1
|
Yang H, Ryu J, Gil Y, Ma Y, Nam KH, Jang SW, Shim S. A role of Lhx2 in the migration and axonal projection of cortical postmitotic neurons in the cortical upper layer of the mouse neocortex. Biochem Biophys Res Commun 2024; 734:150780. [PMID: 39362030 DOI: 10.1016/j.bbrc.2024.150780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The transcription factor LHX2 contains a LIM domain and plays an important role in the development of the vertebrate nervous system. Although much research has been conducted on the function of Lhx2 during cerebral development, its role in postmitotic neuron differentiation in the cerebral cortex remains unknown. Therefore, this study was conducted to determine the function of Lhx2 in dynamic and elaborate developmental processes, including neurogenesis. We first created and confirmed an Lhx2-BAC Gfp transgenic model to three-dimensionally confirm the spatiotemporal expression pattern of Lhx2 during brain development. On this basis, we used the bilateral in utero electroporation technique to express the dominant-negative form of LHX2. LHX2 was confirmed to be important for the migration and callosal projection of postmitotic neurons that form the upper layer of the cerebral cortex during neurogenesis. Additionally, transcriptome analysis confirmed that LHX2 affected the genes involved in neuronal migration and axonal projection. We demonstrated that Lhx2 is important for postmitotic neurons in the cerebral cortex, which migrate to normal positions and extend nerve axons. Taken together, our findings can provide important clues to understanding the relationship between human Lhx2 gene mutations and brain developmental diseases.
Collapse
Affiliation(s)
- Hayoung Yang
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jiho Ryu
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yongjin Gil
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yechan Ma
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
2
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2024:10.1007/s12264-024-01259-2. [PMID: 39023844 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Li CP, Wu S, Sun YQ, Peng XQ, Gong M, Du HZ, Zhang J, Teng ZQ, Wang N, Liu CM. Lhx2 promotes axon regeneration of adult retinal ganglion cells and rescues neurodegeneration in mouse models of glaucoma. Cell Rep Med 2024; 5:101554. [PMID: 38729157 PMCID: PMC11148806 DOI: 10.1016/j.xcrm.2024.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Chang-Ping Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xue-Qi Peng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Maolei Gong
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 450052, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
4
|
Suresh V, Bhattacharya B, Tshuva RY, Danan Gotthold M, Olender T, Bose M, Pradhan SJ, Zeev BB, Smith RS, Tole S, Galande S, Harwell CC, Baizabal JM, Reiner O. PRDM16 co-operates with LHX2 to shape the human brain. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae001. [PMID: 38595939 PMCID: PMC10914218 DOI: 10.1093/oons/kvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 04/11/2024]
Abstract
PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.
Collapse
Affiliation(s)
- Varun Suresh
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India
| | - Bidisha Bhattacharya
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Rami Yair Tshuva
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Miri Danan Gotthold
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Mahima Bose
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India
| | - Saurabh J Pradhan
- Chromatin Biology and Epigenetics Laboratory, Biology Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, 3 Dr. Bohr-Gasse, 1030 Vienna, Austria
| | - Bruria Ben Zeev
- Edmond and Lily Safra Pediatric Hospital, Sheba Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Richard Scott Smith
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India
| | - Sanjeev Galande
- Chromatin Biology and Epigenetics Laboratory, Biology Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Department of Life Sciences, Center of Excellence in Epigenetics, Shiv Nadar University, Shiv Nadar IoE, Gautam Buddha Nagar, Uttar Pradesh - 201314, India
| | - Corey C Harwell
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
- Weill Institute for Neuroscience, 1651 4th St, San Francisco, CA94158, USA
- Department of Neurology, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - José-Manuel Baizabal
- Department of Biology, Indiana University, 1001 E 3rd St., Bloomington, IN 47405, USA
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| |
Collapse
|
5
|
Noack F, Vangelisti S, Ditzer N, Chong F, Albert M, Bonev B. Joint epigenome profiling reveals cell-type-specific gene regulatory programmes in human cortical organoids. Nat Cell Biol 2023; 25:1873-1883. [PMID: 37996647 PMCID: PMC10709149 DOI: 10.1038/s41556-023-01296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Gene expression is regulated by multiple epigenetic mechanisms, which are coordinated in development and disease. However, current multiomics methods are frequently limited to one or two modalities at a time, making it challenging to obtain a comprehensive gene regulatory signature. Here, we describe a method-3D genome, RNA, accessibility and methylation sequencing (3DRAM-seq)-that simultaneously interrogates spatial genome organization, chromatin accessibility and DNA methylation genome-wide and at high resolution. We combine 3DRAM-seq with immunoFACS and RNA sequencing in cortical organoids to map the cell-type-specific regulatory landscape of human neural development across multiple epigenetic layers. Finally, we apply a massively parallel reporter assay to profile cell-type-specific enhancer activity in organoids and to functionally assess the role of key transcription factors for human enhancer activation and function. More broadly, 3DRAM-seq can be used to profile the multimodal epigenetic landscape in rare cell types and different tissues.
Collapse
Affiliation(s)
- Florian Noack
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Silvia Vangelisti
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nora Ditzer
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Faye Chong
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
6
|
Yang Q, Li J, Zeng S, Li Z, Liu X, Li J, Zhou W, Chai Y, Zhou D. Retinal Organoid Models Show Heterozygous Rhodopsin Mutation Favors Endoplasmic Reticulum Stress-Induced Apoptosis in Rods. Stem Cells Dev 2023; 32:681-692. [PMID: 37470211 DOI: 10.1089/scd.2023.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Retinitis pigmentosa (RP) is a prevalent inherited retinal degenerative disease resulting from photoreceptor and pigment epithelial apoptosis. The Rhodopsin (RHO) is the most commonly associated pathogenic gene in RP. However, RHO mutations (c.512C>T P171L) have been infrequently reported, and the RP pathogenesis caused by these mutations remains unclear. The objective of this study was to investigate the impact of RHO (c.512C>T P171L) mutation on retinal cell differentiation and elucidate the underlying mechanisms of RP. An effective retinal organoid induction scheme for inhibiting the Wnt signaling pathway was selected for further experiments, and the established cell line chHES-406 was demonstrated to be heterozygous for RHO c.512C>T, with a normal karyotype and pluripotency potential. Furthermore, the development of chHES-406 organoids may be delayed, and apoptosis detection and co-localization revealed that chHES-406 organoids had more apoptotic cells than chHES-90 in the outer nuclear layer (ONL), mutant RHO protein was mislocalized in the endoplasmic reticulum (ER), and stress-related and apoptotic gene expression increased. Overall, our study elucidated a possible mechanism by which ER stress caused by RHO P171L protein mislocalization may lead to ONL cell apoptosis.
Collapse
Affiliation(s)
- Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, China
| | - Jialin Li
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Sicong Zeng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, China
- Hunan Guangxiu Hospital, School of Medicine, Hunan Normal University, Changsha, China
| | - Zhuo Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Xiao Liu
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jin Li
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Wang Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, China
| | - Yujiao Chai
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, China
| | - Di Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| |
Collapse
|
7
|
Zheng X, Wu B, Liu Y, Simmons SK, Kim K, Clarke GS, Ashiq A, Park J, Wang Z, Tong L, Wang Q, Xu X, Levin JZ, Jin X. Massively parallel in vivo Perturb-seq reveals cell type-specific transcriptional networks in cortical development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558077. [PMID: 37790302 PMCID: PMC10542124 DOI: 10.1101/2023.09.18.558077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Systematic analysis of gene function across diverse cell types in vivo is hindered by two challenges: obtaining sufficient cells from live tissues and accurately identifying each cell's perturbation in high-throughput single-cell assays. Leveraging AAV's versatile cell type tropism and high labeling capacity, we expanded the resolution and scale of in vivo CRISPR screens: allowing phenotypic analysis at single-cell resolution across a multitude of cell types in the embryonic brain, adult brain, and peripheral nervous system. We undertook extensive tests of 86 AAV serotypes, combined with a transposon system, to substantially amplify labeling and accelerate in vivo gene delivery from weeks to days. Using this platform, we performed an in utero genetic screen as proof-of-principle and identified pleiotropic regulatory networks of Foxg1 in cortical development, including Layer 6 corticothalamic neurons where it tightly controls distinct networks essential for cell fate specification. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% (mediated by lentivirus), and achieve analysis of over 30,000 cells in one experiment, thus enabling massively parallel in vivo Perturb-seq. Compatible with various perturbation techniques (CRISPRa/i) and phenotypic measurements (single-cell or spatial multi-omics), our platform presents a flexible, modular approach to interrogate gene function across diverse cell types in vivo, connecting gene variants to their causal functions.
Collapse
Affiliation(s)
- Xinhe Zheng
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Boli Wu
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Yuejia Liu
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Sean K. Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanho Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace S. Clarke
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Abdullah Ashiq
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Joshua Park
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Zhilin Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Liqi Tong
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Qizhao Wang
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Xiangmin Xu
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Joshua Z. Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Jin
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
8
|
Suresh V, Bhattacharya B, Tshuva RY, Danan Gotthold M, Olender T, Bose M, Pradhan SJ, Ben Zeev B, Smith RS, Tole S, Galande S, Harwell C, Baizabal JM, Reiner O. PRDM16 co-operates with LHX2 to shape the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.553065. [PMID: 37609127 PMCID: PMC10441425 DOI: 10.1101/2023.08.12.553065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.
Collapse
|
9
|
Takasugi M, Yoshida Y, Nonaka Y, Ohtani N. Gene expressions associated with longer lifespan and aging exhibit similarity in mammals. Nucleic Acids Res 2023; 51:7205-7219. [PMID: 37351606 PMCID: PMC10415134 DOI: 10.1093/nar/gkad544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Although molecular features underlying aging and species maximum lifespan (MLS) have been comprehensively studied by transcriptome analyses, the actual impact of transcriptome on aging and MLS remains elusive. Here, we found that transcriptional signatures that are associated with mammalian MLS exhibited significant similarity to those of aging. Moreover, transcriptional signatures of longer MLS and aging both exhibited significant similarity to that of longer-lived mouse strains, suggesting that gene expression patterns associated with species MLS contribute to extended lifespan even within a species and that aging-related gene expression changes overall represent adaptations that extend lifespan rather than deterioration. Finally, we found evidence of co-evolution of MLS and promoter sequences of MLS-associated genes, highlighting the evolutionary contribution of specific transcription factor binding motifs such as that of E2F1 in shaping MLS-associated gene expression signature. Our results highlight the importance of focusing on adaptive aspects of aging transcriptome and demonstrate that cross-species genomics can be a powerful approach for understanding adaptive aging transcriptome.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Yuya Yoshida
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Nonaka
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
10
|
Suresh V, Muralidharan B, Pradhan SJ, Bose M, D’Souza L, Parichha A, Reddy PC, Galande S, Tole S. Regulation of chromatin accessibility and gene expression in the developing hippocampal primordium by LIM-HD transcription factor LHX2. PLoS Genet 2023; 19:e1010874. [PMID: 37594984 PMCID: PMC10482279 DOI: 10.1371/journal.pgen.1010874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/06/2023] [Accepted: 07/17/2023] [Indexed: 08/20/2023] Open
Abstract
In the mammalian cerebral cortex, the hippocampal primordium (Hcp) occupies a discrete position in the dorsal telencephalic neuroepithelium adjacent to the neocortical primordium (Ncp). We examined transcriptomic and chromatin-level features that distinguish the Hcp from the Ncp in the mouse during the early neurogenic period, embryonic day (E)12.5. ATAC-seq revealed that the Hcp was more accessible than the Ncp at this stage. Motif analysis of the differentially accessible loci in these tissues revealed LHX2 as a candidate transcription factor for modulating gene regulatory networks (GRNs). We analyzed LHX2 occupancy profiles and compared these with transcriptomic data from control and Lhx2 mutant Hcp and Ncp at E12.5. Our results revealed that LHX2 directly regulates distinct genes in the Hcp and Ncp within a set of common pathways that control fundamental aspects of development namely pluripotency, axon pathfinding, Wnt, and Hippo signaling. Loss of Lhx2 caused a decrease in accessibility, specifically in hippocampal chromatin, suggesting that this factor may play a unique role in hippocampal development. We identified 14 genes that were preferentially enriched in the Hcp, for which LHX2 regulates both chromatin accessibility and mRNA expression, which have not thus far been examined in hippocampal development. Together, these results provide mechanistic insight into how LHX2 function in the Hcp may contribute to the process by which the hippocampus acquires features distinct from the neocortex.
Collapse
Affiliation(s)
- Varun Suresh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Bhavana Muralidharan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Saurabh J. Pradhan
- Chromatin Biology and Epigenetics Laboratory, Biology department, Indian Institute of Science Education and Research Pune, India
| | - Mahima Bose
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Leora D’Souza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arpan Parichha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Puli Chandramouli Reddy
- Chromatin Biology and Epigenetics Laboratory, Biology department, Indian Institute of Science Education and Research Pune, India
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Delhi NCR, India
| | - Sanjeev Galande
- Chromatin Biology and Epigenetics Laboratory, Biology department, Indian Institute of Science Education and Research Pune, India
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Delhi NCR, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
11
|
Huilgol D, Russ JB, Srivas S, Huang ZJ. The progenitor basis of cortical projection neuron diversity. Curr Opin Neurobiol 2023; 81:102726. [PMID: 37148649 PMCID: PMC10557529 DOI: 10.1016/j.conb.2023.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
Diverse glutamatergic projection neurons (PNs) mediate myriad processing streams and output channels of the cerebral cortex. Yet, how different types of neural progenitors, such as radial glia (RGs) and intermediate progenitors (IPs), produce PN diversity, and hierarchical organization remains unclear. A fundamental issue is whether RGs constitute a homogeneous, multipotent lineage capable of generating all major PN types through a temporally regulated developmental program, or whether RGs comprise multiple transcriptionally heterogenous pools, each fated to generate a subset of PNs. Beyond RGs, the role of IPs in PN diversification remains underexplored. Addressing these questions requires tracking PN developmental trajectories with cell-type resolution - from transcription factor-defined RGs and IPs to their PN progeny, which are defined not only by laminar location but also by projection patterns and gene expression. Advances in cell-type resolution genetic fate mapping, axon tracing, and spatial transcriptomics may provide the technical capability for answering these fundamental questions.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey B Russ
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pediatrics, Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sweta Srivas
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27708, USA.
| |
Collapse
|
12
|
Kim C, Cnaani A, Kültz D. Removal of evolutionarily conserved functional MYC domains in a tilapia cell line using a vector-based CRISPR/Cas9 system. Sci Rep 2023; 13:12086. [PMID: 37495710 PMCID: PMC10371998 DOI: 10.1038/s41598-023-37928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
MYC transcription factors have critical roles in facilitating a variety of cellular functions that have been highly conserved among species during evolution. However, despite circumstantial evidence for an involvement of MYC in animal osmoregulation, mechanistic links between MYC function and osmoregulation are missing. Mozambique tilapia (Oreochromis mossambicus) represents an excellent model system to study these links because it is highly euryhaline and highly tolerant to osmotic (salinity) stress at both the whole organism and cellular levels of biological organization. Here, we utilize an O. mossambicus brain cell line and an optimized vector-based CRISPR/Cas9 system to functionally disrupt MYC in the tilapia genome and to establish causal links between MYC and cell functions, including cellular osmoregulation. A cell isolation and dilution strategy yielded polyclonal myca (a gene encoding MYC) knockout (ko) cell pools with low genetic variability and high gene editing efficiencies (as high as 98.2%). Subsequent isolation and dilution of cells from these pools produced a myca ko cell line harboring a 1-bp deletion that caused a frameshift mutation. This frameshift functionally inactivated the transcriptional regulatory and DNA-binding domains predicted by bioinformatics and structural analyses. Both the polyclonal and monoclonal myca ko cell lines were viable, propagated well in standard medium, and differed from wild-type cells in morphology. As such, they represent a new tool for causally linking myca to cellular osmoregulation and other cell functions.
Collapse
Affiliation(s)
- Chanhee Kim
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Schmid CM, Gregor A, Costain G, Morel CF, Massingham L, Schwab J, Quélin C, Faoucher M, Kaplan J, Procopio R, Saunders CJ, Cohen ASA, Lemire G, Sacharow S, O'Donnell-Luria A, Segal RJ, Kianmahd Shamshoni J, Schweitzer D, Ebrahimi-Fakhari D, Monaghan K, Palculict TB, Napier MP, Tao A, Isidor B, Moradkhani K, Reis A, Sticht H, Chung WK, Zweier C. LHX2 haploinsufficiency causes a variable neurodevelopmental disorder. Genet Med 2023; 25:100839. [PMID: 37057675 DOI: 10.1016/j.gim.2023.100839] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
PURPOSE LHX2 encodes the LIM homeobox 2 transcription factor (LHX2), which is highly expressed in brain and well conserved across species, but it has not been clearly linked to neurodevelopmental disorders (NDDs) to date. METHODS Through international collaboration, we identified 19 individuals from 18 families with variable neurodevelopmental phenotypes, carrying a small chromosomal deletion, likely gene-disrupting or missense variants in LHX2. Functional consequences of missense variants were investigated in cellular systems. RESULTS Affected individuals presented with developmental and/or behavioral abnormalities, autism spectrum disorder, variable intellectual disability, and microcephaly. We observed nucleolar accumulation for 2 missense variants located within the DNA-binding HOX domain, impaired interaction with co-factor LDB1 for another variant located in the protein-protein interaction-mediating LIM domain, and impaired transcriptional activation by luciferase assay for 4 missense variants. CONCLUSION We implicate LHX2 haploinsufficiency by deletion and likely gene-disrupting variants as causative for a variable NDD. Our findings suggest a loss-of-function mechanism also for likely pathogenic LHX2 missense variants. Together, our observations underscore the importance of LHX2 in the nervous system and for variable neurodevelopmental phenotypes.
Collapse
Affiliation(s)
- Cosima M Schmid
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland; Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Anne Gregor
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland; Department for Biomedical Research, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Chantal F Morel
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Massingham
- Division of Human Genetics, Department of Pediatrics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI
| | - Jennifer Schwab
- Division of Human Genetics, Department of Pediatrics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI
| | - Chloé Quélin
- Clinical Genetics Department, CHU Hôspital Sud, Rennes, France
| | - Marie Faoucher
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France; Univ Rennes, CNRS, IGDR, UMR 6290, Rennes, France
| | - Julie Kaplan
- Division of Genetics, Department of Pediatrics, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Rebecca Procopio
- Division of Genetics, Department of Pediatrics, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Carol J Saunders
- Genomic Medicine Center, Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO; University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Ana S A Cohen
- Genomic Medicine Center, Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO; University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Gabrielle Lemire
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Stephanie Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Anne O'Donnell-Luria
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ranit Jaron Segal
- Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Jessica Kianmahd Shamshoni
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Daniela Schweitzer
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | | | | | - Alice Tao
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | | | | | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland; Department for Biomedical Research, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Sekine K, Onoguchi M, Hamada M. Transposons contribute to the acquisition of cell type-specific cis-elements in the brain. Commun Biol 2023; 6:631. [PMID: 37301950 PMCID: PMC10257727 DOI: 10.1038/s42003-023-04989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mammalian brains have evolved in stages over a long history to acquire higher functions. Recently, several transposable element (TE) families have been shown to evolve into cis-regulatory elements of brain-specific genes. However, it is not fully understood how TEs are important for gene regulatory networks. Here, we performed a single-cell level analysis using public data of scATAC-seq to discover TE-derived cis-elements that are important for specific cell types. Our results suggest that DNA elements derived from TEs, MER130 and MamRep434, can function as transcription factor-binding sites based on their internal motifs for Neurod2 and Lhx2, respectively, especially in glutamatergic neuronal progenitors. Furthermore, MER130- and MamRep434-derived cis-elements were amplified in the ancestors of Amniota and Eutheria, respectively. These results suggest that the acquisition of cis-elements with TEs occurred in different stages during evolution and may contribute to the acquisition of different functions or morphologies in the brain.
Collapse
Affiliation(s)
- Kotaro Sekine
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Masahiro Onoguchi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
| | - Michiaki Hamada
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
- Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
15
|
Singh N, Singh D, Bhide A, Sharma R, Bhowmick S, Patel V, Modi D. LHX2 in germ cells control tubular organization in the developing mouse testis. Exp Cell Res 2023; 425:113511. [PMID: 36796745 DOI: 10.1016/j.yexcr.2023.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/01/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
In the gonads of mammalian XY embryos, the organization of cords is the hallmark of testis development. This organization is thought to be controlled by interactions of the Sertoli cells, endothelial and interstitial cells with little or no role of germ cells. Challenging this notion, herein we show that the germ cells play an active role in the organization of the testicular tubules. We observed that the LIM-homeobox gene, Lhx2 is expressed in the germ cells of the developing testis between E12.5-E15.5. In Lhx2 knockout-fetal testis there was altered expression of several genes not just in germ cells but also in the supporting (Sertoli) cells, endothelial cells, and interstitial cells. Further, loss of Lhx2 led to disrupted endothelial cell migration and expansion of interstitial cells in the XY gonads. The cords in the developing testis of Lhx2 knockout embryos are disorganized with a disrupted basement membrane. Together, our results show an important role of Lhx2 in testicular development and imply the involvement of germ cells in the tubular organization of the differentiating testis. The preprint version of this manuscript is available at https://doi.org/10.1101/2022.12.29.522214.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Shilpa Bhowmick
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Vainav Patel
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
16
|
Wang CF, Yang JW, Zhuang ZH, Hsing HW, Luhmann HJ, Chou SJ. Activity-dependent feedback regulation of thalamocortical axon development by Lhx2 in cortical layer 4 neurons. Cereb Cortex 2023; 33:1693-1707. [PMID: 35512682 DOI: 10.1093/cercor/bhac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Establishing neuronal circuits requires interactions between pre- and postsynaptic neurons. While presynaptic neurons were shown to play instructive roles for the postsynaptic neurons, how postsynaptic neurons provide feedback to regulate the presynaptic neuronal development remains elusive. To elucidate the mechanisms for circuit formation, we study the development of barrel cortex (the primary sensory cortex, S1), whose development is instructed by presynaptic thalamocortical axons (TCAs). In the first postnatal weeks, TCA terminals arborize in layer (L) 4 to fill in the barrel center, but it is unclear how TCA development is regulated. Here, we reported that the deletion of Lhx2 specifically in the cortical neurons in the conditional knockout (cKO) leads to TCA arborization defects, which is accompanied with deficits in sensory-evoked and spontaneous cortical activities and impaired lesion-induced plasticity following early whisker follicle ablation. Reintroducing Lhx2 back in L4 neurons in cKO ameliorated TCA arborization and plasticity defects. By manipulating L4 neuronal activity, we further demonstrated that Lhx2 induces TCA arborization via an activity-dependent mechanism. Additionally, we identified the extracellular signaling protein Sema7a as an activity-dependent downstream target of Lhx2 in regulating TCA branching. Thus, we discovered a bottom-up feedback mechanism for the L4 neurons to regulate TCA development.
Collapse
Affiliation(s)
- Chia-Fang Wang
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Zi-Hui Zhuang
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Wei Hsing
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Shen-Ju Chou
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Benchmarking brain organoid recapitulation of fetal corticogenesis. Transl Psychiatry 2022; 12:520. [PMID: 36539399 PMCID: PMC9767930 DOI: 10.1038/s41398-022-02279-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Brain organoids are becoming increasingly relevant to dissect the molecular mechanisms underlying psychiatric and neurological conditions. The in vitro recapitulation of key features of human brain development affords the unique opportunity of investigating the developmental antecedents of neuropsychiatric conditions in the context of the actual patients' genetic backgrounds. Specifically, multiple strategies of brain organoid (BO) differentiation have enabled the investigation of human cerebral corticogenesis in vitro with increasing accuracy. However, the field lacks a systematic investigation of how closely the gene co-expression patterns seen in cultured BO from different protocols match those observed in fetal cortex, a paramount information for ensuring the sensitivity and accuracy of modeling disease trajectories. Here we benchmark BO against fetal corticogenesis by integrating transcriptomes from in-house differentiated cortical BO (CBO), other BO systems, human fetal brain samples processed in-house, and prenatal cortices from the BrainSpan Atlas. We identified co-expression patterns and prioritized hubs of human corticogenesis and CBO differentiation, highlighting both well-preserved and discordant trends across BO protocols. We evaluated the relevance of identified gene modules for neurodevelopmental disorders and psychiatric conditions finding significant enrichment of disease risk genes especially in modules related to neuronal maturation and synapsis development. The longitudinal transcriptomic analysis of CBO revealed a two-step differentiation composed of a fast-evolving phase, corresponding to the appearance of the main cell populations of the cortex, followed by a slow-evolving one characterized by milder transcriptional changes. Finally, we observed heterochronicity of differentiation across BO models compared to fetal cortex. Our approach provides a framework to directly compare the extent of in vivo/in vitro alignment of neurodevelopmentally relevant processes and their attending temporalities, structured as a resource to query for modeling human corticogenesis and the neuropsychiatric outcomes of its alterations.
Collapse
|
18
|
Li X, Gordon PJ, Gaynes JA, Fuller AW, Ringuette R, Santiago CP, Wallace V, Blackshaw S, Li P, Levine EM. Lhx2 is a progenitor-intrinsic modulator of Sonic Hedgehog signaling during early retinal neurogenesis. eLife 2022; 11:e78342. [PMID: 36459481 PMCID: PMC9718532 DOI: 10.7554/elife.78342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
An important question in organogenesis is how tissue-specific transcription factors interact with signaling pathways. In some cases, transcription factors define the context for how signaling pathways elicit tissue- or cell-specific responses, and in others, they influence signaling through transcriptional regulation of signaling components or accessory factors. We previously showed that during optic vesicle patterning, the Lim-homeodomain transcription factor Lhx2 has a contextual role by linking the Sonic Hedgehog (Shh) pathway to downstream targets without regulating the pathway itself. Here, we show that during early retinal neurogenesis in mice, Lhx2 is a multilevel regulator of Shh signaling. Specifically, Lhx2 acts cell autonomously to control the expression of pathway genes required for efficient activation and maintenance of signaling in retinal progenitor cells. The Shh co-receptors Cdon and Gas1 are candidate direct targets of Lhx2 that mediate pathway activation, whereas Lhx2 directly or indirectly promotes the expression of other pathway components important for activation and sustained signaling. We also provide genetic evidence suggesting that Lhx2 has a contextual role by linking the Shh pathway to downstream targets. Through these interactions, Lhx2 establishes the competence for Shh signaling in retinal progenitors and the context for the pathway to promote early retinal neurogenesis. The temporally distinct interactions between Lhx2 and the Shh pathway in retinal development illustrate how transcription factors and signaling pathways adapt to meet stage-dependent requirements of tissue formation.
Collapse
Affiliation(s)
- Xiaodong Li
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
| | - Patrick J Gordon
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - John A Gaynes
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - Alexandra W Fuller
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Randy Ringuette
- Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Valerie Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health NetworkTorontoCanada
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pulin Li
- Whitehead Institute of Biomedical Research, Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Edward M Levine
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
19
|
Samara A, Spildrejorde M, Sharma A, Falck M, Leithaug M, Modafferi S, Bjørnstad PM, Acharya G, Gervin K, Lyle R, Eskeland R. A multi-omics approach to visualize early neuronal differentiation from hESCs in 4D. iScience 2022; 25:105279. [PMID: 36304110 PMCID: PMC9593815 DOI: 10.1016/j.isci.2022.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal differentiation of pluripotent stem cells is an established method to study physiology, disease, and medication safety. However, the sequence of events in human neuronal differentiation and the ability of in vitro models to recapitulate early brain development are poorly understood. We developed a protocol optimized for the study of early human brain development and neuropharmacological applications. We comprehensively characterized gene expression and epigenetic profiles at four timepoints, because the cells differentiate from embryonic stem cells towards a heterogeneous population of progenitors, immature and mature neurons bearing telencephalic signatures. A multi-omics roadmap of neuronal differentiation, combined with searchable interactive gene analysis tools, allows for extensive exploration of early neuronal development and the effect of medications.
Collapse
Affiliation(s)
- Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital Karolinska University Hospital, Stockholm, Sweden
| | - Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
21
|
Perdomo-Sabogal A, Trakooljul N, Hadlich F, Murani E, Wimmers K, Ponsuksili S. DNA methylation landscapes from pig's limbic structures underline regulatory mechanisms relevant for brain plasticity. Sci Rep 2022; 12:16293. [PMID: 36175587 PMCID: PMC9522933 DOI: 10.1038/s41598-022-20682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Epigenetic dynamics are essential for reconciling stress-induced responses in neuro-endocrine routes between the limbic brain and adrenal gland. CpG methylation associates with the initiation and end of regulatory mechanisms underlying responses critical for survival, and learning. Using Reduced Representation Bisulfite Sequencing, we identified methylation changes of functional relevance for mediating tissue-specific responses in the hippocampus, amygdala, hypothalamus, and adrenal gland in pigs. We identified 4186 differentially methylated CpGs across all tissues, remarkably, enriched for promoters of transcription factors (TFs) of the homeo domain and zinc finger classes. We also detected 5190 differentially methylated regions (DMRs, 748 Mb), with about half unique to a single pairwise. Two structures, the hypothalamus and the hippocampus, displayed 860 unique brain-DMRs, with many linked to regulation of chromatin, nervous development, neurogenesis, and cell-to-cell communication. TF binding motifs for TFAP2A and TFAP2C are enriched amount DMRs on promoters of other TFs, suggesting their role as master regulators, especially for pathways essential in long-term brain plasticity, memory, and stress responses. Our results reveal sets of TF that, together with CpG methylation, may serve as regulatory switches to modulate limbic brain plasticity and brain-specific molecular genetics in pigs.
Collapse
Affiliation(s)
- Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.,University Rostock, Faculty of Agricultural and Environmental Sciences, 18059, Rostock, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
22
|
Uzquiano A, Kedaigle AJ, Pigoni M, Paulsen B, Adiconis X, Kim K, Faits T, Nagaraja S, Antón-Bolaños N, Gerhardinger C, Tucewicz A, Murray E, Jin X, Buenrostro J, Chen F, Velasco S, Regev A, Levin JZ, Arlotta P. Proper acquisition of cell class identity in organoids allows definition of fate specification programs of the human cerebral cortex. Cell 2022; 185:3770-3788.e27. [PMID: 36179669 PMCID: PMC9990683 DOI: 10.1016/j.cell.2022.09.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 03/25/2022] [Accepted: 09/01/2022] [Indexed: 01/26/2023]
Abstract
Realizing the full utility of brain organoids to study human development requires understanding whether organoids precisely replicate endogenous cellular and molecular events, particularly since acquisition of cell identity in organoids can be impaired by abnormal metabolic states. We present a comprehensive single-cell transcriptomic, epigenetic, and spatial atlas of human cortical organoid development, comprising over 610,000 cells, from generation of neural progenitors through production of differentiated neuronal and glial subtypes. We show that processes of cellular diversification correlate closely to endogenous ones, irrespective of metabolic state, empowering the use of this atlas to study human fate specification. We define longitudinal molecular trajectories of cortical cell types during organoid development, identify genes with predicted human-specific roles in lineage establishment, and uncover early transcriptional diversity of human callosal neurons. The findings validate this comprehensive atlas of human corticogenesis in vitro as a resource to prime investigation into the mechanisms of human cortical development.
Collapse
Affiliation(s)
- Ana Uzquiano
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amanda J Kedaigle
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Martina Pigoni
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bruna Paulsen
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kwanho Kim
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tyler Faits
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Surya Nagaraja
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Noelia Antón-Bolaños
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chiara Gerhardinger
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashley Tucewicz
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evan Murray
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xin Jin
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Jason Buenrostro
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fei Chen
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Silvia Velasco
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
23
|
LHX2 Enhances the Malignant Phenotype of Esophageal Squamous Cell Carcinoma by Upregulating the Expression of SERPINE2. Genes (Basel) 2022; 13:genes13081457. [PMID: 36011368 PMCID: PMC9408536 DOI: 10.3390/genes13081457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
LHX2 dysregulations have been found to present in cancers, but the function of LHX2 in esophageal squamous cell carcinoma (ESCC) remains unknown. Here, we report that LHX2 was upregulated in ESCC tissues in comparison to the LHX2 levels in adjacent normal tissues. Loss- and gain-of-function experiments demonstrated that the knockdown of LHX2 markedly inhibited ESCC cells’ proliferation, migration, invasion, tumor growth and metastasis, whereas the overexpression of LHX2 had the opposite effects. A mechanistic investigation revealed that LHX2 bound to the promoter of SERPINE2 gene and transcriptionally regulated the expression of SERPINE2. Collectively, LHX2 facilitates ESCC tumor progression, and it could be a potential therapeutic target for ESCC.
Collapse
|
24
|
Holland LZ, Holland ND. The invertebrate chordate amphioxus gives clues to vertebrate origins. Curr Top Dev Biol 2022; 147:563-594. [PMID: 35337463 DOI: 10.1016/bs.ctdb.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Amphioxus (cepholochordates) have long been used to infer how the vertebrates evolved from their invertebrate ancestors. However, some of the body part homologies between amphioxus and vertebrates have been controversial. This is not surprising as the amphioxus and vertebrate lineages separated half a billion years ago-plenty of time for independent loss and independent gain of features. The development of new techniques in the late 20th and early 21st centuries including transmission electron microscopy and serial blockface scanning electron microscopy in combination with in situ hybridization and immunocytochemistry to reveal spatio-temporal patterns of gene expression and gene products have greatly strengthened inference of some homologies (like those between regions of the central nervous system), although others (like nephridia) still need further support. These major advances in establishing homologies between amphioxus and vertebrates, together with strong support from comparative genomics, have firmly established amphioxus as a stand-in or model for the ancestral vertebrate.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States.
| | - Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
25
|
Singh N, Singh D, Bhide A, Sharma R, Sahoo S, Jolly MK, Modi D. Lhx2 in germ cells suppresses endothelial cell migration in the developing ovary. Exp Cell Res 2022; 415:113108. [PMID: 35337816 DOI: 10.1016/j.yexcr.2022.113108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
Abstract
LIM-homeobox genes play multiple roles in developmental processes, but their roles in gonad development are not completely understood. Herein, we report that Lhx2, Ils2, Lmx1a, and Lmx1b are expressed in a sexually dimorphic manner in mouse, rat, and human gonads during sex determination. Amongst these, Lhx2 has female biased expression in the developing gonads of species with environmental and genetic modes of sex determination. Single-cell RNAseq analysis revealed that Lhx2 is exclusively expressed in the germ cells of the developing mouse ovaries. To elucidate the roles of Lhx2 in the germ cells, we analyzed the phenotypes of Lhx2 knockout XX gonads. While the gonads developed appropriately in Lhx2 knockout mice and the somatic cells were correctly specified in the developing ovaries, transcriptome analysis revealed enrichment of genes in the angiogenesis pathway. There was an elevated expression of several pro-angiogenic factors in the Lhx2 knockout ovaries. The elevated expression of pro-angiogenic factors was associated with an increase in numbers of endothelial cells in the Lhx2-/- ovaries at E13.5. Gonad recombination assays revealed that the increased numbers of endothelial cells in the XX gonads in absence of Lhx2 was due to ectopic migration of endothelial cells in a cell non-autonomous manner. We also found that, there was increased expression of several endothelial cell-enriched male-biased genes in Lhx2 knockout ovaries. Also, in absence of Lhx2, the migrated endothelial cells formed an angiogenic network similar to that of the wild type testis, although the coelomic blood vessel did not form. Together, our results suggest that Lhx2 in the germ cells is required to suppress vascularization in the developing ovary. These results suggest a need to explore the roles of germ cells in the control of vascularization in developing gonads. Preprint version of the article is available on BioRxiv at https://doi.org/10.1101/2022.03.07.483280.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Sarthak Sahoo
- Center for BioSystems Science and Engineering, Indian Institute of Science, CV Raman Rd, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, CV Raman Rd, Bangalore, 560012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
26
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
27
|
Siskos N, Ververidis C, Skavdis G, Grigoriou ME. Genoarchitectonic Compartmentalization of the Embryonic Telencephalon: Insights From the Domestic Cat. Front Neuroanat 2022; 15:785541. [PMID: 34975420 PMCID: PMC8716433 DOI: 10.3389/fnana.2021.785541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The telencephalon develops from the alar plate of the secondary prosencephalon and is subdivided into two distinct divisions, the pallium, which derives solely from prosomere hp1, and the subpallium which derives from both hp1 and hp2 prosomeres. In this first systematic analysis of the feline telencephalon genoarchitecture, we apply the prosomeric model to compare the expression of a battery of genes, including Tbr1, Tbr2, Pax6, Mash1, Dlx2, Nkx2-1, Lhx6, Lhx7, Lhx2, and Emx1, the orthologs of which alone or in combination, demarcate molecularly distinct territories in other species. We characterize, within the pallium and the subpallium, domains and subdomains topologically equivalent to those previously described in other vertebrate species and we show that the overall genoarchitectural map of the E26/27 feline brain is highly similar to that of the E13.5/E14 mouse. In addition, using the same approach at the earlier (E22/23 and E24/25) or later (E28/29 and E34/35) stages we further analyze neurogenesis, define the timing and duration of several developmental events, and compare our data with those from similar mouse studies; our results point to a complex pattern of heterochronies and show that, compared with the mouse, developmental events in the feline telencephalon span over extended periods suggesting that cats may provide a useful animal model to study brain patterning in ontogenesis and evolution.
Collapse
Affiliation(s)
- Nikistratos Siskos
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Ververidis
- Obstetrics and Surgery Unit, Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria E Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
28
|
Consolidation and maintenance of long-term memory involve dual functions of the developmental regulator Apterous in clock neurons and mushroom bodies in the Drosophila brain. PLoS Biol 2021; 19:e3001459. [PMID: 34860826 PMCID: PMC8641882 DOI: 10.1371/journal.pbio.3001459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Memory is initially labile but can be consolidated into stable long-term memory (LTM) that is stored in the brain for extended periods. Despite recent progress, the molecular and cellular mechanisms underlying the intriguing neurobiological processes of LTM remain incompletely understood. Using the Drosophila courtship conditioning assay as a memory paradigm, here, we show that the LIM homeodomain (LIM-HD) transcription factor Apterous (Ap), which is known to regulate various developmental events, is required for both the consolidation and maintenance of LTM. Interestingly, Ap is involved in these 2 memory processes through distinct mechanisms in different neuronal subsets in the adult brain. Ap and its cofactor Chip (Chi) are indispensable for LTM maintenance in the Drosophila memory center, the mushroom bodies (MBs). On the other hand, Ap plays a crucial role in memory consolidation in a Chi-independent manner in pigment dispersing factor (Pdf)-containing large ventral–lateral clock neurons (l-LNvs) that modulate behavioral arousal and sleep. Since disrupted neurotransmission and electrical silencing in clock neurons impair memory consolidation, Ap is suggested to contribute to the stabilization of memory by ensuring the excitability of l-LNvs. Indeed, ex vivo imaging revealed that a reduced function of Ap, but not Chi, results in exaggerated Cl− responses to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in l-LNvs, indicating that wild-type (WT) Ap maintains high l-LNv excitability by suppressing the GABA response. Consistently, enhancing the excitability of l-LNvs by knocking down GABAA receptors compensates for the impaired memory consolidation in ap null mutants. Overall, our results revealed unique dual functions of the developmental regulator Ap for LTM consolidation in clock neurons and LTM maintenance in MBs. A neurogenetic study using Drosophila reveals that the centrally expressed LIM-homeodomain transcription factor Apterous plays a crucial neuron-type-dependent role in two different memory processes - consolidation and maintenance of long-term memory.
Collapse
|
29
|
Gabriel E, Albanna W, Pasquini G, Ramani A, Josipovic N, Mariappan A, Schinzel F, Karch CM, Bao G, Gottardo M, Suren AA, Hescheler J, Nagel-Wolfrum K, Persico V, Rizzoli SO, Altmüller J, Riparbelli MG, Callaini G, Goureau O, Papantonis A, Busskamp V, Schneider T, Gopalakrishnan J. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell 2021; 28:1740-1757.e8. [PMID: 34407456 DOI: 10.1016/j.stem.2021.07.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/23/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. OVB-organoids also display synapsin-1, CTIP-positive myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photosensitive activity of OVB-organoids, and light sensitivities could be reset after transient photobleaching. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow interorgan interaction studies within a single organoid.
Collapse
Affiliation(s)
- Elke Gabriel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Walid Albanna
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany; Department of Neurosurgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anand Ramani
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, 37075 Göttingen, Germany; Center for molecular medicine, Cologne, Universität zu Köln, 50931 Köln, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Friedrich Schinzel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63116, USA
| | - Guobin Bao
- Institute of Neurophysiology and Cellular Biophysics, University Medicine Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Marco Gottardo
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Ata Alp Suren
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Veronica Persico
- Department of Life Sciences and Medical Biotechnology University of Siena, Siena 53100, Italy
| | - Silvio O Rizzoli
- Institute of Neurophysiology and Cellular Biophysics, University Medicine Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Universität zu Köln, Köln, Germany; Center for molecular medicine, Cologne, Universität zu Köln, 50931 Köln, Germany
| | | | - Giuliano Callaini
- Department of Life Sciences and Medical Biotechnology University of Siena, Siena 53100, Italy
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Argyris Papantonis
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.
| |
Collapse
|
30
|
Callaway EM, Dong HW, Ecker JR, Hawrylycz MJ, Huang ZJ, Lein ES, Ngai J, Osten P, Ren B, Tolias AS, White O, Zeng H, Zhuang X, Ascoli GA, Behrens MM, Chun J, Feng G, Gee JC, Ghosh SS, Halchenko YO, Hertzano R, Lim BK, Martone ME, Ng L, Pachter L, Ropelewski AJ, Tickle TL, Yang XW, Zhang K, Bakken TE, Berens P, Daigle TL, Harris JA, Jorstad NL, Kalmbach BE, Kobak D, Li YE, Liu H, Matho KS, Mukamel EA, Naeemi M, Scala F, Tan P, Ting JT, Xie F, Zhang M, Zhang Z, Zhou J, Zingg B, Armand E, Yao Z, Bertagnolli D, Casper T, Crichton K, Dee N, Diep D, Ding SL, Dong W, Dougherty EL, Fong O, Goldman M, Goldy J, Hodge RD, Hu L, Keene CD, Krienen FM, Kroll M, Lake BB, Lathia K, Linnarsson S, Liu CS, Macosko EZ, McCarroll SA, McMillen D, Nadaf NM, Nguyen TN, Palmer CR, Pham T, Plongthongkum N, Reed NM, Regev A, Rimorin C, Romanow WJ, Savoia S, Siletti K, Smith K, Sulc J, Tasic B, Tieu M, Torkelson A, Tung H, van Velthoven CTJ, Vanderburg CR, Yanny AM, Fang R, Hou X, Lucero JD, Osteen JK, Pinto-Duarte A, Poirion O, Preissl S, Wang X, Aldridge AI, Bartlett A, Boggeman L, O’Connor C, Castanon RG, Chen H, Fitzpatrick C, Luo C, Nery JR, Nunn M, Rivkin AC, Tian W, Dominguez B, Ito-Cole T, Jacobs M, Jin X, Lee CT, Lee KF, Miyazaki PA, Pang Y, Rashid M, Smith JB, Vu M, Williams E, Biancalani T, Booeshaghi AS, Crow M, Dudoit S, Fischer S, Gillis J, Hu Q, Kharchenko PV, Niu SY, Ntranos V, Purdom E, Risso D, de Bézieux HR, Somasundaram S, Street K, Svensson V, Vaishnav ED, Van den Berge K, Welch JD, An X, Bateup HS, Bowman I, Chance RK, Foster NN, Galbavy W, Gong H, Gou L, Hatfield JT, Hintiryan H, Hirokawa KE, Kim G, Kramer DJ, Li A, Li X, Luo Q, Muñoz-Castañeda R, Stafford DA, Feng Z, Jia X, Jiang S, Jiang T, Kuang X, Larsen R, Lesnar P, Li Y, Li Y, Liu L, Peng H, Qu L, Ren M, Ruan Z, Shen E, Song Y, Wakeman W, Wang P, Wang Y, Wang Y, Yin L, Yuan J, Zhao S, Zhao X, Narasimhan A, Palaniswamy R, Banerjee S, Ding L, Huilgol D, Huo B, Kuo HC, Laturnus S, Li X, Mitra PP, Mizrachi J, Wang Q, Xie P, Xiong F, Yu Y, Eichhorn SW, Berg J, Bernabucci M, Bernaerts Y, Cadwell CR, Castro JR, Dalley R, Hartmanis L, Horwitz GD, Jiang X, Ko AL, Miranda E, Mulherkar S, Nicovich PR, Owen SF, Sandberg R, Sorensen SA, Tan ZH, Allen S, Hockemeyer D, Lee AY, Veldman MB, Adkins RS, Ament SA, Bravo HC, Carter R, Chatterjee A, Colantuoni C, Crabtree J, Creasy H, Felix V, Giglio M, Herb BR, Kancherla J, Mahurkar A, McCracken C, Nickel L, Olley D, Orvis J, Schor M, Hood G, Dichter B, Grauer M, Helba B, Bandrowski A, Barkas N, Carlin B, D’Orazi FD, Degatano K, Gillespie TH, Khajouei F, Konwar K, Thompson C, Kelly K, Mok S, Sunkin S. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 2021; 598:86-102. [PMID: 34616075 PMCID: PMC8494634 DOI: 10.1038/s41586-021-03950-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1-5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
Collapse
|
31
|
In Silico Analysis to Explore Lineage-Independent and -Dependent Transcriptional Programs Associated with the Process of Endothelial and Neural Differentiation of Human Induced Pluripotent Stem Cells. J Clin Med 2021; 10:jcm10184161. [PMID: 34575270 PMCID: PMC8471316 DOI: 10.3390/jcm10184161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Despite a major interest in understanding how the endothelial cell phenotype is established, the underlying molecular basis of this process is not yet fully understood. We have previously reported the generation of induced pluripotent stem cells (iPS) from human umbilical vein endothelial cells and differentiation of the resulting HiPS back to endothelial cells (Ec-Diff), as well as neural (Nn-Diff) cell lineage that contained both neurons and astrocytes. Furthermore, the identities of these cell lineages were established by gene array analysis. Here, we explored the same arrays to gain insight into the gene alteration processes that accompany the establishment of endothelial vs. non-endothelial neural cell phenotypes. We compared the expression of genes that code for transcription factors and epigenetic regulators when HiPS is differentiated into these endothelial and non-endothelial lineages. Our in silico analyses have identified cohorts of genes that are similarly up- or downregulated in both lineages, as well as those that exhibit lineage-specific alterations. Based on these results, we propose that genes that are similarly altered in both lineages participate in priming the stem cell for differentiation in a lineage-independent manner, whereas those that are differentially altered in endothelial compared to neural cells participate in a lineage-specific differentiation process. Specific GATA family members and their cofactors and epigenetic regulators (DNMT3B, PRDM14, HELLS) with a major role in regulating DNA methylation were among participants in priming HiPS for lineage-independent differentiation. In addition, we identified distinct cohorts of transcription factors and epigenetic regulators whose alterations correlated specifically with the establishment of endothelial vs. non-endothelial neural lineages.
Collapse
|
32
|
Singh N, Singh D, Modi D. LIM Homeodomain (LIM-HD) Genes and Their Co-Regulators in Developing Reproductive System and Disorders of Sex Development. Sex Dev 2021; 16:147-161. [PMID: 34518474 DOI: 10.1159/000518323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
LIM homeodomain (LIM-HD) family genes are transcription factors that play crucial roles in a variety of functions during embryonic development. The activities of the LIM-HD proteins are regulated by the co-regulators LIM only (LMO) and LIM domain-binding (LDB). In the mouse genome, there are 13 LIM-HD genes (Lhx1-Lhx9, Isl1-2, Lmx1a-1b), 4 Lmo genes (Lmo1-4), and 2 Ldb genes (Ldb1-2). Amongst these, Lhx1 is required for the development of the müllerian duct epithelium and the timing of the primordial germ cell migration. Lhx8 is necessary for oocyte differentiation and Lhx9 for somatic cell proliferation in the genital ridges and control of testosterone production in the Leydig cells. Lmo4 is involved in Sertoli cell differentiation. Mutations in LHX1 are associated with müllerian agenesis or Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. LHX9 gene variants are reported in cases with disorders of sex development (DSD). Mutations in LHX3 and LHX4 are reported in patients with combined pituitary hormone deficiency having absent or delayed puberty. A transcript map of the Lhx, Lmo, and Ldb genes reveal that multiple LIM-HD genes and their co-regulators are expressed in a sexually dimorphic pattern in the developing mouse gonads. Unraveling the roles of LIM-HD genes during development will aid in our understanding of the causes of DSD.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| |
Collapse
|
33
|
Berghoff EG, Glenwinkel L, Bhattacharya A, Sun H, Varol E, Mohammadi N, Antone A, Feng Y, Nguyen K, Cook SJ, Wood JF, Masoudi N, Cros CC, Ramadan YH, Ferkey DM, Hall DH, Hobert O. The Prop1-like homeobox gene unc-42 specifies the identity of synaptically connected neurons. eLife 2021; 10:e64903. [PMID: 34165428 PMCID: PMC8225392 DOI: 10.7554/elife.64903] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Many neuronal identity regulators are expressed in distinct populations of cells in the nervous system, but their function is often analyzed only in specific isolated cellular contexts, thereby potentially leaving overarching themes in gene function undiscovered. We show here that the Caenorhabditis elegans Prop1-like homeobox gene unc-42 is expressed in 15 distinct sensory, inter- and motor neuron classes throughout the entire C. elegans nervous system. Strikingly, all 15 neuron classes expressing unc-42 are synaptically interconnected, prompting us to investigate whether unc-42 controls the functional properties of this circuit and perhaps also the assembly of these neurons into functional circuitry. We found that unc-42 defines the routes of communication between these interconnected neurons by controlling the expression of neurotransmitter pathway genes, neurotransmitter receptors, neuropeptides, and neuropeptide receptors. Anatomical analysis of unc-42 mutant animals reveals defects in axon pathfinding and synaptic connectivity, paralleled by expression defects of molecules involved in axon pathfinding, cell-cell recognition, and synaptic connectivity. We conclude that unc-42 establishes functional circuitry by acting as a terminal selector of functionally connected neuron types. We identify a number of additional transcription factors that are also expressed in synaptically connected neurons and propose that terminal selectors may also function as 'circuit organizer transcription factors' to control the assembly of functional circuitry throughout the nervous system. We hypothesize that such organizational properties of transcription factors may be reflective of not only ontogenetic, but perhaps also phylogenetic trajectories of neuronal circuit establishment.
Collapse
Affiliation(s)
- Emily G Berghoff
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Lori Glenwinkel
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - HaoSheng Sun
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Erdem Varol
- Department of Statistics, Zuckerman Institute, Columbia UniversityNew YorkUnited States
| | - Nicki Mohammadi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Amelia Antone
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Yi Feng
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Ken Nguyen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Steven J Cook
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Jordan F Wood
- Department of Biological Sciences, University at Buffalo, The State University of New YorkBuffaloUnited States
| | - Neda Masoudi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Cyril C Cros
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Yasmin H Ramadan
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New YorkBuffaloUnited States
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
34
|
Devyatkin VA, Redina OE, Kolosova NG, Muraleva NA. Single-Nucleotide Polymorphisms Associated with the Senescence-Accelerated Phenotype of OXYS Rats: A Focus on Alzheimer's Disease-Like and Age-Related-Macular-Degeneration-Like Pathologies. J Alzheimers Dis 2021; 73:1167-1183. [PMID: 31929160 DOI: 10.3233/jad-190956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are two complex incurable neurodegenerative disorders the common pathogenesis of which is actively discussed. There are overlapping risk factors and molecular mechanisms of the two diseases; at the same time, there are arguments in favor of the notion that susceptibility to each of these diseases is associated with a distinct genetic background. Here we identified single-nucleotide polymorphisms (SNPs) that are specific for senescence-accelerated OXYS rats, which simulate key characteristics of both sporadic AD and AMD. Transcriptomes of the hippocampus, prefrontal cortex, and retina (data of RNA-Seq) were analyzed. We detected SNPs in genes Rims2, AABR07072639.2, Lemd2, and AABR07045405.1, which thus can express significantly truncated proteins lacking functionally important domains. Additionally, 33 mutations in genes-which are related to various metabolic and signaling pathways-cause nonsynonymous amino acid substitutions presumably leading to disturbances in protein structure or functions. Some of the genes carrying these SNPs are associated with aging, neurodegenerative, and mental diseases. Thus, we revealed the SNPs can lead to abnormalities in protein structure or functions and affect the development of the senescence-accelerated phenotype of OXYS rats. Our data are consistent with the latest results of genome-wide association studies that highlight the importance of multiple pathways for the pathogenesis of AD and AMD. Identified SNPs can serve as promising research objects for further studies on the molecular mechanisms underlying this particular rat model as well as for the prediction of potential biomarkers of AD and AMD.
Collapse
Affiliation(s)
- Vasiliy A Devyatkin
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga E Redina
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | |
Collapse
|
35
|
Pérez RF, Tejedor JR, Santamarina-Ojeda P, Martínez VL, Urdinguio RG, Villamañán L, Candiota AP, Sarró NMV, Barradas M, Fernandez-Marcos PJ, Serrano M, Fernández AF, Fraga MF. Conservation of Aging and Cancer Epigenetic Signatures across Human and Mouse. Mol Biol Evol 2021; 38:3415-3435. [PMID: 33871658 PMCID: PMC8321527 DOI: 10.1093/molbev/msab112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.
Collapse
Affiliation(s)
- Raúl F Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Virginia López Martínez
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Rocío G Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Lucía Villamañán
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - N Mí Vidal Sarró
- Servicio Anatomía Patológica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Spain
| | - Marta Barradas
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Pablo Jose Fernandez-Marcos
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Agusín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|
36
|
Edlund K, Madjar K, Lebrecht A, Aktas B, Pilch H, Hoffmann G, Hofmann M, Kolberg HC, Boehm D, Battista M, Seehase M, Stewen K, Gebhard S, Cadenas C, Marchan R, Brenner W, Hasenburg A, Koelbl H, Solbach C, Gehrmann M, Tanner B, Weber KE, Loibl S, Sachinidis A, Rahnenführer J, Schmidt M, Hengstler JG. Gene Expression-Based Prediction of Neoadjuvant Chemotherapy Response in Early Breast Cancer: Results of the Prospective Multicenter EXPRESSION Trial. Clin Cancer Res 2021; 27:2148-2158. [PMID: 33542080 DOI: 10.1158/1078-0432.ccr-20-2662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Expression-based classifiers to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) are not routinely used in the clinic. We aimed to build and validate a classifier for pCR after NACT. PATIENTS AND METHODS We performed a prospective multicenter study (EXPRESSION) including 114 patients treated with anthracycline/taxane-based NACT. Pretreatment core needle biopsies from 91 patients were used for gene expression analysis and classifier construction, followed by validation in five external cohorts (n = 619). RESULTS A 20-gene classifier established in the EXPRESSION cohort using a Youden index-based cut-off point predicted pCR in the validation cohorts with an accuracy, AUC, negative predictive value (NPV), positive predictive value, sensitivity, and specificity of 0.811, 0.768, 0.829, 0.587, 0.216, and 0.962, respectively. Alternatively, aiming for a high NPV by defining the cut-off point for classification based on the complete responder with the lowest predicted probability of pCR in the EXPRESSION cohort led to an NPV of 0.960 upon external validation. With this extreme-low cut-off point, a recommendation to not treat with anthracycline/taxane-based NACT would be possible for 121 of 619 unselected patients (19.5%) and 112 of 322 patients with luminal breast cancer (34.8%). The analysis of the molecular subtypes showed that the identification of patients who do not achieve a pCR by the 20-gene classifier was particularly relevant in luminal breast cancer. CONCLUSIONS The novel 20-gene classifier reliably identifies patients who do not achieve a pCR in about one third of luminal breast cancers in both the EXPRESSION and combined validation cohorts.
Collapse
Affiliation(s)
- Karolina Edlund
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Katrin Madjar
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Antje Lebrecht
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Bahriye Aktas
- Department of Gynecology, University Hospital Leipzig, Leipzig, Germany
| | - Henryk Pilch
- Department of Gynecology and Obstetrics, University Hospital Köln, Köln, Germany
| | - Gerald Hoffmann
- Department of Obstetrics and Gynecology, St. Josefs-Hospital, Wiesbaden, Germany
| | - Manfred Hofmann
- Department of Obstetrics and Gynecology, Vinzenz von Paul Kliniken gGmbH Marienhospital, Stuttgart, Germany
| | | | - Daniel Boehm
- Center of Minimal Invasive Surgery, Senology and Oncology, mic.ma.mainz, Mainz, Germany
| | - Marco Battista
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Martina Seehase
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Kathrin Stewen
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Susanne Gebhard
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Cristina Cadenas
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Annette Hasenburg
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Heinz Koelbl
- Department of Obstetrics and Gynecology, University of Vienna Medical School, Vienna, Austria
| | - Christine Solbach
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Berno Tanner
- Practice for Gynecological Oncology, Hoen Neuendorf, Germany
| | | | | | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Jan G Hengstler
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany.
| |
Collapse
|
37
|
Garcia-Calero E, López-González L, Martínez-de-la-Torre M, Fan CM, Puelles L. Sim1-expressing cells illuminate the origin and course of migration of the nucleus of the lateral olfactory tract in the mouse amygdala. Brain Struct Funct 2021; 226:519-562. [PMID: 33492553 PMCID: PMC7910384 DOI: 10.1007/s00429-020-02197-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
We focus this report on the nucleus of the lateral olfactory tract (NLOT), a superficial amygdalar nucleus receiving olfactory input. Mixed with its Tbr1-expressing layer 2 pyramidal cell population (NLOT2), there are Sim1-expressing cells whose embryonic origin and mode of arrival remain unclear. We examined this population with Sim1-ISH and a Sim1-tauLacZ mouse line. An alar hypothalamic origin is apparent at the paraventricular area, which expresses Sim1 precociously. This progenitor area shows at E10.5 a Sim1-expressing dorsal prolongation that crosses the telencephalic stalk and follows the terminal sulcus, reaching the caudomedial end of the pallial amygdala. We conceive this Sim1-expressing hypothalamo-amygdalar corridor (HyA) as an evaginated part of the hypothalamic paraventricular area, which participates in the production of Sim1-expressing cells. From E13.5 onwards, Sim1-expressing cells migrated via the HyA penetrate the posterior pallial amygdalar radial unit and associate therein to the incipient Tbr1-expressing migration stream which swings medially past the amygdalar anterior basolateral nucleus (E15.5), crosses the pallio-subpallial boundary (E16.5), and forms the NLOT2 within the anterior amygdala by E17.5. We conclude that the Tbr1-expressing NLOT2 cells arise strictly within the posterior pallial amygdalar unit, involving a variety of required gene functions we discuss. Our results are consistent with the experimental data on NLOT2 origin reported by Remedios et al. (Nat Neurosci 10:1141–1150, 2007), but we disagree on their implication in this process of the dorsal pallium, observed to be distant from the amygdala.
Collapse
Affiliation(s)
- Elena Garcia-Calero
- University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, 30120, El Palmar, Murcia, Spain.
| | - Lara López-González
- University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, 30120, El Palmar, Murcia, Spain
| | | | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Luis Puelles
- University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, 30120, El Palmar, Murcia, Spain
| |
Collapse
|
38
|
Turrero García M, Baizabal JM, Tran DN, Peixoto R, Wang W, Xie Y, Adam MA, English LA, Reid CM, Brito SI, Booker MA, Tolstorukov MY, Harwell CC. Transcriptional regulation of MGE progenitor proliferation by PRDM16 controls cortical GABAergic interneuron production. Development 2020; 147:dev187526. [PMID: 33060132 PMCID: PMC7687860 DOI: 10.1242/dev.187526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 10/05/2020] [Indexed: 11/20/2022]
Abstract
The mammalian cortex is populated by neurons derived from neural progenitors located throughout the embryonic telencephalon. Excitatory neurons are derived from the dorsal telencephalon, whereas inhibitory interneurons are generated in its ventral portion. The transcriptional regulator PRDM16 is expressed by radial glia, neural progenitors present in both regions; however, its mechanisms of action are still not fully understood. It is unclear whether PRDM16 plays a similar role in neurogenesis in both dorsal and ventral progenitor lineages and, if so, whether it regulates common or unique networks of genes. Here, we show that Prdm16 expression in mouse medial ganglionic eminence (MGE) progenitors is required for maintaining their proliferative capacity and for the production of proper numbers of forebrain GABAergic interneurons. PRDM16 binds to cis-regulatory elements and represses the expression of region-specific neuronal differentiation genes, thereby controlling the timing of neuronal maturation. PRDM16 regulates convergent developmental gene expression programs in the cortex and MGE, which utilize both common and region-specific sets of genes to control the proliferative capacity of neural progenitors, ensuring the generation of correct numbers of cortical neurons.
Collapse
Affiliation(s)
| | | | - Diana N Tran
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Peixoto
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yajun Xie
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Manal A Adam
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren A English
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvador I Brito
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Eintracht J, Toms M, Moosajee M. The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders. Front Cell Neurosci 2020; 14:265. [PMID: 32973457 PMCID: PMC7468397 DOI: 10.3389/fncel.2020.00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Approximately one-third of childhood blindness is attributed to developmental eye disorders, of which 80% have a genetic cause. Eye morphogenesis is tightly regulated by a highly conserved network of transcription factors when disrupted by genetic mutations can result in severe ocular malformation. Human-induced pluripotent stem cells (hiPSCs) are an attractive tool to study early eye development as they are more physiologically relevant than animal models, can be patient-specific and their use does not elicit the ethical concerns associated with human embryonic stem cells. The generation of self-organizing hiPSC-derived optic cups is a major advancement to understanding mechanisms of ocular development and disease. Their development in vitro has been found to mirror that of the human eye and these early organoids have been used to effectively model microphthalmia caused by a VSX2 variant. hiPSC-derived optic cups, retina, and cornea organoids are powerful tools for future modeling of disease phenotypes and will enable a greater understanding of the pathophysiology of many other developmental eye disorders. These models will also provide an effective platform for identifying molecular therapeutic targets and for future clinical applications.
Collapse
Affiliation(s)
| | - Maria Toms
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
40
|
|
41
|
Wang Y, Dai G, Gu Z, Liu G, Tang K, Pan YH, Chen Y, Lin X, Wu N, Chen H, Feng S, Qiu S, Sun H, Li Q, Xu C, Mao Y, Zhang YE, Khaitovich P, Wang YL, Liu Q, Han JDJ, Shao Z, Wei G, Xu C, Jing N, Li H. Accelerated evolution of an Lhx2 enhancer shapes mammalian social hierarchies. Cell Res 2020; 30:408-420. [PMID: 32238901 PMCID: PMC7196073 DOI: 10.1038/s41422-020-0308-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/12/2020] [Indexed: 12/26/2022] Open
Abstract
Social hierarchies emerged during evolution, and social rank influences behavior and health of individuals. However, the evolutionary mechanisms of social hierarchy are still unknown in amniotes. Here we developed a new method and performed a genome-wide screening for identifying regions with accelerated evolution in the ancestral lineage of placental mammals, where mammalian social hierarchies might have initially evolved. Then functional analyses were conducted for the most accelerated region designated as placental-accelerated sequence 1 (PAS1, P = 3.15 × 10-18). Multiple pieces of evidence show that PAS1 is an enhancer of the transcription factor gene Lhx2 involved in brain development. PAS1s isolated from various amniotes showed different cis-regulatory activity in vitro, and affected the expression of Lhx2 differently in the nervous system of mouse embryos. PAS1 knock-out mice lack social stratification. PAS1 knock-in mouse models demonstrate that PAS1s determine the social dominance and subordinate of adult mice, and that social ranks could even be turned over by mutated PAS1. All homozygous mutant mice had normal huddled sleeping behavior, motor coordination and strength. Therefore, PAS1-Lhx2 modulates social hierarchies and is essential for establishing social stratification in amniotes, and positive Darwinian selection on PAS1 plays pivotal roles in the occurrence of mammalian social hierarchies.
Collapse
Affiliation(s)
- Yuting Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangyi Dai
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Zhili Gu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Guopeng Liu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510405, Guangdong, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, 200062, Shanghai, China
| | - Yujie Chen
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Xin Lin
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, 200062, Shanghai, China
| | - Haoshan Chen
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Su Feng
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Shou Qiu
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Hongduo Sun
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Chuan Xu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Yanan Mao
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yong Edward Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Philipp Khaitovich
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qunxiu Liu
- Shanghai Zoological Park, 200335, Shanghai, China
| | - Jing-Dong Jackie Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Chun Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China
| | - Haipeng Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
| |
Collapse
|
42
|
Yang H, Kim J, Kim Y, Jang SW, Sestan N, Shim S. Cux2 expression regulated by Lhx2 in the upper layer neurons of the developing cortex. Biochem Biophys Res Commun 2020; 521:874-879. [PMID: 31708105 DOI: 10.1016/j.bbrc.2019.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
The laminar structure, a unique feature of the mammalian cerebrum, is formed by a number of genes in a highly complex process. The pyramidal neurons that make up each layer of the cerebrum are functionally characterized by specific gene expressions. In particular, Cux1 and Cux2, which are specifically expressed in layer II-IV neurons, are known to regulate dendritic branching, spine morphology, and synapse formation. However, it is still unknown how their expression is regulated transcriptionally. Here we constructed Cux2-mCherry transgenic mice that reproduce the cortical layer II-IV-specific expression of Cux2, a member of the Cut/Cux/CDP family, using BAC transgenesis and a variety of coordinated cortical layer markers that are known to date. Our immunohistochemistry analysis shows that mCherry was expressed in cortical layer II-IV and the corpus callosum in the same way as endogenous Cux2 without ectopic expression. We also identified a region of 220 bp that is highly conserved in mammals and controls specific cerebral expression of Cux2, using comparative genome analysis and in vivo reporter assays. Furthermore, we confirm that Lhx2, whose expression in cortical layer II-IV is similar to that of the Cux2 enhancer, can act as a transcriptional activator. These results suggest that cortical layer II-IV expression of Cux2 can be regulated by the interaction of Cux2-E1 and Lhx2, and that their failure to co-regulate is associated with neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Hayoung Yang
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jiwoo Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yujin Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
43
|
Hsing HW, Zhuang ZH, Niou ZX, Chou SJ. Temporal Differences in Interneuron Invasion of Neocortex and Piriform Cortex during Mouse Cortical Development. Cereb Cortex 2019; 30:3015-3029. [PMID: 31838488 DOI: 10.1093/cercor/bhz291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Establishing a balance between excitation and inhibition is critical for brain functions. However, how inhibitory interneurons (INs) generated in the ventral telencephalon integrate with the excitatory neurons generated in the dorsal telencephalon remains elusive. Previous studies showed that INs migrating tangentially to enter the neocortex (NCx), remain in the migratory stream for days before invading the cortical plate during late corticogenesis. Here we show that in developing mouse cortices, INs in the piriform cortex (PCx; the major olfactory cortex) distribute differently from those in the NCx. We provide evidence that during development INs invade and mature earlier in PCx than in NCx, likely owing to the lack of CXCR4 expression in INs from PCx compared to those in NCx. We analyzed IN distribution patterns in Lhx2 cKO mice, where projection neurons in the lateral NCx are re-fated to generate an ectopic PCx (ePCx). The PCx-specific IN distribution patterns found in ePCx suggest that properties of PCx projection neurons regulate IN distribution. Collectively, our results show that the timing of IN invasion in the developing PCx fundamentally differs from what is known in the NCx. Further, our results suggest that projection neurons instruct the PCx-specific pattern of IN distribution.
Collapse
Affiliation(s)
- Hsiang-Wei Hsing
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Zi-Hui Zhuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Zhen-Xian Niou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
44
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
45
|
Cheng Q, Huang C, Cao H, Lin J, Gong X, Li J, Chen Y, Tian Z, Fang Z, Huang J. A Novel Prognostic Signature of Transcription Factors for the Prediction in Patients With GBM. Front Genet 2019; 10:906. [PMID: 31632439 PMCID: PMC6779830 DOI: 10.3389/fgene.2019.00906] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Although the diagnosis and treatment of glioblastoma (GBM) is significantly improved with recent progresses, there is still a large heterogeneity in therapeutic effects and overall survival. The aim of this study is to analyze gene expressions of transcription factors (TFs) in GBM so as to discover new tumor markers. Methods: Differentially expressed TFs are identified by data mining using public databases. The GBM transcriptome profile is downloaded from The Cancer Genome Atlas (TCGA). The nonnegative matrix factorization (NMF) method is used to cluster the differentially expressed genes to discover hub genes and signal pathways. The TFs affecting the prognosis of GBM are screened by univariate and multivariate COX regression analysis, and the receiver operating characteristic (ROC) curve is determined. The GBM hazard model and nomogram map are constructed by integrating the clinical data. Finally, the TFs involving potential signaling pathways in GBM are screened by Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Results: There are 68 differentially expressed TFs in GBM, of which 43 genes are upregulated and 25 genes are downregulated. NMF clustering analysis suggested that GBM patients are divided into three groups: Clusters A, B, and C. LHX2, MEOX2, SNAI2, and ZNF22 are identified from the above differential genes by univariate/multivariate regression analysis. The risk score of those four genes are calculated based on the beta coefficient of each gene, and we found that the predictive ability of the risk score gradually increased with the prolonged predicted termination time by time-dependent ROC curve analysis. The nomogram results have showed that the integration of risk score, age, gender, chemotherapy, radiotherapy, and 1p/19q can further improve predictive ability towards the survival of GBM. The pathways in cancer, phosphoinositide 3-kinases (PI3K)–Akt signaling, Hippo signaling, and proteoglycans, are highly enriched in high-risk groups by GSEA. These genes are mainly involved in cell migration, cell adhesion, epithelial–mesenchymal transition (EMT), cell cycle, and other signaling pathways by GO and KEGG analysis. Conclusion: The four-factor combined scoring model of LHX2, MEOX2, SNAI2, and ZNF22 can precisely predict the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhai Huang
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou, China
| | - Hui Cao
- Clinical Medical Research Center of Hunan Provincial Mental Behavioral Disorder, Clinical Medical School of Hunan University of Chinese Medicine, Hunan Provincial Brain Hospital, Changsha, China
| | - Jinhu Lin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Tian
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou, China
| | - Zhenyu Fang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|