department of Biomedical SciencesMarquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
32
|
Wu T, Yang L, Jiang J, Ni Y, Zhu J, Zheng X, Wang Q, Lu X, Fu Z. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats. Life Sci 2017; 192:173-182. [PMID: 29196049 DOI: 10.1016/j.lfs.2017.11.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
AIM Glucocorticoids (GCs), steroid hormones synthetized by the adrenal gland, are regulated by circadian cycles, and dysregulation of GC signaling can lead to the development of metabolic syndrome. The effects and potential mechanism of GCs in physiology were investigated in the present study. MAIN METHODS Male Wistar rats were orally administered dexamethasone sodium phosphate (DEX, 0.01 and 0.05mg/kg body weight per day) for 7weeks. KEY FINDING DEX treatment attenuated body weight gain and reduced food intake, whereas it induced the accumulation of fat. Administration of DEX induced dysregulation of the expression of lipogenic genes in both fat and liver. Moreover, the mRNA levels of genes related to mitochondrial biogenesis and function were significantly downregulated in the liver and fat of DEX-treated rats. Furthermore, DEX treatment caused a significant reduction in the richness and diversity of the microbiota in the colon, as assessed using high-throughput sequencing of the 16s rRNA gene V3-V4 region, an increase in inflammatory cell infiltration, and a decrease in mucus secretion in the colon. Additionally, DEX administration induced phase shift or loss of circadian rhythmicity of clock-related genes in peripheral tissues. These results were associated with higher serum corticosterone levels and upregulation of GC receptor (GR) expression in peripheral tissues. SIGNIFICANCE Our findings indicate that long-term administration of GC caused lipid accumulation, changes in the structure of the intestinal flora, and reduced colonic mucus secretion in vivo. The mechanism of these physiological changes may involve a circadian rhythm disorder and dysregulation of GR expression.
Collapse
Affiliation(s)
- Tao Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Luna Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Jianguo Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Jiawei Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Xiaojun Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Qi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Xin Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China.
| |
Collapse
|
33
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
34
|
Desipramine rescues age-related phenotypes in depression-like rats induced by chronic mild stress. Life Sci 2017; 188:96-100. [PMID: 28842312 DOI: 10.1016/j.lfs.2017.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/12/2017] [Accepted: 08/20/2017] [Indexed: 01/21/2023]
Abstract
AIMS Our previous finding demonstrates that major depressive disorder can mediate accelerated aging in rats. Desipramine is a typical tricyclic antidepressant, and can provide neuroprotection and counteract depression-like behaviors. However, whether desipramine can rescue age-related phenotypes in depressed individuals is not understood. In the present study, we investigated the physiological function of desipramine on rescuing the age-related phenotypes in these animals. MAIN METHODS The rats were induced by chronic mild stress paradigm, and the depression-like behaviors of rats were detected by sucrose intake test, open field test (OFT) and forced swimming test (FST). Then the depressed rats were treated by desipramine. KEY FINDINGS Desipramine administration was effective in counteracting depression-like behaviors by increasing the sucrose solution intake, reducing the immobility time in the FST, and increasing total distance travelled and numbers of grid line crossed in the OFT. Moreover, desipramine treatment was able to reduce the oxidative damage to rat liver, and to increase the expression of telomerase reverse transcriptase (TERT), leading to correspondingly restored telomerase activity. SIGNIFICANCE Our findings identify that one function of desipramine may partly be to rescue age-related phenotypes in depressed individuals induced by chronic stress.
Collapse
|
35
|
Anyan J, Verwey M, Amir S. Individual differences in circadian locomotor parameters correlate with anxiety- and depression-like behavior. PLoS One 2017; 12:e0181375. [PMID: 28763478 PMCID: PMC5538649 DOI: 10.1371/journal.pone.0181375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 01/22/2023] Open
Abstract
Disrupted circadian rhythms are a core feature of mood and anxiety disorders. Circadian rhythms are coordinated by a light-entrainable master clock located in the suprachiasmatic nucleus. Animal models of mood and anxiety disorders often exhibit blunted rhythms in locomotor activity and clock gene expression. Interestingly, the changes in circadian rhythms correlate with mood-related behaviours. Although animal models of depression and anxiety exhibit aberrant circadian rhythms in physiology and behavior, it is possible that the methodology being used to induce the behavioral phenotype (e.g., brain lesions, chronic stress, global gene deletion) affect behavior independently of circadian system. This study investigates the relationship between individual differences in circadian locomotor parameters and mood-related behaviors in healthy rats. The circadian phenotype of male Lewis rats was characterized by analyzing wheel running behavior under standard 12h:12h LD conditions, constant dark, constant light, and rate of re-entrainment to a phase advance. Rats were then tested on a battery of behavioral tests: activity box, restricted feeding, elevated plus maze, forced swim test, and fear conditioning. Under 12h:12h LD conditions, percent of daily activity in the light phase and variability in activity onset were associated with longer latency to immobility in the forced swim test. Variability in onset also correlated positively with anxiety-like behavior in the elevated plus maze. Rate of re-entrainment correlated positively with measures of anxiety in the activity box and elevated plus maze. Lastly, we found that free running period under constant dark was associated with anxiety-like behaviors in the activity box and elevated plus maze. Our results provide a previously uncharacterized relationship between circadian locomotor parameters and mood-related behaviors in healthy rats and provide a basis for future examination into circadian clock functioning and mood.
Collapse
Affiliation(s)
- Jeffrey Anyan
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Michael Verwey
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Shimon Amir
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Mohammed MM, Sallam AED, Hussein AA, Ibrahim ZN. β-carotene ameliorates CUS-induced circadian alternations of locomotor activity and melatonin patterns in rats. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1350441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Alaa El-Din Sallam
- Faculty of Science, Zoology Department, Suez Canal University, Ismailia, Egypt
| | - Aida A. Hussein
- Faculty of Science, Zoology Department, Suez University, Suez, Egypt
| | - Zohour N. Ibrahim
- Faculty of Science, Zoology Department, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
37
|
Bowrey HE, James MH, Aston-Jones G. New directions for the treatment of depression: Targeting the photic regulation of arousal and mood (PRAM) pathway. Depress Anxiety 2017; 34:588-595. [PMID: 28489327 PMCID: PMC5797474 DOI: 10.1002/da.22635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
Both preclinical and clinical studies demonstrate that depression is strongly associated with reduced light availability, which in turn contributes to decreased function of brain regions that control mood. Here, we review findings that support a critical pathway for the control of mood that depends upon ambient light. We put forward a novel hypothesis, functionally linking retina to locus coeruleus (LC) in depression, and discuss the role of norepinephrine in affective disease. Finally, we discuss how utilizing the chemogenetic tool Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to precisely control this retina-LC circuit may be used as a novel therapeutic to treat depression.
Collapse
Affiliation(s)
- Hannah E. Bowrey
- Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, USA,Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Morgan H. James
- Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, USA,The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
38
|
Nicolaides NC, Charmandari E, Kino T, Chrousos GP. Stress-Related and Circadian Secretion and Target Tissue Actions of Glucocorticoids: Impact on Health. Front Endocrinol (Lausanne) 2017; 8:70. [PMID: 28503165 PMCID: PMC5408025 DOI: 10.3389/fendo.2017.00070] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
Living organisms are highly complex systems that must maintain a dynamic equilibrium or homeostasis that requires energy to be sustained. Stress is a state in which several extrinsic or intrinsic disturbing stimuli, the stressors, threaten, or are perceived as threatening, homeostasis. To achieve homeostasis against the stressors, organisms have developed a highly sophisticated system, the stress system, which provides neuroendocrine adaptive responses, to restore homeostasis. These responses must be appropriate in terms of size and/or duration; otherwise, they may sustain life but be associated with detrimental effects on numerous physiologic functions of the organism, leading to a state of disease-causing disturbed homeostasis or cacostasis. In addition to facing a broad spectrum of external and/or internal stressors, organisms are subject to recurring environmental changes associated with the rotation of the planet around itself and its revolution around the sun. To adjust their homeostasis and to synchronize their activities to day/night cycles, organisms have developed an evolutionarily conserved biologic system, the "clock" system, which influences several physiologic functions in a circadian fashion. Accumulating evidence suggests that the stress system is intimately related to the circadian clock system, with dysfunction of the former resulting in dysregulation of the latter and vice versa. In this review, we describe the functional components of the two systems, we discuss their multilevel interactions, and we present how excessive or prolonged activity of the stress system affects the circadian rhythm of glucocorticoid secretion and target tissue effects.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- *Correspondence: Nicolas C. Nicolaides,
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Tomoshige Kino
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - George P. Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
39
|
Christiansen SL, Bouzinova EV, Fahrenkrug J, Wiborg O. Altered Expression Pattern of Clock Genes in a Rat Model of Depression. Int J Neuropsychopharmacol 2016; 19:pyw061. [PMID: 27365111 PMCID: PMC5137278 DOI: 10.1093/ijnp/pyw061] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Abnormalities in circadian rhythms may be causal factors in development of major depressive disorder. The biology underlying a causal relationship between circadian rhythm disturbances and depression is slowly being unraveled. Although there is no direct evidence of dysregulation of clock gene expression in depressive patients, many studies have reported single-nucleotide polymorphisms in clock genes in these patients. METHODS In the present study we investigated whether a depression-like state in rats is associated with alternations of the diurnal expression of clock genes. The validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes: period genes 1 and 2 (Per1 and Per2) and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at a 4h sampling interval within 24h. We quantified expression of clock genes on brain sections in the prefrontal cortex, nucleus accumbens, pineal gland, suprachiasmatic nucleus, substantia nigra, amygdala, ventral tegmental area, subfields of the hippocampus, and the lateral habenula using in situ hybridization histochemistry. Expression of clock genes in the liver was monitored by real-time quantitative polymerase chain reaction (PCR). RESULTS We found that the effect of CMS on clock gene expression was selective and region specific. Per1 exhibits a robust diurnal rhythm in most regions of interest, whereas Bmal1 and in particular Per2 were susceptible to CMS. CONCLUSION The present results suggest that altered expression of investigated clock genes is likely associated with the induction of a depression-like state in the CMS model.
Collapse
Affiliation(s)
| | | | | | - O Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark (Drs Christiansen, Bouzinova, and Wiborg); Department of Clinical Biochemistry, Faculty of Health Sciences, University of Copenhagen, Denmark (Dr Fahrenkrug).
| |
Collapse
|
40
|
Zhang B, Gao Y, Li Y, Yang J, Zhao H. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula. Behav Neurol 2016; 2016:7919534. [PMID: 27413249 PMCID: PMC4930817 DOI: 10.1155/2016/7919534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/22/2016] [Indexed: 12/22/2022] Open
Abstract
Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.
Collapse
Affiliation(s)
- Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yanxia Gao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jing Yang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
41
|
Sallam AED, Hassan SA, Hassaneen E, Ali EM. Environmental stress of mobile phone EM radiation on locomotor activity and melatonin circadian rhythms of rats. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1173361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Pačesová D, Novotný J, Bendová Z. The effect of chronic morphine or methadone exposure and withdrawal on clock gene expression in the rat suprachiasmatic nucleus and AA-NAT activity in the pineal gland. Physiol Res 2016; 65:517-25. [PMID: 27070740 DOI: 10.33549/physiolres.933183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The circadian rhythms of many behavioral and physiological functions are regulated by the major circadian pacemaker in the suprachiasmatic nucleus. Long-term opiate addiction and drug withdrawal may affect circadian rhythmicity of various hormones or the sleep/activity pattern of many experimental subjects; however, limited research has been done on the long-term effects of sustained opiate administration on the intrinsic rhythmicity in the suprachiasmatic nucleus and pineal gland. Here we compared the effects of repeated daily treatment of rats with morphine or methadone and subsequent naloxone-precipitated withdrawal on the expression of the Per1, Per2, and Avp mRNAs in the suprachiasmatic nucleus and on arylalkylamine N-acetyltransferase activity in the pineal gland. We revealed that 10-day administration and withdrawal of both these drugs failed to affect clock genes and Avp expression in the SCN. Our results indicate that opioid-induced changes in behavioral and physiological rhythms originate in brain structures downstream of the suprachiasmatic nucleus regulatory output pathway. Furthermore, we observed that acute withdrawal from methadone markedly extended the period of high night AA-NAT activity in the pineal gland. This suggests that withdrawal from methadone, a widely used drug for the treatment of opioid dependence, may have stronger impact on melatonin synthesis than withdrawal from morphine.
Collapse
Affiliation(s)
- D Pačesová
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
43
|
Radwan B, Liu H, Chaudhury D. Regulation and Modulation of Depression-Related Behaviours: Role of Dopaminergic Neurons. DOPAMINE AND SLEEP 2016:147-190. [DOI: 10.1007/978-3-319-46437-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
44
|
Sakakibara H, Torii Yasuda M, Shimoi K. Effects of environmental and social stressors on biological rhythms. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2016. [DOI: 10.7600/jpfsm.5.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Kayoko Shimoi
- School of Food and Nutritional Sciences, University of Shizuoka
| |
Collapse
|
45
|
Chronic mild stress-induced alterations of clock gene expression in rat prefrontal cortex: modulatory effects of prolonged lurasidone treatment. Pharmacol Res 2015; 104:140-50. [PMID: 26742719 DOI: 10.1016/j.phrs.2015.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/18/2022]
Abstract
Disruptions of biological rhythms are known to be associated with depressive disorders, suggesting that abnormalities in the molecular clock may contribute to the development of these disorders. These mechanisms have been extensively characterized in the suprachiasmatic nucleus, but little is know about the role exerted by individual clock genes in brain structures that are important for depressive disorders. Using the chronic mild stress model we found a significant reduction of BMAL1 and CLOCK protein levels in the nuclear compartment of the prefrontal cortex of CMS rats, which was paralleled by a down-regulation of the expression of several target genes, including Pers and Crys but also Reverbβ and Pparα. Interestingly, chronic treatment with the multi receptor modulator lurasidone (3mg/kg for 5 weeks) was able to normalize the molecular changes induced by CMS exposure in prefrontal cortex, but it was also able to regulate some of these genes within the hippocampus. We believe that changes in clock genes expression after CMS exposure may contribute to the disturbances associated with depressive disorders and that the ability of chronic lurasidone to normalize such alterations may be relevant for its therapeutic properties in ameliorating functions that are deteriorated in patients with major depression and other stress-related disorders.
Collapse
|
46
|
Mohammed MM, Sallam AE, Hussein AA, Marrez DA, Ibrahim ZN. The cyanobacteriumOscillatoria brevisβ-carotene extract modulates alterations of biochemical and hematological circadian patterns in stress-induced rat. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1116740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Short photoperiod condition increases susceptibility to stress in adolescent male rats. Behav Brain Res 2015; 300:38-44. [PMID: 26655789 DOI: 10.1016/j.bbr.2015.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022]
Abstract
The seasonality of depressive symptoms is prevalent in children and adolescents. However, the mechanisms that underlie such susceptibility to seasonal influences on mood disorders are unclear. We examined the effects of a short photoperiod condition on the susceptibility to subchronic unpredictable mild stress (SCUS) and rhythmic alterations of plasma corticosterone (CORT), melatonin, and neuropeptide Y (NPY) in adolescent male rats. Compared with the 12h/12h light/dark photoperiod control (CON) rats, the 8h/16h photoperiod SCUS rats exhibited significant anhedonia, a core symptom of human depression, together with a blunted diurnal rhythm and elevation of 24h CORT, melatonin, and NPY levels. The 8h/16h photoperiod condition also blunted the rhythmicity of CORT, caused a phase inversion of melatonin, and caused a phase delay of NPY compared with 12h/12h CON rats. Such abnormalities of plasma CORT, NPY, and melatonin might cause adolescent individuals to present higher stress reactivity and greater vulnerability to stress over their lifetimes. The present study provides evidence of the susceptibility to the seasonality of stress-related disorders in adolescence.
Collapse
|
48
|
Landgraf D, Long JE, Welsh DK. Depression-like behaviour in mice is associated with disrupted circadian rhythms in nucleus accumbens and periaqueductal grey. Eur J Neurosci 2015; 43:1309-20. [DOI: 10.1111/ejn.13085] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/10/2015] [Accepted: 09/24/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Dominic Landgraf
- Veterans Affairs San Diego Healthcare System; San Diego CA USA
- Department of Psychiatry and Center for Circadian Biology; University of California, San Diego; 9500 Gilman Dr. San Diego CA MC-0603 USA
| | - Jaimie E. Long
- Veterans Affairs San Diego Healthcare System; San Diego CA USA
- Department of Psychiatry and Center for Circadian Biology; University of California, San Diego; 9500 Gilman Dr. San Diego CA MC-0603 USA
| | - David K. Welsh
- Veterans Affairs San Diego Healthcare System; San Diego CA USA
- Department of Psychiatry and Center for Circadian Biology; University of California, San Diego; 9500 Gilman Dr. San Diego CA MC-0603 USA
| |
Collapse
|
49
|
Moriya S, Tahara Y, Sasaki H, Ishigooka J, Shibata S. Housing under abnormal light-dark cycles attenuates day/night expression rhythms of the clock genes Per1, Per2, and Bmal1 in the amygdala and hippocampus of mice. Neurosci Res 2015; 99:16-21. [PMID: 26026603 DOI: 10.1016/j.neures.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/12/2015] [Accepted: 05/13/2015] [Indexed: 01/28/2023]
Abstract
Although the results of previous studies have suggested that disruptions in circadian rhythms are involved in the pathogenesis of depression, no studies have examined the interaction of clock gene expression deficit and depression state. In this study, we examined clock gene expression levels and depressive-like behavior in mice housed under 3.5h light, 3.5h dark (T = 7) conditions to investigate the association between clock gene expression and depressive state. C57BL/6J mice were housed under a T = 24 cycle (12h light, 12h dark) or a T = 7 cycle and clock gene expression levels in the hippocampus and the amygdala were measured by real-time RT-PCR. Depressive state was evaluated by the forced swim test (FST). Although circadian rhythms of Per1 and Per2 clock gene expression in the hippocampus and amygdala were still detected under T = 7 conditions, rhythmicity and expression levels of both significantly decreased. Mice housed with a T = 7 cycle showed increased immobile time in the FST than those with a T = 24 cycle. The present results suggest that the presence of a depressive state around the early active phase of activity may be related to impairment of rhythmicity and expression levels of Per1 and Per2 genes under abnormal light-dark conditions.
Collapse
Affiliation(s)
- Shunpei Moriya
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jun Ishigooka
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
50
|
Bechtel W. Circadian Rhythms and Mood Disorders: Are the Phenomena and Mechanisms Causally Related? Front Psychiatry 2015; 6:118. [PMID: 26379559 PMCID: PMC4547005 DOI: 10.3389/fpsyt.2015.00118] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
This paper reviews some of the compelling evidence of disrupted circadian rhythms in individuals with mood disorders (major depressive disorder, seasonal affective disorder, and bipolar disorder) and that treatments such as bright light, designed to alter circadian rhythms, are effective in treating these disorders. Neurotransmitters in brain regions implicated in mood regulation exhibit circadian rhythms. A mouse model originally employed to identify a circadian gene has proven a potent model for mania. While this evidence is suggestive of an etiological role for altered circadian rhythms in mood disorders, it is compatible with other explanations, including that disrupted circadian rhythms and mood disorders are effects of a common cause and that genes and proteins implicated in both simply have pleiotropic effects. In light of this, the paper advances a proposal as to what evidence would be needed to establish a direct causal link between disruption of circadian rhythms and mood disorders.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy and Center for Circadian Biology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|