1
|
Luo PX, Trainor BC. Hypocretin modulation of behavioral coping strategies for social stress. Neuroscience 2025; 564:126-134. [PMID: 39547335 DOI: 10.1016/j.neuroscience.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Best known for promoting wakefulness and arousal, the neuropeptide hypocretin (Hcrt) also plays an important role in mediating stress responses, including social stress. However, central and systemic manipulation of the Hcrt system has produced diverse behavioral outcomes in animal models. In this review, we first focus on studies where similar manipulations of the Hcrt system led to divergent coping behaviors. We hypothesize that Hcrt differentially facilitates active and passive coping behaviors in response to social stress by acting in different brain regions and on different cell types. We then focus on region and cell type-specific effects of Hcrt in the ventral pallidum, lateral habenula, ventral tegmental area, nucleus accumbens, amygdala, and bed nucleus of the stria terminalis. Overall, the evidence suggests that rather than enhancing or inhibiting behavioral responses to social stress, Hcrt may signal the heightened arousal associated with stressful contexts. The resulting behavioral effects depend on which circuits Hcrt release occurs in and which receptor types are activated. Further study is needed to determine how and why circuit specific activation of Hcrt neurons occurs.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Luo PX, Serna Godoy A, Zakharenkov HC, Vang N, Wright EC, Balantac TA, Archdeacon SC, Black AM, Lake AA, Ramirez AV, Lozier LE, Perez MD, Bhangal I, Desta NM, Trainor BC. Hypocretin in the nucleus accumbens shell modulates social approach in female but not male California mice. Neuropsychopharmacology 2024; 49:2000-2010. [PMID: 39117901 PMCID: PMC11480414 DOI: 10.1038/s41386-024-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
The hypocretin (Hcrt) system modulates arousal and anxiety-related behaviors and has been considered as a novel treatment target for stress-related affective disorders. We examined the effects of Hcrt acting in the nucleus accumbens shell (NAcSh) and anterodorsal bed nucleus of the stria terminalis (adBNST) on social behavior in male and female California mice (Peromyscus californicus). In female but not male California mice, infusion of Hcrt1 into NAcSh decreased social approach. Weak effects of Hcrt1 on social vigilance were observed in both females and males. No behavioral effects of Hcrt1 infused into the adBNST were observed. Analyses of sequencing data from California mice and Mus musculus NAc showed that Hcrtr2 was more abundant than Hcrtr1, so we infused the selective Hcrt receptor 2 antagonist into the NAcSh, which increased social approach in females previously exposed to social defeat. A calcium imaging study in the NAcSh of females before and after stress exposure showed that neural activity increased immediately following the expression of social avoidance but not during freezing behavior. This observation is consistent with previous studies that identified populations of neurons in the NAc that drive avoidance. Intriguingly, calcium transients were not affected by stress. These data suggest that hypocretin acting in the NAcSh plays a key role in modulating stress-induced social avoidance.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, Davis, CA, USA
| | | | | | - Nou Vang
- Department of Psychology, University of California, Davis, CA, USA
| | - Emily C Wright
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | | | - Alexis M Black
- Department of Psychology, University of California, Davis, CA, USA
| | - Alyssa A Lake
- Department of Psychology, University of California, Davis, CA, USA
| | - Alison V Ramirez
- Department of Psychology, University of California, Davis, CA, USA
| | - Lauren E Lozier
- Department of Psychology, University of California, Davis, CA, USA
| | - Melvin D Perez
- Department of Psychology, University of California, Davis, CA, USA
| | - Irvin Bhangal
- Department of Psychology, University of California, Davis, CA, USA
| | - Nile M Desta
- Department of Psychology, University of California, Davis, CA, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Borgatti DA, Rowlett JK, Berro LF. Effects of methamphetamine on actigraphy-based sleep parameters in female rhesus monkeys: Orexin receptor mechanisms. Drug Alcohol Depend 2024; 259:111285. [PMID: 38636173 PMCID: PMC11111337 DOI: 10.1016/j.drugalcdep.2024.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The orexin system has been implicated as a mechanism underlying insomnia and methamphetamine-induced sleep disruptions, with a potential role for OX2 receptors in the sleep-modulating effects of orexin. The aim of the present study was to investigate the extent to which orexin receptors mediate the effects of acute methamphetamine administration on actigraphy-based sleep in female rhesus monkeys. METHODS Actigraphy-based sleep measures were obtained in female rhesus monkeys (n=5) under baseline and acute test conditions. First, morning (10h) i.m. injections of methamphetamine (0.03 - 0.56mg/kg) were administered to determine the effects of methamphetamine alone. Then, saline or methamphetamine (0.3mg/kg) were administered at 10h, and evening (17h30) oral treatments with vehicle, the non-selective orexin receptor antagonist suvorexant (1 - 10mg/kg, p.o.), or the OX2-selective orexin receptor antagonist MK-1064 (1 - 10mg/kg, p.o.) were given. The ability of suvorexant and MK-1064 (10mg/kg, p.o.) to improve actigraphy-based sleep was also assessed in a group of female monkeys quantitatively identified with "short-duration sleep" (n=4). RESULTS Methamphetamine dose-dependently disrupted actigraphy-based sleep parameters. Treatment with either suvorexant or MK-1064 dose-dependently improved actigraphy-based sleep in monkeys treated with methamphetamine. Additionally, both suvorexant and MK-1064 promoted actigraphy-based sleep in a group of monkeys with baseline short actigraphy-based sleep. CONCLUSIONS These findings suggest that orexin-mediated mechanisms play a role in the effects of methamphetamine on actigraphy-based sleep in female monkeys. Targeting the orexin system, in particular OX2 receptors, could be an effective option for treating sleep disruptions observed in individuals with methamphetamine use disorder.
Collapse
Affiliation(s)
- Daniel A Borgatti
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA; Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lais F Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA; Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
4
|
Bohid S, Ali LK, Romero-Leguizamón CR, Langkilde AE, Dos Santos AB, Kohlmeier KA. Sex-dependent effects of monomeric α-synuclein on calcium and cell death of lateral hypothalamic mouse neurons are altered by orexin. Mol Cell Neurosci 2024; 129:103934. [PMID: 38701995 DOI: 10.1016/j.mcn.2024.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/25/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
Parkinson's Disease (PD) patients experience sleeping disorders in addition to the disease-defining symptomology of movement dysfunctions. The prevalence of PD is sex-based and presence of sleeping disorders in PD also shows sex bias with a stronger phenotype in males. In addition to loss of dopamine-containing neurons in the striatum, arousal-related, orexin-containing neurons in the lateral hypothalamus (LH) are lost in PD, which could contribute to state-related disorders. As orexin has been shown to be involved in sleeping disorders and to have neuroprotective effects, we asked whether orexin could protect sleep-related LH neurons from damage putatively from the protein α-synuclein (α-syn), which is found at high levels in the PD brain and that we have shown is associated with putatively excitotoxic rises in intracellular calcium in brainstem sleep-controlling nuclei, especially in males. Accordingly, we monitored intracellular calcium transients induced by α-syn and whether concurrent exposure to orexin affected those transients in LH cells of the mouse brain slice using calcium imaging. Further, we used an assay of cell death to determine whether LH cell viability was influenced when α-syn and orexin were co-applied when compared to exposure to α-syn alone. We found that excitatory calcium events induced by α-syn were reduced in amplitude and frequency when orexin was co-applied, and when data were evaluated by sex, this effect was found to be greater in females. In addition, α-syn exposure was associated with cell death that was higher in males, and interestingly, reduced cell death was noted when orexin was present, which did not show a sex bias. We interpret our findings to indicate that orexin is protective to α-syn-mediated damage to hypothalamic neurons, and the actions of orexin on α-syn-induced cellular effects differ between sexes, which could underlie sex-based differences in sleeping disorders in PD.
Collapse
Affiliation(s)
- Sara Bohid
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lara Kamal Ali
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cesar Ramon Romero-Leguizamón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Annette E Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Altair Brito Dos Santos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
5
|
Khalid MH, Khawaja M, Qadri HM, Bashir A. Integrating psychological care in the treatment of chronic neuropathic pain and hemifacial spasm: a call for interdisciplinary approaches. Neurosurg Rev 2024; 47:225. [PMID: 38771387 PMCID: PMC11108908 DOI: 10.1007/s10143-024-02460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Affiliation(s)
| | | | | | - Asif Bashir
- Department of Neurosurgery, Punjab Institute of Neurosciences, Lahore, Pakistan.
| |
Collapse
|
6
|
Li H, Chen X, Dong J, Liu R, Duan J, Huang M, Hu S, Lu J. A direct estrogenic involvement in the expression of human hypocretin. Life Sci 2024; 344:122581. [PMID: 38514004 DOI: 10.1016/j.lfs.2024.122581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Hypocretin is synthesized exclusively in the hypothalamus and distributes inputs to several areas of the brain, which may play an important role in depression. Our previous study showed that hypocretin-1 was increased in the lateral hypothalamus in female patients with depression compared to female controls. Estrogen acts through estrogen receptor (ER)α and ERβ. We studied the possibility of a direct action of estrogen receptors on the expression of human hypocretin. We found that hypocretin-1 plasma levels were significantly higher in female patients with depression than in female controls. Female depression estrogen receptors and hypocretin are colocalized in the human lateral hypothalamus, PC12, and SK-N-SH cells. The estrogen receptor response elements (ERE) that exist in the hypocretin promoter region may directly regulate the gene expression of hypocretin. The synchronicity of change of hypocretin and estradiol both in hypothalamus and plasma was verified in female rats. In the presence of estradiol, specific binding occurs between the recombinant human ER and hypocretin-ERE. Expression of ER combined with estradiol repressed hypocretin promoter activity via the ERE. In conclusion, we found that estradiol may directly affect hypocretin neurons in the human hypothalamus via ER binding to the hypocretin-ERE, which may lead to the sex-specific pathogenesis of depression.
Collapse
Affiliation(s)
- Haimei Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, Zhejiang 310003, China
| | - Xinlu Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Jingyi Dong
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ripeng Liu
- College of First Clinical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Jinfeng Duan
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, Zhejiang 310003, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, Zhejiang 310003, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, Zhejiang 310003, China.
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
7
|
Raskin M, Keller NE, Agee LA, Shumake J, Smits JA, Telch MJ, Otto MW, Lee HJ, Monfils MH. Carbon Dioxide Reactivity Differentially Predicts Fear Expression After Extinction and Retrieval-Extinction in Rats. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100310. [PMID: 38680941 PMCID: PMC11047292 DOI: 10.1016/j.bpsgos.2024.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/11/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024] Open
Abstract
Background Cues present during a traumatic event may result in persistent fear responses. These responses can be attenuated through extinction learning, a core component of exposure therapy. Exposure/extinction is effective for some people, but not all. We recently demonstrated that carbon dioxide (CO2) reactivity predicts fear extinction memory and orexin activation and that orexin activation predicts fear extinction memory, which suggests that a CO2 challenge may enable identification of whether an individual is a good candidate for an extinction-based approach. Another method to attenuate conditioned responses, retrieval-extinction, renders the original associative memory labile via distinct neural mechanisms. The purpose of the current study was to examine whether we could replicate previous findings that retrieval-extinction is more effective than extinction at preventing the return of fear and that CO2 reactivity predicts fear memory after extinction. We also examined whether CO2 reactivity predicts fear memory after retrieval-extinction. Methods Male rats first underwent a CO2 challenge and fear conditioning and were assigned to receive either standard extinction (n = 28) or retrieval-extinction (n = 28). Then, they underwent a long-term memory (LTM) test and a reinstatement test. Results We found that retrieval-extinction resulted in lower freezing during extinction, LTM, and reinstatement than standard extinction. Using the best subset approach to linear regression, we found that CO2 reactivity predicted LTM after extinction and also predicted LTM after retrieval-extinction, although to a lesser degree. Conclusions CO2 reactivity could be used as a screening tool to determine whether an individual may be a good candidate for an extinction-based therapeutic approach.
Collapse
Affiliation(s)
- Marissa Raskin
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| | - Nicole E. Keller
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| | - Laura A. Agee
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Jason Shumake
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Jasper A.J. Smits
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Michael J. Telch
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Michael W. Otto
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts
| | - Hongjoo J. Lee
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Marie-H. Monfils
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Department of Psychology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
8
|
Singh R, Sharma D, Kumar A, Singh C, Singh A. Understanding zebrafish sleep and wakefulness physiology as an experimental model for biomedical research. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:827-842. [PMID: 38150068 DOI: 10.1007/s10695-023-01288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Sleep is a globally observable fact, or period of reversible distracted rest, that can be distinguished from arousal by various behavioral criteria. Although the function of sleep is an evolutionarily conserved behavior, its mechanism is not yet clear. The zebrafish (Danio rerio) has become a valuable model for neurobehavioral studies such as studying learning, memory, anxiety, and depression. It is characterized by a sleep-like state and circadian rhythm, making it comparable to mammals. Zebrafish are a good model for behavioral studies because they share genetic similarities with humans. A number of neurotransmitters are involved in sleep and wakefulness. There is a binding between melatonin and the hypocretin system present in zebrafish. The full understanding of sleep and wakefulness physiology in zebrafish is still unclear among researchers. Therefore, to make a clear understanding of the sleep/wake cycle in zebrafish, this article covers the mechanism involved behind it, and the role of the neuromodulator system followed by the mechanism of the HPA axis.
Collapse
Affiliation(s)
- Rima Singh
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt, Tehri Garhwal, Uttarakhand, 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
9
|
Bendrath SC, Cook CA, Knapp DJ, Thiele TE. Orexinergic lateral hypothalamus (LH) projections to medial septum (MS) modulate ethanol-induced sedation in male and female mice and binge-like ethanol drinking in male mice only. Alcohol 2024; 115:13-22. [PMID: 37717641 PMCID: PMC10922035 DOI: 10.1016/j.alcohol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Orexin in both the lateral hypothalamus (LH) and medial septum (MS) is involved in sleep- and consciousness-related conditions. Since orexin modulates the intoxicating as well as rewarding effects of ethanol, this study focused on the role of orexin-projecting neurons from the LH to the MS, and this neurocircuit's role in mediating the sedative effects of alcohol. Drinking-in-the-Dark (DID) behavior was also assessed as a measure of the role of the LH-MS pathway in modulating binge-like ethanol intake, with a particular focus on sex differences in both behavioral paradigms. Male and female Hcrt-ires-cre mice received cannulation in the MS, while the LH was injected bilaterally with cre-dependent excitatory (Gq) Designer Receptor Exclusively Activated by Designer Drug (DREADD), inhibitory (Gi) DREADD or control virus. All subjects received a 3.75 g/kg dose of 20 % ethanol intraperitoneally and the sedative effect was assessed by the loss of righting reflex (LORR). After behavioral testing, brains were used for c-Fos immunohistochemistry analyses. A separate cohort of mice was used for a 2-week DID protocol using excitatory (Gq) DREADD and control virus. Gq DREADD-induced activation of the orexin neurocircuitry from the LH to the MS significantly reduced sedation time in both female and male mice. Furthermore, CNO treatment failed to alter ethanol sedation times in both animals expressing Gi DREADDs and control virus. There were no significant differences in blood ethanol concentrations (BECs) in any experimental group, suggesting that changes in sedation were not due to treatment-induced alterations of ethanol metabolism. Interestingly, in the DID study, only male mice decreased their ethanol consumption when Gq DREADDs were activated. These results provide novel evidence on the role played by this orexinergic LH to MS circuit on the sedative effects of ethanol and ethanol consumption in a sex-dependent manner. Thus, the MS should be considered further as a novel sexually dimorphic target.
Collapse
Affiliation(s)
- Sophie C Bendrath
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, United States
| | - Cory A Cook
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, United States
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7178, United States
| | - Todd E Thiele
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, United States; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7178, United States.
| |
Collapse
|
10
|
Lynch MA. A case for seeking sex-specific treatments in Alzheimer's disease. Front Aging Neurosci 2024; 16:1346621. [PMID: 38414633 PMCID: PMC10897030 DOI: 10.3389/fnagi.2024.1346621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
There is no satisfactory explanation for the sex-related differences in the incidence of many diseases and this is also true of Alzheimer's disease (AD), where females have a higher lifetime risk of developing the disease and make up about two thirds of the AD patient population. The importance of understanding the cause(s) that account for this disproportionate distribution cannot be overestimated, and is likely to be a significant factor in the search for therapeutic strategies that will combat the disease and, furthermore, potentially point to a sex-targeted approach to treatment. This review considers the literature in the context of what is known about the impact of sex on processes targeted by drugs that are in clinical trial for AD, and existing knowledge on differing responses of males and females to these drugs. Current knowledge strongly supports the view that trials should make assessing sex-related difference in responses a priority with a focus on exploring the sex-stratified treatments.
Collapse
|
11
|
Keenan RJ, Daykin H, Metha J, Cornthwaite-Duncan L, Wright DK, Clarke K, Oberrauch S, Brian M, Stephenson S, Nowell CJ, Allocca G, Barnham KJ, Hoyer D, Jacobson LH. Orexin 2 receptor antagonism sex-dependently improves sleep/wakefulness and cognitive performance in tau transgenic mice. Br J Pharmacol 2024; 181:87-106. [PMID: 37553894 DOI: 10.1111/bph.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Daykin
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Metha
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Finance, Faculty of Business and Economics, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Cornthwaite-Duncan
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kyra Clarke
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sara Oberrauch
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Maddison Brian
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Stephenson
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Giancarlo Allocca
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Somnivore Inc. Ltd Pty, Bacchus Marsh, Victoria, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Kim LJ, Pho H, Anokye-Danso F, Ahima RS, Pham LV, Polotsky VY. The effect of diet-induced obesity on sleep and breathing in female mice. Sleep 2023; 46:zsad158. [PMID: 37262435 PMCID: PMC10424169 DOI: 10.1093/sleep/zsad158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Indexed: 06/03/2023] Open
Abstract
Obesity and male sex are main risk factors for sleep-disordered breathing (SDB). We have shown that male diet-induced obesity (DIO) mice develop hypoventilation, sleep apnea, and sleep fragmentation. The effects of DIO on breathing and sleep architecture in females have not been investigated. We hypothesized that female mice are less susceptible to the detrimental effects of DIO on sleep and SDB compared to males. Female DIO-C57BL/6J and lean C57BL/6J mice underwent 24-hour metabolic studies and were exposed to 8% CO2 to measure the hypercapnic ventilatory response (HCVR), and sleep studies. Ventilatory response to arousals was calculated as ratio of the average and peak minute ventilation (VE) during each arousal relative to the baseline VE. Breathing stability was measured with Poincaré plots of VE. Female obesity was associated with decreased metabolism, indicated by reduced oxygen consumption (VO2) and CO2 production (VCO2). VE in 8% CO2 and HCVR were significantly attenuated during wakefulness. NREM sleep duration was reduced in DIO mice, but REM sleep was preserved. Ventilation during NREM and REM sleep was augmented compared to lean mice. Arousal frequency was similar between groups. Obesity increased the frequency of spontaneous arousals, whereas the apnea index was 4-fold reduced in DIO compared to lean mice. Obesity decreased pre- and post-apnea arousals. Obese mice had more stable breathing with reduced ventilatory response to arousals, compared to lean females. We conclude that obese female mice are protected against SDB, which appears to be related to an attenuated CO2 responsiveness, compared to the lean state.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick Anokye-Danso
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
13
|
Dawson M, Terstege DJ, Jamani N, Tsutsui M, Pavlov D, Bugescu R, Epp JR, Leinninger GM, Sargin D. Hypocretin/orexin neurons encode social discrimination and exhibit a sex-dependent necessity for social interaction. Cell Rep 2023; 42:112815. [PMID: 37459234 DOI: 10.1016/j.celrep.2023.112815] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/20/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
The hypothalamus plays a crucial role in the modulation of social behavior by encoding internal states. The hypothalamic hypocretin/orexin neurons, initially identified as regulators of sleep and appetite, are important for emotional and motivated behaviors. However, their role in social behavior remains unclear. Using fiber photometry and behavioral analysis, we show here that hypocretin neurons differentially encode social discrimination based on the nature of social encounters. The optogenetic inhibition of hypocretin neuron activity or blocking of hcrt-1 receptors reduces the amount of time mice are engaged in social interaction in males but not in females. Reduced hcrt-1 receptor signaling during social interaction is associated with altered activity in the insular cortex and ventral tegmental area in males. Our data implicating hypocretin neurons as sexually dimorphic regulators within social networks have significant implications for the treatment of neuropsychiatric diseases with social dysfunction, particularly considering varying prevalence among sexes.
Collapse
Affiliation(s)
- Matthew Dawson
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Dylan J Terstege
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Naila Jamani
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mio Tsutsui
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Dmitrii Pavlov
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Derya Sargin
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
14
|
Costello A, Linning-Duffy K, Vandenbrook C, Donohue K, O'Hara BF, Kim A, Lonstein JS, Yan L. Effects of light therapy on sleep/wakefulness, daily rhythms, and the central orexin system in a diurnal rodent model of seasonal affective disorder. J Affect Disord 2023; 332:299-308. [PMID: 37060954 PMCID: PMC10161688 DOI: 10.1016/j.jad.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Bright light therapy (BLT) is the first-line treatment for seasonal affective disorder. However, the neural mechanisms underlying BLT are unclear. To begin filling this gap, the present study examined the impact of BLT on sleep/wakefulness, daily rhythms, and the wakefulness-promoting orexin/hypocretin system in a diurnal rodent, Nile grass rats (Arvicanthis niloticus). METHODS Male and female grass rats were housed under a 12:12 h light/dark cycle with dim light (50 lx) during the day. The experimental group received daily 1-h early morning BLT (full-spectrum white light, 10,000 lx), while the control group received narrowband red light for 4 weeks. Sleep/wakefulness and in-cage locomotor activity were monitored, followed by examination of hypothalamic prepro-orexin and orexin receptors OX1R and OX2R expression in corticolimbic brain regions. RESULTS The BLT group had higher wakefulness during light treatment, better nighttime sleep quality, and improved daily rhythm entrainment compared to controls. The impact of BLT on the orexin system was sex- and brain region-specific, with males showing higher OX1R and OX2R in the CA1, while females showed higher prepro-orexin but lower OX1R and OX2R in the BLA, compared to same-sex controls. LIMITATIONS The present study focused on the orexin system in a limited number of brain regions at a single time point. Sex wasn't a statistical factor, as male and female cohorts were run independently. CONCLUSIONS The diurnal grass rats show similar behavioral responses to BLT as humans, thus could be a good model for further elucidating the neural mechanisms underlying the therapeutic effects of BLT.
Collapse
Affiliation(s)
- Allison Costello
- Department of Psychology, Michigan State University, United States of America.
| | | | | | - Kevin Donohue
- Department of Electrical and Computer Engineering, Michigan State University, United States of America
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, United States of America
| | - Antony Kim
- Department of Architecture, UC Berkeley, United States of America
| | - Joseph S Lonstein
- Department of Psychology, Michigan State University, United States of America; Neuroscience Program, Michigan State University, United States of America
| | - Lily Yan
- Department of Psychology, Michigan State University, United States of America; Neuroscience Program, Michigan State University, United States of America
| |
Collapse
|
15
|
Kinkead R, Ambrozio-Marques D, Fournier S, Gagnon M, Guay LM. Estrogens, age, and, neonatal stress: panic disorders and novel views on the contribution of non-medullary structures to respiratory control and CO 2 responses. Front Physiol 2023; 14:1183933. [PMID: 37265841 PMCID: PMC10229816 DOI: 10.3389/fphys.2023.1183933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
CO2 is a fundamental component of living matter. This chemical signal requires close monitoring to ensure proper match between metabolic production and elimination by lung ventilation. Besides ventilatory adjustments, CO2 can also trigger innate behavioral and physiological responses associated with fear and escape but the changes in brain CO2/pH required to induce ventilatory adjustments are generally lower than those evoking fear and escape. However, for patients suffering from panic disorder (PD), the thresholds for CO2-evoked hyperventilation, fear and escape are reduced and the magnitude of those reactions are excessive. To explain these clinical observations, Klein proposed the false suffocation alarm hypothesis which states that many spontaneous panics occur when the brain's suffocation monitor erroneously signals a lack of useful air, thereby maladaptively triggering an evolved suffocation alarm system. After 30 years of basic and clinical research, it is now well established that anomalies in respiratory control (including the CO2 sensing system) are key to PD. Here, we explore how a stress-related affective disorder such as PD can disrupt respiratory control. We discuss rodent models of PD as the concepts emerging from this research has influenced our comprehension of the CO2 chemosensitivity network, especially structure that are not located in the medulla, and how factors such as stress and biological sex modulate its functionality. Thus, elucidating why hormonal fluctuations can lead to excessive responsiveness to CO2 offers a unique opportunity to gain insights into the neuroendocrine mechanisms regulating this key aspect of respiratory control and the pathophysiology of respiratory manifestations of PD.
Collapse
|
16
|
Shi J, Wang X, Zhao N, Kang C, Yang L, Zheng Y, Liu J, Feng L, Zhu X, Ma C, Wu W, Wang G, Hu J. Sex differences in residual somatic symptoms in patients with first-episode depression after acute-phase treatment. BMC Psychiatry 2023; 23:119. [PMID: 36814241 PMCID: PMC9948378 DOI: 10.1186/s12888-023-04612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Residual somatic symptoms (RSS) are common in depressed patients, predicting treatment effectiveness. However, sex differences in RSS have received little systematic study. This study was conducted to compare sex differences of RSS in patients with first-episode depression (FED). METHODS Nine hundred eighty-two patients with FED were selected and treated for 8 to 12 weeks. We evaluated the subjects' socio-demographic characteristics and residual depressive symptoms. Using the Patient Health Questionnaire-15 (PHQ-15) scale to assess residual somatic symptoms, the Sheehan Disability Scale (SDS) for the assessment of patients' function, the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF) for quality of life. RESULTS The incidence of RSS with FED was 46.4%. For patients with residual symptoms, the age and age of onset in females were higher than males, but males had more years of education than females. The degree of "stomach pain" in females was more severe than in males, while "trouble sleeping" in males was more severe than that in females. Multiple regression analysis showed that the total Q-LES-Q-SF score was an independent influencing factor of RSS in both males and females, while the total SDS score only affected female RSS. CONCLUSIONS The prevalence of RSS in FED after acute-phase treatment is high. The symptom of "stomachache" is more pronounced in females, while "trouble sleeping" is more severe in males. Quality of life plays an essential role in RSS in both genders. Thus, sex needs to be considered when assessing the relationship between RSS and therapeutic effect in depression.
Collapse
Affiliation(s)
- Jingjing Shi
- grid.412596.d0000 0004 1797 9737Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang DistrictHeilongjiang Province, Harbin, 150001 China
| | - Xiaohong Wang
- grid.412596.d0000 0004 1797 9737Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang DistrictHeilongjiang Province, Harbin, 150001 China
| | - Na Zhao
- grid.412596.d0000 0004 1797 9737Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang DistrictHeilongjiang Province, Harbin, 150001 China
| | - Chuanyi Kang
- grid.412596.d0000 0004 1797 9737Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang DistrictHeilongjiang Province, Harbin, 150001 China
| | - Liying Yang
- grid.412596.d0000 0004 1797 9737Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang DistrictHeilongjiang Province, Harbin, 150001 China
| | - Yue Zheng
- grid.11135.370000 0001 2256 9319Peking University Institute of Mental Health (Sixth Hospital), Beijing, China ,grid.11135.370000 0001 2256 9319National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Jiacheng Liu
- grid.412596.d0000 0004 1797 9737Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang DistrictHeilongjiang Province, Harbin, 150001 China
| | - Lei Feng
- grid.24696.3f0000 0004 0369 153XThe National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xuequan Zhu
- grid.24696.3f0000 0004 0369 153XThe National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Caina Ma
- Harbin First Specialized Hospital, Heilongjiang Province, Harbin, China
| | - Wenyuan Wu
- grid.412793.a0000 0004 1799 5032Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Gang Wang
- grid.24696.3f0000 0004 0369 153XThe National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Hu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang DistrictHeilongjiang Province, Harbin, 150001, China.
| |
Collapse
|
17
|
Nazari-Serenjeh F, Azizbeigi R, Rashvand M, Mesgar S, Amirteymori H, Haghparast A. Distinct roles for orexin-1 and orexin-2 receptors in the dentate gyrus of the hippocampus in the methamphetamine-seeking behavior in the rats. Life Sci 2023; 312:121262. [PMID: 36470538 DOI: 10.1016/j.lfs.2022.121262] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022]
Abstract
Because of the relapsing properties of psychostimulants such as methamphetamine (Meth), there is no established pharmacotherapy for Meth addiction. The orexinergic system is a promising target for treating psychostimulant use disorders and relapse. However, to the best of our knowledge, no investigation regarding the role of orexin receptors in the dentate gyrus (DG) region of the hippocampus has been conducted in the extinction and reinstatement of Meth-seeking behavior. Two stainless-steel guide cannulae were bilaterally implanted into the DG of the rats' brains. The unbiased conditioned place preference (CPP) procedure was conducted to induce Meth conditioning. Following the five days Meth injections (1 mg/kg; sc), animals received intra-DG microinjection of SB334867 or TCS OX2 29, as orexin 1 (OX1) or orexin 2 (OX2) receptor antagonists, respectively (without Meth administration) during extinction phase to elucidate the role of orexin receptors in the latency of the extinction period in the Meth-conditioned rats. To evaluate the role of orexin receptors in the DG region in the reinstatement of Meth-seeking behavior, the extinguished rats received SB334867 or TCS OX2 29 before injecting a priming dose of Meth (0.25 mg/kg; sc). The results indicated two distinct roles for the OX1 and OX2 receptors in the DG region. TCS OX2 29 attenuated the extinction latency, and SB334867 considerably reduced the reinstatement of Meth-seeking behavior in this region. Therefore, the DG region's orexinergic system might be a potential therapeutic target for psychostimulant use disorders.
Collapse
Affiliation(s)
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mina Rashvand
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somaye Mesgar
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Amirteymori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Frankfurt M, Nassrallah Z, Luine V. Steroid Hormone Interaction with Dendritic Spines: Implications for Neuropsychiatric Disease. ADVANCES IN NEUROBIOLOGY 2023; 34:349-366. [PMID: 37962800 DOI: 10.1007/978-3-031-36159-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines, key sites for neural plasticity, are influenced by gonadal steroids. In this chapter, we review the effects of gonadal steroids on dendritic spine density in areas important to cognitive function, the hippocampus, and prefrontal cortex. Most of these animal model studies investigated the effects of estrogen in females, but we also include more recent data on androgen effects in both males and females. The underlying genomic and non-genomic mechanisms related to gonadal steroid-induced spinogenesis are also reviewed. Subsequently, we discuss possible reasons for the observed sex differences in many neuropsychiatric diseases, which appear to be caused, in part, by aberrant synaptic connections that may involve dendritic spine pathology. Overall, knowledge concerning the regulation of dendritic spines by gonadal hormones has grown since the initial discoveries in the 1990s, and current research points to a potential role for aberrant spine functioning in many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hempstead, NY, USA.
| | - Zeinab Nassrallah
- Department of Science Education Zucker School of Medicine, 500 Hofstra University, Hempstead, NY, USA
| | - Victoria Luine
- Department of Psychology, Hunter College, New York, NY, USA
| |
Collapse
|
19
|
Abdelmissih S. A Bitter Experience That Enlightens the Future: COVID-19 Neurological Affection and Perspectives on the Orexigenic System. Cureus 2022; 14:e30788. [DOI: 10.7759/cureus.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
20
|
Carrera-Cañas C, de Andrés I, Callejo M, Garzón M. Plasticity of the hypocretinergic/orexinergic system after a chronic treatment with suvorexant in rats. Role of the hypocretinergic/orexinergic receptor 1 as an autoreceptor. Front Mol Neurosci 2022; 15:1013182. [PMID: 36277486 PMCID: PMC9581150 DOI: 10.3389/fnmol.2022.1013182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
The hypothalamic hypocretinergic/orexinergic (Hcrt/Ox) system is involved in many physiological and pathophysiological processes. Malfunction of Hcrt/Ox transmission results in narcolepsy, a sleep disease caused in humans by progressive neurodegeneration of hypothalamic neurons containing Hcrt/Ox. To explore the Hcrt/Ox system plasticity we systemically administered suvorexant (a dual Hcrt/Ox receptor antagonist) in rats to chronically block Hcrt/Ox transmission without damaging Hcrt/Ox cells. Three groups of eight rats (four males and four females) received daily i.p. injections of suvorexant (10 or 30 mg/kg) or vehicle (DMSO) over a period of 7 days in which the body weight was monitored. After the treatments cerebrospinal fluid (CSF) Hcrt1/OxA concentration was measured by ELISA, and hypothalamic Hcrt/OxR1 and Hcrt/OxR2 levels by western blot. The systemic blockade of the Hcrt/Ox transmission with the suvorexant high dose produced a significant increase in body weight at the end of the treatment, and a significant decrease in CSF Hcrt1/OxA levels, both features typical in human narcolepsy type 1. Besides, a significant overexpression of hypothalamic Hcrt/OxR1 occurred. For the Hcrt/OxR2 two very close bands were detected, but they did not show significant changes with the treatment. Thus, the plastic changes observed in the Hcrt/Ox system after the chronic blockade of its transmission were a decrease in CSF Hcrt1/OXA levels and an overexpression of hypothalamic Hcrt/OxR1. These findings support an autoregulatory role of Hcrt/OxR1 within the hypothalamus, which would induce the synthesis/release of Hcrt/Ox, but also decrease its own availability at the plasma membrane after binding Hcrt1/OxA to preserve Hcrt/Ox system homeostasis.
Collapse
Affiliation(s)
| | | | | | - Miguel Garzón
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Kuebler IRK, Jolton JA, Hermreck C, Hubbard NA, Wakabayashi KT. Contrasting dose-dependent effects of acute intravenous methamphetamine on lateral hypothalamic extracellular glucose dynamics in male and female rats. J Neurophysiol 2022; 128:819-836. [PMID: 36043803 PMCID: PMC9529272 DOI: 10.1152/jn.00257.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Glucose is the brain's primary energetic resource. The brain's use of glucose is dynamic, balancing delivery from the neurovasculature with local metabolism. Although glucose metabolism is known to differ in humans with and without methamphetamine use disorder (MUD), it is unknown how central glucose regulation changes with acute methamphetamine experience. Here, we determined how intravenous methamphetamine regulates extracellular glucose levels in a brain region implicated in MUD-like behavior, the lateral hypothalamus (LH). We measured extracellular LH glucose in awake adult male and female drug-naive Wistar rats using enzyme-linked amperometric glucose biosensors. Changes in LH glucose were monitored during a single session after: 1) natural nondrug stimuli (novel object presentation and a tail-touch), 2) increasing cumulative doses of intravenous methamphetamine (0.025, 0.05, 0.1, and 0.2 mg/kg), and 3) an injection of 60 mg of glucose. We found second-scale fluctuations in LH glucose in response to natural stimuli that differed by both stimulus type and sex. Although rapid, second-scale changes in LH glucose during methamphetamine injections were variable, slow, minute-scale changes following most injections were robust and resulted in a reduction in LH glucose levels. Dose and sex differences at this timescale indicated that female rats may be more sensitive to the impact of methamphetamine on central glucose regulation. These findings suggest that the effects of MUD on healthy brain function may be linked to how methamphetamine alters extracellular glucose regulation in the LH and point to possible mechanisms by which methamphetamine influences central glucose metabolism more broadly.NEW & NOTEWORTHY Enzyme-linked glucose biosensors were used to monitor lateral hypothalamic (LH) extracellular fluctuations during nondrug stimuli and intravenous methamphetamine injections in drug-naive awake male and female rats. Second-scale glucose changes occurred after nondrug stimuli, differing by modality and sex. Robust minute-scale decreases followed most methamphetamine injections. Sex differences at the minute-scale indicate female central glucose regulation is more sensitive to methamphetamine effects. We discuss likely mechanisms underlying these fluctuations, and their implications in methamphetamine use disorder.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Joshua A Jolton
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Chase Hermreck
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Nicholas A Hubbard
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
22
|
Bingul A, Merlin S, Carrive P, Killcross S, Furlong TM. Targeting the lateral hypothalamus with short hairpin RNAs reduces habitual behaviour following extended instrumental training in rats. Neurobiol Learn Mem 2022; 193:107657. [DOI: 10.1016/j.nlm.2022.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
23
|
Gao XB, Horvath TL. From Molecule to Behavior: Hypocretin/orexin Revisited From a Sex-dependent Perspective. Endocr Rev 2022; 43:743-760. [PMID: 34792130 PMCID: PMC9277634 DOI: 10.1210/endrev/bnab042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/19/2022]
Abstract
The hypocretin/orexin (Hcrt/Orx) system in the perifornical lateral hypothalamus has been recognized as a critical node in a complex network of neuronal systems controlling both physiology and behavior in vertebrates. Our understanding of the Hcrt/Orx system and its array of functions and actions has grown exponentially in merely 2 decades. This review will examine the latest progress in discerning the roles played by the Hcrt/Orx system in regulating homeostatic functions and in executing instinctive and learned behaviors. Furthermore, the gaps that currently exist in our knowledge of sex-related differences in this field of study are discussed.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Matzeu A, Martin-Fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022; 15:787595. [PMID: 35126069 PMCID: PMC8811192 DOI: 10.3389/fnbeh.2021.787595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Orexins (also known as hypocretins) are neuropeptides that participate in the regulation of energy metabolism, homeostasis, sleep, feeding, stress responses, arousal, and reward. Particularly relevant to the scope of the present review is the involvement of the orexin system in brain mechanisms that regulate motivation, especially highly motivated behavior, arousal, and stress, making it an ideal target for studying addiction and discovering treatments. Drug abuse and misuse are thought to induce maladaptive changes in the orexin system, and these changes might promote and maintain uncontrolled drug intake and contribute to relapse. Dysfunctional changes in this neuropeptidergic system that are caused by drug use might also be responsible for alterations of feeding behavior and the sleep-wake cycle that are commonly disrupted in subjects with substance use disorder. Drug addiction has often been associated with an increase in activity of the orexin system, suggesting that orexin receptor antagonists may be a promising pharmacological treatment for substance use disorder. Substantial evidence has shown that single orexin receptor antagonists that are specific to either orexin receptor 1 or 2 can be beneficial against drug intake and relapse. Interest in the efficacy of dual orexin receptor antagonists, which were primarily developed to treat insomnia, has grown in the field of drug addiction. Treatments that target the orexin system may be a promising strategy to reduce drug intake, mitigate relapse vulnerability, and restore “normal” physiological functions, including feeding and sleep. The present review discusses preclinical and clinical evidence of the involvement of orexins in drug addiction and possible beneficial pharmacotherapeutic effects of orexin receptor antagonists to treat substance use disorder.
Collapse
|
25
|
Guo L, Hu A, Zhao X, Xiang X. Reduction of Orexin-A Is Associated With Anxiety and the Level of Depression of Male Methamphetamine Users During the Initial Withdrawal Period. Front Psychiatry 2022; 13:900135. [PMID: 35859609 PMCID: PMC9289462 DOI: 10.3389/fpsyt.2022.900135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Orexin has been linked to the regulation of reward and motivation in animals, but there have been few human studies to validate its regulatory effects. We aimed to determine how orexin-A levels changed during different stages of withdrawal, as well as the relationship between orexin-A levels and withdrawal symptoms in male METH users. METHODS This study included 76 METH users and 35 control participants. The METH users were divided into three groups: group 1 (abstinence within 1 week, n = 23), group 2 (abstinence between 1 week and 3 months, n = 38), and group 3 (abstinence over 3 months, n = 15). At baseline and 1 month of enrollment, the plasma orexin-A level was examined. To track the withdrawal symptoms, self-report questionnaires (anxiety, depression, craving, and sleep quality) were collected at two points. RESULTS The orexin-A levels of groups 1 (p < 0.001) and 2 (p < 0.001) were lower than that of the controls at baseline but not group 3. One month later, the orexin-A levels of group 2 (p < 0.05) significantly increased, while no significant changes in those of groups 1 and 3 were observed. Furthermore, the orexin-A levels of group 1 were positively linked with depression (p < 0.01) and anxiety (p < 0.01) at baseline. CONCLUSIONS The decrease in orexin-A levels was only transitory during the initial abstinence phase, and it was eventually restored near to normal with continued abstinence among the male METH users. Furthermore, a lower concentration of orexin-A may serve as a risk factor for negative emotions during METH withdrawal.
Collapse
Affiliation(s)
- Lei Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Aqian Hu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxi Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaojun Xiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
26
|
Li S, Zhang R, Hu S, Lai J. Plasma Orexin-A Levels in Patients With Schizophrenia: A Systematic Review and Meta-Analysis. Front Psychiatry 2022; 13:879414. [PMID: 35693955 PMCID: PMC9174516 DOI: 10.3389/fpsyt.2022.879414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Orexins are polypeptides regulating appetite, sleep-wake cycle, and cognition functions, which are commonly disrupted in patients with schizophrenia. Patients with schizophrenia show a decreased connectivity between the prefrontal cortex and midline-anterior thalamus, and orexin can directly activate the axon terminal of cells within the prefrontal cortex and selectively depolarize neurons in the midline intralaminar nuclei of the thalamus. To address the relationship between orexin and schizophrenia, this study performed a meta-analysis on the alteration of plasma orexin-A levels in patients with schizophrenia. METHOD We searched eligible studies in PubMed, Embase, Cochrane, and China National Knowledge Infrastructure (CNKI) from 1998 to September 3, 2021. A total of 8 case-control studies were included in the meta-analyses, providing data on 597 patients with schizophrenia and 370 healthy controls. The Stata version 16.0 software was used to calculate the Hedges's adjusted g with 95% confidence intervals (CI). RESULTS The plasma orexin-A levels were not altered in subjects with schizophrenia (n = 597) when compared to healthy controls (n = 370). Subgroup analyses of gender (male and female vs. only male), country (China vs. other countries), medication (medication vs. non-medication), and the measurement of plasma orexin-A (Enzyme-linked immunosorbent assay vs. radioimmunoassay) revealed heterogeneity ranging from 30.15 to 98.15%, but none showed a significant alteration of plasma orexin-A levels in patients with schizophrenia. Heterogeneity was lower in the other countries and radioimmunoassay subgroup, while other subgroups remained to be highly heterogeneous. No significant evidence of publication bias was found either in Begg's test or the Egger's test. CONCLUSION The present meta-analysis indicated that patients with schizophrenia did not show abnormal plasma levels of orexin-A. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021283455, identifier: CRD42021283455.
Collapse
Affiliation(s)
- Shaoli Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruili Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Lehner M, Skórzewska A, Wisłowska-Stanek A. Sex-Related Predisposition to Post-Traumatic Stress Disorder Development-The Role of Neuropeptides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:314. [PMID: 35010574 PMCID: PMC8750761 DOI: 10.3390/ijerph19010314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by re-experiencing a traumatic event, avoidance, negative alterations in cognitions and mood, hyperarousal, and severe functional impairment. Women have a two times higher risk of developing PTSD than men. The neurobiological basis for the sex-specific predisposition to PTSD might be related to differences in the functions of stress-responsive systems due to the interaction between gonadal hormones and stress peptides such as corticotropin-releasing factor (CRF), orexin, oxytocin, and neuropeptide Y. Additionally, in phases where estrogens levels are low, the risk of developing or exacerbating PTSD is higher. Most studies have revealed several essential sex differences in CRF function. They include genetic factors, e.g., the CRF promoter contains estrogen response elements. Importantly, sex-related differences are responsible for different predispositions to PTSD and diverse treatment responses. Fear extinction (the process responsible for the effectiveness of behavioral therapy for PTSD) in women during periods of high endogenous estradiol levels (the primary form of estrogens) is reportedly more effective than in periods of low endogenous estradiol. In this review, we present the roles of selected neuropeptides in the sex-related predisposition to PTSD development.
Collapse
Affiliation(s)
- Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Aleksandra Wisłowska-Stanek
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
28
|
Kim HJJ, Zagzoog A, Smolyakova AM, Ezeaka UC, Benko MJ, Holt T, Laprairie RB. In vivo Evidence for Brain Region-Specific Molecular Interactions Between Cannabinoid and Orexin Receptors. Front Neurosci 2021; 15:790546. [PMID: 34992518 PMCID: PMC8724524 DOI: 10.3389/fnins.2021.790546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid and orexin neuromodulatory systems serve key roles in many of the same biological functions such as sleep, appetite, pain processing, and emotional behaviors related to reward. The type 1 cannabinoid receptor (CB1R) and both subtypes of the orexin receptor, orexin receptor type 1 (OX1R) and orexin receptor type 2 (OX2R) are not only expressed in the same brain regions modulating these functions, but physically interact as heterodimers in recombinant and neuronal cell cultures. In the current study, male and female C57BL/6 mice were co-treated with the cannabinoid receptor agonist CP55,940 and either the OX2R antagonist TCS-OX2-29 or the dual orexin receptor antagonist (DORA) TCS-1102. Mice were then evaluated for catalepsy, body temperature, thermal anti-nociception, and locomotion, after which their brains were collected for receptor colocalization analysis. Combined treatment with the DORA TCS-1102 and CP55,940 potentiated catalepsy more than CP55,940 alone, but this effect was not observed for changes in body temperature, nociception, locomotion, or via selective OX2R antagonism. Co-treatment with CP55,940 and TCS-1102 also led to increased CB1R-OX1R colocalization in the ventral striatum. This was not seen following co-treatment with TCS-OX2-29, nor in CB1R-OX2R colocalization. The magnitude of effects following co-treatment with CP55,940 and either the DORA or OX2R-selective antagonist was greater in males than females. These data show that CB1R-OX1R colocalization in the ventral striatum underlies cataleptic additivity between CP55,940 and the DORA TCS-1102. Moreover, cannabinoid-orexin receptor interactions are sex-specific with regards to brain region and functionality. Physical or molecular interactions between these two systems may provide valuable insight into drug-drug interactions between cannabinoid and orexin drugs for the treatment of insomnia, pain, and other disorders.
Collapse
Affiliation(s)
- Hye Ji J. Kim
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anna Maria Smolyakova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Udoka C. Ezeaka
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael J. Benko
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teagan Holt
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
29
|
Similar role of mPFC orexin-1 receptors in the acquisition and expression of morphine- and food-induced conditioned place preference in male rats. Neuropharmacology 2021; 198:108764. [PMID: 34450116 DOI: 10.1016/j.neuropharm.2021.108764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/19/2023]
Abstract
Self-control problems are a typical character of drug addiction and excessive food consumption and it has been shown that natural rewards and drugs of abuse share parts of the same neural substrate and reward processing in the brain. Different brain areas are involved in natural and drug reward processing including the mesolimbic pathway, amygdala, nucleus accumbens (NAc), and prefrontal cortex. Considering the important role of orexins in the addictive behavior and the presence of orexin-1 subtype receptors (Orx1R) in the medial prefrontal cortex (mPFC), this study investigated the role of mPFC in natural- and drug-reward seeking behaviors to deepen our understanding of possible similarities or differences. To induce food- or morphine-conditioned place preference (CPP), adult male Wistar rats underwent CPP testing and received intra-mPFC doses of SB334867 (3, 10, or 30 nM/0.5 μl DMSO 12%), as an Orx1R antagonist, during the acquisition or expression phases of the CPP test. Results indicated that microinjection of Orx1R antagonist into the mPFC had similar effects on both morphine- and food-induced CPP and attenuated CPP scores in the acquisition and expression phases of the CPP test. The data demonstrated that Orx1Rs in the mPFC regulate the reward-related effects of morphine- and food-induced reward.
Collapse
|
30
|
Matzeu A, Martin-Fardon R. Blockade of corticotropin-releasing factor receptor 1 in the central amygdala prevents cocaine-seeking behaviour induced by orexin-A administered to the posterior paraventricular nucleus of the thalamus in male rats. J Psychiatry Neurosci 2021; 46:E459-E471. [PMID: 34318655 PMCID: PMC8519495 DOI: 10.1503/jpn.200213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Orexin-A (OrxA) administration in the posterior paraventricular nucleus of the thalamus (pPVT) reinstates extinguished cocaine-seeking behaviour following extended access to the drug (a model of dependence). The pPVT receives and integrates information associated with emotionally salient events and sends excitatory inputs to brain regions involved in the expression of emotional states, such as those driving cocaine-seeking behaviour (i.e., the nucleus accumbens, the central nucleus of the amygdala [CeA], the basolateral amygdala, the bed nucleus of the stria terminalis [BNST] and the prefrontal cortex). METHODS We monitored the activation pattern of these regions (measured by Fos) during cocaine-seeking induced by OrxA administered to the pPVT. The BNST and CeA emerged as being selectively activated. To test whether the functionality of these regions was pivotal during OrxA-induced cocaine-seeking behaviour, we transiently inactivated these regions concomitantly with OrxA administration to the pPVT. We then tested the participation of corticotropin-releasing factor receptors (CRF1) in the CeA during OrxA-induced cocaine-seeking using the CRF1 antagonist CP154526. RESULTS We observed selective activation of the CeA and BNST during cocaine-seeking induced by OrxA administered to the pPVT, but only transient inactivation of the CeA prevented cocaine-seeking behaviour. Administration of CP154526 to the CeA prevented OrxAinduced cocaine-seeking behaviour. LIMITATIONS The use of only male rats could have been a limitation. Other limitations could have been the use of an indirect approach to test the hypothesis that administration of OrxA to the pPVT drives cocaine-seeking via CRF1 signalling in the CeA, and a lack of analysis of the participation of CeA subregions. CONCLUSION Cocaine-seeking behaviour induced by OrxA administered to the pPVT is driven by activation of the CeA via CRF1 signalling.
Collapse
Affiliation(s)
- Alessandra Matzeu
- From The Scripps Research Institute, La Jolla, California, USA (Matzeu, Martin-Fardon)
| | - Rémi Martin-Fardon
- From The Scripps Research Institute, La Jolla, California, USA (Matzeu, Martin-Fardon)
| |
Collapse
|
31
|
Yang M, He P, Xu X, Li D, Wang J, Wang Y, Wang B, Wang W, Zhao M, Lin H, Deng M, Deng T, Kuang L, Chen D. Disrupted rhythms of life, work and entertainment and their associations with psychological impacts under the stress of the COVID-19 pandemic: A survey in 5854 Chinese people with different sociodemographic backgrounds. PLoS One 2021; 16:e0250770. [PMID: 33999924 PMCID: PMC8128272 DOI: 10.1371/journal.pone.0250770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/13/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND & AIM The coronavirus disease 2019 (COVID-19) pandemic has affected the life and work of people worldwide. The present study aimed to evaluate the rhythm disruptions of life, work, and entertainment, and their associations with the psychological impacts during the initial phase of the COVID-19 pandemic. METHOD A cross-sectional study was conducted from the 10th to 17th March 2020 in China. A structured e-questionnaire containing general information, the Chinese version of Brief Social Rhythm Scale, and Zung's self-rating scales of depression and anxiety (SDS and SAS) was posted and collected online through a public media (i.e. EQxiu online questionnaire platform). Scores in sleeping, getting up, and socializing (SGS) rhythm and eating, physical practice, and entertainment (EPE) rhythm were compared among and between participants with different sociodemographic backgrounds including gender, age, education, current occupation, annual income, health status, and chronic disease status. Correlations of SDS and SAS with SGS-scale and EPE-scale were also analyzed. RESULTS Overall, 5854 participants were included. There were significant differences in the scores of SGS-scale and EPE-scale among people with different sociodemographic backgrounds. The scores were significantly higher in the groups with female gender, low education level, lower or higher than average income, poor health status, ages of 26-30 years or older than 61 years, nurses and subjects with divorce or widow status. There were also significant differences in SAS and SDS scores among people with different sociodemographic backgrounds (all P< 0.05). The overall prevalence of depression and anxiety was 24.3% and 12.6%, respectively, with nurses having the highest rates of depression (32.94%) and anxiety (18.98%) among the different occupational groups. SGS-scale was moderately correlated with SDS and SAS, and disruption of SGS rhythm was an independent risk factor for depression and anxiety. CONCLUSION Social rhythm disruption was independently associated with depression and anxiety. Interventions should be applied to people vulnerable to the rhythm disruption during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Min Yang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ping He
- Department of Gastroenterology, Yongchuan Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiaoming Xu
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dan Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, P.R. China
| | - Jing Wang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Yanjun Wang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Bin Wang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Mei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, P.R. China
| | - Hui Lin
- Department of Statistics, Army Medical University, Chongqing, P.R. China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Tianwei Deng
- Department of Gastroenterology, Three Gorges Hospital of Chongqing University, Chongqing, P.R. China
| | - Li Kuang
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dongfeng Chen
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| |
Collapse
|
32
|
Lu J, Huang ML, Li JH, Jin KY, Li HM, Mou TT, Fronczek R, Duan JF, Xu WJ, Swaab D, Bao AM. Changes of Hypocretin (Orexin) System in Schizophrenia: From Plasma to Brain. Schizophr Bull 2021; 47:1310-1319. [PMID: 33974073 PMCID: PMC8379539 DOI: 10.1093/schbul/sbab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypocretin (also called orexin) regulates various functions, such as sleep-wake rhythms, attention, cognition, and energy balance, which show significant changes in schizophrenia (SCZ). We aimed to identify alterations in the hypocretin system in SCZ patients. We measured plasma hypocretin-1 levels in SCZ patients and healthy controls and found significantly decreased plasma hypocretin-1 levels in SCZ patients, which was mainly due to a significant decrease in female SCZ patients compared with female controls. In addition, we measured postmortem hypothalamic hypocretin-1-immunoreactivity (ir), ventricular cerebrospinal fluid (CSF) hypocretin-1 levels, and hypocretin receptor (Hcrt-R) mRNA expression in the superior frontal gyrus (SFG) in SCZ patients and controls We observed a significant decrease in the amount of hypothalamic hypocretin-1 ir in SCZ patients, which was due to decreased amounts in female but not male patients. Moreover, Hcrt-R2 mRNA in the SFG was decreased in female SCZ patients compared with female controls, while male SCZ patients showed a trend of increased Hcrt-R1 mRNA and Hcrt-R2 mRNA expression compared with male controls. We conclude that central hypocretin neurotransmission is decreased in SCZ patients, especially female patients, and this is reflected in the plasma.
Collapse
Affiliation(s)
- Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Man-Li Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jin-Hui Li
- Department of Traditional Chinese Medicine & Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kang-Yu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Mei Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting-Ting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Jin-Feng Duan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Wei-Juan Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Dick Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Min Bao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China,To whom correspondence should be addressed; Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; tel: +86 571 88208789, fax: +86 571 88208094, e-mail:
| |
Collapse
|
33
|
Lonstein JS, Linning-Duffy K, Tang Y, Moody A, Yan L. Impact of daytime light intensity on the central orexin (hypocretin) system of a diurnal rodent (Arvicanthis niloticus). Eur J Neurosci 2021; 54:4167-4181. [PMID: 33899987 DOI: 10.1111/ejn.15248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/29/2022]
Abstract
The neuropeptide orexin/hypocretin is implicated in sleep and arousal, energy expenditure, reward, affective state and cognition. Our previous work using diurnal Nile grass rats (Arvicanthis niloticus) found that orexin mediates the effects of environmental light, particularly daytime light intensity, on affective and cognitive behaviours. The present study further investigated how daytime light intensity affects the central orexin system in male and female grass rats. Subjects were housed for 4 weeks in 12:12 hr dim light:dark (50 lux, dimLD) or in 12:12 hr bright light:dark cycle (1000 lux, brightLD). Day/night fluctuations in some orexin measures were also assessed. Despite similar hypothalamic prepro-orexin mRNA expression across all conditions, there were significantly more orexin-immunoreactive neurons, larger somata, greater optical density or higher orexin A content at night (ZT14) than during the day (ZT2), and/or in animals housed in brightLD compared to dimLD. Grass rats in brightLD also had higher cisternal CSF levels of orexin A. Furthermore, orexin receptor OX1R and OX2R proteins in the medial prefrontal cortex were higher in brightLD than dimLD males, but lower in brightLD than dimLD females. In the CA1 and dorsal raphe nucleus, females had higher OX1R than males without any significant effects of light condition, and OX2R levels were unaffected by sex or light. These results reveal that daytime light intensity alters the central orexin system of both male and female diurnal grass rats, sometimes sex-specifically, and provides insight into the mechanisms underlying how daytime light intensity impacts orexin-regulated functions.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Katrina Linning-Duffy
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Yuping Tang
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Anna Moody
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
34
|
Aghajani N, Pourhamzeh M, Azizi H, Semnanian S. Central blockade of orexin type 1 receptors reduces naloxone induced activation of locus coeruleus neurons in morphine dependent rats. Neurosci Lett 2021; 755:135909. [PMID: 33892002 DOI: 10.1016/j.neulet.2021.135909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Orexin neuropeptides are implicated in the expression of morphine dependence. Locus coeruleus (LC) nucleus is an important brain area involving in the development of withdrawal signs of morphine and contains high expression of orexin type 1 receptors (OX1Rs). Despite extensive considerations, effects of immediate inhibition of OX1Rs by a single dose administration of SB-334867 prior to the naloxone-induced activation of LC neurons remains unknown. Therefore, we examined the direct effects of OX1Rs acute blockade on the neuronal activity of the morphine-dependent rats which underwent naloxone administration. Adult male rats underwent subcutaneous administration of 10 mg/kg morphine (two times/day) for a ten-day period. On the last day of experiment, intra-cerebroventricular administration of 10 μg/μl antagonist of OX1Rs, SB-334867, was performed just before intra-peritoneal injection of 2 mg/kg naloxone. Thereafter, in vivo extracellular single unit recording was employed to evaluate the electrical activity of LC neuronal cells. The outcomes demonstrated that morphine tolerance developed following ten-day of injection. Then, naloxone administration causes hyperactivity of LC neuronal cells, whereas a single dose administration of SB-334867 prior to naloxone prevented the enhanced activity of neurons upon morphine withdrawal. Our findings indicate that increased response of LC neuronal cells to applied naloxone could be prevented by the acute inhibition of the OX1Rs just before the naloxone treatment.
Collapse
Affiliation(s)
- Niloofar Aghajani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
35
|
Caldirola D, Alciati A, Cuniberti F, Perna G. Experimental Drugs for Panic Disorder: An Updated Systematic Review. J Exp Pharmacol 2021; 13:441-459. [PMID: 33889031 PMCID: PMC8055642 DOI: 10.2147/jep.s261403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Several effective pharmacological therapies for panic disorder (PD) are available, but they have some drawbacks, and unsatisfactory outcomes can occur. Expanding the variety of anti-panic medications may allow for improving PD treatment. The authors performed an updated systematic review of preclinical and clinical (Phase I–III) pharmacological studies to look for advances made in the last six years concerning novel-mechanism-based anti-panic compounds or using medications approved for nonpsychiatric medical conditions to treat PD. The study included seven published articles presenting a series of preclinical studies, two Phase I clinical studies with orexin receptor (OXR) antagonists, and two clinical studies investigating the effects of D-cycloserine (DCS) and xenon gas in individuals with PD. The latest preclinical findings confirmed and expanded previous promising indications of OXR1 antagonists as novel-mechanism-based anti-panic compounds. Translating preclinical research into clinical applications remains in the early stages. However, limited clinical findings suggested the selective OXR1 antagonist JNJ-61393115 may exert anti-panic effects in humans. Overall, OXR1 antagonists displayed a favorable profile of short-term safety and tolerability. Very preliminary suggestions of possible anti-panic effects of xenon gas emerged but need confirmation with more rigorous methodology. DCS did not seem promising as an enhancer of cognitive-behavioral therapy in PD. Future studies, including objective panic-related physiological parameters, such as respiratory measures, and expanding the use of panic vulnerability biomarkers, such as hypersensitivity to CO2 panic provocation, may allow for more reliable conclusions about the anti-panic properties of new compounds.
Collapse
Affiliation(s)
- Daniela Caldirola
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| | - Alessandra Alciati
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Rozzano, 20089, Italy
| | - Francesco Cuniberti
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| | - Giampaolo Perna
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| |
Collapse
|
36
|
Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021; 15:627633. [PMID: 33732118 PMCID: PMC7959748 DOI: 10.3389/fnbeh.2021.627633] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
The brain anxiety network is composed of a number of interconnected cortical regions that detect threats and execute appropriate defensive responses via projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and lateral region of the central nucleus of the amygdala (CeL). The paraventricular nucleus of the thalamus (PVT) is anatomically positioned to integrate threat- and arousal-related signals from cortex and hypothalamus and then relay these signals to neural circuits in the NAcSh, BSTDL, and CeL that mediate defensive responses. This review describes the anatomical connections of the PVT that support the view that the PVT may be a critical node in the brain anxiety network. Experimental findings are reviewed showing that the arousal peptides orexins (hypocretins) act at the PVT to promote avoidance of potential threats especially following exposure of rats to a single episode of footshocks. Recent anatomical and experimental findings are discussed which show that neurons in the PVT provide divergent projections to subcortical regions that mediate defensive behaviors and that the projection to the NAcSh is critical for the enhanced social avoidance displayed in rats exposed to footshocks. A theoretical model is proposed for how the PVT integrates cortical and hypothalamic signals to modulate the behavioral responses associated with anxiety and other challenging situations.
Collapse
Affiliation(s)
- Gilbert J. Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
37
|
Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
38
|
Tenorio-Lopes L, Fournier S, Henry MS, Bretzner F, Kinkead R. Disruption of estradiol regulation of orexin neurons: a novel mechanism in excessive ventilatory response to CO 2 inhalation in a female rat model of panic disorder. Transl Psychiatry 2020; 10:394. [PMID: 33173029 PMCID: PMC7656265 DOI: 10.1038/s41398-020-01076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Panic disorder (PD) is ~2 times more frequent in women. An excessive ventilatory response to CO2 inhalation is more likely during the premenstrual phase. While ovarian hormones appear important in the pathophysiology of PD, their role remains poorly understood as female animals are rarely used in pre-clinical studies. Using neonatal maternal separation (NMS) to induce a "PD-like" respiratory phenotype, we tested the hypothesis that NMS disrupts hormonal regulation of the ventilatory response to CO2 in female rats. We then determined whether NMS attenuates the inhibitory actions of 17-β estradiol (E2) on orexin neurons (ORX). Pups were exposed to NMS (3 h/day; postnatal day 3-12). The ventilatory response to CO2-inhalation was tested before puberty, across the estrus cycle, and following ovariectomy. Plasma E2 and hypothalamic ORXA were measured. The effect of an ORX1 antagonist (SB334867; 15 mg/kg) on the CO2 response was tested. Excitatory postsynaptic currents (EPSCs) were recorded from ORX neurons using whole-cell patch-clamp. NMS-related increase in the CO2 response was observed only when ovaries were functional; the largest ventilation was observed during proestrus. SB334867 blocked this effect. NMS augmented levels of ORXA in hypothalamus extracts. EPSC frequency varied according to basal plasma E2 levels across the estrus cycle in controls but not NMS. NMS reproduces developmental and cyclic changes of respiratory manifestations of PD. NMS disrupts the inhibitory actions of E2 on the respiratory network. Impaired E2-related inhibition of ORX neurons during proestrus is a novel mechanism in respiratory manifestations of PD in females.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Hotchkiss Brain Institute; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Stéphanie Fournier
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec. Département de Pédiatrie. Université Laval, Québec, QC, Canada
| | - Mathilde S Henry
- INRAE, Université de Bordeaux, Bordeaux INP, Nutrineuro, UMR 1286, F-33000, Bordeaux, France
| | - Frédéric Bretzner
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences. Département de Psychiatrie et de Neurosciences, Université Laval, Québec, QC, Canada
| | - Richard Kinkead
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec. Département de Pédiatrie. Université Laval, Québec, QC, Canada.
| |
Collapse
|
39
|
Pulver A, Kiive E, Kanarik M, Harro J. Association of orexin/hypocretin receptor gene (HCRTR1) with reward sensitivity, and interaction with gender. Brain Res 2020; 1746:147013. [PMID: 32652147 DOI: 10.1016/j.brainres.2020.147013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Orexins/hypocretins maintain wakefulness, increase appetite and participate in the coordination of stress response. We have recently provided evidence on the role of orexins in aggression, showing the association of the HCRTR1 genotype. (rs2271933 G > A; leading to amino acid substitution Ile408Val) with aggressiveness or breach of law in four independent cohorts. Aggressive behaviour can be reward driven and hence we have examined the association of HCRTR1 rs2271933 genotype with different aspects of reward sensitivity in the birth cohort representative Estonian Children Personality Behaviour and Health Study. HCRTR1 genotype was associated with reward sensitivity in a gender dependent manner. Male HCRTR1 A/A homozygotes had higher Openness to Rewards and the overall reward sensitivity score while, in contrast, female A/A homozygotes scored lower than G-allele carriers in Openness to Rewards. In the total sample, aggressiveness correlated positively with reward sensitivity, but this was on account of Insatiability by Reward. In contrast, the HCRTR1 A/A homozygotes had a positive association of aggressiveness and Openness to Rewards. Experience of stressful life events had a small but significant increasing effect on both aspects of reward sensitivity, and correlated in an anomalous way with reward sensitivity in the HCRTR1 A/A homozygotes. Conclusively, the higher aggressiveness of HCRTR1 A/A homozygotes appears based on a qualitative difference in sensitivity to rewards, in the form that suggests their lower ability to prevent responses to challenges being converted into overt aggression.
Collapse
Affiliation(s)
- Aleksander Pulver
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, Astra Building, 10120 Tallinn, Estonia
| | - Evelyn Kiive
- Division of Special Education, Department of Education, University of Tartu, Näituse 2, 50409 Tartu, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, Astra Building, 10120 Tallinn, Estonia; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia.
| |
Collapse
|
40
|
Abstract
Objectives: The relationships between orexins and stress-related conditions have been well documented in animal studies. However, human studies confirming this relationship are limited. The aim of this study was to investigate the association between orexin-A and anxiety disorders in adolescents. Additionally, we aimed to examine the relationship between orexin-A and cortisol levels in those with anxiety disorders.Methods: A total of 56 medication-free adolescents diagnosed with any anxiety disorder, except for specific phobias, and 32 healthy controls were included in this study. Depression, state and trait anxiety levels of the participants were measured using self-report scales. Orexin-A and cortisol levels were measured by an enzyme-linked immunosorbent assay (ELISA).Results: Analysis of covariance (ANCOVA) indicated that serum orexin-A levels were significantly higher in the anxiety disorder group than in the control group while controlling for age, sex and depression levels. After controlling for age and sex, orexin-A levels were positively and negatively correlated to depression and cortisol levels, respectively. In addition, a positive correlation trend between trait anxiety and orexin-A was found.Conclusions: Orexin-A levels are higher in adolescents with anxiety disorder; however, depressive symptoms should be considered when investigating this relationship.
Collapse
Affiliation(s)
- Ömer Faruk Akça
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Necati Uzun
- Department of Child and Adolescent Psychiatry, Dr. Ali Kemal Belviranlı Children Hospital, Konya, Turkey
| | - İbrahim Kılınç
- Department of Biochemistry, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| |
Collapse
|
41
|
Buczek L, Migliaccio J, Petrovich GD. Hedonic Eating: Sex Differences and Characterization of Orexin Activation and Signaling. Neuroscience 2020; 436:34-45. [PMID: 32283183 DOI: 10.1016/j.neuroscience.2020.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 02/09/2023]
Abstract
Palatable taste can stimulate appetite in the absence of hunger, and individual differences in hedonic eating may be critical to overeating. Women are more prone to obesity and binge eating than men, which warrants comparisons of hedonic versus physiological consumption and the underlying neural substrates in both sexes. The current study examined palatable (high-sugar) food consumption in male and female rats under physiological hunger and satiety, and the role of the neuropeptide orexin/hypocretin (ORX). Across multiple tests, females consistently consumed similar amounts of palatable food regardless of whether they were hungry or sated prior to testing. In contrast, males typically adjusted their consumption according to their hunger/satiety state. This difference was specific to palatable food consumption, as both sexes ate standard chow according to their hunger state. ORX is important in food motivation and reward behaviors. Thus, to begin to determine the neuronal mechanisms of hedonic eating, we examined activation and signaling of ORX neurons. We systematically characterized Fos induction patterns of ORX neurons across the entire rostrocaudal extent of the lateral hypothalamus and found that they were activated by food and by fasting in both sexes. Then, we showed that systemic blockade of ORX receptor 1 signaling with SB-334867 decreased palatable food consumption in hungry and sated rats of both sexes. These results demonstrate sex differences in hedonic eating; increased susceptibility in females to overeat palatable food regardless of hunger state, and that ORX is a critical neuropeptide mechanism of hedonic eating in both sexes.
Collapse
Affiliation(s)
- Laura Buczek
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, United States
| | - Jennifer Migliaccio
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, United States
| | - Gorica D Petrovich
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, United States.
| |
Collapse
|
42
|
Introduction to the Special Issue: "Making orexin-based therapies for addiction a reality: What are the steps from here?". Brain Res 2020; 1731:146665. [PMID: 31930996 DOI: 10.1016/j.brainres.2020.146665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Sleep in posttraumatic stress disorder: A systematic review and meta-analysis of polysomnographic findings. Sleep Med Rev 2019; 48:101210. [PMID: 31518950 DOI: 10.1016/j.smrv.2019.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/22/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023]
Abstract
Polysomnographic studies have been performed to examine sleep abnormalities in posttraumatic stress disorder (PTSD), but clear associations between PTSD and sleep disturbances have not been established. A systematic review of the evidence examining the polysomnographic changes in PTSD patients compared with controls was conducted using MEDLINE, EMBASE, All EBM databases, PsycINFO, and CINAHL databases. Meta-analysis was undertaken where possible. The searches identified 34 studies, 31 of which were appropriate for meta-analysis. Pooled results indicated decreased total sleep time, slow wave sleep and sleep efficiency, and increased wake time after sleep onset in PTSD patients compared with healthy controls. PTSD severity was associated with decreased sleep efficiency and slow wave sleep percentage. Rapid eye movement (REM) sleep percentage was significantly decreased in PTSD patients compared with controls in studies including participants with mean age below 30 y, but not in studies with other mean age groups (30-40 y and >40 y). Our study shows that polysomnographic abnormalities are present in PTSD. Sex, age, PTSD severity, type of controls, medication status, adaptation night, polysomnographic scoring rules and study location are several of the demographic, clinical and methodological factors that contribute to heterogeneity between studies.
Collapse
|