1
|
Barry SM, Huebschman J, Devries DM, McCue LM, Tsvetkov E, Anderson EM, Siemsen BM, Berto S, Scofield MD, Taniguchi M, Penrod RD, Cowan CW. Histone deacetylase 5 in prelimbic prefrontal cortex limits context-associated cocaine seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614125. [PMID: 39345428 PMCID: PMC11429996 DOI: 10.1101/2024.09.21.614125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Repeated cocaine use produces neuroadaptations that support drug craving and relapse in substance use disorders (SUDs). Powerful associations formed with drug-use environments can promote a return to active drug use in SUD patients, but the molecular mechanisms that control the formation of these prepotent drug-context associations remain unclear. Methods In the rat intravenous cocaine self-administration (SA) model, we examined the role and regulation of histone deacetylase 5 (HDAC5) in the prelimbic (PrL) and infralimbic (IL) cortices in context-associated drug seeking. To this end, we employed viral molecular tools, chemogenetics, RNA-sequencing, electrophysiology, and immunohistochemistry. Results In the PrL, reduction of endogenous HDAC5 augmented context-associated, but not cue-or drug prime-reinstated cocaine seeking, whereas overexpression of HDAC5 in PrL, but not IL, reduced context-associated cocaine seeking, but it had no effects on sucrose seeking. In contrast, PrL HDAC5 overexpression following acquisition of cocaine SA had no effects on future cocaine seeking. We found that HDAC5 and cocaine SA altered the expression of numerous PrL genes, including many synapse-associated genes. HDAC5 significantly increased inhibitory synaptic transmission onto PrL deep-layer pyramidal neurons, and it reduced the induction of FOS-positive neurons in the cocaine SA environment. Conclusions Our findings reveal an essential and selective role for PrL HDAC5 to limit associations formed in cocaine, but not sucrose, SA environments, and that it alters the PrL excitatory/inhibitory balance, possibly through epigenetic regulation of synaptic genes. These results further position HDAC5 as a key factor regulating reward-circuit neuroadaptations that underlie common relapse triggers in SUD.
Collapse
|
2
|
Kawa AB, Hashimoto JG, Beutler MM, Guizzetti M, Wolf ME. Changes in nucleus accumbens core translatome accompanying incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613147. [PMID: 39345421 PMCID: PMC11429699 DOI: 10.1101/2024.09.15.613147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In the 'incubation of cocaine craving' model of relapse, rats exhibit progressive intensification (incubation) of cue-induced craving over several weeks of forced abstinence from cocaine self-administration. The expression of incubated craving depends on plasticity of excitatory synaptic transmission in nucleus accumbens core (NAcC) medium spiny neurons (MSN). Previously, we found that the maintenance of this plasticity and the expression of incubation depends on ongoing protein translation, and the regulation of translation is altered after incubation of cocaine craving. Here we used male and female rats that express Cre recombinase in either dopamine D1 receptor- or adenosine 2a (A2a) receptor-expressing MSN to express a GFP-tagged ribosomal protein in a cell-type specific manner, enabling us to use Translating Ribosome Affinity Purification (TRAP) to isolate actively translating mRNAs from both MSN subtypes for analysis by RNA-seq. We compared rats that self-administered saline or cocaine. Saline rats were assessed on abstinence day (AD) 1, while cocaine rats were assessed on AD1 or AD40-50. For both D1-MSN and A2a-MSN, there were few differentially translated genes between saline and cocaine AD1 groups. In contrast, pronounced differences in the translatome were observed between cocaine rats on AD1 and AD40-50, and this was far more robust in D1-MSN. Notably, all comparisons revealed sex differences in translating mRNAs. Sequencing results were validated by qRT-PCR for several genes of interest. This study, the first to combine TRAP-seq, transgenic rats, and a cocaine self-administration paradigm, identifies translating mRNAs linked to incubation of cocaine craving in D1-MSN and A2a-MSN of the NAcC.
Collapse
Affiliation(s)
- Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- VA Portland Health Care System, Portland, OR 97239
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- VA Portland Health Care System, Portland, OR 97239
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
3
|
Hughes BW, Huebschman JL, Tsvetkov E, Siemsen BM, Snyder KK, Akiki RM, Wood DJ, Penrod RD, Scofield MD, Berto S, Taniguchi M, Cowan CW. NPAS4 supports cocaine-conditioned cues in rodents by controlling the cell type-specific activation balance in the nucleus accumbens. Nat Commun 2024; 15:5971. [PMID: 39117647 PMCID: PMC11310321 DOI: 10.1038/s41467-024-50099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Powerful associations that link drugs of abuse with cues in the drug-paired environment often serve as prepotent relapse triggers. Drug-associated contexts and cues activate ensembles of nucleus accumbens (NAc) neurons, including D1-class medium spiny neurons (MSNs) that typically promote, and D2-class MSNs that typically oppose, drug seeking. We found that in mice, cocaine conditioning upregulated transiently the activity-regulated transcription factor, Neuronal PAS Domain Protein 4 (NPAS4), in a small subset of NAc neurons. The NPAS4+ NAc ensemble was required for cocaine conditioned place preference. We also observed that NPAS4 functions within NAc D2-, but not D1-, MSNs to support cocaine-context associations and cue-induced cocaine, but not sucrose, seeking. Together, our data show that the NPAS4+ ensemble of NAc neurons is essential for cocaine-context associations in mice, and that NPAS4 itself functions in NAc D2-MSNs to support cocaine-context associations by suppressing drug-induced counteradaptations that oppose relapse-related behaviour.
Collapse
Affiliation(s)
- Brandon W Hughes
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jessica L Huebschman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, SC, USA
| | - Kirsten K Snyder
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Rose Marie Akiki
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel J Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel D Penrod
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, SC, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
4
|
Thibeault KC, Leonard MZ, Kondev V, Emerson SD, Bethi R, Lopez AJ, Sens JP, Nabit BP, Elam HB, Winder DG, Patel S, Kiraly DD, Grueter BA, Calipari ES. A Cocaine-Activated Ensemble Exerts Increased Control Over Behavior While Decreasing in Size. Biol Psychiatry 2024:S0006-3223(24)01388-X. [PMID: 38901723 DOI: 10.1016/j.biopsych.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Substance use disorder is characterized by long-lasting changes in reward-related brain regions, such as the nucleus accumbens. Previous work has shown that cocaine exposure induces plasticity in broad, genetically defined cell types in the nucleus accumbens; however, in response to a stimulus, only a small percentage of neurons are transcriptionally active-termed an ensemble. Here, we identify an Arc-expressing neuronal ensemble that has a unique trajectory of recruitment and causally controls drug self-administration after repeated, but not acute, cocaine exposure. METHODS Using Arc-CreERT2 transgenic mice, we expressed transgenes in Arc+ ensembles activated by cocaine exposure (either acute [1 × 10 mg/kg intraperitoneally] or repeated [10 × 10 mg/kg intraperitoneally]). Using genetic, optical, and physiological recording and manipulation strategies, we assessed the contribution of these ensembles to behaviors associated with substance use disorder. RESULTS Repeated cocaine exposure reduced the size of the ensemble while simultaneously increasing its control over behavior. Neurons within the repeated cocaine ensemble were hyperexcitable, and their optogenetic excitation was sufficient for reinforcement. Finally, lesioning the repeated cocaine, but not the acute cocaine, ensemble blunted cocaine self-administration. Thus, repeated cocaine exposure reduced the size of the ensemble while simultaneously increasing its contributions to drug reinforcement. CONCLUSIONS We showed that repeated, but not acute, cocaine exposure induced a physiologically distinct ensemble characterized by the expression of the immediate early gene Arc, which was uniquely capable of modulating reinforcement behavior.
Collapse
Affiliation(s)
- Kimberly C Thibeault
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Michael Z Leonard
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Soren D Emerson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Rishik Bethi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Alberto J Lopez
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jonathon P Sens
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brett P Nabit
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Hannah B Elam
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt JF Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sachin Patel
- Department of Psychiatry, Northwestern University, Chicago, Illinois
| | - Drew D Kiraly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt JF Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
5
|
Mak A, Abramian A, Driessens SLW, Boers-Escuder C, van der Loo RJ, Smit AB, van den Oever MC, Verheijen MHG. Activation of G s Signaling in Cortical Astrocytes Does Not Influence Formation of a Persistent Contextual Memory Engram. eNeuro 2024; 11:ENEURO.0056-24.2024. [PMID: 38902023 PMCID: PMC11209656 DOI: 10.1523/eneuro.0056-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 06/22/2024] Open
Abstract
Formation and retrieval of remote contextual memory depends on cortical engram neurons that are defined during learning. Manipulation of astrocytic Gq and Gi associated G-protein coupled receptor (GPCR) signaling has been shown to affect memory processing, but little is known about the role of cortical astrocytic Gs-GPCR signaling in remote memory acquisition and the functioning of cortical engram neurons. We assessed this by chemogenetic manipulation of astrocytes in the medial prefrontal cortex (mPFC) of male mice, during either encoding or consolidation of a contextual fear memory, while simultaneously labeling cortical engram neurons. We found that stimulation of astrocytic Gs signaling during memory encoding and consolidation did not alter remote memory expression. In line with this, the size of the mPFC engram population and the recall-induced reactivation of these neurons was unaffected. Hence, our data indicate that activation of Gs-GPCR signaling in cortical astrocytes is not sufficient to alter memory performance and functioning of cortical engram neurons.
Collapse
Affiliation(s)
- Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Adlin Abramian
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Stan L W Driessens
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Cristina Boers-Escuder
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
6
|
Ahmadianmoghadam MA, Nematollahi MH, Mehrabani M, Fatemi I, Rostamzadeh F, Dell'Agli M, Mehrabani M, Abolhassani M, Mehrbani M. Effect of an herbal formulation containing Peganum harmala L. and Fraxinus excelsior L. on oxidative stress, memory impairment and withdrawal syndrome induced by morphine. Int J Neurosci 2024; 134:570-583. [PMID: 36168934 DOI: 10.1080/00207454.2022.2130293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 10/17/2022]
Abstract
Background: Traditional Persian medicine has introduced effective remedies in opioid dependence care. One of the most widely used remedies is an herbal formulation containing Peganum harmala L. and Fraxinus excelsior L. (HF). This study investigated the effects of HF to attenuate the withdrawal signs and rewarding effects in morphine-dependent rats. Methods: Forty-nine male Wistar rats were randomly divided into seven groups. The control and vehicle groups received normal saline and sodium carboxymethyl cellulose, respectively. The morphine group received morphine for one week. The single and daily dose of HF groups received morphine similar to the morphine group, and HF (1.4 and 2.8 g/kg) once a day in the daily dose group and only on the last day of the experiment in the single dose of HF group. Finally, the withdrawal signs as well biochemical tests were evaluated. The behavioral parameters were assessed by conditioned place preference (CPP), elevated plus-maze and Y-maze tests. The antioxidant activity of HF was evaluated by measurement of serum contents of malondialdehyde, stable nitric oxide metabolites and total antioxidant capacity (TAC). Moreover, the protein expression of c-fos was assessed by western blotting. Results: Daily treatment with HF significantly reduced the score of CPP behavioral test, all of the withdrawal signs, TAC and the c-fos protein level. Conclusions: The results indicated that HF might be a promising complementary treatment in reducing morphine-induced physical and psychological dependence probably through modulation of c-fos protein expression.
Collapse
Affiliation(s)
- Mohammad Ali Ahmadianmoghadam
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Traditional Medicine, Faculty of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Luft JG, Popik B, Gonçalves DA, Cruz FC, de Oliveira Alvares L. Distinct engrams control fear and extinction memory. Hippocampus 2024; 34:230-240. [PMID: 38396226 DOI: 10.1002/hipo.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/06/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Memories are stored in engram cells, which are necessary and sufficient for memory recall. Recalling a memory might undergo reconsolidation or extinction. It has been suggested that the original memory engram is reactivated during reconsolidation so that memory can be updated. Conversely, during extinction training, a new memory is formed that suppresses the original engram. Nonetheless, it is unknown whether extinction creates a new engram or modifies the original fear engram. In this study, we utilized the Daun02 procedure, which uses c-Fos-lacZ rats to induce apoptosis of strongly activated neurons and examine whether a new memory trace emerges as a result of a short or long reactivation, or if these processes rely on modifications within the original engram located in the basolateral amygdala (BLA) and infralimbic (IL) cortex. By eliminating neurons activated during consolidation and reactivation, we observed significant impacts on fear memory, highlighting the importance of the BLA engram in these processes. Although we were unable to show any impact when removing the neurons activated after the test of a previously extinguished memory in the BLA, disrupting the IL extinction engram reactivated the aversive memory that was suppressed by the extinction memory. Thus, we demonstrated that the IL cortex plays a crucial role in the network involved in extinction, and disrupting this specific node alone is sufficient to impair extinction behavior. Additionally, our findings indicate that extinction memories rely on the formation of a new memory, supporting the theory that extinction memories rely on the formation of a new memory, whereas the reconsolidation process reactivates the same original memory trace.
Collapse
Affiliation(s)
- Jordana Griebler Luft
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruno Popik
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Débora Aguirre Gonçalves
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabio Cardoso Cruz
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas de Oliveira Alvares
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Sakurai K. Rethinking c-Fos for understanding drug action in the brain. J Biochem 2024; 175:377-381. [PMID: 38153290 DOI: 10.1093/jb/mvad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 12/29/2023] Open
Abstract
Understanding the mechanisms of drug action in the brain, from the genetic to the neural circuit level, is crucial for the development of new agents that act upon the central nervous system. Determining the brain regions and neurons affected by a drug is essential for revealing its mechanism of action in the brain. c-Fos, a marker of neuronal activation, has been widely used to detect neurons activated by stimuli with high spatial resolution. In this review, the use of c-Fos for the visualization and manipulation of activated neurons is introduced. I also explain that a higher temporal resolution can be achieved by changing the staining method for visualization of c-Fos. Moreover, a new method that allows labeling and manipulating commonly activated neurons using two different stimuli is proposed.
Collapse
Affiliation(s)
- Katsuyasu Sakurai
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
9
|
Huai Z, Huang B, He G, Li H, Liu Y, Le Q, Wang F, Ma L, Liu X. Accumulation of NMDA receptors in accumbal neuronal ensembles mediates increased conditioned place preference for cocaine after prolonged withdrawal. Prog Neurobiol 2024; 234:102573. [PMID: 38401668 DOI: 10.1016/j.pneurobio.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
Cue-induced cocaine craving gradually intensifies following abstinence, a phenomenon known as the incubation of drug craving. Neuronal ensembles activated by initial cocaine use, are critically involved in this process. However, the mechanisms by which neuronal changes occurring in the ensembles after withdrawal contribute to incubation remain largely unknown. Here we labeled neuronal ensembles in the shell of nucleus accumbens (NAcSh) activated by cocaine conditioned place preference (CPP) training. NAcSh ensembles showed an increasing activity induced by CPP test after 21-day withdrawal. Inhibiting synaptic transmission of NAcSh ensembles suppressed the preference for cocaine paired-side after 21-day withdrawal, demonstrating a critical role of NAcSh ensembles in increased preference for cocaine. The density of dendritic spines in dopamine D1 receptor expressing ensembles was increased after 21-day withdrawal. Moreover, the expression of Grin1, a subunit of the N-methyl-D-aspartate (NMDA) receptor, specifically increased in the NAcSh ensembles after cocaine withdrawal in both CPP and self-administration (SA) mouse models. Targeted knockdown or dysfunction of Grin1 in NAcSh ensembles significantly suppressed craving for cocaine. Our results suggest that the accumulation of NMDA receptors in NAcSh ensembles mediates increased craving for cocaine after prolonged withdrawal, thereby providing potential molecular targets for treatment of drug addiction.
Collapse
Affiliation(s)
- Ziqing Huai
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Bing Huang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Guanhong He
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Haibo Li
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Yonghui Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China.
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China.
| |
Collapse
|
10
|
Magnard R, Fouyssac M, Vachez YM, Cheng Y, Dufourd T, Carcenac C, Boulet S, Janak PH, Savasta M, Belin D, Carnicella S. Pramipexole restores behavioral inhibition in highly impulsive rats through a paradoxical modulation of frontostriatal networks. Transl Psychiatry 2024; 14:86. [PMID: 38336862 PMCID: PMC10858232 DOI: 10.1038/s41398-024-02804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Impulse control disorders (ICDs), a wide spectrum of maladaptive behaviors which includes pathological gambling, hypersexuality and compulsive buying, have been recently suggested to be triggered or aggravated by treatments with dopamine D2/3 receptor agonists, such as pramipexole (PPX). Despite evidence showing that impulsivity is associated with functional alterations in corticostriatal networks, the neural basis of the exacerbation of impulsivity by PPX has not been elucidated. Here we used a hotspot analysis to assess the functional recruitment of several corticostriatal structures by PPX in male rats identified as highly (HI), moderately impulsive (MI) or with low levels of impulsivity (LI) in the 5-choice serial reaction time task (5-CSRTT). PPX dramatically reduced impulsivity in HI rats. Assessment of the expression pattern of the two immediate early genes C-fos and Zif268 by in situ hybridization subsequently revealed that PPX resulted in a decrease in Zif268 mRNA levels in different striatal regions of both LI and HI rats accompanied by a high impulsivity specific reduction of Zif268 mRNA levels in prelimbic and cingulate cortices. PPX also decreased C-fos mRNA levels in all striatal regions of LI rats, but only in the dorsolateral striatum and nucleus accumbens core (NAc Core) of HI rats. Structural equation modeling further suggested that the anti-impulsive effect of PPX was mainly attributable to the specific downregulation of Zif268 mRNA in the NAc Core. Altogether, our results show that PPX restores impulse control in highly impulsive rats by modulation of limbic frontostriatal circuits.
Collapse
Affiliation(s)
- Robin Magnard
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| | - Maxime Fouyssac
- Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, United Kingdom
| | - Yvan M Vachez
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Yifeng Cheng
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Thibault Dufourd
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Carole Carcenac
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Sabrina Boulet
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marc Savasta
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - David Belin
- Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, United Kingdom
| | - Sebastien Carnicella
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| |
Collapse
|
11
|
Litif CG, Flom LT, Sandum KL, Hodgins SL, Vaccaro L, Stitzel JA, Blouin NA, Mannino MC, Gigley JP, Schoborg TA, Bobadilla AC. Differential genetic expression within reward-specific ensembles in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565378. [PMID: 37961222 PMCID: PMC10635086 DOI: 10.1101/2023.11.02.565378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Maladaptive reward seeking is a hallmark of cocaine use disorder. To develop therapeutic targets, it is critical to understand the neurobiological changes specific to cocaine-seeking without altering the seeking of natural rewards, e.g., sucrose. The prefrontal cortex (PFC) and the nucleus accumbens core (NAcore) are known regions associated with cocaine- and sucrose-seeking ensembles, i.e., a sparse population of co-activated neurons. Within ensembles, transcriptomic alterations in the PFC and NAcore underlie the learning and persistence of cocaine- and sucrose-seeking behavior. However, transcriptomes exclusively driving cocaine seeking independent from sucrose seeking have not yet been defined using a within-subject approach. Using Ai14:cFos-TRAP2 transgenic mice in a dual cocaine and sucrose self-administration model, we fluorescently sorted (FACS) and characterized (RNAseq) the transcriptomes defining cocaine- and sucrose-seeking ensembles. We found reward- and region-specific transcriptomic changes that will help develop clinically relevant genetic approaches to decrease cocaine-seeking behavior without altering non-drug reward-based positive reinforcement.
Collapse
Affiliation(s)
- Carl G. Litif
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | - Levi T. Flom
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | | | | | - Lucio Vaccaro
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | - Jerry A. Stitzel
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Nicolas A. Blouin
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | | | - Jason P. Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Todd A. Schoborg
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Ana-Clara Bobadilla
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
12
|
Surets M, Caban-Murillo A, Ramirez S. Prelimbic cortex ensembles promote appetitive learning-associated behavior. Learn Mem 2024; 31:a053892. [PMID: 38408863 PMCID: PMC10903945 DOI: 10.1101/lm.053892.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Memories of prior rewards bias our actions and future decisions. To determine the neural correlates of an appetitive associative learning task, we trained male mice to discriminate a reward-predicting cue over the course of 7 d. Encoding, recent recall, and remote recall were investigated to determine the areas of the brain recruited at each stage of learning. Using cFos as a proxy for neuronal activity, we found unique brain-wide patterns of activity across days that seem to correlate with distinct stages of learning. In particular, the prelimbic (PL) cortex was significantly recruited during the encoding of a novel association presentation, but its activity decreases as learning continues. To causally dissect the role of the PL in a reward memory across days, we chemogenetically inhibited first the PL entirely and then only tagged memory-bearing cells that were active during encoding in two stages of learning: early and late. Both nonspecific and specific PL inhibition experiments indicate that the PL drives behavior during late stages of learning to facilitate appropriate cue-driven behavior. Overall, our work underscores memory's role in discriminative reward seeking, and points to the PL as a target for modulating disorders in which impaired reward processing is a core component.
Collapse
Affiliation(s)
- Michelle Surets
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
- Boston University School of Medicine, Boston University, Boston, Massachusetts 02215, USA
| | - Albit Caban-Murillo
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215, USA
| | - Steve Ramirez
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
13
|
Salery M, Godino A, Xu YQ, Fullard JF, Durand-de Cuttoli R, LaBanca AR, Holt LM, Russo SJ, Roussos P, Nestler EJ. Transcriptional correlates of cocaine-associated learning in striatal ARC ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571585. [PMID: 38168167 PMCID: PMC10760161 DOI: 10.1101/2023.12.13.571585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Learned associations between the rewarding effects of drugs and the context in which they are experienced underlie context-induced relapse. Previous work demonstrates the importance of sparse neuronal populations - called neuronal ensembles - in associative learning and cocaine seeking, but it remains unknown whether the encoding vs. retrieval of cocaine-associated memories involves similar or distinct mechanisms of ensemble activation and reactivation in nucleus accumbens (NAc). We use ArcCreER T2 mice to establish that mostly distinct NAc ensembles are recruited by initial vs. repeated exposures to cocaine, which are then differentially reactivated and exert distinct effects during cocaine-related memory retrieval. Single-nuclei RNA-sequencing of these ensembles demonstrates predominant recruitment of D1 medium spiny neurons and identifies transcriptional properties that are selective to cocaine-recruited NAc neurons and could explain distinct excitability features. These findings fundamentally advance our understanding of how cocaine drives pathological memory formation during repeated exposures.
Collapse
|
14
|
Sullens DG, Nguyen P, Gilley K, Wiffler MB, Sekeres MJ. Hippocampal motor memory network reorganization depends on familiarity, not time. Learn Mem 2023; 30:320-324. [PMID: 38056901 PMCID: PMC10750863 DOI: 10.1101/lm.053792.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
There is debate as to whether a time-dependent transformation of the episodic-like memory network is observed for nonepisodic tasks, including procedural motor memory. To determine how motor memory networks reorganize with time and practice, mice performed a motor task in a straight alley maze for 1 d (recent), 20 d of continuous training (continuous), or testing 20 d after the original training (remote), and then regional c-Fos expression was assessed. Elevated hippocampal c-Fos accompanied remote, but not continuous, motor task retrieval after 20 d, suggesting that the hippocampus remains engaged for nonhabitual remote motor memory retrieval.
Collapse
Affiliation(s)
- D Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Phuoc Nguyen
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201, USA
| | - Kayla Gilley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- Department of Biology and Chemistry, Liberty University, Lynchburg, Virginia 24515, USA
| | - Madison B Wiffler
- Department of Biology, Baylor University, Waco, Texas 76798, USA
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Melanie J Sekeres
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
15
|
Liu X, Wang F, Le Q, Ma L. Cellular and molecular basis of drug addiction: The role of neuronal ensembles in addiction. Curr Opin Neurobiol 2023; 83:102813. [PMID: 37972536 DOI: 10.1016/j.conb.2023.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Addiction has been conceptualized as a disease of learning and memory. Learned associations between environmental cues and unconditioned rewards induced by drug administration, which play a critical role in addiction, have been shown to be encoded in sparsely distributed populations of neurons called neuronal ensembles. This review aims to highlight how synaptic remodeling and alterations in signaling pathways that occur specifically in neuronal ensembles contribute to the pathogenesis of addiction. Furthermore, a causal link between transcriptional and epigenetic modifications in neuronal ensembles and the development of the addictive state is proposed. Translational studies of molecular and cellular changes in neuronal ensembles that contribute to drug-seeking behavior, will allow the identification of molecular and circuit targets and interventions for substance use disorders.
Collapse
Affiliation(s)
- Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| |
Collapse
|
16
|
Zhou JL, de Guglielmo G, Ho AJ, Kallupi M, Pokhrel N, Li HR, Chitre AS, Munro D, Mohammadi P, Carrette LLG, George O, Palmer AA, McVicker G, Telese F. Single-nucleus genomics in outbred rats with divergent cocaine addiction-like behaviors reveals changes in amygdala GABAergic inhibition. Nat Neurosci 2023; 26:1868-1879. [PMID: 37798411 PMCID: PMC10620093 DOI: 10.1038/s41593-023-01452-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The amygdala processes positive and negative valence and contributes to addiction, but the cell-type-specific gene regulatory programs involved are unknown. We generated an atlas of single-nucleus gene expression and chromatin accessibility in the amygdala of outbred rats with high and low cocaine addiction-like behaviors following prolonged abstinence. Differentially expressed genes between the high and low groups were enriched for energy metabolism across cell types. Rats with high addiction index (AI) showed increased relapse-like behaviors and GABAergic transmission in the amygdala. Both phenotypes were reversed by pharmacological inhibition of the glyoxalase 1 enzyme, which metabolizes methylglyoxal-a GABAA receptor agonist produced by glycolysis. Differences in chromatin accessibility between high and low AI rats implicated pioneer transcription factors in the basic helix-loop-helix, FOX, SOX and activator protein 1 families. We observed opposite regulation of chromatin accessibility across many cell types. Most notably, excitatory neurons had greater accessibility in high AI rats and inhibitory neurons had greater accessibility in low AI rats.
Collapse
Affiliation(s)
- Jessica L Zhou
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Aaron J Ho
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Narayan Pokhrel
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Hai-Ri Li
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Munro
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Graham McVicker
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Francesca Telese
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Hosová-Kennedy D, Varlinskaya EI, Werner DF. Social behavior and neuronal activation in adolescent female Fos-LacZ transgenic rats: Impact of acute ethanol challenge and baseline levels of social preference. Alcohol 2023; 117:S0741-8329(23)00319-1. [PMID: 39492416 DOI: 10.1016/j.alcohol.2023.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
In human adolescents, females often report drinking for coping reasons to avoid negative affective states. We have shown previously that adolescent female rats with elevated levels of anxiety-like behavior under social test circumstances, indexed via low social preference are sensitive to anxiolytic effects of ethanol given intraperitoneally (ip) in a low-to-moderate dose range. This study was designed to test the hypothesis that patterns of neuronal activation across brain regions implicated in social activity and social preference (used as an index of low versus high anxiety-like social responding) would be affected by acute ethanol differently in adolescent females with high and low social preference, with initial levels of social preference also predicting ethanol-induced changes in social behavior. Adolescent female Fos-LacZ rats were given social interaction tests on postnatal day (P)33 for determination of baseline levels of responding to an unfamiliar social partner and on P35 following administration of 0 or 0.75 g/kg ethanol. Brain tissue was collected, and expression of β-galactoside (β-gal) was used as an index of neuronal activation. Baseline levels of social preference did not predict social responsiveness to an acute ethanol challenge, whereas significant decreases in this social measure that reflects anxiety-like behavioral alterations were evident in adolescent females challenged with ethanol relative to saline-injected controls, suggesting high sensitivity to the anxiogenic effects of ethanol. Ethanol precipitated negative relationships between social preference and prefrontal cortical activation, decreased neuronal activation of the anterior cingulate cortex, but substantially increased β-gal expression in the central amygdala. These results suggest high sensitivity of the prefrontal cortical regions and central amygdala to ethanol-induced alterations in adolescent Fos-LacZ females and provide a background for further phenotyping of neurons activated by ethanol under social test circumstances.
Collapse
Affiliation(s)
- Dominika Hosová-Kennedy
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000
| | - Elena I Varlinskaya
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000
| | - David F Werner
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000.
| |
Collapse
|
18
|
Barber KR, Vizcarra VS, Zilch A, Majuta L, Diezel CC, Culver OP, Hughes BW, Taniguchi M, Streicher JM, Vanderah TW, Riegel AC. The Role of Ryanodine Receptor 2 in Drug-Associated Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560743. [PMID: 37873212 PMCID: PMC10592901 DOI: 10.1101/2023.10.03.560743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Type-2 ryanodine receptor (RyR2) ion channels facilitate the release of Ca 2+ from stores and serve an important function in neuroplasticity. The role for RyR2 in hippocampal-dependent learning and memory is well established and chronic hyperphosphorylation of RyR2 (RyR2P) is associated with pathological calcium leakage and cognitive disorders, including Alzheimer's disease. By comparison, little is known about the role of RyR2 in the ventral medial prefrontal cortex (vmPFC) circuitry important for working memory, decision making, and reward seeking. Here, we evaluated the basal expression and localization of RyR2 and RyR2P in the vmPFC. Next, we employed an operant model of sucrose, cocaine, or morphine self-administration (SA) followed by a (reward-free) recall test, to reengage vmPFC neurons and reactivate reward-seeking and re-evaluated the expression and localization of RyR2 and RyR2P in vmPFC. Under basal conditions, RyR2 was expressed in pyramidal cells but not regularly detected in PV/SST interneurons. On the contrary, RyR2P was rarely observed in PFC somata and was restricted to a different subcompartment of the same neuron - the apical dendrites of layer-5 pyramidal cells. Chronic SA of drug (cocaine or morphine) and nondrug (sucrose) rewards produced comparable increases in RyR2 protein expression. However, recalling either drug reward impaired the usual localization of RyR2P in dendrites and markedly increased its expression in somata immunoreactive for Fos, a marker of highly activated neurons. These effects could not be explained by chronic stress or drug withdrawal and instead appeared to require a recall experience associated with prior drug SA. In addition to showing the differential distribution of RyR2/RyR2P and affirming the general role of vmPFC in reward learning, this study provides information on the propensity of addictive drugs to redistribute RyR2P ion channels in a neuronal population engaged in drug-seeking. Hence, focusing on the early impact of addictive drugs on RyR2 function may serve as a promising approach to finding a treatment for substance use disorders.
Collapse
|
19
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Xie X, Chen R, Wang X, Smith L, Wang J. Activity-dependent labeling and manipulation of fentanyl-recruited striatal ensembles using ArcTRAP approach. STAR Protoc 2023; 4:102369. [PMID: 37354458 PMCID: PMC10320278 DOI: 10.1016/j.xpro.2023.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/26/2023] Open
Abstract
Understanding the memory substrates underlying substance abuse requires the permanent tagging and manipulation of drug-recruited neural ensembles. Here, we present a protocol for activity-dependent labeling and chemogenetic manipulation of fentanyl-activated striatal ensembles using the ArcTRAP approach. We outline the necessary steps to breed ArcTRAP mice, prepare drugs and reagents, conduct behavioral training, and perform tagging and manipulation. This approach can be adapted to investigate drug-recruited ensembles in other brain regions, providing a versatile tool for exploring the neural mechanisms underlying addiction. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Laura Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
21
|
Devoght J, Comhair J, Morelli G, Rigo JM, D'Hooge R, Touma C, Palme R, Dewachter I, vandeVen M, Harvey RJ, Schiffmann SN, Piccart E, Brône B. Dopamine-mediated striatal activity and function is enhanced in GlyRα2 knockout animals. iScience 2023; 26:107400. [PMID: 37554441 PMCID: PMC10404725 DOI: 10.1016/j.isci.2023.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
The glycine receptor alpha 2 (GlyRα2) is a ligand-gated ion channel which upon activation induces a chloride conductance. Here, we investigated the role of GlyRα2 in dopamine-stimulated striatal cell activity and behavior. We show that depletion of GlyRα2 enhances dopamine-induced increases in the activity of putative dopamine D1 receptor-expressing striatal projection neurons, but does not alter midbrain dopamine neuron activity. We next show that the locomotor response to d-amphetamine is enhanced in GlyRα2 knockout animals, and that this increase correlates with c-fos expression in the dorsal striatum. 3-D modeling revealed an increase in the neuronal ensemble size in the striatum in response to D-amphetamine in GlyRα2 KO mice. Finally, we show enhanced appetitive conditioning in GlyRα2 KO animals that is likely due to increased motivation, but not changes in associative learning or hedonic response. Taken together, we show that GlyRα2 is an important regulator of dopamine-stimulated striatal activity and function.
Collapse
Affiliation(s)
- Jens Devoght
- Department of Neuroscience, UHasselt, 3500 Hasselt, Belgium
| | - Joris Comhair
- Department of Neuroscience, UHasselt, 3500 Hasselt, Belgium
| | - Giovanni Morelli
- Brain Development and Disease Laboratory, Instituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Rudi D'Hooge
- Laboratory for Biological Psychology, University of Leuven, 3000 Leuven, Belgium
| | - Chadi Touma
- Department of Behavioural Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Rupert Palme
- Institute of Biochemistry, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Ilse Dewachter
- Department of Neuroscience, UHasselt, 3500 Hasselt, Belgium
| | | | - Robert J. Harvey
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Serge N. Schiffmann
- Laboratory of Neurophysiology, Université libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Bert Brône
- Department of Neuroscience, UHasselt, 3500 Hasselt, Belgium
| |
Collapse
|
22
|
Badia-Soteras A, Heistek TS, Kater MSJ, Mak A, Negrean A, van den Oever MC, Mansvelder HD, Khakh BS, Min R, Smit AB, Verheijen MHG. Retraction of Astrocyte Leaflets From the Synapse Enhances Fear Memory. Biol Psychiatry 2023; 94:226-238. [PMID: 36702661 DOI: 10.1016/j.biopsych.2022.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The formation and retrieval of fear memories depends on orchestrated synaptic activity of neuronal ensembles within the hippocampus, and it is becoming increasingly evident that astrocytes residing in the environment of these synapses play a central role in shaping cellular memory representations. Astrocyte distal processes, known as leaflets, fine-tune synaptic activity by clearing neurotransmitters and limiting glutamate diffusion. However, how astroglial synaptic coverage contributes to mnemonic processing of fearful experiences remains largely unknown. METHODS We used electron microscopy to observe changes in astroglial coverage of hippocampal synapses during consolidation of fear memory in mice. To manipulate astroglial synaptic coverage, we depleted ezrin, an integral leaflet-structural protein, from hippocampal astrocytes using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing. Next, a combination of Föster resonance energy transfer analysis, genetically encoded glutamate sensors, and whole-cell patch-clamp recordings was used to determine whether the proximity of astrocyte leaflets to the synapse is critical for synaptic integrity and function. RESULTS We found that consolidation of a recent fear memory is accompanied by a transient retraction of astrocyte leaflets from hippocampal synapses and increased activation of NMDA receptors. Accordingly, astrocyte-specific depletion of ezrin resulted in shorter astrocyte leaflets and reduced astrocyte contact with the synaptic cleft, which consequently boosted extrasynaptic glutamate diffusion and NMDA receptor activation. Importantly, after fear conditioning, these cellular phenotypes translated to increased retrieval-evoked activation of CA1 pyramidal neurons and enhanced fear memory expression. CONCLUSIONS Together, our data show that withdrawal of astrocyte leaflets from the synaptic cleft is an experience-induced, temporally regulated process that gates the strength of fear memories.
Collapse
Affiliation(s)
- Aina Badia-Soteras
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mandy S J Kater
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Aline Mak
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Adrian Negrean
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Rogier Min
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Rubio FJ, Olivares DE, Dunn C, Zhang S, Hilaire EM, Henry A, Mejias-Aponte C, Nogueras-Ortiz CJ, Selvam PV, Cruz FC, Madangopal R, Morales M, Hope BT. Flow Cytometry of Synaptoneurosomes (FCS) Reveals Increased Ribosomal S6 and Calcineurin Proteins in Activated Medial Prefrontal Cortex to Nucleus Accumbens Synapses. J Neurosci 2023; 43:4217-4233. [PMID: 37160369 PMCID: PMC10255002 DOI: 10.1523/jneurosci.0927-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
Learning and behavior activate cue-specific patterns of sparsely distributed cells and synapses called ensembles that undergo memory-encoding engram alterations. While Fos is often used to label selectively activated cell bodies and identify neuronal ensembles, there is no comparable endogenous marker to label activated synapses and identify synaptic ensembles. For the purpose of identifying candidate synaptic activity markers, we optimized a flow cytometry of synaptoneurosome (FCS) procedure for assessing protein alterations in activated synapses from male and female rats. After injecting yellow fluorescent protein (YFP)-expressing adeno-associated virus into medial prefrontal cortex (mPFC) to label terminals in nucleus accumbens (NAc) of rats, we injected 20 mg/kg cocaine in a novel context (cocaine+novelty) to activate synapses, and prepared NAc synaptoneurosomes 0-60 min following injections. For FCS, we used commercially available antibodies to label presynaptic and postsynaptic markers synaptophysin and PSD-95 as well as candidate markers of synaptic activity [activity-regulated cytoskeleton protein (Arc), CaMKII and phospho-CaMKII, ribosomal protein S6 (S6) and phospho-S6, and calcineurin and phospho-calcineurin] in YFP-labeled synaptoneurosomes. Cocaine+novelty increased the percentage of S6-positive synaptoneurosomes at 5-60 min and calcineurin-positive synaptoneurosomes at 5-10 min. Electron microscopy verified that S6 and calcineurin levels in synaptoneurosomes were increased 10 min after cocaine+novelty. Pretreatment with the anesthetic chloral hydrate blocked cocaine+novelty-induced S6 and calcineurin increases in synaptoneurosomes, and novel context exposure alone (without cocaine) increased S6, both of which indicate that these increases were due to neural activity per se. Overall, FCS can be used to study protein alterations in activated synapses coming from specifically labeled mPFC projections to NAc.SIGNIFICANCE STATEMENT Memories are formed during learning and are stored in the brain by long-lasting molecular and cellular alterations called engrams formed within specific patterns of cue-activated neurons called neuronal ensembles. While Fos has been used to identify activated ensemble neurons and the engrams within them, we have not had a similar marker for activated synapses that can be used to identify synaptic engrams. Here we developed a procedure for high-throughput in-line analysis of flow cytometry of synaptoneurosome (FCS) and found that ribosomal S6 protein and calcineurin were increased in activated mPFC-NAc synapses. FCS can be used to study protein alterations in activated synapses within specifically labeled circuits.
Collapse
Affiliation(s)
- F Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Daniel E Olivares
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Christopher Dunn
- Flow Cytometry Unit, Intramural Research Program/National Institute on Aging/National Institutes of Health, Baltimore, Maryland 21224
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Elias M Hilaire
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Akeem Henry
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Carlos Mejias-Aponte
- Confocal and Electron Microscopy Core, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Carlos J Nogueras-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224
| | - Pooja V Selvam
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Fabio C Cruz
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, CEP 04023-062, São Paulo, Brazil
| | - Rajtarun Madangopal
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Bruce T Hope
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
24
|
McDermott MV, Ram A, Mattoon MT, Haderlie EE, Raddatz MC, Thomason MK, Bobeck EN. A small molecule ligand for the novel pain target, GPR171, produces minimal reward in mice. Pharmacol Biochem Behav 2023; 224:173543. [PMID: 36933620 PMCID: PMC11472835 DOI: 10.1016/j.pbb.2023.173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
ProSAAS is one of the most abundant proteins in the brain and is processed into several smaller peptides. One of which, BigLEN, is an endogenous ligand for the G protein-coupled receptor, GPR171. Recent work in rodent models has shown that a small-molecule ligand for GPR171, MS15203, increases morphine antinociception and is effective in lessening chronic pain. While these studies provide evidence for GPR171 as a possible pain target, its abuse liability has not yet been assessed and was evaluated in the current study. We first mapped the distribution of GPR171 and ProSAAS throughout the reward circuit of the brain using immunohistochemistry and showed that GPR171 and ProSAAS are localized in the hippocampus, basolateral amygdala, nucleus accumbens, prefrontal cortex. In the major dopaminergic structure, the ventral tegmental area (VTA), GPR171 appeared to be primarily localized in dopamine neurons while ProSAAS is outside of dopamine neurons. Next, MS15203 was administered to mice with or without morphine, and VTA slices were stained for the immediate early gene c-Fos as a marker of neuronal activation. Quantification of c-Fos-positive cells revealed no statistical difference between MS15203 and saline, suggesting that MS15203 does not increase VTA activation and dopamine release. The results of a conditioned place preference experiment showed that treatment with MS15203 produced no place preference indicating a lack of reward-related behavior. Taken together this data provides evidence that the novel pain therapeutic, MS15203, has minimal reward liability. Therefore, GPR171 deserves further exploration as a pain target. SIGNIFICANCE STATEMENT: MS15203, a drug that activates the receptor GPR171, was previously shown to increase morphine analgesia. The authors use in vivo and histological techniques to show that it fails to activate the rodent reward circuitry, providing support for the continued exploration of MS15203 as a novel pain drug, and GPR171 a novel pain target.
Collapse
Affiliation(s)
- Max V McDermott
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Akila Ram
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Matthew T Mattoon
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Emmaline E Haderlie
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Megan C Raddatz
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Madi K Thomason
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Erin N Bobeck
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America.
| |
Collapse
|
25
|
Goltseker K, Garay P, Bonefas K, Iwase S, Barak S. Alcohol-specific transcriptional dynamics of memory reconsolidation and relapse. Transl Psychiatry 2023; 13:55. [PMID: 36792579 PMCID: PMC9932068 DOI: 10.1038/s41398-023-02352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Relapse, a critical issue in alcohol addiction, can be attenuated by disruption of alcohol-associated memories. Memories are thought to temporarily destabilize upon retrieval during the reconsolidation process. Here, we provide evidence for unique transcriptional dynamics underpinning alcohol memory reconsolidation. Using a mouse place-conditioning procedure, we show that alcohol-memory retrieval increases the mRNA expression of immediate-early genes in the dorsal hippocampus and medial prefrontal cortex, and that alcohol seeking is abolished by post-retrieval non-specific inhibition of gene transcription, or by downregulating ARC expression using antisense-oligodeoxynucleotides. However, since retrieval of memories for a natural reward (sucrose) also increased the same immediate-early gene expression, we explored for alcohol-specific transcriptional changes using RNA-sequencing. We revealed a unique transcriptional fingerprint activated by alcohol memories, as the expression of this set of plasticity-related genes was not altered by sucrose-memory retrieval. Our results suggest that alcohol memories may activate two parallel transcription programs: one is involved in memory reconsolidation in general, and another is specifically activated during alcohol-memory processing.
Collapse
Affiliation(s)
- Koral Goltseker
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Patricia Garay
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Katherine Bonefas
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Shigeki Iwase
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
- Human Genetics Department, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
26
|
Lai N, Cheng H, Li Z, Wang X, Ruan Y, Qi Y, Yang L, Fei F, Dai S, Chen L, Zheng Y, Xu C, Fang J, Wang S, Chen Z, Wang Y. Interictal-period-activated neuronal ensemble in piriform cortex retards further seizure development. Cell Rep 2022; 41:111798. [PMID: 36516780 DOI: 10.1016/j.celrep.2022.111798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/23/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Epileptic networks are characterized as having two states, seizures or more prolonged interictal periods. However, cellular mechanisms underlying the contribution of interictal periods to ictal events remain unclear. Here, we use an activity-dependent labeling technique combined with genetically encoded effectors to characterize and manipulate neuronal ensembles recruited by focal seizures (FS-Ens) and interictal periods (IP-Ens) in piriform cortex, a region that plays a key role in seizure generation. Ca2+ activities and histological evidence reveal a disjointed correlation between the two ensembles during FS dynamics. Optogenetic activation of FS-Ens promotes further seizure development, while IP-Ens protects against it. Interestingly, both ensembles are functionally involved in generalized seizures (GS) due to circuit rearrangement. IP-Ens bidirectionally modulates FS but not GS by controlling coherence with hippocampus. This study indicates that the interictal state may represent a seizure-preventing environment, and the interictal-activated ensemble may serve as a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Nanxi Lai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhisheng Li
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xia Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingbei Qi
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fan Fei
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sijie Dai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liying Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Yi Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
27
|
Madangopal R, Szelenyi ER, Nguyen J, Brenner MB, Drake OR, Pham DQ, Shekara A, Jin M, Choong JJ, Heins C, Komer LE, Weber SJ, Hope BT, Shaham Y, Golden SA. Incubation of palatable food craving is associated with brain-wide neuronal activation in mice. Proc Natl Acad Sci U S A 2022; 119:e2209382119. [PMID: 36603188 PMCID: PMC9659381 DOI: 10.1073/pnas.2209382119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
Studies using rodent models have shown that relapse to drug or food seeking increases progressively during abstinence, a behavioral phenomenon termed "incubation of craving." Mechanistic studies of incubation of craving have focused on specific neurobiological targets within preselected brain areas. Recent methodological advances in whole-brain immunohistochemistry, clearing, and imaging now allow unbiased brain-wide cellular resolution mapping of regions and circuits engaged during learned behaviors. However, these whole-brain imaging approaches were developed for mouse brains, while incubation of drug craving has primarily been studied in rats, and incubation of food craving has not been demonstrated in mice. Here, we established a mouse model of incubation of palatable food craving and examined food reward seeking after 1, 15, and 60 abstinence days. We then used the neuronal activity marker Fos with intact-brain mapping procedures to identify corresponding patterns of brain-wide activation. Relapse to food seeking was significantly higher after 60 abstinence days than after 1 or 15 days. Using unbiased ClearMap analysis, we identified increased activation of multiple brain regions, particularly corticostriatal structures, following 60 but not 1 or 15 abstinence days. We used orthogonal SMART2 analysis to confirm these findings within corticostriatal and thalamocortical subvolumes and applied expert-guided registration to investigate subdivision and layer-specific activation patterns. Overall, we 1) identified brain-wide activity patterns during incubation of food seeking using complementary analytical approaches and 2) provide a single-cell resolution whole-brain atlas that can be used to identify functional networks and global architecture underlying the incubation of food craving.
Collapse
Affiliation(s)
- Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Eric R. Szelenyi
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195
| | - Joseph Nguyen
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Megan B. Brenner
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Olivia R. Drake
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Diana Q. Pham
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Aniruddha Shekara
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Michelle Jin
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Jia Jie Choong
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195
| | - Conor Heins
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Lauren E. Komer
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Sophia J. Weber
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Bruce T. Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Sam A. Golden
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195
| |
Collapse
|
28
|
Shang Q, Wang J, Xi Z, Gao B, Qian H, An R, Shao G, Liu H, Li T, Liu X. Mechanisms underlying microRNA-222-3p modulation of methamphetamine-induced conditioned place preference in the nucleus accumbens in mice. Psychopharmacology (Berl) 2022; 239:2997-3008. [PMID: 35881147 DOI: 10.1007/s00213-022-06183-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE MicroRNA (miRNA) control of post-transcription gene expression in the nucleus accumbens (NAc) has been implicated in methamphetamine (METH) dependence. Conditioned place preference (CPP) is a classical animal procedure that reflects the rewarding effects of addictive drugs. miR-222-3p has been reported to play a key role in various neurological diseases and is strongly associated with alcohol dependence. Nevertheless, the role of miR-222-3p in METH dependence remains unclear. OBJECTIVE To explore the molecular mechanisms underlying the role of miR-222-3p in the NAc in METH-induced CPP. METHODS miR-222-3p expression in the NAc of METH-induced CPP mice was detected by quantitative real-time (qPCR). Following adeno-associated virus (AAV)-mediated overexpression or knockdown of miR-222-3p in the NAc, mice were subjected to CPP to investigate the effects of miR-222-3p on METH-induced CPP. Target genes of mir-222-3p were predicted using bioinformatics analysis. Candidate target genes for METH-induced CPP were validated by qPCR. RESULTS miR-222-3p expression in the NAc was decreased in CPP mice. Overexpression of miR-222-3p in the NAc blunted METH-induced CPP. Ppp3r1, Cdkn1c, Fmr1, and PPARGC1A were identified as target gene transcripts potentially mediating the effects of miR-222-3p on METH-induced CPP. CONCLUSION Our results highlight miR-222-3p as a key epigenetic regulator in METH-induced CPP and suggest a potential role for miR-222-3p in the regulation of METH-induced reward-related changes in the brain.
Collapse
Affiliation(s)
- Qing Shang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing Wang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhijia Xi
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Baoyao Gao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hongyan Qian
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ran An
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Gaojie Shao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hua Liu
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, People's Republic of China
| | - Tao Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Xinshe Liu
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
29
|
Cantero-García N, Flores-Burgess A, Pineda-Gómez JP, Orio L, Serrano A, Díaz-Cabiale Z, Millón C. Galanin N-terminal fragment (1−15) reduces alcohol seeking and alcohol relapse in rats: Involvement of mesocorticolimbic system. Biomed Pharmacother 2022; 153:113508. [DOI: 10.1016/j.biopha.2022.113508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022] Open
|
30
|
Hosseinzadeh Sahafi O, Rezayof A, Ghasemzadeh Z, Alijanpour S, Rahimian S. Ameliorating effect offluoxetine on tamoxifen-induced memory loss: The role of corticolimbic NMDA receptors and CREB/BDNF/cFos signaling pathways in rats. Brain Res 2022; 1794:148058. [PMID: 36007581 DOI: 10.1016/j.brainres.2022.148058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Tamoxifen-induced cognitive dysfunction may lead to fluoxetine consumption in patients with breast cancer. Since the brain mechanisms are unclear in tamoxifen/fluoxetine therapy, the blockade effect of hippocampal/amygdala/prefrontal cortical NMDA receptors was examined in fluoxetine/tamoxifen-induced memory retrieval. We also assessed the corticolimbic signaling pathways in memory retrieval under the drug treatment in adult male Wistar rats. Using the Western blot technique, the expression levels of the cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and cFos were evaluated in the corticolimbic regions. The results showed that pre-test administration of fluoxetine (3 and 5 mg/kg, i.p.) improved tamoxifen-induced memory impairment in the passive avoidance learning task. Pre-test bilateral microinjection of D-AP5, a selective NMDA receptor antagonist, into the dorsal hippocampal CA1 regions and the central amygdala (CeA), but not the medial prefrontal cortex (mPFC), inhibited the improving effect of fluoxetine on tamoxifen response. It is important to note that the microinjection of D-AP5 into the different sites by itself did not affect memory retrieval. Memory retrieval increased the signaling pathway of pCREB/CREB/BDNF/cFos in the corticolimbic regions. Tamoxifen-induced memory impairment decreased the hippocampal/PFC BDNF level and the amygdala level of pCREB/CREB/cFos. The improving effect of fluoxetine on tamoxifen significantly increased the hippocampal/PFC expression levels of BDNF, the PFC/amygdala expression levels of cFos, and the ratio of pCREB/CREB in all targeted areas. Thus, NMDA receptors' activity in the different corticolimbic regions mediates fluoxetine/tamoxifen memory retrieval. The corticolimbic synaptic plasticity changes likely accompany the improving effect of fluoxetine on tamoxifen response.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Sepehrdad Rahimian
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
31
|
Inactivation of the Lateral Hypothalamus Attenuates Methamphetamine-Induced Conditioned Place Preference through Regulation of Kcnq3 Expression. Int J Mol Sci 2022; 23:ijms23137305. [PMID: 35806315 PMCID: PMC9266452 DOI: 10.3390/ijms23137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022] Open
Abstract
Repeated administration of methylamphetamine (MA) induces MA addiction, which is featured by awfully unpleasant physical and emotional experiences after drug use is terminated. Neurophysiological studies show that the lateral hypothalamus (LH) is involved in reward development and addictive behaviors. Here, we show that repeated administration of MA activates the expression of c-Fos in LH neurons responding to conditioned place preference (CPP). Chemogenetic inhibition of the LH can disrupt the addiction behavior, demonstrating that the LH plays an important role in MA-induced reward processing. Critically, MA remodels the neurons of LH synaptic plasticity, increases intracellular calcium level, and enhances spontaneous current and evoked potentials of neurons compared to the saline group. Furthermore, overexpression of the potassium voltage-gated channel subfamily Q member 3 (Kcnq3) expression can reverse the CPP score and alleviate the occurrence of addictive behaviors. Together, these results unravel a new neurobiological mechanism underlying the MA-induced addiction in the lateral hypothalamus, which could pave the way toward new and effective interventions for this addiction disease.
Collapse
|
32
|
Singh A, Xie Y, Davis A, Wang ZJ. Early social isolation stress increases addiction vulnerability to heroin and alters c-Fos expression in the mesocorticolimbic system. Psychopharmacology (Berl) 2022; 239:1081-1095. [PMID: 34997861 DOI: 10.1007/s00213-021-06024-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023]
Abstract
RATIONALE Adverse psychosocial factors during early childhood or adolescence compromise neural structure and brain function, inducing susceptibility for many psychiatric disorders such as substance use disorder. Nevertheless, the mechanisms underlying early life stress-induced addiction vulnerability is still unclear, especially for opioids. OBJECTIVES To address this, we used a mouse heroin self-administration model to examine how chronic early social isolation (ESI) stress (5 weeks, beginning at weaning) affects the behavioral and neural responses to heroin during adulthood. RESULTS We found that ESI stress did not alter the acquisition for sucrose or heroin self-administration, nor change the motivation for sucrose on a progressive ratio schedule. However, ESI stress induced an upward shift of heroin dose-response curve in female mice and increased motivation and seeking for heroin in both sexes. Furthermore, we examined the neuronal activity (measured by c-Fos expression) within the key brain regions of the mesocorticolimbic system, including the prelimbic cortex (PrL), infralimbic cortex (IL), nucleus accumbens (NAc) core and shell, caudate putamen, and ventral tegmental area (VTA). We found that ESI stress dampened c-Fos expression in the PrL, IL, and VTA after 14-day forced abstinence, while augmented the neuronal responses to heroin-predictive context and cue in the IL and NAc core. Moreover, ESI stress disrupted the association between c-Fos expression and attempted infusions during heroin-seeking test in the PrL. CONCLUSIONS These data indicate that ESI stress leads to increased seeking and motivation for heroin, and this may be associated with distinct changes in neuronal activities in different subregions of the mesocorticolimbic system.
Collapse
Affiliation(s)
- Archana Singh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Yang Xie
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Ashton Davis
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Zi-Jun Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
33
|
Towner TT, Applegate DT, Varlinskaya EI, Werner DF. Impact of Adolescent Intermittent Ethanol Exposure on Social Investigation, Social Preference, and Neuronal Activation in cFos-LacZ Male and Female Rats. Front Pharmacol 2022; 13:841657. [PMID: 35401161 PMCID: PMC8984146 DOI: 10.3389/fphar.2022.841657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Adolescence is a sensitive developmental period during which alcohol use is often initiated and consumed in high quantities, often at binge or even high-intensity drinking levels. Our lab has repeatedly found that adolescent intermittent ethanol (AIE) exposure in rats results in long-lasting social impairments, specifically in males, however our knowledge of the neuronal underpinnings to this sex-specific effect of AIE is limited. The present study was designed to test whether social anxiety-like alterations in AIE-exposed males would be accompanied by alterations of neuronal activation across brain regions associated with social behavior, with AIE females demonstrating no social impairments and alterations in neuronal activation. Adolescent male and female cFos-LacZ transgenic rats on a Sprague-Dawley background were exposed to ethanol (4 g/kg, 25% v/v) or water via intragastric gavage every other day during postnatal days (P) 25–45 for a total of 11 exposures (n = 13 per group). Social behavior of adult rats was assessed on P70 using a modified social interaction test, and neuronal activation in brain regions implicated in social responding was assessed via β-galactosidase (β-gal) expression. We found that AIE exposure in males resulted in a significantly lower social preference coefficient relative to water-exposed controls, with no effect evident in females. Exposure-specific relationships between social behavior and neuronal activation were identified, with AIE eliminating correlations found in water controls related to social interaction, and eliciting negative correlations mainly in limbic regions in a sex-specific manner. AIE exposure in the absence of social testing was also found to differentially affect neural activity in the orbitofrontal cortex and central amygdala in males and females. These data suggest that AIE produces sex-specific social impairments that are potentially driven by differential neuronal activation states in regions important for social behavior, including the medial prefrontal and orbitofrontal cortices, nucleus accumbens, lateral septum, and central amygdala. Future studies should be focused on identification of specific neuronal phenotypes activated by interaction with a social partner in AIE-exposed subjects and their control counterparts.
Collapse
|
34
|
Robison AJ, Nestler EJ. ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chem Neurosci 2022; 13:296-307. [PMID: 35020364 PMCID: PMC8879420 DOI: 10.1021/acschemneuro.1c00723] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ΔFOSB is a uniquely stable member of the FOS family of immediate early gene AP1 transcription factors. Its accumulation in specific cell types and tissues in response to a range of chronic stimuli is associated with biological phenomena as diverse as memory formation, drug addiction, stress resilience, and immune cell activity. Causal connections between ΔFOSB expression and the physiological and behavioral sequelae of chronic stimuli have been established in rodent and, in some cases, primate models for numerous healthy and pathological states with such preclinical observations often supported by human data demonstrating tissue-specific ΔFOSB expression associated with several specific syndromes. However, the viability of ΔFOSB as a target for therapeutic intervention might be questioned over presumptive concerns of side effects given its expression in such a wide range of cell types and circumstances. Here, we summarize numerous insights from the past three decades of research into ΔFOSB structure, function, mechanisms of induction, and regulation of target genes that support its potential as a druggable target. We pay particular attention to the potential for targeting distinct ΔFOSB isoforms or distinct ΔFOSB-containing multiprotein complexes to achieve cell type or tissue specificity to overcome off-target concerns. We also cover critical gaps in knowledge that currently limit the exploitation of ΔFOSB's therapeutic possibilities and how they may be addressed. Finally, we summarize both current and potential future strategies for generating small molecules or genetic tools for the manipulation of ΔFOSB in the clinic.
Collapse
Affiliation(s)
- Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
35
|
Bertagna NB, Favoretto CA, Rodolpho BT, Palombo P, Yokoyama TS, Righi T, Loss CM, Leão RM, Miguel TT, Cruz FC. Maternal Separation Stress Affects Voluntary Ethanol Intake in a Sex Dependent Manner. Front Physiol 2021; 12:775404. [PMID: 34950053 PMCID: PMC8691459 DOI: 10.3389/fphys.2021.775404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 01/20/2023] Open
Abstract
Maternal separation (MS) stress is a predictive animal model for evaluating the effects of early stress exposure on alcohol use disorders (AUD). The extended amygdala (AMY) is a complex circuit involved in both stress- and ethanol-related responses. We hypothesized that MS stress may increase ethanol consumption in adulthood, as well as augment neuronal activity in extended AMY, in a sex-dependent manner. We aimed to investigate the influence of MS stress on the ethanol consumption of male and female mice, and the involvement of extended amygdala sub-nuclei in this process. The C57BL/6J pups were subjected to 180min of MS, from postnatal day (PND) 1 to 14. The control group was left undisturbed. On PND 45, mice (n=28) in cages were exposed to a bottle containing 20% ethanol (w/v) for 4h during the dark period of the light-dark cycle, for 3weeks. Afterward, mice underwent ethanol self-administration training in operant chambers under fixed ratio (FR) schedule. Then, subjects were tested under 2h sessions of a progressive-ratio (PR) schedule of reinforcement (the last ratio achieved was considered the breaking point), and at the end, a 4h session of FR schedule (binge-intake). An immunohistochemistry assay for Fos protein was performed in Nucleus Accumbens (NAcc), Bed Nucleus of Stria Terminalis (BNST), and AMY. Our results showed that in the third week of training, the female MS group consumed more ethanol than the respective control group. The MS group presented increased breakpoint parameters. Female control group and male MS group were more resistant to bitter quinine taste. Increased Fos-immunoreactive neurons (Fos-IR) were observed in the central nucleus of AMY, but not in NAcc nor BNST in male maternal-separated mice. Maternal separation stress may influence ethanol intake in adulthood, and it is dependent on the sex and reinforcement protocol.
Collapse
Affiliation(s)
- Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Ben Tagami Rodolpho
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Paola Palombo
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Thais Suemi Yokoyama
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Thamires Righi
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Rodrigo Molini Leão
- Pharmacology Laboratory, Department of Pharmacology, Biomedical Sciences Institute, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tarciso Tadeu Miguel
- Pharmacology Laboratory, Department of Pharmacology, Biomedical Sciences Institute, Federal University of Uberlândia, Uberlândia, Brazil
| | - Fábio Cardoso Cruz
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Matchynski JI, Manwar R, Kratkiewicz KJ, Madangopal R, Lennon VA, Makki KM, Reppen AL, Woznicki AR, Hope BT, Perrine SA, Conti AC, Avanaki K. Direct measurement of neuronal ensemble activity using photoacoustic imaging in the stimulated Fos-LacZ transgenic rat brain: A proof-of-principle study. PHOTOACOUSTICS 2021; 24:100297. [PMID: 34522608 PMCID: PMC8426561 DOI: 10.1016/j.pacs.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 05/16/2023]
Abstract
Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.
Collapse
Key Words
- ANSI, American national standards institute
- AP, anterior-posterior
- Brain
- CNR, contrast-to-noise ratio
- Cocaine
- DMSO, dimethyl sulfoxide
- DV, dorsal-ventral
- F/M-PAT, functional molecular photoacoustic tomography
- FOV, field-of-view
- Fear conditioning
- Fos
- GRIN, gradient-index
- IL, infralimbic cortex
- ML, medial-lateral
- Neuronal ensemble
- OCT, optical coherence tomography
- OPO, optical parametric oscillator
- PA, photoacoustic
- PBS, phosphate buffer saline
- PL, prelimbic cortex
- Photoacoustic imaging
- SNR, signal-to-noise ratio
- US, ultrasound
- X-gal
- X-gal, beta-D-galactosidase
- fMRI, functional magnetic resonance imaging
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- James I. Matchynski
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rayyan Manwar
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
| | - Karl J. Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Rajtarun Madangopal
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
| | - Veronica A. Lennon
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kassem M. Makki
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Abbey L. Reppen
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | | | - Bruce T. Hope
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
| | - Shane A. Perrine
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alana C. Conti
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, USA
- Corresponding author at: The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
37
|
Lardner CK, van der Zee Y, Estill MS, Kronman HG, Salery M, Cunningham AM, Godino A, Parise EM, Kim JH, Neve RL, Shen L, Hamilton PJ, Nestler EJ. Gene-Targeted, CREB-Mediated Induction of ΔFosB Controls Distinct Downstream Transcriptional Patterns Within D1 and D2 Medium Spiny Neurons. Biol Psychiatry 2021; 90:540-549. [PMID: 34425966 PMCID: PMC8501456 DOI: 10.1016/j.biopsych.2021.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND The onset and persistence of addiction phenotypes are, in part, mediated by transcriptional mechanisms in the brain that affect gene expression and, subsequently, neural circuitry. ΔFosB is a transcription factor that accumulates in the nucleus accumbens (NAc)-a brain region responsible for coordinating reward and motivation-after exposure to virtually every known rewarding substance, including cocaine and opioids. ΔFosB has also been shown to directly control gene transcription and behavior downstream of both cocaine and opioid exposure, but with potentially different roles in D1 and D2 medium spiny neurons (MSNs) in NAc. METHODS To clarify MSN subtype-specific roles for ΔFosB and investigate how these coordinate the actions of distinct classes of addictive drugs in NAc, we developed a CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-based epigenome editing tool to induce endogenous ΔFosB expression in vivo in the absence of drug exposure. After inducing ΔFosB in D1- or D2-MSNs or both, we performed RNA sequencing on bulk male and female NAc tissue (n = 6-8/group). RESULTS We found that ΔFosB induction elicits distinct transcriptional profiles in NAc by MSN subtype and by sex, establishing for the first time that ΔFosB mediates different transcriptional effects in males versus females. We also demonstrated that changes in D1-MSNs, but not those in D2-MSNs or both, significantly recapitulate changes in gene expression induced by cocaine self-administration. CONCLUSIONS Together, these findings demonstrate the efficacy of a novel molecular tool for studying cell type-specific transcriptional mechanisms and shed new light on the activity of ΔFosB, a critical transcriptional regulator of drug addiction.
Collapse
Affiliation(s)
- Casey K Lardner
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yentl van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Molly S Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hope G Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marine Salery
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jee Hyun Kim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, Massachusetts
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter J Hamilton
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
38
|
Lesuis SL, Brosens N, Immerzeel N, van der Loo RJ, Mitrić M, Bielefeld P, Fitzsimons CP, Lucassen PJ, Kushner SA, van den Oever MC, Krugers HJ. Glucocorticoids Promote Fear Generalization by Increasing the Size of a Dentate Gyrus Engram Cell Population. Biol Psychiatry 2021; 90:494-504. [PMID: 34503674 DOI: 10.1016/j.biopsych.2021.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Traumatic experiences, such as conditioned threat, are coded as enduring memories that are frequently subject to generalization, which is characterized by (re-) expression of fear in safe environments. However, the neurobiological mechanisms underlying threat generalization after a traumatic experience and the role of stress hormones in this process remain poorly understood. METHODS We examined the influence of glucocorticoid hormones on the strength and specificity of conditioned fear memory at the level of sparsely distributed dentate gyrus (DG) engram cells in male mice. RESULTS We found that elevating glucocorticoid hormones after fear conditioning induces a generalized contextual fear response. This was accompanied by a selective and persistent increase in the excitability and number of activated DG granule cells. Selective chemogenetic suppression of these sparse cells in the DG prevented glucocorticoid-induced fear generalization and restored contextual memory specificity, while leaving expression of auditory fear memory unaffected. CONCLUSIONS These results implicate the sparse ensemble of DG engram cells as a critical cellular substrate underlying fear generalization induced by glucocorticoid stress hormones.
Collapse
Affiliation(s)
- Sylvie L Lesuis
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Niek Brosens
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Immerzeel
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Miodrag Mitrić
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pascal Bielefeld
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlos P Fitzsimons
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Santos-Costa N, Baptista-de-Souza D, Canto-de-Souza L, Fresca da Costa V, Nunes-de-Souza RL. Glutamatergic Neurotransmission Controls the Functional Lateralization of the mPFC in the Modulation of Anxiety Induced by Social Defeat Stress in Male Mice. Front Behav Neurosci 2021; 15:695735. [PMID: 34497496 PMCID: PMC8419264 DOI: 10.3389/fnbeh.2021.695735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022] Open
Abstract
The rodent medial prefrontal cortex (mPFC) is anatomically divided into cingulate (Cg1), prelimbic (PrL), and infralimbic (IL) subareas. The left and right mPFC (L and RmPFC) process emotional responses induced by stress-related stimuli, and LmPFC and RmPFC inhibition elicit anxiogenesis and anxiolysis, respectively. Here we sought to investigate (i) the mPFC functional laterality on social avoidance/anxiogenic-like behaviors in male mice subjected to chronic social defeat stress (SDS), (ii) the effects of left prelimbic (PrL) inhibition (with local injection of CoCl2) on the RmPFC glutamatergic neuronal activation pattern (immunofluorescence assay), and (iii) the effects of the dorsal right mPFC (Cg1 + PrL) NMDA receptor blockade (with local injection of AP7) on the anxiety induced by left dorsal mPFC inhibition in mice exposed to the elevated plus maze (EPM). Results showed that chronic SDS induced anxiogenic-like behaviors followed by the rise of ΔFosB labeling and by ΔFosB + CaMKII double-labeling bilaterally in the Cg1 and IL subareas of the mPFC. Chronic SDS also increased ΔFosB and by ΔFosB + CaMKII labeling only on the right PrL. Also, the left PrL inhibition increased cFos + CaMKII labeling in the contralateral PrL and IL. Moreover, anxiogenesis induced by the left PrL inhibition was blocked by NMDA receptor antagonist AP7 injected into the right PrL. These findings suggest the lateralized control of the glutamatergic neurotransmission in the modulation of emotional-like responses in mice subjected to chronic SDS.
Collapse
Affiliation(s)
- Nathália Santos-Costa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar- Universidade Estadual Paulista, São Carlos, Brazil
| | - Daniela Baptista-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Vinícius Fresca da Costa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar- Universidade Estadual Paulista, São Carlos, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar- Universidade Estadual Paulista, São Carlos, Brazil
| |
Collapse
|
40
|
Skovbjerg G, Roostalu U, Hansen HH, Lutz TA, Le Foll C, Salinas CG, Skytte JL, Jelsing J, Vrang N, Hecksher-Sørensen J. Whole-brain mapping of amylin-induced neuronal activity in receptor activity-modifying protein 1/3 knockout mice. Eur J Neurosci 2021; 54:4154-4166. [PMID: 33905587 DOI: 10.1111/ejn.15254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 09/29/2022]
Abstract
The pancreatic hormone amylin plays a central role in regulating energy homeostasis and glycaemic control by stimulating satiation and reducing food reward, making amylin receptor agonists attractive for the treatment of metabolic diseases. Amylin receptors consist of heterodimerized complexes of the calcitonin receptor and receptor-activity modifying proteins subtype 1-3 (RAMP1-3). Neuronal activation in response to amylin dosing has been well characterized, but only in selected regions expressing high levels of RAMPs. The current study identifies global brain-wide changes in response to amylin and by comparing wild type and RAMP1/3 knockout mice reveals the importance of RAMP1/3 in mediating this response. Amylin dosing resulted in neuronal activation as measured by an increase in c-Fos labelled cells in 20 brain regions, altogether making up the circuitry of neuronal appetite regulation (e.g., area postrema (AP), nucleus of the solitary tract (NTS), parabrachial nucleus (PB), and central amygdala (CEA)). c-Fos response was also detected in distinct nuclei across the brain that typically have not been linked with amylin signalling. In RAMP1/3 knockout amylin induced low-level neuronal activation in seven regions, including the AP, NTS and PB, indicating the existence of RAMP1/3-independent mechanisms of amylin response. Under basal conditions RAMP1/3 knockout mice show reduced neuronal activity in the hippocampal formation as well as reduced hippocampal volume, suggesting a role for RAMP1/3 in hippocampal physiology and maintenance. Altogether these data provide a global map of amylin response in the mouse brain and establishes the significance of RAMP1/3 receptors in relaying this response.
Collapse
Affiliation(s)
| | | | | | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Food-Seeking Behavior Is Mediated by Fos-Expressing Neuronal Ensembles Formed at First Learning in Rats. eNeuro 2021; 8:ENEURO.0373-20.2021. [PMID: 33472867 PMCID: PMC8174054 DOI: 10.1523/eneuro.0373-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022] Open
Abstract
Neuronal ensembles in the infralimbic cortex (IL) develop after prolonged food self-administration training. However, rats demonstrate evidence of learning the food self-administration response as early as day 1, with responding quickly increasing to asymptotic levels. Since the contribution of individual brain regions to task performance shifts over the course of training, it remains unclear whether IL ensembles are gradually formed and refined over the course of extensive operant training, or whether functionally-relevant ensembles might be recruited and formed as early as the initial acquisition of food self-administration behavior. Here, we aimed to determine the role of IL ensembles at the earliest possible point after demonstrable learning of a response-outcome association. We first allowed rats to lever press for palatable food pellets and stopped training rats once their behavior evidenced the response-outcome association (learners). We compared their food-seeking behavior and neuronal activation (Fos protein expression) to similarly trained rats that did not form this association (non-learners). Learners had greater food-seeking behavior and neuronal activation within the medial prefrontal cortex (mPFC), suggesting that mPFC subregions might encode initial food self-administration memories. To test the functional relevance of mPFC Fos-expressing ensembles to subsequent food seeking, we tested region-wide inactivation of the IL using muscimol+baclofen and neuronal ensemble-specific ablation using the Daun02 inactivation procedure. Both region-wide inactivation and ensemble-specific inactivation of the IL significantly decreased food seeking. These data suggest that IL neuronal ensembles form during initial learning of food self-administration behavior, and furthermore, that these ensembles play a functional role in food seeking.
Collapse
|
42
|
Gantz SC, Ortiz MM, Belilos AJ, Moussawi K. Excitation of medium spiny neurons by 'inhibitory' ultrapotent chemogenetics via shifts in chloride reversal potential. eLife 2021; 10:64241. [PMID: 33822716 PMCID: PMC8024007 DOI: 10.7554/elife.64241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrapotent chemogenetics, including the chloride-permeable inhibitory PSAM4-GlyR receptor, were recently proposed as a powerful strategy to selectively control neuronal activity in awake, behaving animals. We aimed to validate the inhibitory function of PSAM4-GlyR in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) in the ventral striatum. Activation of PSAM4-GlyR with the uPSEM792 ligand enhanced rather than suppressed the activity of D1-MSNs in vivo as indicated by increased c-fos expression in D1-MSNs and in vitro as indicated by cell-attached recordings from D1-MSNs in mouse brain slices. Whole-cell recordings showed that activation of PSAM4-GlyR depolarized D1-MSNs, attenuated GABAergic inhibition, and shifted the reversal potential of PSAM4-GlyR current to more depolarized potentials, perpetuating the depolarizing effect of receptor activation. These data show that 'inhibitory' PSAM4-GlyR chemogenetics may activate certain cell types and highlight the pitfalls of utilizing chloride conductances to inhibit neurons.
Collapse
Affiliation(s)
- Stephanie C Gantz
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Maria M Ortiz
- Biological and Biomedical Neuroscience Program, University of North Carolina, Chapel Hill, United States
| | | | - Khaled Moussawi
- National Institute on Drug Abuse, Baltimore, United States.,Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
43
|
Mukherjee D, Gonzales BJ, Ashwal-Fluss R, Turm H, Groysman M, Citri A. Egr2 induction in spiny projection neurons of the ventrolateral striatum contributes to cocaine place preference in mice. eLife 2021; 10:65228. [PMID: 33724178 PMCID: PMC8057818 DOI: 10.7554/elife.65228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Drug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking. The human brain is ever changing, constantly rewiring itself in response to new experiences, knowledge or information from the environment. Addictive drugs such as cocaine can hijack the genetic mechanisms responsible for this plasticity, creating dangerous, obsessive drug-seeking and consuming behaviors. Cocaine-induced plasticity is difficult to apprehend, however, as brain regions or even cell populations can react differently to the compound. For instance, sub-regions in the striatum – the brain area that responds to rewards and helps to plan movement – show distinct responses during progressive exposure to cocaine. And while researchers know that the drug immediately changes how neurons switch certain genes on and off, it is still unclear how these genetic modifications later affect behavior. Mukherjee, Gonzales et al. explored these questions at different scales, first focusing on how progressive cocaine exposure changed the way various gene programs were activated across the entire brain. This revealed that programs in the striatum were the most affected by the drug. Examining this region more closely showed that cocaine switches on genes in specific ‘spiny projection’ neuron populations, depending on where these cells are located and the drug history of the mouse. Finally, Mukherjee, Gonzales et al. used genetically modified mice to piece together cocaine exposure, genetic changes and modifications in behavior. These experiments revealed that the drive to seek cocaine depended on activation of the Egr2 gene in populations of spiny projection neurons in a specific sub-region of the striatum. The gene, which codes for a protein that regulates how genes are switched on and off, was itself strongly activated by cocaine intake. Cocaine addiction can have devastating consequences for individuals. Grasping how this drug alters the brain could pave the way for new treatments, while also providing information on the basic mechanisms underlying brain plasticity.
Collapse
Affiliation(s)
- Diptendu Mukherjee
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Jerry Gonzales
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Ashwal-Fluss
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Hagit Turm
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, Toronto, Canada
| |
Collapse
|
44
|
Salery M, Godino A, Nestler EJ. Drug-activated cells: From immediate early genes to neuronal ensembles in addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 90:173-216. [PMID: 33706932 DOI: 10.1016/bs.apha.2020.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beyond their rapid rewarding effects, drugs of abuse can durably alter an individual's response to their environment as illustrated by the compulsive drug seeking and risk of relapse triggered by drug-associated stimuli. The persistence of these associations even long after cessation of drug use demonstrates the enduring mark left by drugs on brain reward circuits. However, within these circuits, neuronal populations are differently affected by drug exposure and growing evidence indicates that relatively small subsets of neurons might be involved in the encoding and expression of drug-mediated associations. The identification of sparse neuronal populations recruited in response to drug exposure has benefited greatly from the study of immediate early genes (IEGs) whose induction is critical in initiating plasticity programs in recently activated neurons. In particular, the development of technologies to manipulate IEG-expressing cells has been fundamental to implicate broadly distributed neuronal ensembles coincidently activated by either drugs or drug-associated stimuli and to then causally establish their involvement in drug responses. In this review, we summarize the literature regarding IEG regulation in different learning paradigms and addiction models to highlight their role as a marker of activity and plasticity. As the exploration of neuronal ensembles in addiction improves our understanding of drug-associated memory encoding, it also raises several questions regarding the cellular and molecular characteristics of these discrete neuronal populations as they become incorporated in drug-associated neuronal ensembles. We review recent efforts towards this goal and discuss how they will offer a more comprehensive understanding of addiction pathophysiology.
Collapse
Affiliation(s)
- Marine Salery
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
45
|
Wandres M, Pfarr S, Molnár B, Schöllkopf U, Ercsey-Ravasz M, Sommer WH, Körber C. Alcohol and sweet reward are encoded by distinct meta-ensembles. Neuropharmacology 2021; 195:108496. [PMID: 33582149 DOI: 10.1016/j.neuropharm.2021.108496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 01/14/2023]
Abstract
Cue-reward associations form distinct memories that can drive appetitive behaviors and cravings for both drugs and natural rewards. It is still unclear how such memories are encoded in the brain's reward system. We trained rats to concurrently self-administer either alcohol or a sweet saccharin solution as drug or natural rewards, respectively. Memory recall due to cue exposure reactivated reward-associated functional ensembles in reward-related brain regions, marked by a neural cFos response. While the local ensembles activated by cue presentation for either reward consisted of similar numbers of neurons, using advanced statistical network theory, we found robust reward-specific co-activation patterns across brain regions. Interestingly, the resulting meta-ensemble networks differed by the most influential regions, which in case of saccharin comprised the prefrontal cortex, while for alcohol seeking control shifted to insular cortex with strong involvement of the amygdala. Our results support the view of memory representation as a differential co-activation of local neuronal ensembles. This article is part of the special issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- Miriam Wandres
- Institute of Anatomy and Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Simone Pfarr
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Botond Molnár
- Faculty of Mathematics and Informatics, Babeş-Bolyai University, Cluj-Napoca, Romania; Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Network Science Lab, Cluj-Napoca, Romania
| | - Ursula Schöllkopf
- Institute of Anatomy and Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Maria Ercsey-Ravasz
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Network Science Lab, Cluj-Napoca, Romania
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany; Department of Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany.
| | - Christoph Körber
- Institute of Anatomy and Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|
46
|
Chow JJ, Hofford RS, Beckmann JS. Neuronal activity associated with cocaine preference: Effects of differential cocaine intake. Neuropharmacology 2020; 184:108441. [PMID: 33340530 DOI: 10.1016/j.neuropharm.2020.108441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Differences in overall cocaine intake can directly affect neuroadaptations, and this relationship can make it difficult to interpret neurobiological changes seen in drug-choice studies, since drug intake varies between subjects. Herein, a choice procedure that controls for cocaine intake was utilized to explore if neuronal activity, measured as cFos expression in the orbitofrontal cortex (OFC) and nucleus accumbens (NAc), was reflective of preference. Results demonstrated that cFos expression, in both the OFC and NAc, was independent of cocaine preference when cocaine intake was kept constant across individuals. However, when cocaine intake was systematically varied, the expression of cFos associated with cocaine preference was related to overall cocaine intake in the OFC, but not the NAc. Altogether, these results demonstrate that cocaine intake during choice can affect neurobiological outcome measures; thus, the neurobehavioral mechanisms underlying cocaine preference may be better isolated when controlling for cocaine frequency and intake. In all, some caution is warranted when interpreting results from choice studies evaluating the neurobehavioral mechanisms that underlie drug preference when drug frequency and intake are uncontrolled, and future research is needed to determine the role of drug frequency and intake on neurobiological measures associated with drug choice.
Collapse
Affiliation(s)
- Jonathan J Chow
- Department of Psychology, University of Kentucky, 741 S. Limestone, Lexington, KY, 40536, USA.
| | - Rebecca S Hofford
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Joshua S Beckmann
- Department of Psychology, University of Kentucky, 741 S. Limestone, Lexington, KY, 40536, USA.
| |
Collapse
|
47
|
Ponzoni L, Teh MT, Torres-Perez JV, Brennan CH, Braida D, Sala M. Increased Response to 3,4-Methylenedioxymethamphetamine (MDMA) Reward and Altered Gene Expression in Zebrafish During Short- and Long-Term Nicotine Withdrawal. Mol Neurobiol 2020; 58:1650-1663. [PMID: 33236326 DOI: 10.1007/s12035-020-02225-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023]
Abstract
An interactive effect between nicotine and 3,4-methylenedioxymethamphetamine (MDMA) has been reported but the mechanism underlying such interaction is not completely understood. This study used zebrafish to explore gene expression changes associated with altered sensitivity to the rewarding effects of MDMA following 2-week exposure to nicotine and 2-60 days of nicotine withdrawal. Reward responses to MDMA were assessed using a conditioned place preference (CPP) paradigm and gene expression was evaluated using quantitative real-time PCR of mRNA from whole brain samples from drug-treated and control adult zebrafish. Zebrafish pre-exposed for 2 weeks to nicotine showed increased conditioned place preference in response to low-dose, 0.1 mg/kg, MDMA compared to un-exposed fish at 2, 7, 30 and 60 days withdrawal. Pre-exposure to nicotine for 2 weeks induced a significant increase of c-Fos and vasopressin receptor expression but a decrease of D3 dopaminergic and oxytocin receptor expression at 2 days of withdrawal. C-Fos mRNA increased also at 7, 30, 60 days of withdrawal. Nicotine pre-exposed zebrafish submitted to MDMA-induced CPP showed an increase in expression of p35 at day 2, α4 at day 30, vasopressin at day 7 and D3 dopaminergic receptor at day 7, 30 and 60. These gene alterations could account for the altered sensitivity to the rewarding effects of MDMA in nicotine pre-exposed fish, suggesting that zebrafish have an altered ability to modulate behaviour as a function of reward during nicotine withdrawal.
Collapse
Affiliation(s)
- Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, England, UK
| | - Jose V Torres-Perez
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- Neuroscience Institute, CNR, Via Vanvitelli 32, 20129, Milan, Italy.
| |
Collapse
|
48
|
Zhou Y, Yan E, Cheng D, Zhu H, Liu Z, Chen X, Ma L, Liu X. The Projection From Ventral CA1, Not Prefrontal Cortex, to Nucleus Accumbens Core Mediates Recent Memory Retrieval of Cocaine-Conditioned Place Preference. Front Behav Neurosci 2020; 14:558074. [PMID: 33304246 PMCID: PMC7701212 DOI: 10.3389/fnbeh.2020.558074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/15/2020] [Indexed: 01/15/2023] Open
Abstract
Drug-paired cues inducing memory retrieval by expressing drug-seeking behaviors present a major challenge to drug abstinence. How neural circuits coordinate for drug memory retrieval remains unclear. Here, we report that exposure of the training chamber where cocaine-conditioned place preference (CPP) was performed increased neuronal activity in the core of nucleus accumbens (AcbC), ventral CA1 (vCA1), and medial prefrontal cortex (mPFC), as shown by elevated pERK and c-Fos levels. Chemogenetic inhibition of neuronal activity in the vCA1 and AcbC, but not mPFC, reduced the time spent in the cocaine-paired compartment, suggesting that the vCA1 and AcbC are required for the retrieval of cocaine-CPP memory and are key nodes recruited for cocaine memory storage. Furthermore, chemogenetic inhibition of the AcbC-projecting vCA1 neurons, but not the AcbC-projecting mPFC neurons, decreased the expression of cocaine-CPP. Optogenetic inhibition of the vCA1–AcbC projection, but not the mPFC–AcbC projection, also reduced the preference for the cocaine-paired compartment. Taken together, the cue-induced natural recall of cocaine memory depends on vCA1–AcbC circuits. The connectivity from the vCA1 to the AcbC may store the information of the cue–cocaine reward association critically required for memory retrieval. These data thus provide insights into the neural circuit basis of retrieval of drug-related memory.
Collapse
Affiliation(s)
- Yiming Zhou
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Enhui Yan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Deqin Cheng
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Huiwen Zhu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhiyuan Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xi Chen
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Forget B, Icick R, Robert J, Correia C, Prevost MS, Gielen M, Corringer PJ, Bellivier F, Vorspan F, Besson M, Maskos U. Alterations in nicotinic receptor alpha5 subunit gene differentially impact early and later stages of cocaine addiction: a translational study in transgenic rats and patients. Prog Neurobiol 2020; 197:101898. [PMID: 32841724 DOI: 10.1016/j.pneurobio.2020.101898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
Cocaine addiction is a chronic and relapsing disorder with an important genetic component. Human candidate gene association studies showed that the single nucleotide polymorphism (SNP) rs16969968 in the α5 subunit (α5SNP) of nicotinic acetylcholine receptors (nAChRs), previously associated with increased tobacco dependence, was linked to a lower prevalence of cocaine use disorder (CUD). Three additional SNPs in the α5 subunit, previously shown to modify α5 mRNA levels, were also associated with CUD, suggesting an important role of the subunit in this pathology. To investigate the link between this subunit and CUD, we submitted rats knockout for the α5 subunit gene (α5KO), or carrying the α5SNP, to cocaine self-administration (SA) and showed that the acquisition of cocaine-SA was impaired in α5SNP rats while α5KO rats exhibited enhanced cocaine-induced relapse associated with altered neuronal activity in the nucleus accumbens. In addition, we observed in a human cohort of patients with CUD that the α5SNP was associated with a slower transition from first cocaine use to CUD. We also identified a novel SNP in the β4 nAChR subunit, part of the same gene cluster in the human genome and potentially altering CHRNA5 expression, associated with shorter time to relapse to cocaine use in patients. In conclusion, the α5SNP is protective against CUD by influencing early stages of cocaine exposure while CHRNA5 expression levels may represent a biomarker for the risk to relapse to cocaine use. Drugs modulating α5 containing nAChR activity may thus represent a novel therapeutic strategy against CUD.
Collapse
Affiliation(s)
- Benoît Forget
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| | - Romain Icick
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France; Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; INSERM UMR_S1144, 4 avenue de l'Observatoire, 75006, Paris, France; Université Sorbonne - Paris - Cité, Paris, France
| | - Jonathan Robert
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Caroline Correia
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Marie S Prevost
- Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marc Gielen
- Université Sorbonne - Paris - Cité, Paris, France; Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Pierre-Jean Corringer
- Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; Université Sorbonne - Paris - Cité, Paris, France; Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; INSERM UMR_S1144, 4 avenue de l'Observatoire, 75006, Paris, France; Université Sorbonne - Paris - Cité, Paris, France
| | - Morgane Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
50
|
Soltani H, Sadat-Shirazi MS, Pakpour B, Ashabi G, Zarrindast MR. Toxic effect of calcium/calmodulin kinase II on anxiety behavior, neuronal firing and plasticity in the male offspring of morphine-abstinent rats. Behav Brain Res 2020; 395:112877. [PMID: 32841609 DOI: 10.1016/j.bbr.2020.112877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Studies have shown that epigenetic changes such as alteration in histone acetylation and DNA methylation in various brain regions play an essential role in anxiety behavior. According to the critical role of calcium/calmodulin protein kinaseII (CaMKII) in these processes, the present study examined the effect of CaMKII inhibitor (KN93) on neuronal activity and level of c-fos in the amygdala and nucleus accumbens (NAC) in the offspring of morphine-exposed parents. Adult male and female Wistar rats received morphine orally (for 21 days). After the washout period (10 days), rats were mated with either drug-naïve or morphine-exposed rats. KN93 was microinjected into the brain of male offspring. The anxiety-like behavior, the neuronal firing rate in the NAC and the amygdala and level of c-fos were assessed by related techniques. Data showed the offspring with one and/or two morphine-abstinent parent(s) had more anxiety-like behavior than the control group. However, the administration of KN-93 decreased anxiety in the offspring of morphine-exposed rats compared with saline-treated groups. The expression level of the c-fos was not significantly altered by the inhibition of CaMKII in the amygdala, but the c-fos level was reduced in the NAC. The neuronal firing rate of these groups was associated with an increase in the amygdala in comparison to the saline groups but was decreased in the NAC. Results showed that CaMKII had a role in anxiety-like behavior in the offspring of morphine-exposed parents, and changes in neuronal firing rate and c-fos level in the NAC might be involved in this process.
Collapse
Affiliation(s)
- Haniyeh Soltani
- Department of Biology, Faculty of Basic Science, University of Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Pakpour
- Department of Biology, Faculty of Basic Science, University of Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Pharmacology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|