1
|
Wang Y, Li D, Widjaja J, Guo R, Cai L, Yan R, Ozsoy S, Allocca G, Fang J, Dong Y, Tseng GC, Huang C, Huang YH. An EEG Signature of MCH Neuron Activities Predicts Cocaine Seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586887. [PMID: 38586019 PMCID: PMC10996698 DOI: 10.1101/2024.03.27.586887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Identifying biomarkers that predict substance use disorder (SUD) propensity may better strategize anti-addiction treatment. The melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) critically mediates interactions between sleep and substance use; however, their activities are largely obscured in surface electroencephalogram (EEG) measures, hindering the development of biomarkers. Methods Surface EEG signals and real-time Ca2+ activities of LH MCH neurons (Ca2+MCH) were simultaneously recorded in male and female adult rats. Mathematical modeling and machine learning were then applied to predict Ca2+MCH using EEG derivatives. The robustness of the predictions was tested across sex and treatment conditions. Finally, features extracted from the EEG-predicted Ca2+MCH either before or after cocaine experience were used to predict future drug-seeking behaviors. Results An EEG waveform derivative - a modified theta-to-delta ratio (EEG Ratio) - accurately tracks real-time Ca2+MCH in rats. The prediction was robust during rapid eye movement sleep (REMS), persisted through REMS manipulations, wakefulness, circadian phases, and was consistent across sex. Moreover, cocaine self-administration and long-term withdrawal altered EEG Ratio suggesting shortening and circadian redistribution of synchronous MCH neuron activities. In addition, features of EEG Ratio indicative of prolonged synchronous MCH neuron activities predicted lower subsequent cocaine seeking. EEG Ratio also exhibited advantages over conventional REMS measures for the predictions. Conclusions The identified EEG Ratio may serve as a non-invasive measure for assessing MCH neuron activities in vivo and evaluating REMS; it may also serve as a potential biomarker predicting drug use propensity.
Collapse
Affiliation(s)
- Yao Wang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Danyang Li
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | | | - Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Li Cai
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Rongzhen Yan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Sahin Ozsoy
- Somnivore Pty. Ltd., Bacchus Marsh, VIC, Australia 3340
| | - Giancarlo Allocca
- Somnivore Pty. Ltd., Bacchus Marsh, VIC, Australia 3340
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia 3010
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Jidong Fang
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA 17033
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Chengcheng Huang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| |
Collapse
|
2
|
Pang X, Xu Y, Xie S, Zhang T, Cong L, Qi Y, Liu L, Li Q, Mo M, Wang G, Du X, Shen H, Li Y. Gallic Acid Ameliorates Cognitive Impairment Caused by Sleep Deprivation through Antioxidant Effect. Exp Neurobiol 2023; 32:285-301. [PMID: 37749929 PMCID: PMC10569142 DOI: 10.5607/en23015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 09/27/2023] Open
Abstract
Sleep deprivation (SD) has a profound impact on the central nervous system, resulting in an array of mood disorders, including depression and anxiety. Despite this, the dynamic alterations in neuronal activity during sleep deprivation have not been extensively investigated. While some researchers propose that sleep deprivation diminishes neuronal activity, thereby leading to depression. Others argue that short-term sleep deprivation enhances neuronal activity and dendritic spine density, potentially yielding antidepressant effects. In this study, a two-photon microscope was utilized to examine the calcium transients of anterior cingulate cortex (ACC) neurons in awake SD mice in vivo at 24-hour intervals. It was observed that SD reduced the frequency and amplitude of Ca2+ transients while increasing the proportions of inactive neurons. Following the cessation of sleep deprivation, neuronal calcium transients demonstrated a gradual recovery. Moreover, whole-cell patch-clamp recordings revealed a significant decrease in the frequency of spontaneous excitatory post-synaptic current (sEPSC) after SD. The investigation also assessed several oxidative stress parameters, finding that sleep deprivation substantially elevated the level of malondialdehyde (MDA), while simultaneously decreasing the expression of Nuclear Factor erythroid 2-Related Factor 2 (Nrf2) and activities of Superoxide dismutase (SOD) in the ACC. Importantly, the administration of gallic acid (GA) notably mitigated the decline of calcium transients in ACC neurons. GA was also shown to alleviate oxidative stress in the brain and improve cognitive impairment caused by sleep deprivation. These findings indicate that the calcium transients of ACC neurons experience a continuous decline during sleep deprivation, a process that is reversible. GA may serve as a potential candidate agent for the prevention and treatment of cognitive impairment induced by sleep deprivation.
Collapse
Affiliation(s)
- Xiaogang Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yifan Xu
- Department of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shuoxin Xie
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianshu Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuchen Qi
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lubing Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingjun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mei Mo
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guimei Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiuwei Du
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Shen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Cellular Biology, School of Basic Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
3
|
Buban KN, Saperstein SE, Oyola MG, Rothwell SW, John Wu T. Alterations in the activation of corticotropin-releasing factor neurons in the paraventricular nucleus following a single or multiple days of sleep restriction. Neurosci Lett 2023; 792:136940. [PMID: 36336086 DOI: 10.1016/j.neulet.2022.136940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Sleep disturbances are common among disorders associated with hypothalamic pituitary-adrenal (HPA) axis dysfunction, such as depression and anxiety. This comorbidity may partly be the result of the intersection between the role of the HPA axis in mediating the stress response and its involvement in sleep-wake cyclicity. Our previous work has shown that following 20 h of sleep restriction, mice show a blunting of the HPA axis in response to an acute stressor. Furthermore, these responses differ in a sex-dependent manner. This study sought to examine the effect of sleep restriction on corticotropin-releasing factor (CRF)-containing neurons in the paraventricular nucleus (PVN) of the hypothalamus. Male and female Crf-IRES-Cre: Ai14 (Tdtomato) reporter mice were sleep restricted for 20 h daily for either a single or three consecutive days using the modified multiple platform method. These mice allowed the visualization of CRF+ neurons throughout the brain. Animals were subjected to acute restraint stress, and their brains were collected to assess PVN neuronal activation via c-Fos immunohistochemistry. Analyses of cell counts revealed an ablation of the restraint-induced increase in both CRF/c-Fos colocalization and overall c-Fos expression in female mice following both a single day and three days of sleep restriction. Males showed an overall decrease in restraint-induced c-Fos levels following a single day of sleep restriction. However, male mice examined after three days of sleep restriction showed a recovery in PVN-CRF and overall PVN neuronal activation. These data suggest the sex dependent dysregulation in CRF function following sleep restriction.
Collapse
Affiliation(s)
- Katelyn N Buban
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Samantha E Saperstein
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mario G Oyola
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stephen W Rothwell
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - T John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
4
|
Jo Y, Lee S, Jung T, Park G, Lee C, Im GH, Lee S, Park JS, Oh C, Kook G, Kim H, Kim S, Lee BC, Suh GS, Kim S, Kim J, Lee HJ. General-Purpose Ultrasound Neuromodulation System for Chronic, Closed-Loop Preclinical Studies in Freely Behaving Rodents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202345. [PMID: 36259285 PMCID: PMC9731702 DOI: 10.1002/advs.202202345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/20/2022] [Indexed: 05/11/2023]
Abstract
Transcranial focused ultrasound stimulation (tFUS) is an effective noninvasive treatment modality for brain disorders with high clinical potential. However, the therapeutic effects of ultrasound neuromodulation are not widely explored due to limitations in preclinical systems. The current preclinical studies are head-fixed, anesthesia-dependent, and acute, limiting clinical translatability. Here, this work reports a general-purpose ultrasound neuromodulation system for chronic, closed-loop preclinical studies in freely behaving rodents. This work uses microelectromechanical systems (MEMS) technology to design and fabricate a small and lightweight transducer capable of artifact-free stimulation and simultaneous neural recording. Using the general-purpose system, it can be observed that state-dependent ultrasound neuromodulation of the prefrontal cortex increases rapid eye movement (REM) sleep and protects spatial working memory to REM sleep deprivation. The system will allow explorative studies in brain disease therapeutics and neuromodulation using ultrasound stimulation for widespread clinical adoption.
Collapse
Affiliation(s)
- Yehhyun Jo
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Sang‐Mok Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Taesub Jung
- Korea Brain Research Institute (KBRI)Daegu41068Republic of Korea
| | - Gijae Park
- Department of Electrical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwon16419Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwon16419Republic of Korea
| | - Seongju Lee
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jin Soo Park
- Department of Electrical EngineeringKorea UniversitySeoul02841Republic of Korea
- Creative Research Center for Brain ScienceKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Chaerin Oh
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Geon Kook
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Hyunggug Kim
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seongyeon Kim
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Byung Chul Lee
- Creative Research Center for Brain ScienceKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Greg S.B. Suh
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seong‐Gi Kim
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwon16419Republic of Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI)Daegu41068Republic of Korea
| | - Hyunjoo J. Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)Daejeon34141Republic of Korea
| |
Collapse
|
5
|
Cakir A, Ocalan B, Cansu C, Suyen GG, Cansev M, Kahveci N. Effects of citicoline administration on synaptic proteins in rapid eye movement sleep-deprived rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:562-568. [PMID: 35911643 PMCID: PMC9282749 DOI: 10.22038/ijbms.2022.60756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Sleep has a pivotal role in learning-memory and sleep deprivation (SD) negatively affects synaptic functioning. Cytidine-5-diphosphocholine (Citicoline) has been known to improve learning and memory functions. Our objective was to explore the effects of Citicoline on hippocampal and cortical synaptic proteins in rapid eye movement (REM) sleep-deprived rats. MATERIALS AND METHODS Rats (n=36) were randomly divided into 6 groups. Environmental control or sleep deprivation was done by placing the rat on a 13 cm diameter platform (Large Platform [LP] group) or on a 6.5 cm diameter platform (REMSD group), respectively, for 96 hours. Rats randomized for controls (Home Cage [HC] group) were followed up in home cages. Rats in each of the REMSD, LP or HC group were randomized to receive either saline (0,9%NaCl) or Citicoline (600 μmol/kg) intraperitoneally twice a day for four days. After the experiments, rats were sacrificed; their cerebral cortices and hippocampi were dissected for analyzing the levels of pre-synaptic proteins synaptophysin and synapsin I, and the post-synaptic density protein-95 (PSD-95) by Western-blotting. RESULTS Hippocampal levels of PSD-95, but not the pre-synaptic proteins, were reduced by REM sleep deprivation. Citicoline treatment ameliorated the reduction in PSD-95 levels in REM sleep-deprived rats. On the other hand, REM sleep deprivation was not found to be significantly effective on pre- or post-synaptic proteins in cerebral cortex. CONCLUSION REM sleep deprivation reduces hippocampal PSD-95 levels which are enhanced by Citicoline treatment. These data propose that Citicoline may ameliorate the adverse effects of SD on hippocampal synaptic functioning.
Collapse
Affiliation(s)
- Aysen Cakir
- Department of Physiology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Busra Ocalan
- Department of Physiology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Cansu Cansu
- Department of Pharmacology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Guldal Gulec Suyen
- Department of Physiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Mehmet Cansev
- Department of Pharmacology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Nevzat Kahveci
- Department of Physiology, Bursa Uludag University School of Medicine, Bursa, Turkey,Corresponding author: Nevzat Kahveci. Bursa Uludag University School of Medicine, Department of Physiology, Bursa, Turkey. Tel/Fax: +90-2242954015;
| |
Collapse
|
6
|
Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry 2021; 26:3152-3168. [PMID: 33093653 PMCID: PMC8060355 DOI: 10.1038/s41380-020-00921-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
Sleep abnormalities are often a prominent contributor to withdrawal symptoms following chronic drug use. Notably, rapid eye movement (REM) sleep regulates emotional memory, and persistent REM sleep impairment after cocaine withdrawal negatively impacts relapse-like behaviors in rats. However, it is not understood how cocaine experience may alter REM sleep regulatory machinery, and what may serve to improve REM sleep after withdrawal. Here, we focus on the melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH), which regulate REM sleep initiation and maintenance. Using adult male Sprague-Dawley rats trained to self-administer intravenous cocaine, we did transcriptome profiling of LH MCH neurons after long-term withdrawal using RNA-sequencing, and performed functional assessment using slice electrophysiology. We found that 3 weeks after withdrawal from cocaine, LH MCH neurons exhibit a wide range of gene expression changes tapping into cell membrane signaling, intracellular signaling, and transcriptional regulations. Functionally, they show reduced membrane excitability and decreased glutamatergic receptor activity, consistent with increased expression of voltage-gated potassium channel gene Kcna1 and decreased expression of metabotropic glutamate receptor gene Grm5. Finally, chemogenetic or optogenetic stimulations of LH MCH neural activity increase REM sleep after long-term withdrawal with important differences. Whereas chemogenetic stimulation promotes both wakefulness and REM sleep, optogenetic stimulation of these neurons in sleep selectively promotes REM sleep. In summary, cocaine exposure persistently alters gene expression profiles and electrophysiological properties of LH MCH neurons. Counteracting cocaine-induced hypoactivity of these neurons selectively in sleep enhances REM sleep quality and quantity after long-term withdrawal.
Collapse
|
7
|
Chronic sleep fragmentation enhances habenula cholinergic neural activity. Mol Psychiatry 2021; 26:941-954. [PMID: 30980042 PMCID: PMC6790161 DOI: 10.1038/s41380-019-0419-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/21/2019] [Accepted: 03/26/2019] [Indexed: 01/25/2023]
Abstract
Sleep is essential to emotional health. Sleep disturbance, particularly REM sleep disturbance, profoundly impacts emotion regulation, but the underlying neural mechanisms remain elusive. Here we show that chronic REM sleep disturbance, achieved in mice by chronic sleep fragmentation (SF), enhanced neural activity in the medial habenula (mHb), a brain region increasingly implicated in negative affect. Specifically, after a 5-day SF procedure that selectively fragmented REM sleep, cholinergic output neurons (ChNs) in the mHb exhibited increased spontaneous firing rate and enhanced firing regularity in brain slices. The SF-induced firing changes remained intact upon inhibition of glutamate, GABA, acetylcholine, and histamine receptors, suggesting cell-autonomous mechanisms independent of synaptic transmissions. Moreover, the SF-induced hyperactivity was not because of enhanced intrinsic membrane excitability, but was accompanied by depolarized resting membrane potential in mHb ChNs. Furthermore, inhibition of TASK-3 (KCNK9) channels, a subtype of two-pore domain K+ channels, mimicked the SF effects by increasing the firing rate and regularity, as well as depolarizing the resting membrane potential in mHb ChNs in control-sleep mice. These effects of TASK-3 inhibition were absent in SF mice, suggesting reduced TASK-3 activity following SF. By contrast, inhibition of small-conductance Ca2+-activated K+ (SK) channels did not produce similar effects. Thus, SF compromised TASK-3 function in mHb ChNs, which likely led to depolarized resting membrane potential and increased spontaneous firing. These results not only demonstrate that selective REM sleep disturbance leads to hyperactivity of mHb ChNs, but also identify a key molecular substrate through which REM sleep disturbance may alter affect regulation.
Collapse
|
8
|
Tabassum S, Misrani A, Tabassum S, Ahmed A, Yang L, Long C. Disrupted prefrontal neuronal oscillations and morphology induced by sleep deprivation in young APP/PS1 transgenic AD mice. Brain Res Bull 2020; 166:12-20. [PMID: 33186630 DOI: 10.1016/j.brainresbull.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022]
Abstract
Emerging evidence suggests that sleep deprivation (SD) is a public health epidemic and increase the risk of Alzheimer's disease (AD) progression. However, the underlying mechanisms remain to be fully investigated. In this study, we investigate the impact of 72 h SD on the prefrontal cortex (PFC) of 3∼4-months-old APP/PS1 transgenic AD mice - at an age before the onset of plaque formation and memory decline. Our results reveal that SD alters delta, theta and high-gamma oscillations in the PFC, accompanied by increased levels of excitatory postsynaptic signaling (NMDAR, GluR1, and CaMKII) in AD mice. SD also caused alteration in the dendritic length and dendritic branches of PFC pyramidal neurons, accompanied by a reduction in neuroprotective agent CREB. This study suggests that failure to acquire adequate sleep could trigger an early electrophysiological, molecular, and morphological alteration in the PFC of AD mice. Therapeutic interventions that manipulate sleep by targeting these pathways may be a promising approach toward delaying the progression of this incurable disease.
Collapse
Affiliation(s)
- Sidra Tabassum
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Afzal Misrani
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Sumaiya Tabassum
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Adeel Ahmed
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, PR China.
| |
Collapse
|
9
|
Mehta R, Giri S, Mallick BN. REM sleep loss-induced elevated noradrenaline could predispose an individual to psychosomatic disorders: a review focused on proposal for prediction, prevention, and personalized treatment. EPMA J 2020; 11:529-549. [PMID: 33240449 DOI: 10.1007/s13167-020-00222-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Historically and traditionally, it is known that sleep helps in maintaining healthy living. Its duration varies not only among individuals but also in the same individual depending on circumstances, suggesting it is a dynamic and personalized physiological process. It has been divided into rapid eye movement sleep (REMS) and non-REMS (NREMS). The former is unique that adult humans spend the least time in this stage, when although one is physically asleep, the brain behaves as if awake, the dream state. As NREMS is a pre-requisite for appearance of REMS, the latter can be considered a predictive readout of sleep quality and health. It plays a protective role against oxidative, stressful, and psychopathological insults. Several modern lifestyle activities compromise quality and quantity of sleep (including REMS) affecting fundamental physiological and psychopathosomatic processes in a personalized manner. REMS loss-induced elevated brain noradrenaline (NA) causes many associated symptoms, which are ameliorated by preventing NA action. Therefore, we propose that awareness about personalized sleep hygiene (including REMS) and maintaining optimum brain NA level should be of paramount significance for leading physical and mental well-being as well as healthy living. As sleep is a dynamic, multifactorial, homeostatically regulated process, for healthy living, we recommend addressing and treating sleep dysfunctions in a personalized manner by the health professionals, caregivers, family, and other supporting members in the society. We also recommend that maintaining sleep profile, optimum level of NA, and/or prevention of elevation of NA or its action in the brain must be seriously considered for ameliorating lifestyle and REMS disturbance-associated dysfunctions.
Collapse
Affiliation(s)
- Rachna Mehta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India.,Present Address: Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Shatrunjai Giri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Birendra N Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| |
Collapse
|
10
|
Amini M, Saboory E, Derafshpour L, Fakhari A, Wu JC, Bruggeman R, Asgharzadeh F, Ahmadalipour A. The impact of sleep deprivation on sexual behaviors and FAAH expression in the prefrontal cortex of male rats. Neurosci Lett 2020; 735:135254. [PMID: 32682844 DOI: 10.1016/j.neulet.2020.135254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
Sleep deprivation (SD) causes alterations in the function of the endocannabinoid (EC) system and also results in alteration in many behaviors such as increased anxiety, deteriorated alertness, memory deficits, as well as sexual behaviors. Controversial data about the effects of SD on sexual response are provided. Fatty acid amide hydrolase (FAAH), the enzymes involved in the degradation of the EC system play an important role in the function of the EC system. This study aimed to investigate the effect of REM SD (RSD) and total SD (TSD) on the sexual behaviors and FAAH expression in the prefrontal cortex (PFC) of male rats. RSD was carried out through the flower pot technique for 24 h and 48 h, and TSD also was induced by keeping awake the rats by gentle handling for 6 h. Immediately after RSD and TSD, sexual behaviors were recorded for 45 min. Sexual behaviors were reduced by both types of RSD and TSD. The deleterious effects of 24 h RSD were more severe compared with 6 h of TSD. Serum testosterone concentration was significantly higher after TSD but not RSD compared to the normal sleep (NS) group. FAAH expression in the PFC was significantly reduced after both RSD and TSD compared to the NS group. Given that the function of the EC system has been previously shown to change different behaviors such as sexual activity, our results could suggest that behavioral effects of both types of SD on sexual behavior may partially result from activation of this signaling pathway by the reduction of FAAH in the PFC.
Collapse
Affiliation(s)
- Mohammad Amini
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Leila Derafshpour
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Joseph C Wu
- UC Irvine Department of Psychiatry and Human Behavior, Irvine, CA 92697, United States
| | - Richard Bruggeman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Rob Giel Research Center, the Netherlands
| | - Fatemeh Asgharzadeh
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Wang Y, Liu Z, Cai L, Guo R, Dong Y, Huang YH. A Critical Role of Basolateral Amygdala-to-Nucleus Accumbens Projection in Sleep Regulation of Reward Seeking. Biol Psychiatry 2020; 87:954-966. [PMID: 31924324 PMCID: PMC7210061 DOI: 10.1016/j.biopsych.2019.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/09/2019] [Accepted: 10/27/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sleep impacts reward-motivated behaviors partly by retuning the brain reward circuits. The nucleus accumbens (NAc) is a reward processing hub sensitive to acute sleep deprivation. Glutamatergic transmission carrying reward-associated signals converges in the NAc and regulates various aspects of reward-motivated behaviors. The basolateral amygdala projection (BLAp) innervates broad regions of the NAc and critically regulates reward seeking. METHODS Using slice electrophysiology, we measured how acute sleep deprivation alters transmission at BLAp-NAc synapses in male C57BL/6 mice. Moreover, using SSFO (stabilized step function opsin) and DREADDs (designer receptors exclusively activated by designer drugs) (Gi) to amplify and reduce transmission, respectively, we tested behavioral consequences following bidirectional manipulations of BLAp-NAc transmission. RESULTS Acute sleep deprivation increased sucrose self-administration in mice and altered the BLAp-NAc transmission in a topographically specific manner. It selectively reduced glutamate release at the rostral BLAp (rBLAp) onto ventral and lateral NAc (vlNAc) synapses, but spared caudal BLAp onto medial NAc synapses. Furthermore, experimentally facilitating glutamate release at rBLAp-vlNAc synapses suppressed sucrose reward seeking. Conversely, mimicking sleep deprivation-induced reduction of rBLAp-vlNAc transmission increased sucrose reward seeking. Finally, facilitating rBLAp-vlNAc transmission per se did not promote either approach motivation or aversion. CONCLUSIONS Sleep acts on rBLAp-vINAc transmission gain control to regulate established reward seeking but does not convey approach motivation or aversion on its own.
Collapse
Affiliation(s)
- Yao Wang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA,These authors contributed equally to this work
| | - Zheng Liu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,These authors contributed equally to this work
| | - Li Cai
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Yan Dong
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
12
|
Jerath R, Beveridge C, Jensen M. On the Hierarchical Organization of Oscillatory Assemblies: Layered Superimposition and a Global Bioelectric Framework. Front Hum Neurosci 2019; 13:426. [PMID: 31866845 PMCID: PMC6904282 DOI: 10.3389/fnhum.2019.00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/18/2019] [Indexed: 01/23/2023] Open
Abstract
Bioelectric oscillations occur throughout the nervous system of nearly all animals, revealed to play an important role in various aspects of cognitive activity such as information processing and feature binding. Modern research into this dynamic and intrinsic bioelectric activity of neural cells continues to raise questions regarding their role in consciousness and cognition. In this theoretical article, we assert a novel interpretation of the hierarchical nature of "brain waves" by identifying that the superposition of multiple oscillations varying in frequency corresponds to the superimposing of the contents of consciousness and cognition. In order to describe this isomorphism, we present a layered model of the global functional oscillations of various frequencies which act as a part of a unified metastable continuum described by the Operational Architectonics theory and suggested to be responsible for the emergence of the phenomenal mind. We detail the purposes, functions, and origins of each layer while proposing our main theory that the superimposition of these oscillatory layers mirrors the superimposition of the components of the integrated phenomenal experience as well as of cognition. In contrast to the traditional view that localizations of high and low-frequency activity are spatially distinct, many authors have suggested a hierarchical nature to oscillations. Our theoretical interpretation is founded in four layers which correlate not only in frequency but in evolutionary development. As other authors have done, we explore how these layers correlate to the phenomenology of human experience. Special importance is placed on the most basal layer of slow oscillations in coordinating and grouping all of the other layers. By detailing the isomorphism between the phenomenal and physiologic aspects of how lower frequency layers provide a foundation for higher frequency layers to be organized upon, we provide a further means to elucidate physiological and cognitive mechanisms of mind and for the well-researched outcomes of certain voluntary breathing patterns and meditative practices which modulate the mind and have therapeutic effects for psychiatric and other disorders.
Collapse
Affiliation(s)
- Ravinder Jerath
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| | - Connor Beveridge
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| | - Michael Jensen
- Department of Medical Illustration, Augusta University, Augusta, GA, United States
| |
Collapse
|
13
|
Seibt J, Frank MG. Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States. Front Syst Neurosci 2019; 13:2. [PMID: 30774586 PMCID: PMC6367653 DOI: 10.3389/fnsys.2019.00002] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
It is commonly accepted that brain plasticity occurs in wakefulness and sleep. However, how these different brain states work in concert to create long-lasting changes in brain circuitry is unclear. Considering that wakefulness and sleep are profoundly different brain states on multiple levels (e.g., cellular, molecular and network activation), it is unlikely that they operate exactly the same way. Rather it is probable that they engage different, but coordinated, mechanisms. In this article we discuss how plasticity may be divided across the sleep-wake cycle, and how synaptic changes in each brain state are linked. Our working model proposes that waking experience triggers short-lived synaptic events that are necessary for transient plastic changes and mark (i.e., 'prime') circuits and synapses for further processing in sleep. During sleep, synaptic protein synthesis at primed synapses leads to structural changes necessary for long-term information storage.
Collapse
Affiliation(s)
- Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Marcos G. Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, United States
| |
Collapse
|
14
|
Ionov ID, Pushinskaya II, Gorev NP, Frenkel DD. Cyclosomatostatin- and haloperidol-induced catalepsy in Wistar rats: Differential responsiveness to sleep deprivation. Neurosci Lett 2018; 684:72-77. [PMID: 29990558 DOI: 10.1016/j.neulet.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
Total sleep deprivation (SD) has been found to mitigate motor dysfunctions in Parkinson's disease. Apparently, the similar sensitivity of an animal model for parkinsonism would support the model's validity. Recently, we described catalepsy induced in Wistar rats by somatostatin antagonist, cyclosomatostatin (cSST); this model simulates such a disease-associated abnormality as a fall in brain somatostatin levels. To evaluate the similarity between the cSST model and Parkinson's disease, we assessed here the responsiveness of cSST-induced catalepsy to 1-h and 3-h SD. In parallel, the influence of SD on catalepsy induced by a dopamine receptor antagonist, haloperidol, was examined. It was found that the short-term SD failed to influence cataleptic responses of both types (sleep deprived rats and undisturbed ones displayed a similar duration of immobility, p > 0.05). By contrast, 3-h SD suppressed (p < 0.01) cSST-induced catalepsy, however, enhanced (p < 0.01) cataleptic response to haloperidol. Thus, the anti-cataleptic effect of SD appears to be cSST-specific. These findings support the validity of the cSST-induced catalepsy in Wistar rats as a model for parkinsonian motor dysfunctions.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
15
|
Jerath R, Beveridge C. Top Mysteries of the Mind: Insights From the Default Space Model of Consciousness. Front Hum Neurosci 2018; 12:162. [PMID: 29755333 PMCID: PMC5932384 DOI: 10.3389/fnhum.2018.00162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/06/2018] [Indexed: 01/14/2023] Open
Abstract
Aside from the nature of consciousness itself, there are still many unsolved problems in the neurosciences. Despite the vast and quickly growing body of work in this field, we still find ourselves perplexed at seemingly simple qualities of our mental being such as why we need to sleep. The neurosciences are at least beginning to take a hold on these mysteries and are working toward solving them. We hold a perspective that metastable consciousness models, specifically the Default Space Model (DSM), provide insights into these mysteries. In this perspective article, we explore some of these curious questions in order to elucidate the interesting points they bring up. The DSM is a dynamic, global theory of consciousness that involves the maintenance of an internal, 3D simulation of the external, physical world which is the foundation and structure of consciousness. This space is created and filled by multiple frequencies of membrane potential oscillations throughout the brain and body which are organized, synchronized and harmonized by the thalamus. The veracity of the DSM is highlighted here in its ability to further understanding of some of the most puzzling problems in neuroscience.
Collapse
Affiliation(s)
- Ravinder Jerath
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| | - Connor Beveridge
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| |
Collapse
|
16
|
Excitatory and inhibitory synaptic dysfunction in mania: an emerging hypothesis from animal model studies. Exp Mol Med 2018; 50:1-11. [PMID: 29628501 PMCID: PMC5938027 DOI: 10.1038/s12276-018-0028-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Bipolar disorder (BD) is a common psychiatric disorder characterized by recurrent mood swings between depression and mania, and is associated with high treatment costs. The existence of manic episodes is the defining feature of BD, during which period, patients experience extreme elevation in activity, energy, and mood, with changes in sleep patterns that together severely impair their ability to function in daily life. Despite some limitations in recapitulating the complex features of human disease, several rodent models of mania have been generated and characterized, which have provided important insights toward understanding its underlying pathogenic mechanisms. Among the mechanisms, neuronal excitatory and inhibitory (E/I) synaptic dysfunction in some brain regions, including the frontal cortex, hippocampus, and striatum, is an emerging hypothesis explaining mania. In this review, we highlight recent studies of rodent manic models having impairments in the E/I synaptic development and function. We also summarize the molecular and functional changes of E/I synapses by some mood stabilizers that may contribute to the therapeutic efficacy of drugs. Furthermore, we discuss potential future directions in the study of this emerging hypothesis to better connect the outcomes of basic research to the treatment of patients with this devastating mental illness. Studies in rodents offer insights into bipolar disorder that may help understanding and treatment of this common and debilitating condition. Kihoon Han and colleagues at Korea University in Seoul review research using mice and rats to model the episodes of mania in patients with bipolar disorder. The research supports an emerging hypothesis implicating specific problems with nervous transmission in the brain in the onset of mania. The hypothesis suggests that the transmission of signals between particular nerve cells whose normal function is either to excite or to inhibit other nerve cells may be involved. It also indicates regions of the brain most involved in manic episodes. Changes at the affected nerve junctions—called synapses—brought about by mood-stabilizing drugs are examined. The hypothesis suggests new approaches to treatment options for researchers to explore.
Collapse
|
17
|
Noorafshan A, Karimi F, Kamali AM, Karbalay-Doust S, Nami M. Could curcumin protect the dendritic trees of the CA1 neurons from shortening and shedding induced by chronic sleep restriction in rats? Life Sci 2018; 198:65-70. [PMID: 29455005 DOI: 10.1016/j.lfs.2018.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE This study evaluated the effect of chronic sleep restriction (CSR) with or without curcumin (CUR) treatment on dendritic lengths and spines of the CA1 hippocampus using the virtual space-ball method. MATERIALS AND METHODS Male rats were randomly submitted to nine groups, including distilled water, CUR (100 mg/kg/day), olive oil, CSR plus distilled water, CSR plus CUR, CSR plus olive oil, grid-floor plus distilled water, grid-floor plus CUR, and grid-floor plus olive oil groups. Sleep deficiency was imposed using the multi-platform box containing water for 18 h/day. In 21 days, animal's brains were prepared for stereological studies. RESULTS The mean dendrite length in CA1 neurons was reduced by 39% (p < 0.05) while the density of stubby, thin, and mushroom spines reduced by 38%, 33% and 32%, respectively (p < 0.01), in the CSR + distilled water group compared to the distilled water group. Yet, CUR treatment in CSR-rats was found to protect the declined dendritic length as well as loss of stubby and mushroom but not thin spines. CONCLUSION The estimated dendritic length using the virtual space-ball method revealed that chronic sleep restriction for 18 h/day over 21 days could induce shortening and shedding of the CA1 dendritic trees which could notably be protected by CUR.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Karimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali-Mohammad Kamali
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Students' research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Prefrontal Cortex to Accumbens Projections in Sleep Regulation of Reward. J Neurosci 2017; 36:7897-910. [PMID: 27466335 DOI: 10.1523/jneurosci.0347-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/06/2016] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Sleep profoundly affects the emotional and motivational state. In humans and animals, loss of sleep often results in enhanced motivation for reward, which has direct implications for health risks as well as potential benefits. Current study aims at understanding the mechanisms underlying sleep deprivation (SDe)-induced enhancement of reward seeking. We found that after acute SDe, mice had an increase in sucrose seeking and consumption but not food intake, suggesting a selective enhancement of motivation for reward. In the nucleus accumbens (NAc), a key brain region regulating emotional and motivational responses, we observed a decrease in the ratio of the overall excitatory over inhibitory synaptic inputs onto NAc principle neurons after SDe. The shift was partly mediated by reduced glutamatergic transmission of presynaptic origin. Further analysis revealed that there was selective reduction of the glutamate release probability at the medial prefrontal cortex (mPFC)-to-NAc synapses, but not those from the hippocampus, thalamus, or the basal lateral amygdala. To reverse this SDe-induced synaptic alteration, we expressed the stabilized step function opsin (SSFO) in the mPFC; optogenetic stimulation of SSFO at mPFC-to-NAc projection terminals persistently enhanced the action potential-dependent glutamate release. Intra-NAc optogenetic stimulation of SSFO selectively at mPFC-to-NAc terminals restored normal sucrose seeking in mice after SDe without affecting food intake. These results highlight the mPFC-to-NAc projection as a key circuit-based target for sleep to regulate reward-motivated behaviors. SIGNIFICANCE STATEMENT Sleep loss, a costly challenge of modern society, has profound physiological and psychological consequences, including altered reward processing of the brain. The current study aims at understanding the mechanisms underlying sleep deprivation-induced enhancement of reward seeking. We identify that the medial prefrontal cortex (mPFC)-to-nucleus accumbens (NAc) glutamatergic transmission is selectively weakened following acute sleep deprivation, whose restoration normalizes reward seeking in sleep-deprived mice. These results suggest a possibility of normalizing sleep deprivation-induced abnormal reward seeking by targeting specific neural projections, and they demonstrate the mPFC-to-NAc glutamatergic projection as a key circuit-based target for sleep to regulate reward-motivated behaviors.
Collapse
|
19
|
Dispersyn G, Sauvet F, Gomez-Merino D, Ciret S, Drogou C, Leger D, Gallopin T, Chennaoui M. The homeostatic and circadian sleep recovery responses after total sleep deprivation in mice. J Sleep Res 2017; 26:531-538. [DOI: 10.1111/jsr.12541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Garance Dispersyn
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
- VIFASOM EA 7330 Université Paris Descartes; Paris France
| | - Fabien Sauvet
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
- VIFASOM EA 7330 Université Paris Descartes; Paris France
| | - Danielle Gomez-Merino
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
- VIFASOM EA 7330 Université Paris Descartes; Paris France
| | - Sylvain Ciret
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
| | - Catherine Drogou
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
- VIFASOM EA 7330 Université Paris Descartes; Paris France
| | - Damien Leger
- VIFASOM EA 7330 Université Paris Descartes; Paris France
- Centre du Sommeil et de la Vigilance; Paris France
| | | | - Mounir Chennaoui
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
- VIFASOM EA 7330 Université Paris Descartes; Paris France
| |
Collapse
|
20
|
Noorafshan A, Karimi F, Karbalay-Doust S, Kamali AM. Using curcumin to prevent structural and behavioral changes of medial prefrontal cortex induced by sleep deprivation in rats. EXCLI JOURNAL 2017; 16:510-520. [PMID: 28694754 PMCID: PMC5491911 DOI: 10.17179/excli2017-139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/20/2017] [Indexed: 01/06/2023]
Abstract
Sleep Deprivation (SD) is known to result in a range of neurological consequences in chronically-afflicted subjects. Curcumin, a natural substance, has neuroprotective properties. This study aimed to evaluate the effects of curcumin on the medial Prefrontal Cortex (mPFC) of SD rats. Male rats were arbitrarily assigned to nine groups, including control, curcumin (100 mg/kg/day), olive oil, SD, SD+curcumin, SD+olive oil, grid, grid+curcumin, and grid+olive oil groups. SD was induced by a multiplatform box containing water. After a period of 21 days, the learning and memory of the rats were tested in an eight-arm radial maze. Afterwards, their brains were evaluated using stereological methods. Concomitant treatment of curcumin during SD caused fewer errors during evaluation of the working and reference memory errors in the acquisition and retention phases. The overall volume of the mPFC, Infralimbic Cortex (ILC), Prelimbic Cortex (PLC), Anterior Cingulate Cortex (ACC) and the total number of neurons and glial cells reduced by 20 %-40 % on average in the SD animals in comparison to the control group. This indicated atrophic changes and cell loss in these areas (p < 0.01). The dendrites' length and the number of spines per dendrite also reduced by 35 %-55 % in the SD rats compared to the ones in the control group (p < 0.01). Yet, treatment of the SD animals with curcumin prevented the atrophic changes of the mPFC, cell loss, and dendritic changes (p < 0.05). SD induced structural changes in the mPFC and memory impairment in the rats. However, curcumin could protect their PFC.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Karimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Kamali
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Flavanol-rich cocoa at breakfast: the right remedy after a sleepless night to prevent negative effects on blood pressure and cognition? J Hypertens 2016; 34:1252-3. [PMID: 27254143 DOI: 10.1097/hjh.0000000000000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Wen X, Chen X, Chen S, Tan Y, Rong F, Zhu J, Ma W. Influence of SKF38393 on changes of gene profile in rat prefrontal cortex during chronic paradoxical sleep deprivation. Behav Brain Res 2016; 304:60-6. [PMID: 26851556 DOI: 10.1016/j.bbr.2016.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 11/17/2022]
Abstract
Chronic paradoxical sleep deprivation (CSD) can induce dramatic physiological and neurofunctional changes in rats, including decreased body weight, reduced learning and memory, and declined locomotor function. SKF38393, a dopamine D1 receptor agonist, can reverse the above damages. However, the mechanism of CSD syndrome and reversal role of SKF38393 remains largely unexplained. To preliminarily elucidate the mechanism of the neural dysfunction caused by CSD, in the present study we use gene chips to examine the expression profile of more than 28,000 transcripts in the prefrontal cortex (PFC). Rats were sleep deprived by modified multi-platform method for 3 weeks. Totally 59 transcripts showed differential expressions in CSD group in contrast to controls; they included transcripts coding for caffeine metabolism, circadian rhythm, drug metabolism and some amino acid metabolism pathway. Among the 59 transcripts, 39 increased their expression and 20 decreased. Two transcripts can be specifically reversed with SKF38393, one of them is Homer1, which is related to 20 functional classifications and coding for Glutamatergic synapse pathway. Our findings in the present study indicate that long-term sleep deprivation may trigger the changes of some certain functions and pathways in the PFC, and lead to the dysfunction of this advanced neuron, and the activation of D1 receptor by SKF38393 might ameliorate these changes via modulation of some transcripts such as Homer1, which is involved in the Ca(2+) pathway and MAPK pathway related to Glutamatergic synapse pathway.
Collapse
Affiliation(s)
- Xiaosa Wen
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China; Minhang District Center for Disease Control and Prevention, Shanghai 201101, China
| | - Xinmin Chen
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Si Chen
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Yue Tan
- Surgical Department, Tangshan Gongren Hospital, Tangshan 063000, China
| | - Fei Rong
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Jiangbo Zhu
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China.
| | - Wenling Ma
- Department of Enviromental Hygiene, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
23
|
Vanini G. Sleep Deprivation and Recovery Sleep Prior to a Noxious Inflammatory Insult Influence Characteristics and Duration of Pain. Sleep 2016; 39:133-42. [PMID: 26237772 DOI: 10.5665/sleep.5334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/28/2015] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES Insufficient sleep and chronic pain are public health epidemics. Sleep loss worsens pain and predicts the development of chronic pain. Whether previous, acute sleep loss and recovery sleep determine pain levels and duration remains poorly understood. This study tested whether acute sleep deprivation and recovery sleep prior to formalin injection alter post-injection pain levels and duration. METHODS Male Sprague-Dawley rats (n = 48) underwent sleep deprivation or ad libitum sleep for 9 hours. Thereafter, rats received a subcutaneous injection of formalin or saline into a hind paw. In the recovery sleep group, rats were allowed 24 h between sleep deprivation and the injection of formalin. Mechanical and thermal nociception were assessed using the von Frey test and Hargreaves' method. Nociceptive measures were performed at 1, 3, 7, 10, 14, 17 and 21 days post-injection. RESULTS Formalin caused bilateral mechanical hypersensitivity (allodynia) that persisted for up to 21 days post-injection. Sleep deprivation significantly enhanced bilateral allodynia. There was a synergistic interaction when sleep deprivation preceded a formalin injection. Rats allowed a recovery sleep period prior to formalin injection developed allodynia only in the injected limb, with higher mechanical thresholds (less allodynia) and a shorter recovery period. There were no persistent changes in thermal nociception. CONCLUSION The data suggest that acute sleep loss preceding an inflammatory insult enhances pain and can contribute to chronic pain. The results encourage studies in a model of surgical pain to test whether enhancing sleep reduces pain levels and duration.
Collapse
Affiliation(s)
- Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
24
|
Abstract
After withdrawal from cocaine, chronic cocaine users often experience persistent reduction in total sleep time, which is accompanied by increased sleep fragmentation resembling chronic insomnia. This and other sleep abnormalities have long been speculated to foster relapse and further drug addiction, but direct evidence is lacking. Here, we report that after prolonged withdrawal from cocaine self-administration, rats exhibited persistent reduction in nonrapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep, as well as increased sleep fragmentation. In an attempt to improve sleep after cocaine withdrawal, we applied chronic sleep restriction to the rats during their active (dark) phase of the day, which selectively decreased the fragmentation of REM sleep during their inactive (light) phase without changing NREM or the total amount of daily sleep. Animals with improved REM sleep exhibited decreased incubation of cocaine craving, a phenomenon depicting the progressive intensification of cocaine seeking after withdrawal. In contrast, experimentally increasing sleep fragmentation after cocaine self-administration expedited the development of incubation of cocaine craving. Incubation of cocaine craving is partially mediated by progressive accumulation of calcium-permeable AMPA receptors (CP-AMPARs) in the nucleus accumbens (NAc). After withdrawal from cocaine, animals with improved REM sleep exhibited reduced accumulation of CP-AMPARs in the NAc, whereas increasing sleep fragmentation accelerated NAc CP-AMPAR accumulation. These results reveal a potential molecular substrate that can be engaged by sleep to regulate cocaine craving and relapse, and demonstrate sleep-based therapeutic opportunities for cocaine addiction. Significance statement: Sleep abnormalities are common symptoms in chronic drug users long after drug withdrawal. These withdrawal-associated sleep symptoms, particularly reduction in total sleep time and deteriorating sleep quality, have been speculated to foster relapse and further drug addiction, but direct evidence is lacking. Here we show in rats that the sleep pattern was persistently changed long after withdrawal from cocaine self-administration, and demonstrate that sleep interventions can bidirectionally regulate cocaine craving and seeking after withdrawal. We further demonstrate that glutamatergic synapses in the nucleus accumbens are potential neuronal targets for sleep intervention to influence cocaine craving after withdrawal. These results provide a strong rationale supporting sleep-based therapies for cocaine addiction.
Collapse
|
25
|
Giacobbo BL, Corrêa MS, Vedovelli K, de Souza CEB, Spitza LM, Gonçalves L, Paludo N, Molina RD, da Rosa ED, Argimon IIDL, Bromberg E. Could BDNF be involved in compensatory mechanisms to maintain cognitive performance despite acute sleep deprivation? An exploratory study. Int J Psychophysiol 2015; 99:96-102. [PMID: 26602839 DOI: 10.1016/j.ijpsycho.2015.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 11/18/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neuroimaging studies suggest that acute sleep deprivation can lead to adaptations, such as compensatory recruitment of cerebral structures, to maintain cognitive performance despite sleep loss. However, the understanding of the neurochemical alterations related to these adaptations remains incomplete. OBJECTIVE Investigate BDNF levels, cognitive performance and their relations in healthy subjects after acute sleep deprivation. METHODS Nineteen sleep deprived (22.11±3.21years) and twenty control (25.10±4.42years) subjects completed depression, anxiety and sleep quality questionnaires. Sleep deprived group spent a full night awake performing different playful activities to keep themselves from sleeping. Attention, response inhibition capacity and working memory (prefrontal cortex-dependent) were assessed with Stroop and Digit Span tests. Declarative memory (hippocampus-dependent) was assessed with Logical Memory test. Serum BDNF was measured by sandwich ELISA. Data were analyzed with independent samples T-test, ANOVA, ANCOVA and curve estimation regressions. p<0.05 was deemed statistically significant. RESULTS The sleep deprived group showed higher BDNF levels and normal performance on attention, response inhibition capacity and working memory. However, declarative memory was impaired. A sigmoidal relation between BDNF and Stroop Test scores was found. CONCLUSIONS Increased BDNF could be related, at least in part, to the maintenance of normal prefrontal cognitive functions after sleep deprivation. This potential relation should be further investigated.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Márcio Silveira Corrêa
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Kelem Vedovelli
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Carlos Eduardo Bruhn de Souza
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Letícia Martins Spitza
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Lucas Gonçalves
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Nathália Paludo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Rachel Dias Molina
- Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Eduarda Dias da Rosa
- Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Irani Iracema de Lima Argimon
- Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil.
| |
Collapse
|
26
|
Effects of chronic REM sleep restriction on D1 receptor and related signal pathways in rat prefrontal cortex. BIOMED RESEARCH INTERNATIONAL 2015; 2015:978236. [PMID: 25793215 PMCID: PMC4352426 DOI: 10.1155/2015/978236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022]
Abstract
The prefrontal cortex (PFC) mediates cognitive function that is sensitive to disruption by sleep loss, and molecular mechanisms regulating neural dysfunction induced by chronic sleep restriction (CSR), particularly in the PFC, have yet to be completely understood. The aim of the present study was to investigate the effect of chronic REM sleep restriction (REM-CSR) on the D1 receptor (D1R) and key molecules in D1R' signal pathways in PFC. We employed the modified multiple platform method to create the REM-CSR rat model. The ultrastructure of PFC was observed by electron microscopy. HPLC was performed to measure the DA level in PFC. The expressions of genes and proteins of related molecules were assayed by real-time PCR and Western blot, respectively. The general state and morphology of PFC in rats were changed by CSR, and DA level and the expression of D1R in PFC were markedly decreased (P < 0.01, P < 0.05); the expression of phosphor-PKAcα was significantly lowered in CSR rats (P < 0.05). The present results suggested that the alteration of neuropathology and D1R expression in PFC may be associated with CSR induced cognitive dysfunction, and the PKA pathway of D1R may play an important role in the impairment of advanced neural function.
Collapse
|
27
|
Azogu I, de la Tremblaye PB, Dunbar M, Lebreton M, LeMarec N, Plamondon H. Acute sleep deprivation enhances avoidance learning and spatial memory and induces delayed alterations in neurochemical expression of GR, TH, DRD1, pCREB and Ki67 in rats. Behav Brain Res 2014; 279:177-90. [PMID: 25433096 DOI: 10.1016/j.bbr.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
The current study investigated the effects of acute versus repeated periods of sleep deprivation on avoidance learning and spatial memory and on the expression of discrete biochemical brain signals involved in stress regulation, motivation and brain plasticity. Male Long-Evans rats were sleep deprived using the platform-over-water method for a single 4 h period (ASD) or for daily 4h RSD period on five consecutive days (CSD). The Y maze passive avoidance task (YM-PAT) and the Morris water maze (MWM) were used to determine learning and memory 1h following the last SD period. Region-specific changes in glucocorticoid receptors (GR), tyrosine hydroxylase (TH), dopamine 1 receptors (DRD1), phospho-CREB (pCREB) and Ki-67 expression were assessed in the hippocampal formation, hypothalamus and mesolimbic regions 72 h following RSD. Behaviorally, our findings revealed increased latency to re-enter the aversive arm in the YM-PAT and reduced distance traveled and latency to reach the platform in the MWM in ASD rats compared to all other groups, indicative of improved avoidance learning and spatial memory, respectively. Acute SD enhanced TH expression in the ventral tegmental area, nucleus accumbens and A11 neurons of the hypothalamus and DRD1 expression in the lateral hypothalamus. Cell proliferation in the subventricular zone and pCREB expression in the dentate gyrus and CA3 regions was also enhanced following acute SD. In contrast, repeated SD significantly elevated GR-ir at the hypothalamic paraventricular nucleus and CA1 and CA3 layers of the hippocampus compared to all other groups. Our study supports that a brief 4h sleep deprivation period is sufficient to induce delayed neurochemical changes.
Collapse
Affiliation(s)
- Idu Azogu
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Patricia Barra de la Tremblaye
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Megan Dunbar
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Marianne Lebreton
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Nathalie LeMarec
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Hélène Plamondon
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
28
|
Acosta-Peña E, Camacho-Abrego I, Melgarejo-Gutiérrez M, Flores G, Drucker-Colín R, García-García F. Sleep deprivation induces differential morphological changes in the hippocampus and prefrontal cortex in young and old rats. Synapse 2014; 69:15-25. [PMID: 25179486 DOI: 10.1002/syn.21779] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/17/2014] [Accepted: 08/18/2014] [Indexed: 11/11/2022]
Abstract
Sleep is a fundamental state necessary for maintenance of physical and neurological homeostasis throughout life. Several studies regarding the functions of sleep have been focused on effects of sleep deprivation on synaptic plasticity at a molecular and electrophysiological level, and only a few studies have studied sleep function from a structural perspective. Moreover, during normal aging, sleep architecture displays some changes that could affect normal development in the elderly. In this study, using a Golgi-Cox staining followed by Sholl analysis, we evaluate the effects of 24 h of total sleep deprivation on neuronal morphology of pyramidal neurons from Layer III of the prefrontal cortex (PFC) and the dorsal hippocampal CA1 region from male Wistar rats at two different ages (3 and 22 months). We found no differences in total dendritic length and branching length in both analyzed regions after sleep deprivation. Spine density was reduced in the CA1 of young-adults, and interestingly, sleep deprivation increased spine density in PFC of aged animals. Taken together, our results show that 24 h of total sleep deprivation have different effects on synaptic plasticity and could play a beneficial role in cognition during aging.
Collapse
Affiliation(s)
- Eva Acosta-Peña
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Luis Castelazo-Ayala s/n, Industrial-Animas, Xalapa, Veracruz, 91190, México
| | | | | | | | | | | |
Collapse
|
29
|
Role of cardiorespiratory synchronization and sleep physiology: effects on membrane potential in the restorative functions of sleep. Sleep Med 2014; 15:279-88. [DOI: 10.1016/j.sleep.2013.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 01/26/2023]
|
30
|
Tinarelli F, Garcia-Garcia C, Nicassio F, Tucci V. Parent-of-origin genetic background affects the transcriptional levels of circadian and neuronal plasticity genes following sleep loss. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120471. [PMID: 24446504 DOI: 10.1098/rstb.2012.0471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep homoeostasis refers to a process in which the propensity to sleep increases as wakefulness progresses and decreases as sleep progresses. Sleep is tightly organized around the circadian clock and is regulated by genetic and epigenetic mechanisms. The homoeostatic response of sleep, which is classically triggered by sleep deprivation, is generally measured as a rebound effect of electrophysiological measures, for example delta sleep. However, more recently, gene expression changes following sleep loss have been investigated as biomarkers of sleep homoeostasis. The genetic background of an individual may affect this sleep-dependent gene expression phenotype. In this study, we investigated whether parental genetic background differentially modulates the expression of genes following sleep loss. We tested the progeny of reciprocal crosses of AKR/J and DBA/2J mouse strains and we show a parent-of-origin effect on the expression of circadian, sleep and neuronal plasticity genes following sleep deprivation. Thus, we further explored, by in silico, specific functions or upstream mechanisms of regulation and we observed that several upstream mechanisms involving signalling pathways (i.e. DICER1, PKA), growth factors (CSF3 and BDNF) and transcriptional regulators (EGR2 and ELK4) may be differentially modulated by parental effects. This is the first report showing that a behavioural manipulation (e.g. sleep deprivation) in adult animals triggers specific gene expression responses according to parent-of-origin genomic mechanisms. Our study suggests that the same mechanism may be extended to other behavioural domains and that the investigation of gene expression following experimental manipulations should take seriously into account parent-of-origin effects.
Collapse
Affiliation(s)
- Federico Tinarelli
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, , via Morego, 30, 16163 Genova, Italy
| | | | | | | |
Collapse
|
31
|
Abstract
In the last decades a substantial knowledge about sleep mechanisms has been accumulated. However, the function of sleep still remains elusive. The difficulty with unraveling sleep's function may arise from the lack of understanding of how the multitude of processes associated with waking and sleep-from gene expression and single neuron activity to the whole brain dynamics and behavior-functionally and mechanistically relate to each other. Therefore, novel conceptual frameworks, which integrate and take into account the variety of phenomena occurring during waking and sleep at different levels, will likely lead to advances in our understanding of the function of sleep, above and beyond what merely descriptive or correlative approaches can provide. One such framework, the synaptic homeostasis hypothesis, focuses on wake- and sleep-dependent changes in synaptic strength. The core claim of this hypothesis is that learning and experience during wakefulness are associated with a net increase in synaptic strength. In turn, the proposed function of sleep is to provide synaptic renormalization, which has important implications with respect to energy needs, intracranial space, metabolic supplies, and, importantly, enables further plastic changes. In this article we review the empirical evidence for this hypothesis, which was obtained at several levels-from gene expression and cellular excitability to structural synaptic modifications and behavioral outcomes. We conclude that although the mechanisms behind the proposed role of sleep in synaptic homeostasis are undoubtedly complex, this conceptual framework offers a unique opportunity to provide mechanistic and functional explanation for many previously disparate observations, and define future research strategies.
Collapse
|
32
|
Krueger JM, Huang YH, Rector DM, Buysse DJ. Sleep: a synchrony of cell activity-driven small network states. Eur J Neurosci 2013; 38:2199-209. [PMID: 23651209 DOI: 10.1111/ejn.12238] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 12/14/2022]
Abstract
We posit a bottom-up sleep-regulatory paradigm in which state changes are initiated within small networks as a consequence of local cell activity. Bottom-up regulatory mechanisms are prevalent throughout nature, occurring in vastly different systems and levels of organization. Synchronization of state without top-down regulation is a fundamental property of large collections of small semi-autonomous entities. We posit that such synchronization mechanisms are sufficient and necessary for whole-organism sleep onset. Within the brain we posit that small networks of highly interconnected neurons and glia, for example cortical columns, are semi-autonomous units oscillating between sleep-like and wake-like states. We review evidence showing that cells, small networks and regional areas of the brain share sleep-like properties with whole-animal sleep. A testable hypothesis focused on how sleep is initiated within local networks is presented. We posit that the release of cell activity-dependent molecules, such as ATP and nitric oxide, into the extracellular space initiates state changes within the local networks where they are produced. We review mechanisms of ATP induction of sleep-regulatory substances and their actions on receptor trafficking. Finally, we provide an example of how such local metabolic and state changes provide mechanistic explanations for clinical conditions, such as insomnia.
Collapse
Affiliation(s)
- James M Krueger
- Sleep and Performance Research Center, Washington State University, Pullman, WA, USA.
| | | | | | | |
Collapse
|
33
|
Cirelli C. Sleep and synaptic changes. Curr Opin Neurobiol 2013; 23:841-6. [PMID: 23623392 DOI: 10.1016/j.conb.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/21/2013] [Accepted: 04/01/2013] [Indexed: 12/12/2022]
Abstract
Several recent studies, using molecular, electrophysiological, or structural approaches, have investigated how synapses are affected by sleep, spontaneous wake, chronic sleep restriction, and acute sleep deprivation. Overall, the results have found that even a few hours of sleep or wake can modify the molecular composition of excitatory synapses, change their efficacy, and make synapses grow or shrink. Moreover, partial and total loss of sleep affect the ability of synapses to undergo long-term potentiation, an effect that may underlie some of the negative consequences of sleep deprivation on memory and other cognitive functions.
Collapse
Affiliation(s)
- Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| |
Collapse
|
34
|
de Souza L, Smaili SS, Ureshino RP, Sinigaglia-Coimbra R, Andersen ML, Lopes GS, Tufik S. Effect of chronic sleep restriction and aging on calcium signaling and apoptosis in the hippocampus of young and aged animals. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:23-30. [PMID: 22343009 DOI: 10.1016/j.pnpbp.2012.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 11/19/2022]
Abstract
Aging leads to progressive deterioration of physiological function and diminished responses to environmental stress. Organic and functional alterations are frequently observed in elderly subjects. Although chronic sleep loss is observed during senescence, little is known about the impact of insufficient sleep on cellular function in aging neurons. Disruption of neuronal calcium (Ca²⁺) signaling is related to impaired neuronal function and cell death. It has been hypothesized that sleep deprivation may compromise neuronal stability and induce cell death in young neurons; however, it is necessary to evaluate the impact of aging on this process. Therefore, the aim of this study was to evaluate the effects of chronic sleep restriction (CSR) on Ca²⁺ signaling and cell death in the hippocampus of young and aged animals. We found that glutamate and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) induced a greater elevation in cytosolic Ca²⁺ ([Ca²⁺](c)) in hippocampal slices from aged rats subjected to CSR compared to age-matched controls. Interestingly, aged-matched controls showed a reduced Ca²⁺ response to glutamate and FCCP, relative to both CSR and control young animals. Apoptotic nuclei were observed in aged rats from both treatment groups; however, the profile of apoptotic nuclei in aged CSR rats was highly variable. Bax and Bcl-2 protein expression did not change with aging in the CSR groups. Our study indicates that aging promotes changes in Ca²⁺ signaling, which may also be affected by CSR. These age-dependent changes in Ca²⁺ signaling may increase cellular vulnerability during CSR and contribute to Ca²⁺ signaling dysregulation, which may ultimately induce cell death.
Collapse
Affiliation(s)
- Luciane de Souza
- Departamento de Psicobiologia, Universidade Federal de São Paulo/UNIFESP, Rua Napoleão de Barros 925, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|