1
|
Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel) 2024; 13:709. [PMID: 38929148 PMCID: PMC11200831 DOI: 10.3390/antiox13060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Psychosis, defined as a set of symptoms that results in a distorted sense of reality, is observed in several psychiatric disorders in addition to schizophrenia. This paper reviews the literature relevant to the underlying neurobiology of psychosis. The dopamine hypothesis has been a major influence in the study of the neurochemistry of psychosis and in development of antipsychotic drugs. However, it became clear early on that other factors must be involved in the dysfunction involved in psychosis. In the current review, it is reported how several of these factors, namely dysregulation of neurotransmitters [dopamine, serotonin, glutamate, and γ-aminobutyric acid (GABA)], neuroinflammation, glia (microglia, astrocytes, and oligodendrocytes), the hypothalamic-pituitary-adrenal axis, the gut microbiome, oxidative stress, and mitochondrial dysfunction contribute to psychosis and interact with one another. Research on psychosis has increased knowledge of the complexity of psychotic disorders. Potential new pharmacotherapies, including combinations of drugs (with pre- and probiotics in some cases) affecting several of the factors mentioned above, have been suggested. Similarly, several putative biomarkers, particularly those related to the immune system, have been proposed. Future research on both pharmacotherapy and biomarkers will require better-designed studies conducted on an all stages of psychotic disorders and must consider confounders such as sex differences and comorbidity.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (S.M.D.)
| |
Collapse
|
2
|
Okimura T, Maeda T, Mimura M, Yamashita Y. Aberrant sense of agency induced by delayed prediction signals in schizophrenia: a computational modeling study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:72. [PMID: 37845242 PMCID: PMC10579420 DOI: 10.1038/s41537-023-00403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Aberrant sense of agency (SoA, a feeling of control over one's own actions and their subsequent events) has been considered key to understanding the pathology of schizophrenia. Behavioral studies have demonstrated that a bidirectional (i.e., excessive and diminished) SoA is observed in schizophrenia. Several neurophysiological and theoretical studies have suggested that aberrancy may be due to temporal delays (TDs) in sensory-motor prediction signals. Here, we examined this hypothesis via computational modeling using a recurrent neural network (RNN) expressing the sensory-motor prediction process. The proposed model successfully reproduced the behavioral features of SoA in healthy controls. In addition, simulation of delayed prediction signals reproduced the bidirectional schizophrenia-pattern SoA, whereas three control experiments (random noise addition, TDs in outputs, and TDs in inputs) demonstrated no schizophrenia-pattern SoA. These results support the TD hypothesis and provide a mechanistic understanding of the pathology underlying aberrant SoA in schizophrenia.
Collapse
Affiliation(s)
- Tsukasa Okimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Takaki Maeda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Department of Psychiatry, Sakuragaoka Memorial Hospital, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Center for Preventive Medicine, Keio University, Tokyo, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
3
|
Pirone A, Ciregia F, Lazzarini G, Miragliotta V, Ronci M, Zuccarini M, Zallocco L, Beghelli D, Mazzoni MR, Lucacchini A, Giusti L. Proteomic Profiling Reveals Specific Molecular Hallmarks of the Pig Claustrum. Mol Neurobiol 2023; 60:4336-4358. [PMID: 37095366 PMCID: PMC10293365 DOI: 10.1007/s12035-023-03347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
The present study, employing a comparative proteomic approach, analyzes the protein profile of pig claustrum (CLA), putamen (PU), and insula (IN). Pig brain is an interesting model whose key translational features are its similarities with cortical and subcortical structures of human brain. A greater difference in protein spot expression was observed in CLA vs PU as compared to CLA vs IN. The deregulated proteins identified in CLA resulted to be deeply implicated in neurodegenerative (i.e., sirtuin 2, protein disulfide-isomerase 3, transketolase) and psychiatric (i.e., copine 3 and myelin basic protein) disorders in humans. Metascape analysis of differentially expressed proteins in CLA vs PU comparison suggested activation of the α-synuclein pathway and L1 recycling pathway corroborating the involvement of these anatomical structures in neurodegenerative diseases. The expression of calcium/calmodulin-dependent protein kinase and dihydropyrimidinase like 2, which are linked to these pathways, was validated using western blot analysis. Moreover, the protein data set of CLA vs PU comparison was analyzed by Ingenuity Pathways Analysis to obtain a prediction of most significant canonical pathways, upstream regulators, human diseases, and biological functions. Interestingly, inhibition of presenilin 1 (PSEN1) upstream regulator and activation of endocannabinoid neuronal synapse pathway were observed. In conclusion, this is the first study presenting an extensive proteomic analysis of pig CLA in comparison with adjacent areas, IN and PUT. These results reinforce the common origin of CLA and IN and suggest an interesting involvement of CLA in endocannabinoid circuitry, neurodegenerative, and psychiatric disorders in humans.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
- Interuniversitary Consortium for Engineering and Medicine, COIIM, Campobasso, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
4
|
Akosman MS, Türkmen R, Demirel HH. Investigation of the protective effect of resveratrol in an MK-801-induced mouse model of schizophrenia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65872-65884. [PMID: 34322799 DOI: 10.1007/s11356-021-15664-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 05/20/2023]
Abstract
Increasing evidence supports the view that oxidative stress and brain demyelination play an important role in the pathogenesis of schizophrenia. Resveratrol is a powerful antioxidant with neuroprotective effects. This study aimed to assess the effect of resveratrol on schizophrenia-like behaviors and possible brain demyelination induced by MK-801, an N-methyl-D-aspartate glutamate receptor antagonist, and the underlying neuroprotective mechanism. Resveratrol (40 mg/kg/day/, intraperitoneal) was administered to mice for 14 days. MK-801 (1 mg/kg/day, intraperitoneal) was injected into the mice 4 h after the resveratrol administration for 14 days. The open-field and elevated-plus maze tests were performed to detect behavior changes on the 15th day. Following the behavioral tests, the expression of the myelin basic protein (MBP) was measured with the real-time PCR (RT-PCR) method, while total oxidant capacity (TOS) and total antioxidant capacity (TAS), which are the biomarkers of oxidative damage, were measured with the ELISA method. Hematoxylin-eosin staining was also used to identify stereological and pathological changes in the brain. According to the results obtained, this study showed for the first time that resveratrol prevented glial cell infiltration induced in the brain by MK-801 and shrinkage of nerve cell nuclei in the hippocampus and corpus callosum. However, the resveratrol administrations did not correct behavioral disorders and demyelination of schizophrenia. Although resveratrol partially prevented oxidative damage in the brain in the mice that were injected with MK-801, it was determined that this effect was not statistically significant. These results showed that resveratrol administration partially protects tissues against MK-801-induced neurodegeneration, and resveratrol may be used in combination with different antioxidants or at different doses in future studies.
Collapse
Affiliation(s)
- Murat Sırrı Akosman
- Department of Anatomy, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyon, Turkey
| | - Ruhi Türkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyon, Turkey.
| | | |
Collapse
|
5
|
Toriumi K, Berto S, Koike S, Usui N, Dan T, Suzuki K, Miyashita M, Horiuchi Y, Yoshikawa A, Asakura M, Nagahama K, Lin HC, Sugaya Y, Watanabe T, Kano M, Ogasawara Y, Miyata T, Itokawa M, Konopka G, Arai M. Combined glyoxalase 1 dysfunction and vitamin B6 deficiency in a schizophrenia model system causes mitochondrial dysfunction in the prefrontal cortex. Redox Biol 2021; 45:102057. [PMID: 34198071 PMCID: PMC8253914 DOI: 10.1016/j.redox.2021.102057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MG) is a reactive and cytotoxic α-dicarbonyl byproduct of glycolysis. Our bodies have several bio-defense systems to detoxify MG, including an enzymatic system by glyoxalase (GLO) 1 and GLO2. We identified a subtype of schizophrenia patients with novel mutations in the GLO1 gene that results in reductions of enzymatic activity. Moreover, we found that vitamin B6 (VB6) levels in peripheral blood of the schizophrenia patients with GLO1 dysfunction are significantly lower than that of healthy controls. However, the effects of GLO1 dysfunction and VB6 deficiency on the pathophysiology of schizophrenia remains poorly understood. Here, we generated a novel mouse model for this subgroup of schizophrenia patients by feeding Glo1 knockout mice VB6-deficent diets (KO/VB6(−)) and evaluated the combined effects of GLO1 dysfunction and VB6 deficiency on brain function. KO/VB6(−) mice accumulated homocysteine in plasma and MG in the prefrontal cortex (PFC), hippocampus, and striatum, and displayed behavioral deficits, such as impairments of social interaction and cognitive memory and a sensorimotor deficit in the prepulse inhibition test. Furthermore, we found aberrant gene expression related to mitochondria function in the PFC of the KO/VB6(−) mice by RNA-sequencing and weighted gene co-expression network analysis (WGCNA). Finally, we demonstrated abnormal mitochondrial respiratory function and subsequently enhanced oxidative stress in the PFC of KO/VB6(−) mice in the PFC. These findings suggest that the combination of GLO1 dysfunction and VB6 deficiency may cause the observed behavioral deficits via mitochondrial dysfunction and oxidative stress in the PFC. A combination of Glo1 KO and VB6 deficiency induces MG accumulation in the brain. Glo1 KO/VB6(−) mice exhibit schizophrenia-like behavioral deficits. Gene expression related to mitochondria is impaired in the PFC of the Glo1 KO/VB6(−). Mitochondria in the PFC of the Glo1 KO/VB6(−) mice show respiratory dysfunction. Oxidative stress is enhanced in the PFC of the Glo1 KO/VB6(−).
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan
| | - Takashi Dan
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Akane Yoshikawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Mai Asakura
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hsiao-Chun Lin
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
6
|
Fluoxetine attenuates prepulse inhibition deficit induced by neonatal administration of MK-801 in mice. Neuroreport 2020; 31:1128-1133. [PMID: 32956214 PMCID: PMC7531495 DOI: 10.1097/wnr.0000000000001524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Increasing evidence supports schizophrenia may be a neurodevelopmental and neurodegenerative disorder. Fluoxetine, a selective serotonin reuptake inhibitor, has been reported to have neuroprotective effects and be effective in treating neurodegenerative disorders including schizophrenia. The objective of the present study was to evaluate the effect and underlying neuroprotective mechanism of fluoxetine on the sensorimotor gating deficit, a schizophrenia-like behavior in a neurodevelopmental schizophrenic mouse model induced by MK-801, an N-methyl-d-aspartate glutamate receptor antagonist. On postnatal day 7, mouse pups were treated with a total seven subcutaneous daily injections of MK-801 (1 mg/kg/day), followed by intraperitoneal injection of fluoxetine (5 or 10 mg/kg/day) starting on postnatal day 14 in the MK-801-injected mice for 4 weeks. The sensorimotor gating deficit in mice was measured by prepulse inhibition (PPI) behavioral test on postnatal day 43. After the behavioral test, the protein expression of brain-derived neurotrophic factor (BDNF) was measured by western blot or ELISA in the frontal cortex of mice. Our results showed fluoxetine attenuated PPI deficit and the decrease of cerebral BDNF expression in the MK-801-injected mice. These results suggest that fluoxetine can be used to treat sensorimotor gating deficit in a neurodevelopmental mouse model of schizophrenia, and the attenuating effect of fluoxetine on sensorimotor gating deficit may be related to fluoxetine’s neuroprotective effect targeting on the modulation of cerebral BDNF.
Collapse
|
7
|
He J, Zu Q, Wen C, Liu Q, You P, Li X, Wang W. Quetiapine Attenuates Schizophrenia-Like Behaviors and Demyelination in a MK-801-Induced Mouse Model of Schizophrenia. Front Psychiatry 2020; 11:843. [PMID: 32973585 PMCID: PMC7466651 DOI: 10.3389/fpsyt.2020.00843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/03/2020] [Indexed: 11/13/2022] Open
Abstract
Brain demyelination is possibly one of the main pathological factors involved in schizophrenia, and targeting on myelination may be a useful strategy for schizophrenia treatment. Quetiapine, a widely used atypical antipsychotic drug for schizophrenia treatment, has been reported to have neuroprotective effects on cerebral myelination in a demyelination animal model. The objective of the present study was to evaluate the effect and underlying neuroprotective mechanism of quetiapine on the schizophrenia-like behaviors and possible cerebral demyelination induced by MK-801, an N-methyl-D-aspartate glutamate receptor antagonist. Mice were treated with chronic quetiapine (10 mg/kg/day, intraperitoneally) for 28 days. From day 22 to 28, 1 h after the administration of quetiapine, the mice were administered MK-801 (2 mg/kg/day, subcutaneously). The positive symptom of schizophrenia was measured in a locomotor activity test on day 29, the memory was evaluated by a Y-maze test on day 30, and the sensorimotor gating deficit in mice was measured by prepulse inhibition test on day 31. After the behavioral tests, the protein expression of myelin basic protein (MBP) was measured by Western Blot, and the protein expression of brain-derived neurotrophic factor (BDNF) was measured by ELISA in the frontal cortex of mice. Our results showed quetiapine attenuated schizophrenia-like behaviors including hyperactivity, memory impairment, and sensorimotor gating deficit in the MK-801 mice. In the same time, quetiapine attenuated demyelination, concurrent with attenuated BDNF decrease in the brain of MK-801-injected mice. These results suggest that the beneficial effects of quetiapine on schizophrenia might be partly related to its neuroprotective effect on brain myelin basic protein and its upregulating neuroprotective proteins such as BDNF, and indicate that modulation of cerebral demyelination could be a novel treatment target of schizophrenia.
Collapse
Affiliation(s)
- Jue He
- Department of Mental Health Research, Xiamen Xian Yue Hospital, Xiamen, China.,Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, China.,Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Qian Zu
- Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, China
| | - Chunyan Wen
- Department of Mental Health Research, Xiamen Xian Yue Hospital, Xiamen, China
| | - Qianqian Liu
- Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, China
| | - Pan You
- Department of Mental Health Research, Xiamen Xian Yue Hospital, Xiamen, China
| | - Xinmin Li
- Department of Mental Health Research, Xiamen Xian Yue Hospital, Xiamen, China.,Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Wenqiang Wang
- Department of Mental Health Research, Xiamen Xian Yue Hospital, Xiamen, China
| |
Collapse
|
8
|
Arecoline attenuates memory impairment and demyelination in a cuprizone-induced mouse model of schizophrenia. Neuroreport 2019; 30:134-138. [PMID: 30571667 PMCID: PMC6326265 DOI: 10.1097/wnr.0000000000001172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cerebral demyelination is possibly one of the main pathological factors involved in the development of schizophrenia. Our previous studies have showed that Areca catechu nut extract could ameliorate cognitive decline by facilitating myelination processes in the frontal cortex in a cuprizone (CPZ)-induced mouse model of schizophrenia. The aim of the present study was to evaluate the effects of arecoline, one of the alkaloids in A. catechu nut extract, on memory impairment and cerebral demyelination in CPZ-treated mice. Mice were treated with CPZ (0 or 0.2%) in chow food and arecoline hydrobromide (0, 2.5, or 5 mg/kg/day) in drinking water for 12 weeks before Y-maze behavioral test. After the behavioral test, the mice were sacrificed for the measurement of myelin basic protein in the frontal cortex. We showed that arecoline-attenuated spatial working memory impairment, concurrent with attenuated demyelination related to vehicle-treated CPZ mice for the first time. Arecoline is one of the primary active ingredients in A. catechu nut responsible for attenuating memory impairment and demyelination in CPZ mice, cerebral demyelination may have a role in memory impairment, and modulation of cerebral demyelination could be a useful strategy in schizophrenia treatment.
Collapse
|
9
|
Chronic administration of quetiapine attenuates the phencyclidine-induced recognition memory impairment and hippocampal oxidative stress in rats. Neuroreport 2019; 29:1099-1103. [PMID: 30036204 DOI: 10.1097/wnr.0000000000001078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The underlying mechanism of atypical antipsychotics in treating cognitive impairment in schizophrenia is unclear. The aim of the present study was to evaluate the effects of quetiapine, an atypical antipsychotic drug, on object recognition memory and hippocampal oxidative stress in a phencyclidine (PCP) rat model of schizophrenia. Rats were treated with chronic quetiapine (10 mg/kg/day, intraperitoneally) for 16 days or acute quetiapine (10 mg/kg/day, intraperitoneally) on day 16. On day 16, 1 h after the administration of quetiapine, the rats were administered PCP (50 mg/kg, subcutaneously). After the last object recognition behavioral test on day 18, the rats were killed for the measurement of hippocampal protein expression of nitrotyrosine, a protein marker of oxidative stress. The results showed that chronic quetiapine significantly attenuated object recognition memory impairment and hippocampal oxidative stress in the PCP-injected rats. These suggest that the attenuating effect of chronic quetiapine on hippocampal oxidative stress may be related to quetiapine's beneficial effects on object recognition memory in PCP rats, and further suggest that neuroprotective mechanisms are involved in chronic quetiapine treatment.
Collapse
|
10
|
Perinatal administration of phencyclidine alters expression of Lingo-1 signaling pathway proteins in the prefrontal cortex of juvenile and adult rats. Neuronal Signal 2018; 2:NS20180059. [PMID: 32714588 PMCID: PMC7373234 DOI: 10.1042/ns20180059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022] Open
Abstract
Postnatal administration of phencyclidine (PCP) in rodents causes major brain dysfunction leading to severe disturbances in behavior lasting into adulthood. This model is routinely employed to model psychiatric disorders such as schizophrenia, as it reflects schizophrenia-related brain disturbances including increased apoptosis, and disruptions to myelin and plasticity processes. Leucine-rich repeat and Immunoglobin-like domain-containing protein 1 (Lingo-1) is a potent negative regulator of both axonal myelination and neurite extension. The Nogo receptor (NgR)/tumor necrosis factor (TNF) receptor orphan Y (TROY) and/or p75 neurotrophin receptor (p75) complex, with no lysine (K) (WNK1) and myelin transcription factor 1 (Myt1) are co-receptors or cofactors in Lingo-1 signaling pathways in the brain. We have examined the developmental trajectory of these proteins in a neurodevelopmental model of schizophrenia using PCP to determine if Lingo-1 pathways are altered in the prefrontal cortex throughout different stages of life. Sprague-Dawley rats were injected with PCP (10 mg/kg) or saline on postnatal days (PN)7, 9, and 11 and killed at PN12, 5 or 14 weeks for measurement of Lingo-1 signaling proteins in the prefrontal cortex. Myt1 was decreased by PCP at PN12 (P=0.045), and at 14 weeks PCP increased Lingo-1 (P=0.037), TROY (P=0.017), and WNK1 (P=0.003) expression. This is the first study reporting an alteration in Lingo-1 signaling proteins in the rat prefrontal cortex both directly after PCP treatment in early development and in adulthood. We propose that Lingo-1 pathways may be negatively regulating myelination and neurite outgrowth following the administration of PCP, and that this may have implications for the cortical dysfunction observed in schizophrenia.
Collapse
|
11
|
Palaniyappan L, Das T, Dempster K. The neurobiology of transition to psychosis: clearing the cache. J Psychiatry Neurosci 2017; 42:294-299. [PMID: 28834527 PMCID: PMC5573571 DOI: 10.1503/jpn.170137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The prepsychotic phase of schizophrenia is not only important for indicated prevention strategies, but also crucial for developing mechanistic models of the emergence of frank psychosis (transition). This commentary highlights the work of Dukart and colleagues, published in this issue of the Journal of Psychiatry and Neurosicence, who sought to identify MRI-based anatomic endophenotypes of psychosis in a well-characterized sample of patients with at-risk mental state (ARMS) and first-episode psychosis (FEP). Conceptual and translational challenges in clarifying the neurobiology of transitional prepsychotic states are discussed. A role of intracortical myelin in the neurobiology of transition is proposed. Transition may not be an outcome of "progressive structural deficits"; it may occur due to inadequate compensatory responses in the predisposed. The need to revise our current "deficit-oriented" models of neurobiology of psychosis in the wake of burgeoning evidence indicating a dynamic process of cortical reorganization is emphasized.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Correspondence to: L. Palaniyappan, Prevention & Early Intervention Program for Psychoses (PEPP), A2-636, LHSC-VH, 800 Commissioners Road, London, Ont., Canada N6A 5W9;
| | | | | |
Collapse
|
12
|
Steullet P, Cabungcal JH, Monin A, Dwir D, O'Donnell P, Cuenod M, Do KQ. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub" in schizophrenia pathophysiology? Schizophr Res 2016; 176:41-51. [PMID: 25000913 PMCID: PMC4282982 DOI: 10.1016/j.schres.2014.06.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 12/18/2022]
Abstract
Accumulating evidence points to altered GABAergic parvalbumin-expressing interneurons and impaired myelin/axonal integrity in schizophrenia. Both findings could be due to abnormal neurodevelopmental trajectories, affecting local neuronal networks and long-range synchrony and leading to cognitive deficits. In this review, we present data from animal models demonstrating that redox dysregulation, neuroinflammation and/or NMDAR hypofunction (as observed in patients) impairs the normal development of both parvalbumin interneurons and oligodendrocytes. These observations suggest that a dysregulation of the redox, neuroimmune, and glutamatergic systems due to genetic and early-life environmental risk factors could contribute to the anomalies of parvalbumin interneurons and white matter in schizophrenia, ultimately impacting cognition, social competence, and affective behavior via abnormal function of micro- and macrocircuits. Moreover, we propose that the redox, neuroimmune, and glutamatergic systems form a "central hub" where an imbalance within any of these "hub" systems leads to similar anomalies of parvalbumin interneurons and oligodendrocytes due to the tight and reciprocal interactions that exist among these systems. A combination of vulnerabilities for a dysregulation within more than one of these systems may be particularly deleterious. For these reasons, molecules, such as N-acetylcysteine, that possess antioxidant and anti-inflammatory properties and can also regulate glutamatergic transmission are promising tools for prevention in ultra-high risk patients or for early intervention therapy during the first stages of the disease.
Collapse
Affiliation(s)
- P Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - J H Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - A Monin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - D Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - P O'Donnell
- Neuroscience Research Unit, Pfizer, Inc., 700 Main Street, Cambridge, MA 02139, USA
| | - M Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - K Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland.
| |
Collapse
|
13
|
Poggi G, Boretius S, Möbius W, Moschny N, Baudewig J, Ruhwedel T, Hassouna I, Wieser GL, Werner HB, Goebbels S, Nave KA, Ehrenreich H. Cortical network dysfunction caused by a subtle defect of myelination. Glia 2016; 64:2025-40. [PMID: 27470661 PMCID: PMC5129527 DOI: 10.1002/glia.23039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Subtle white matter abnormalities have emerged as a hallmark of brain alterations in magnetic resonance imaging or upon autopsy of mentally ill subjects. However, it is unknown whether such reduction of white matter and myelin contributes to any disease‐relevant phenotype or simply constitutes an epiphenomenon, possibly even treatment‐related. Here, we have re‐analyzed Mbp heterozygous mice, the unaffected parental strain of shiverer, a classical neurological mutant. Between 2 and 20 months of age, Mbp+/‐ versus Mbp+/+ littermates were deeply phenotyped by combining extensive behavioral/cognitive testing with MRI, 1H‐MR spectroscopy, electron microscopy, and molecular techniques. Surprisingly, Mbp‐dependent myelination was significantly reduced in the prefrontal cortex. We also noticed a mild but progressive hypomyelination of the prefrontal corpus callosum and low‐grade inflammation. While most behavioral functions were preserved, Mbp+/‐ mice exhibited defects of sensorimotor gating, as evidenced by reduced prepulse‐inhibition, and a late‐onset catatonia phenotype. Thus, subtle but primary abnormalities of CNS myelin can be the cause of a persistent cortical network dysfunction including catatonia, features typical of neuropsychiatric conditions. GLIA 2016;64:2025–2040
Collapse
Affiliation(s)
- Giulia Poggi
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen
| | - Susann Boretius
- Department of Radiology and Neuroradiology, Christian-Albrechts-University, Kiel.,Department of Functional Imaging, German Primate Center, Leibniz Institute of Primate Research, Göttingen
| | - Wiebke Möbius
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Nicole Moschny
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen
| | - Jürgen Baudewig
- Department of Radiology and Neuroradiology, Christian-Albrechts-University, Kiel.,Department of Functional Imaging, German Primate Center, Leibniz Institute of Primate Research, Göttingen
| | - Torben Ruhwedel
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Imam Hassouna
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen
| | - Georg L Wieser
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Hauke B Werner
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Sandra Goebbels
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Klaus-Armin Nave
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
14
|
Grayson B, Barnes SA, Markou A, Piercy C, Podda G, Neill JC. Postnatal Phencyclidine (PCP) as a Neurodevelopmental Animal Model of Schizophrenia Pathophysiology and Symptomatology: A Review. Curr Top Behav Neurosci 2016; 29:403-428. [PMID: 26510740 DOI: 10.1007/7854_2015_403] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cognitive dysfunction and negative symptoms of schizophrenia remain an unmet clinical need. Therefore, it is essential that new treatments and approaches are developed to recover the cognitive and social impairments that are seen in patients with schizophrenia. These may only be discovered through the use of carefully validated, aetiologically relevant and translational animal models. With recent renewed interest in the neurodevelopmental hypothesis of schizophrenia, postnatal administration of N-methyl-D-aspartate receptor (NMDAR) antagonists such as phencyclidine (PCP) has been proposed as a model that can mimic aspects of schizophrenia pathophysiology. The purpose of the current review is to examine the validity of this model and compare it with the adult subchronic PCP model. We review the ability of postnatal PCP administration to produce behaviours (specifically cognitive deficits) and neuropathology of relevance to schizophrenia and their subsequent reversal by pharmacological treatments. We review studies investigating effects of postnatal PCP on cognitive domains in schizophrenia in rats. Morris water maze and delayed spontaneous alternation tasks have been used for working memory, attentional set-shifting for executive function, social novelty discrimination for selective attention and prepulse inhibition of acoustic startle for sensorimotor gating. In addition, we review studies on locomotor activity and neuropathology. We also include two studies using dual hit models incorporating postnatal PCP and two studies on social behaviour deficits following postnatal PCP. Overall, the evidence we provide supports the use of postnatal PCP to model cognitive and neuropathological disturbances of relevance to schizophrenia. To date, there is a lack of evidence to support a significant advantage of postnatal PCP over the adult subchronic PCP model and full advantage has not been taken of its neurodevelopmental component. When thoroughly characterised, it is likely that it will provide a useful neurodevelopmental model to complement other models such as maternal immune activation, particularly when combined with other manipulations to produce dual or triple hit models. However, the developmental trajectory of behavioural and neuropathological changes induced by postnatal PCP and their relevance to schizophrenia must be carefully mapped out. Overall, we support further development of dual (or triple) hit models incorporating genetic, neurodevelopmental and appropriate environmental elements in the search for more aetiologically valid animal models of schizophrenia and neurodevelopmental disorders (NDDs).
Collapse
Affiliation(s)
- B Grayson
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - S A Barnes
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0603, USA
| | - A Markou
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0603, USA
| | - C Piercy
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - G Podda
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - J C Neill
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
15
|
Andrews JL, Newell KA, Matosin N, Huang XF, Fernandez-Enright F. Alterations of p75 neurotrophin receptor and Myelin transcription factor 1 in the hippocampus of perinatal phencyclidine treated rats. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:91-7. [PMID: 26071990 DOI: 10.1016/j.pnpbp.2015.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 11/28/2022]
Abstract
Postnatal administration of phencyclidine (PCP) in rodents causes major disturbances to neurological processes resulting in severe modifications to normal behavioral traits into adulthood. It is routinely used to model psychiatric disorders such as schizophrenia, producing many of the dysfunctional processes in the brain that are present in this devastating disorder, including elevated levels of apoptosis during neurodevelopment and disruptions to myelin and plasticity processes. Lingo-1 (or Leucine-rich repeat and immunoglobulin domain-containing protein) is responsible for negatively regulating neurite outgrowth and the myelination of axons. Recent findings using a postmortem human brain cohort showed that Lingo-1 signaling partners in the Nogo receptor (NgR)/p75/TNF receptor orphan Y (TROY) signaling complex, and downstream signaling partners With No Lysine (K) (WNK1) and Myelin transcription factor 1 (Myt1), play a significant part in schizophrenia pathophysiology. Here we have examined the implication of Lingo-1 and its signaling partners in a neurodevelopmental model of schizophrenia using PCP to determine if these pathways are altered in the hippocampus throughout different stages of neurodevelopment. Male Sprague-Dawley rats were injected subcutaneously with PCP (10mg/kg) or saline solution on postnatal days (PN) 7, 9, and 11. Rats (n=6/group) were sacrificed at PN12, 5weeks, or 14weeks. Relative expression levels of Lingo-1 signaling proteins were examined in the hippocampus of the treated rats. p75 and Myt1 were decreased (0.001≤p≤0.011) in the PCP treated rats at PN12. There were no significant changes in any of the tested proteins at 5weeks (p>0.05). At 14weeks, p75, TROY, and Myt1 were increased in the PCP treated rats (0.014≤p≤0.022). This is the first report of an alteration in Lingo-1 signaling proteins in the rat hippocampus, both directly after PCP treatment in early development and in adulthood. Based on our results, we propose that components of the Lingo-1 signaling pathways may be involved in the acute neurotoxicity induced by perinatal administration of PCP in rats early in development and suggest that this may have implications for the hippocampal deficits seen in schizophrenia.
Collapse
Affiliation(s)
- Jessica L Andrews
- Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522 Australia; Schizophrenia Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010 Australia.
| | - Kelly A Newell
- Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522 Australia; Schizophrenia Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010 Australia.
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522 Australia; Schizophrenia Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010 Australia.
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522 Australia; Schizophrenia Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010 Australia.
| | - Francesca Fernandez-Enright
- Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522 Australia; Schizophrenia Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010 Australia; School of Psychology, Faculty of Social Sciences, University of Wollongong, Wollongong, New South Wales 2522 Australia.
| |
Collapse
|
16
|
Xiu Y, Kong XR, Zhang L, Qiu X, Gao Y, Huang CX, Chao FL, Wang SR, Tang Y. The myelinated fiber loss in the corpus callosum of mouse model of schizophrenia induced by MK-801. J Psychiatr Res 2015; 63:132-40. [PMID: 25748751 DOI: 10.1016/j.jpsychires.2015.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/21/2015] [Accepted: 02/06/2015] [Indexed: 10/23/2022]
Abstract
Previous magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) investigations have shown that the white matter volume and fractional anisotropy (FA) were decreased in schizophrenia (SZ), which indicated impaired white matter integrity in SZ. However, the mechanism underlying these abnormalities has been less studied. The current study was designed to investigate the possible reasons for white matter abnormalities in the mouse model of SZ induced by NMDA receptor antagonist using the unbiased stereological methods and transmission electron microscope technique. We found that the mice treated with MK-801 demonstrated a series of schizophrenia-like behaviors including hyperlocomotor activity and more anxiety. The myelinated fibers in the corpus callosum (CC) of the mice treated with MK-801 were impaired with splitting lamellae of myelin sheaths and segmental demyelination. The CC volume and the total length of the myelinated fibers in the CC of the mice treated with MK-801 were significantly decreased by 9.4% and 16.8% when compared to those of the mice treated with saline. We further found that the loss of the myelinated fibers length was mainly due to the marked loss of the myelinated nerve fibers with the diameter of 0.4-0.5 μm. These results indicated that the splitting myelin sheaths, demyelination and the loss of myelinated fibers with small diameter might provide one of the structural bases for impaired white matter integrity of CC in the mouse model of SZ. These results might also provide a baseline for further studies searching for the treatment of SZ through targeting white matter.
Collapse
Affiliation(s)
- Yun Xiu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiang-ru Kong
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuan Qiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-xia Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - San-rong Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
17
|
Prefrontal dysfunction and a monkey model of schizophrenia. Neurosci Bull 2015; 31:235-41. [PMID: 25822218 DOI: 10.1007/s12264-014-1506-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/23/2014] [Indexed: 12/28/2022] Open
Abstract
The prefrontal cortex is implicated in cognitive functioning and schizophrenia. Prefrontal dysfunction is closely associated with the symptoms of schizophrenia. In addition to the features typical of schizophrenia, patients also present with aspects of cognitive disorders. Based on these relationships, a monkey model mimicking the cognitive symptoms of schizophrenia has been made using treatment with the non-specific competitive N-methyl-D-aspartate receptor antagonist, phencyclidine. The symptoms are ameliorated by atypical antipsychotic drugs such as clozapine. The beneficial effects of clozapine on behavioral impairment might be a specific indicator of schizophrenia-related cognitive impairment.
Collapse
|
18
|
Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity are dependent on TNFR1 signaling. Brain Behav Immun 2014; 41:65-81. [PMID: 24938671 PMCID: PMC4167189 DOI: 10.1016/j.bbi.2014.04.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Patients suffering from neuropathic pain have a higher incidence of mood disorders such as depression. Increased expression of tumor necrosis factor (TNF) has been reported in neuropathic pain and depressive-like conditions and most of the pro-inflammatory effects of TNF are mediated by the TNF receptor 1 (TNFR1). Here we sought to investigate: (1) the occurrence of depressive-like behavior in chronic neuropathic pain and the associated forms of hippocampal plasticity, and (2) the involvement of TNFR1-mediated TNF signaling as a possible regulator of such events. Neuropathic pain was induced by chronic constriction injury of the sciatic nerve in wild-type and TNFR1(-/-) mice. Anhedonia, weight loss and physical state were measured as symptoms of depression. Hippocampal neurogenesis, neuroplasticity, myelin remodeling and TNF/TNFRs expression were analyzed by immunohistochemical analysis and western blot assay. We found that neuropathic pain resulted in the development of depressive symptoms in a time dependent manner and was associated with profound hippocampal alterations such as impaired neurogenesis, reduced expression of neuroplasticity markers and myelin proteins. The onset of depressive-like behavior also coincided with increased hippocampal levels of TNF, and decreased expression of TNF receptor 2 (TNFR2), which were all fully restored after mice spontaneously recovered from pain. Notably, TNFR1(-/-) mice did not develop depressive-like symptoms after injury, nor were there changes in hippocampal neurogenesis and plasticity. Our data show that neuropathic pain induces a cluster of depressive-like symptoms and profound hippocampal plasticity that are dependent on TNF signaling through TNFR1.
Collapse
|
19
|
Zhu S, Wang H, Shi R, Zhang R, Wang J, Kong L, Sun Y, He J, Kong J, Wang JF, Li XM. Chronic phencyclidine induces inflammatory responses and activates GSK3β in mice. Neurochem Res 2014; 39:2385-93. [PMID: 25270429 DOI: 10.1007/s11064-014-1441-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 11/26/2022]
Abstract
Use of phencyclidine (PCP) in rodents can mimic some aspects of schizophrenia. However, the underlying mechanism is still unclear. Growing evidence indicates that neuroinflammation plays a significant role in the pathophysiology of schizophrenia. In this study, we focused on inflammatory responses as target of PCP for inducing schizophrenia-like symptoms. 3-month-old C57BL/6J mice received daily injections of PCP (20 mg/kg, i.p.) or saline for one week. PCP-injected mice produced schizophrenia-like behaviours including impaired spatial short-term memory assessed by the Y-maze task and sensorimotor gating deficits in a prepulse inhibition task. Simultaneously, chronic PCP administration induced astrocyte and microglial activation in both the cortex and hippocampus. Additionally, the proinflammatory cytokine interleukin-1β was significantly up-regulated in PCP administrated mice. Furthermore, PCP treatment decreased ratio of the phospho-Ser9 epitope of glycogen synthase kinase-3β (GSK3β) over total GSK3β, which is indicative of increased GSK3β activity. These data demonstrate that chronic PCP in mouse produces inflammatory responses and GSK3β activation.
Collapse
Affiliation(s)
- Shenghua Zhu
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3E 0T6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gaskin PLR, Alexander SPH, Fone KCF. Neonatal phencyclidine administration and post-weaning social isolation as a dual-hit model of 'schizophrenia-like' behaviour in the rat. Psychopharmacology (Berl) 2014; 231:2533-45. [PMID: 24402141 DOI: 10.1007/s00213-013-3424-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023]
Abstract
RATIONALE Schizophrenia is a debilitating disorder comprising positive, negative and cognitive deficits with a poorly defined neurobiological aetiology; therefore, animal models with greater translational reliability are essential to develop improved therapies. OBJECTIVES This study combines two developmental challenges in rats, neonatal phencyclidine (PCP) injection and subsequent rearing in social isolation from weaning, to attempt to produce more robust behavioural deficits with greater translational relevance to schizophrenia than either challenge alone. METHODS Forty-two male Lister-hooded rat pups received the N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP, 10 mg/kg, s.c.), or vehicle on post-natal day (PND) 7, 9 and 11 and were weaned on PND 23 into group housing (saline-treated n = 11 or PCP-treated n = 10) or isolation (saline n = 10 or PCP n = 11). Six weeks post-weaning, novelty- and PCP-induced (3.2 mg/kg) locomotor activity, novel object discrimination, prepulse inhibition of acoustic startle and contextual memory in a conditioned emotion response (CER) were recorded. RESULTS Isolation rearing alone significantly elevated baseline locomotor activity and induced visual recognition memory impairment in novel object discrimination. Neonatal PCP treatment did not induce locomotor sensitisation to a subsequent acute PCP injection, but it impaired prepulse inhibition when combined with isolation rearing. CER freezing behaviour was significantly reduced by isolation rearing but an even greater effect occurred when combined with neonatal PCP treatment. CONCLUSIONS Neonatal PCP and isolation rearing both produce behavioural deficits in adult rats, but combined treatment caused a wider range of more severe cognitive impairments, providing a more comprehensive preclinical model to determine the neurobiological aetiology of schizophrenia than either treatment alone.
Collapse
Affiliation(s)
- Philip L R Gaskin
- School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
21
|
Xiu Y, Kong XR, Zhang L, Qiu X, Chao FL, Peng C, Gao Y, Huang CX, Wang SR, Tang Y. White matter injuries induced by MK-801 in a mouse model of schizophrenia based on NMDA antagonism. Anat Rec (Hoboken) 2014; 297:1498-507. [PMID: 24788877 DOI: 10.1002/ar.22942] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
The etiology of schizophrenia (SZ) is complex and largely unknown. Neuroimaging and postmortem studies have suggested white matter disturbances in SZ. In the present study, we tested the white matter deficits hypothesis of SZ using a mouse model of SZ induced by NMDA receptor antagonist MK-801. We found that mice with repeated chronic MK-801 administration showed increased locomotor activity in the open field test, less exploration of a novel environment in the hole-board test, and increased anxiety in the elevated plus maze but no impairments were observed in coordination or motor function on accelerating rota-rod. The total white matter volume and corpus callosum volume in mice treated with MK-801 were significantly decreased compared to control mice treated with saline. Myelin basic protein and 2', 3'-cyclic nucleotide 3'-phosphodiesterase were also significantly decreased in the mouse model of SZ. Furthermore, we observed degenerative changes of myelin sheaths in the mouse model of SZ. These results provide further evidence of white matter deficits in SZ and indicate that the animal model of SZ induced by MK-801 is a useful model to investigate mechanisms underlying white matter abnormalities in SZ.
Collapse
Affiliation(s)
- Yun Xiu
- Institute of Life Science, Chongqing Medical University, Chongqing, People's Republic of China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
SOX10 rs139883 polymorphism is associated with the age of onset in schizophrenia. J Mol Neurosci 2013; 50:333-8. [PMID: 23456610 DOI: 10.1007/s12031-013-9982-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/15/2013] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a common psychiatric disorder with high heritability. The age of onset is an important phenotype of schizophrenia and may be under considerable genetic control. Our previous study showed that a single nucleotide polymorphism (SNP) rs139887 in sex-determining region Y-box 10 (SOX10) gene was associated with the age of onset in schizophrenia. The aim of this study was to evaluate the effect of another SNP rs139883 in the exon 4 of SOX10 on schizophrenia using an early-onset samples in the Han Chinese population. A total of 309 schizophrenic patients with onset before age 18 and 390 healthy controls were recruited for association study. No significant differences of allele or genotype frequencies were identified between the schizophrenic patients and controls. However, the C allele was significantly associated with an earlier age of onset in total patients and male patients (Kaplan-Meier log rank test P = 0.026; Kaplan-Meier log rank test P = 0.047, respectively), but not in females. In conclusion, the SOX10 rs139883 polymorphism influenced the age of onset of schizophrenia in a gender-specific manner and this may represent a vital genetic clue for the etiology of schizophrenia.
Collapse
|