1
|
Junyi L, Yueyang W, Bin L, Xiaohong D, Wenhui C, Ning Z, Hong Z. Gut Microbiota Mediates Neuroinflammation in Alzheimer's Disease: Unraveling Key Factors and Mechanistic Insights. Mol Neurobiol 2025; 62:3746-3763. [PMID: 39317889 DOI: 10.1007/s12035-024-04513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The gut microbiota, the complex community of microorganisms that inhabit the gastrointestinal tract, has emerged as a key player in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by progressive cognitive decline and neuronal loss, associated with the accumulation of amyloid-β plaques, neurofibrillary tangles, and neuroinflammation in the brain. Increasing evidence suggests that alterations in the composition and function of the gut microbiota, known as dysbiosis, may contribute to the development and progression of AD by modulating neuroinflammation, a chronic and maladaptive immune response in the central nervous system. This review aims to comprehensively analyze the current role of the gut microbiota in regulating neuroinflammation and glial cell function in AD. Its objective is to deepen our understanding of the pathogenesis of AD and to discuss the potential advantages and challenges of using gut microbiota modulation as a novel approach for the diagnosis, treatment, and prevention of AD.
Collapse
Affiliation(s)
- Liang Junyi
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Wang Yueyang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Liu Bin
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China.
| | - Dong Xiaohong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Cai Wenhui
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Ning
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Hong
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
2
|
Lansbury EL, Vana V, Lund ML, Ludwig MQ, Mamedova E, Gautron L, Arnold M, Egerod KL, Kuhre RE, Holst JJ, Rekling J, Schwartz TW, Pankratova S, Dmytriyeva O. Neurons Co-Expressing GLP-1, CCK, and PYY Receptors Particularly in Right Nodose Ganglion and Innervating Entire GI Tract in Mice. Int J Mol Sci 2025; 26:2053. [PMID: 40076675 PMCID: PMC11899847 DOI: 10.3390/ijms26052053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Afferent vagal neurons convey gut-brain signals related to the mechanical and chemical sensing of nutrients, with the latter also mediated by gut hormones secreted from enteroendocrine cells. Cell bodies of these neurons are located in the nodose ganglia (NG), with the right NG playing a key role in metabolic regulation. Notably, glucagon-like peptide-1 receptor (GLP1R) neurons primarily innervate the muscle layer of the stomach, distant from glucagon-like peptide-1 (GLP-1)-secreting gut cells. However, the co-expression of gut hormone receptors in these NG neurons remains unclear. Using RNAscope combined with immunohistochemistry, we confirmed GLP1R expression in a large population of NG neurons, with Glp1r, cholecystokinin A receptor (Cckar), and Neuropeptide Y Y2 Receptor (Npy2r) being more highly expressed in the right NG, while neurotensin receptor 1 (Ntsr), G protein-coupled receptor (Gpr65), and 5-hydroxytryptamine receptor 3A (5ht3a) showed equal expressions in the left and right NG. Co-expression analysis demonstrated the following: (i) most Glp1r, Cckar, and Npy2r neurons co-expressed all three receptors; (ii) nearly all Ntsr1- and Gpr65-positive neurons co-expressed both receptors; and (iii) 5ht3a was expressed in subpopulations of all peptide-hormone-receptor-positive neurons. Retrograde labeling demonstrated that the anterior part of the stomach was preferentially innervated by the left NG, while the right NG innervated the posterior part. The entire gastrointestinal (GI) tract, including the distal colon, was strongly innervated by NG neurons. Most importantly, dual retrograde labeling with two distinct tracers identified a population of neurons co-expressing Glp1r, Cckar, and Npy2r that innervated both the stomach and the colon. Thus, neurons co-expressing GLP-1, cholecystokinin (CCK), and peptide YY (PYY) receptors, predominantly found in the right NG, sample chemical, nutrient-induced signals along the entire GI tract and likely integrate these with mechanical signals from the stomach.
Collapse
Affiliation(s)
- Elizabeth Laura Lansbury
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Vasiliki Vana
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Mari Lilith Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Mette Q. Ludwig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Esmira Mamedova
- Institute of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (E.M.); (J.R.)
| | - Laurent Gautron
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Myrtha Arnold
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland;
| | - Kristoffer Lihme Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Rune Ehrenreich Kuhre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
- Department for Biomedical Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
- Department for Biomedical Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens Rekling
- Institute of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (E.M.); (J.R.)
| | - Thue W. Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| | - Stanislava Pankratova
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (E.L.L.); (V.V.); (M.L.L.); (M.Q.L.); (K.L.E.); (R.E.K.); (J.J.H.); (T.W.S.); (S.P.)
| |
Collapse
|
3
|
Teckentrup V, Kroemer NB. Mechanisms for survival: vagal control of goal-directed behavior. Trends Cogn Sci 2024; 28:237-251. [PMID: 38036309 DOI: 10.1016/j.tics.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Survival is a fundamental physiological drive, and neural circuits have evolved to prioritize actions that meet the energy demands of the body. This fine-tuning of goal-directed actions based on metabolic states ('allostasis') is deeply rooted in our brain, and hindbrain nuclei orchestrate the vital communication between the brain and body through the vagus nerve. Despite mounting evidence for vagal control of allostatic behavior in animals, its broader function in humans is still contested. Based on stimulation studies, we propose that the vagal afferent pathway supports transitions between survival modes by gating the integration of ascending bodily signals, thereby regulating reward-seeking. By reconceptualizing vagal signals as catalysts for goal-directed behavior, our perspective opens new avenues for theory-driven translational work in mental disorders.
Collapse
Affiliation(s)
- Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, 53127 Bonn, Germany; German Center for Mental Health (DZPG), 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Moțățăianu A, Șerban G, Andone S. The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Cross-Talk with a Focus on Amyotrophic Lateral Sclerosis: A Systematic Review. Int J Mol Sci 2023; 24:15094. [PMID: 37894774 PMCID: PMC10606032 DOI: 10.3390/ijms242015094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by the gradual loss of motor neurons in the brain and spinal cord, leading to progressive motor function decline. Unfortunately, there is no effective treatment, and its increasing prevalence is linked to an aging population, improved diagnostics, heightened awareness, and changing lifestyles. In the gastrointestinal system, the gut microbiota plays a vital role in producing metabolites, neurotransmitters, and immune molecules. Short-chain fatty acids, of interest for their potential health benefits, are influenced by a fiber- and plant-based diet, promoting a diverse and balanced gut microbiome. These fatty acids impact the body by binding to receptors on enteroendocrine cells, influencing hormones like glucagon-like peptide-1 and peptide YY, which regulate appetite and insulin sensitivity. Furthermore, these fatty acids impact the blood-brain barrier, neurotransmitter levels, and neurotrophic factors, and directly stimulate vagal afferent nerves, affecting gut-brain communication. The vagus nerve is a crucial link between the gut and the brain, transmitting signals related to appetite, inflammation, and various processes. Dysregulation of this pathway can contribute to conditions like obesity and irritable bowel syndrome. Emerging evidence suggests the complex interplay among these fatty acids, the gut microbiota, and environmental factors influences neurodegenerative processes via interconnected pathways, including immune function, anti-inflammation, gut barrier, and energy metabolism. Embracing a balanced, fiber-rich diet may foster a diverse gut microbiome, potentially impacting neurodegenerative disease risk. Comprehensive understanding requires further research into interventions targeting the gut microbiome and fatty acid production and their potential therapeutic role in neurodegeneration.
Collapse
Affiliation(s)
- Anca Moțățăianu
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mures ‘George Emil Palade’, 540142 Târgu Mures, Romania
| | - Georgiana Șerban
- Doctoral School, University of Medicine, Pharmacy, Science and Technology of Târgu Mures ‘George Emil Palade’, 540142 Târgu Mures, Romania
| | - Sebastian Andone
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mures ‘George Emil Palade’, 540142 Târgu Mures, Romania
| |
Collapse
|
5
|
Han Y, Wang B, Gao H, He C, Hua R, Liang C, Zhang S, Wang Y, Xin S, Xu J. Vagus Nerve and Underlying Impact on the Gut Microbiota-Brain Axis in Behavior and Neurodegenerative Diseases. J Inflamm Res 2022; 15:6213-6230. [PMID: 36386584 PMCID: PMC9656367 DOI: 10.2147/jir.s384949] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
The gut microbiota is the most abundant and diverse microbiota in the human body and the vagus nerve is the most widely distributed and complex nerve in the body, both of them are essential in maintaining homeostasis. The most important phenomenon is how they coordinate to regulate functions, which has attracted the great attention of scientists. The academic literature on the correlation with a host of intestinal diseases and even systemic diseases has revealed the bidirectional communication between the gut microbiota and the brain, which can be carried out via multiple patterns. In the review, firstly, we have a general overview of the gut microbiota and the gut microbiota-brain axis. Secondly, according to the distribution characteristics of the vagus nerve, we analyzed and summarized its function in the intestinal tract. At the same time, we have summarized the underlying mechanism of some behavior changes such as depressive and anxiety-like behaviors and related neurodegenerative diseases caused by the vagus nerve and intestinal microecological environment disorders, and then we also analyzed inconsistency of the experimental evidence in order to propose novel strategies for the clinical practice.
Collapse
Affiliation(s)
- Yimin Han
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, 100083, People’s Republic of China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Ying Wang
- Department of Dermatology, Beijing Tong Ren Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
- Correspondence: Jingdong Xu, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10, Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, People’s Republic of China, Tel/Fax +86 10-8391-1469, Email
| |
Collapse
|
6
|
Neuhuber WL, Berthoud HR. Functional anatomy of the vagus system: How does the polyvagal theory comply? Biol Psychol 2022; 174:108425. [PMID: 36100134 DOI: 10.1016/j.biopsycho.2022.108425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Due to its pivotal role in autonomic networks and interoception, the vagus attracts continued interest from both basic scientists and therapists of various clinical disciplines. In particular, the widespread use of heart rate variability as an index of autonomic cardiac control and a proposed central role of the vagus in biopsychological concepts, e.g., the polyvagal theory, provide a good opportunity to recall basic features of vagal anatomy. In addition to the "classical" vagal brainstem nuclei, i.e., dorsal motor nucleus, nucleus ambiguus and nucleus tractus solitarii, the spinal trigeminal and paratrigeminal nuclei come into play as targets of vagal afferents. On the other hand, the nucleus of the solitary tract receives and integrates not only visceral but also somatic afferents.
Collapse
Affiliation(s)
- Winfried L Neuhuber
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität, Krankenhausstrasse 9, Erlangen, Germany.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
7
|
Abstract
The gut microbiota has the capacity to affect host appetite via intestinal satiety pathways, as well as complex feeding behaviors. In this Review, we highlight recent evidence that the gut microbiota can modulate food preference across model organisms. We discuss effects of the gut microbiota on the vagus nerve and brain regions including the hypothalamus, mesolimbic system, and prefrontal cortex, which play key roles in regulating feeding behavior. Crosstalk between commensal bacteria and the central and peripheral nervous systems is associated with alterations in signaling of neurotransmitters and neuropeptides such as dopamine, brain-derived neurotrophic factor (BDNF), and glucagon-like peptide-1 (GLP-1). We further consider areas for future research on mechanisms by which gut microbes may influence feeding behavior involving these neural pathways. Understanding roles for the gut microbiota in feeding regulation will be important for informing therapeutic strategies to treat metabolic and eating disorders.
Collapse
|
8
|
DiPatrizio NV. Endocannabinoids and the Gut-Brain Control of Food Intake and Obesity. Nutrients 2021; 13:nu13041214. [PMID: 33916974 PMCID: PMC8067588 DOI: 10.3390/nu13041214] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gut-brain signaling controls food intake and energy homeostasis, and its activity is thought to be dysregulated in obesity. We will explore new studies that suggest the endocannabinoid (eCB) system in the upper gastrointestinal tract plays an important role in controlling gut-brain neurotransmission carried by the vagus nerve and the intake of palatable food and other reinforcers. A focus will be on studies that reveal both indirect and direct interactions between eCB signaling and vagal afferent neurons. These investigations identify (i) an indirect mechanism that controls nutrient-induced release of peptides from the gut epithelium that directly interact with corresponding receptors on vagal afferent neurons, and (ii) a direct mechanism via interactions between eCBs and cannabinoid receptors expressed on vagal afferent neurons. Moreover, the impact of diet-induced obesity on these pathways will be considered.
Collapse
Affiliation(s)
- Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Richards P, Thornberry NA, Pinto S. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol Metab 2021; 46:101175. [PMID: 33548501 PMCID: PMC8085592 DOI: 10.1016/j.molmet.2021.101175] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut-brain axis, which mediates bidirectional communication between the gastrointestinal system and central nervous system (CNS), plays a fundamental role in multiple areas of physiology including regulating appetite, metabolism, and gastrointestinal function. The biology of the gut-brain axis is central to the efficacy of glucagon-like peptide-1 (GLP-1)-based therapies, which are now leading treatments for type 2 diabetes (T2DM) and obesity. This success and research to suggest a much broader role of gut-brain circuits in physiology and disease has led to increasing interest in targeting such circuits to discover new therapeutics. However, our current knowledge of this biology is limited, largely because the scientific tools have not been available to enable a detailed mechanistic understanding of gut-brain communication. SCOPE OF REVIEW In this review, we provide an overview of the current understanding of how sensory information from the gastrointestinal system is communicated to the central nervous system, with an emphasis on circuits involved in regulating feeding and metabolism. We then describe how recent technologies are enabling a better understanding of this system at a molecular level and how this information is leading to novel insights into gut-brain communication. We also discuss current therapeutic approaches that leverage the gut-brain axis to treat diabetes, obesity, and related disorders and describe potential novel approaches that have been enabled by recent advances in the field. MAJOR CONCLUSIONS The gut-brain axis is intimately involved in regulating glucose homeostasis and appetite, and this system plays a key role in mediating the efficacy of therapeutics that have had a major impact on treating T2DM and obesity. Research into the gut-brain axis has historically largely focused on studying individual components in this system, but new technologies are now enabling a better understanding of how signals from these components are orchestrated to regulate metabolism. While this work reveals a complexity of signaling even greater than previously appreciated, new insights are already being leveraged to explore fundamentally new approaches to treating metabolic diseases.
Collapse
Affiliation(s)
- Paul Richards
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| | | | - Shirly Pinto
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| |
Collapse
|
10
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Avalos B, Argueta DA, Perez PA, Wiley M, Wood C, DiPatrizio NV. Cannabinoid CB 1 Receptors in the Intestinal Epithelium Are Required for Acute Western-Diet Preferences in Mice. Nutrients 2020; 12:nu12092874. [PMID: 32962222 PMCID: PMC7551422 DOI: 10.3390/nu12092874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
The endocannabinoid system plays an important role in the intake of palatable food. For example, endocannabinoid signaling in the upper small-intestinal epithelium is increased (i) in rats after tasting dietary fats, which promotes intake of fats, and (ii) in a mouse model of diet-induced obesity, which promotes overeating via impaired nutrient-induced gut-brain satiation signaling. We now utilized a combination of genetic, pharmacological, and behavioral approaches to identify roles for cannabinoid CB1Rs in upper small-intestinal epithelium in preferences for a western-style diet (WD, high-fat/sucrose) versus a standard rodent diet (SD, low-fat/no sucrose). Mice were maintained on SD in automated feeding chambers. During testing, mice were given simultaneous access to SD and WD, and intakes were recorded. Mice displayed large preferences for the WD, which were inhibited by systemic pretreatment with the cannabinoid CB1R antagonist/inverse agonist, AM251, for up to 3 h. We next used our novel intestinal epithelium-specific conditional cannabinoid CB1R-deficient mice (IntCB1-/-) to investigate if intestinal CB1Rs are necessary for WD preferences. Similar to AM251 treatment, preferences for WD were largely absent in IntCB1-/- mice when compared to control mice for up to 6 h. Together, these data suggest that CB1Rs in the murine intestinal epithelium are required for acute WD preferences.
Collapse
Affiliation(s)
- Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Donovan A. Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Pedro A. Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Mark Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Courtney Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
- Correspondence: ; Tel.: +1-951-827-7252
| |
Collapse
|
12
|
Maejima Y, Horita S, Otsuka A, Hidema S, Nishimori K, Shimomura K. Oral oxytocin delivery with proton pump inhibitor pretreatment decreases food intake. Peptides 2020; 128:170312. [PMID: 32298773 DOI: 10.1016/j.peptides.2020.170312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Oxytocin (Oxt) is considered as a potential agent to treat multiple neuropsychiatric disorders, obesity and metabolic syndrome. Although the mechanisms underlying these effects remain unclear, nasal administration is considered to be a potential way to deliver Oxt into blood vessels. The development of an easier, more stable and efficient way is expected. A recent study demonstrated that orally administered Oxt can be transmitted into blood if it is prevented from degradation in stomach and reaches the intestinal tract. In this study, we pretreated mice with a proton pump inhibitor (PPI), omeprazole (20 mg/kg), and administered capsulized Oxt (0.25 mg), so that the Oxt can be prevented from degradation by pepsin due to the low pH in stomach and reach the intestinal tract. Functionally, these mice showed a similar decrease in food intake to those who underwent intraperitoneal administration. We also confirmed that this method dramatically increased plasma Oxt levels and the expression of neural activation marker c-Fos protein in the paraventricular and suprachiasmatic nucleus. Our study showed that by pretreating mice with PPI, Oxt in a gelatin-coated capsule can prevent Oxt from degradation by pepsin in stomach, and reach the bloodstream in an effective concentration. These results indicate that our method is a promising oral delivery of Oxt and should be investigated further for other peptide agents based on peripheral injection or nasal administration.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 960-1295, Fukushima, Japan.
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 960-1295, Fukushima, Japan
| | - Ayano Otsuka
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University Sendai-shi, 981-8555, Miyagi, Japan
| | - Shizu Hidema
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University Sendai-shi, 981-8555, Miyagi, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University Sendai-shi, 981-8555, Miyagi, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 960-1295, Fukushima, Japan
| |
Collapse
|
13
|
English A, Irwin N. Nonclassical Islet Peptides: Pancreatic and Extrapancreatic Actions. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419888871. [PMID: 32425629 PMCID: PMC7216561 DOI: 10.1177/1179551419888871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
The pancreas has physiologically important endocrine and exocrine functions; secreting enzymes into the small intestine to aid digestion and releasing multiple peptide hormones via the islets of Langerhans to regulate glucose metabolism, respectively. Insulin and glucagon, in combination with ghrelin, pancreatic polypeptide and somatostatin, are the main classical islet peptides critical for the maintenance of blood glucose. However, pancreatic islets also synthesis numerous ‘nonclassical’ peptides that have recently been demonstrated to exert fundamental effects on overall islet function and metabolism. As such, insights into the physiological relevance of these nonclassical peptides have shown impact on glucose metabolism, insulin action, cell survival, weight loss, and energy expenditure. This review will focus on the role of individual nonclassical islet peptides to stimulate pancreatic islet secretions as well as regulate metabolism. In addition, the more recognised actions of these peptides on satiety and energy regulation will also be considered. Furthermore, recent advances in the field of peptide therapeutics and obesity-diabetes have focused on the benefits of simultaneously targeting several hormone receptor signalling cascades. The potential for nonclassical islet hormones within such combinational approaches will also be discussed.
Collapse
Affiliation(s)
- Andrew English
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
14
|
Argueta DA, Perez PA, Makriyannis A, DiPatrizio NV. Cannabinoid CB 1 Receptors Inhibit Gut-Brain Satiation Signaling in Diet-Induced Obesity. Front Physiol 2019; 10:704. [PMID: 31281260 PMCID: PMC6597959 DOI: 10.3389/fphys.2019.00704] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023] Open
Abstract
Gut-brain signaling controls feeding behavior and energy homeostasis; however, the underlying molecular mechanisms and impact of diet-induced obesity (DIO) on these pathways are poorly defined. We tested the hypothesis that elevated endocannabinoid activity at cannabinoid CB1 receptor (CB1Rs) in the gut of mice rendered DIO by chronic access to a high fat and sucrose diet for 60 days inhibits nutrient-induced release of satiation peptides and promotes overeating. Immunoreactivity for CB1Rs was present in enteroendocrine cells in the mouse’s upper small-intestinal epithelium that produce and secrete the satiation peptide, cholecystokinin (CCK), and expression of mRNA for CB1Rs was greater in these cells when compared to non-CCK producing cells. Oral gavage of corn oil increased levels of bioactive CCK (CCK-8) in plasma from mice fed a low fat no-sucrose diet. Pretreatment with the cannabinoid receptor agonist, WIN55,212-2, blocked this response, which was reversed by co-administration with the peripherally-restricted CB1R neutral antagonist, AM6545. Furthermore, monoacylglycerol metabolic enzyme function was dysregulated in the upper small-intestinal epithelium from DIO mice, which was met with increased levels of a variety of monoacylglycerols including the endocannabinoid, 2-arachidonoyl-sn-glycerol. Corn oil failed to affect levels of CCK in DIO mouse plasma; however, pretreatment with AM6545 restored the ability for corn oil to stimulate increases in levels of CCK, which suggests that elevated endocannabinoid signaling at small intestinal CB1Rs in DIO mice inhibits nutrient-induced CCK release. Moreover, the hypophagic effect of AM6545 in DIO mice was reversed by co-administration with the CCKA receptor antagonist, devazepide. Collectively, these results provide evidence that hyperphagia associated with DIO is driven by a mechanism that includes CB1R-mediated inhibition of gut-brain satiation signaling.
Collapse
Affiliation(s)
- Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | | | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
15
|
Klockars A, Wood EL, Gartner SN, McColl LK, Levine AS, Carpenter EA, Prosser CG, Olszewski PK. Palatability of Goat's versus Cow's Milk: Insights from the Analysis of Eating Behavior and Gene Expression in the Appetite-Relevant Brain Circuit in Laboratory Animal Models. Nutrients 2019; 11:nu11040720. [PMID: 30925727 PMCID: PMC6520687 DOI: 10.3390/nu11040720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/17/2019] [Accepted: 03/25/2019] [Indexed: 01/20/2023] Open
Abstract
Goat's (GM) and cow's milk (CM) are dietary alternatives with select health benefits shown in human and animal studies. Surprisingly, no systematic analysis of palatability or preference for GM vs. CM has been performed to date. Here, we present a comprehensive investigation of short-term intake and palatability profiles of GM and CM in laboratory mice and rats. We studied consumption in no-choice and choice scenarios, including meal microstructure, and by using isocaloric milks and milk-enriched solid diets. Feeding results are accompanied by qPCR data of relevant genes in the energy balance-related hypothalamus and brain stem, and in the nucleus accumbens, which regulates eating for palatability. We found that GM and CM are palatable to juvenile, adult, and aged rodents. Given a choice, animals prefer GM- to CM-based diets. Analysis of meal microstructure using licking patterns points to enhanced palatability of and, possibly, greater motivation toward GM over CM. Most profound changes in gene expression after GM vs. CM were associated with the brain systems driving consumption for reward. We conclude that, while both GM and CM are palatable, GM is preferred over CM by laboratory animals, and this preference is driven by central mechanisms controlling eating for pleasure.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Erin L Wood
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Sarah N Gartner
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Laura K McColl
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55113, USA.
| | | | - Colin G Prosser
- Dairy Goat Cooperative (NZ) Ltd., Hamilton 3206, New Zealand.
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55113, USA.
| |
Collapse
|