1
|
Guo T, Wang Y, Hayat MA, Si Y, Ni Y, Zhang J, Qiu Y, Zeng Y, Cao Y, Hong Y, Chen B, Hu J. Recombinant human heavy-chain ferritin nanoparticles loaded with rosuvastatin attenuates secondary brain injury in intracerebral hemorrhage. Int J Biol Macromol 2025; 302:140542. [PMID: 39894117 DOI: 10.1016/j.ijbiomac.2025.140542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Intracerebral hemorrhage (ICH) is a severe form of stroke with high mortality and disability rates, largely due to its complex pathology. Currently, no effective therapies exist. Rosuvastatin has shown neuroprotective effects, but its low bioavailability and poor targeting to hemorrhagic sites limit its therapeutic efficacy. To overcome these challenges, this study developed rosuvastatin-loaded human H-ferritin nanoparticles (Rsv@HFn) as a brain-targeting nanoplatform. This nanoplatform enhances the drug's ability to cross the blood-brain barrier, increasing its accumulation at the injury site and improves its therapeutic efficacy. Rsv@HFn also facilitates the translocation of Nrf-2 to the nucleus, increasing HO-1 and CD91 expression and promoting the shift of M1 microglia to the M2 phenotype and reducing neuroinflammation and oxidative stress. Additionally, Rsv@HFn improves blood-brain barrier integrity, reduced brain edema, and alleviated neuropathological damage in ICH mice. Overall, this study introduces a promising therapeutic strategy for ICH by improving drug delivery and targeting, reducing inflammation, and enhancing recovery. These findings provide new avenues for future clinical research in treating ICH.
Collapse
Affiliation(s)
- Tao Guo
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Yuxin Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Muhammad Abid Hayat
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Yu Si
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Yining Ni
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Jingwen Zhang
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Yun Qiu
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Yu Zeng
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Yudie Cao
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Yancheng Hong
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Bo Chen
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China.
| | - Jiabo Hu
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Blood Center, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Kamel AA, Nassar AY, Meligy FY, Omar YA, Nassar GAY, Ezzat GM. Acetylated oligopeptide and N-acetylcysteine protect against iron overload-induced dentate gyrus hippocampal degeneration through upregulation of Nestin and Nrf2/HO-1 and downregulation of MMP-9/TIMP-1 and GFAP. Cell Biochem Funct 2024; 42:e3958. [PMID: 38396357 DOI: 10.1002/cbf.3958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.
Collapse
Affiliation(s)
- Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yomna A Omar
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Gamal A Y Nassar
- Metabolic and Genetic Disorders Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Sutha J, Gayathri M, Ramesh M. Chronic exposure to tris (2-chloroethyl) phosphate (TCEP) induces brain structural and functional changes in zebrafish (Danio rerio): A comparative study on the environmental and LC50 concentrations of TCEP. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16770-16781. [PMID: 38321284 DOI: 10.1007/s11356-024-32154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Tris (2-chloroethyl) phosphate (TCEP) is a crucial organophosphorus flame retardant widely used in many industrial and commercial products. Available reports reported that TCEP could cause various toxicological effects on organisms, including humans. Unfortunately, toxicity data for TCEP (particularly on neurotoxicity) on aquatic organisms are lacking. In the present study, Danio rerio were exposed to different concentrations of TCEP for 42 days (chronic exposure), and oxidative stress, neurotoxicity, sodium, potassium-adenosine triphosphatase (Na+, K+-ATPase) activity, and histopathological changes were evaluated in the brain. The results showed that TCEP (100 and 1500 µg L-1) induced oxidative stress and significantly decreased the activities of antioxidant enzymes (SOD, CAT and GR) in the brain tissue of zebrafish. In contrast, the lipid peroxidation (LPO) level was increased compared to the control group. Exposure to TCEP inhibited the acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain tissue. Brain histopathology after 42 days of exposure to TCEP showed cytoplasmic vacuolation, inflammatory cell infiltration, degenerated neurons, degenerated purkinje cells and binucleate. Furthermore, TCEP exposure leads to significant changes in dopamine and 5-HT levels in the brain of zebrafish. The data in the present study suggest that high concentrations of TCEP might affect the fish by altering oxidative balance and inducing marked pathological changes in the brain of zebrafish. These findings indicate that chronic exposure to TCEP may cause a neurotoxic effect in zebrafish.
Collapse
Affiliation(s)
- Jesudass Sutha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India
| | - Murugesh Gayathri
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
4
|
Gu HP, Wu XF, Gong YT, Mu-Yao Wu, Shi MY, Sun YM, Dang BQ, Chen G. RGFP966 exerts neuroprotective effect via HDAC3/Nrf2 pathway after surgical brain injury in rats. Heliyon 2023; 9:e18160. [PMID: 37539293 PMCID: PMC10395478 DOI: 10.1016/j.heliyon.2023.e18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/29/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Histone deacetylase 3 (HDAC3) restores chromatin nucleosomes to a transcriptional repression state, thereby inhibiting gene expression. Studies have found that HDAC3 expression is upregulated in a variety of pathological states of the central nervous system and related to its neurotoxicity. However, the role of HDAC3 in surgical brain injury (SBI) has not been thoroughly explored. OBJECTIVE To observe the role of HDAC3 in SBI and the outcome of SBI after its suppression. METHODS Rat SBI model was used, and intraperitoneal injection of RGFP966 (HDAC3 specific inhibitor) was used to detect the changes of HDAC3 expression and neuronal apoptosis indexes in the surrounding cortex of SBI rats, and the cerebral edema and neurological outcome of rats were observed. RESULTS The expression of HDAC3 in the peripheral cortex of SBI rats was increased, and RGFP966 inhibited the upregulation of HDAC3 and saved the nerve cells around the damaged area. In addition, RGFP966 increased the expression of anti-oxidative stress proteins such as heme oxygenase-1 (HO-1) and superoxide dismutase 2 (SOD2). At the same time, the expression of apoptotic marker protein cleaved-caspase-3 (cle-caspase-3) was decreased, while the expression level of apoptotic protective marker protein B-cell lymphoma 2 (Bcl-2) was increased. In addition, this research demonstrated that in the RGFP966 rat SBI model, the expression level of antioxidant modifier nuclear factor-erythroid 2-related factor 2 (Nrf2) was increased. CONCLUSION RGFP966 might activate HDAC3/Nrf2 signaling pathway by inhibiting HDAC3, regulated oxidative stress and nerve cell apoptosis induced by SBI in rat SBI model, reduced brain edema, and had a protective effect on nerve injury. It might be a potential target of SBI pathology.
Collapse
Affiliation(s)
- Hai-Ping Gu
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xiao-Feng Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya-Ting Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Mu-Yao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Meng-Ying Shi
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Ya-ming Sun
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Bao-Qi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Liu S, Cao X, Wu Z, Deng S, Fu H, Wang Y, Liu F. TREM2 improves neurological dysfunction and attenuates neuroinflammation, TLR signaling and neuronal apoptosis in the acute phase of intracerebral hemorrhage. Front Aging Neurosci 2022; 14:967825. [PMID: 36353688 PMCID: PMC9637852 DOI: 10.3389/fnagi.2022.967825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Neuroinflammation contributes to secondary brain injury following intracerebral hemorrhage (ICH). Triggering receptor expressed on myeloid cells 2 (TREM2) confers strong neuroprotective effect by suppressing neuroinflammatory response in experimental ischemic stroke. This study aimed to clarify the neuroprotective role of TREM2 and potential underlying mechanism in a mouse model of ICH and in vitro. Adeno-associated virus (AAV) and green fluorescent protein-lentivirus (GFP-LV) strategies were employed to enhance TREM2 expression in the C57/BL6 mice and BV2 cells, respectively. The adult male C57/BL6 mice were subjected to ICH by administration of collagenase-IV in 1 month after the AAV particles injection. An in vitro ICH model was performed with oxygen hemoglobin in BV2 cells. Toll-like receptor 4 (TLR4) antagonist TAK242 was applied at 6 h following ICH. Neurological function, TREM2, pro-inflammatory cytokines, brain water content and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were evaluated at 24 h following ICH. TLR4, NF-κB and mitogen-activated protein kinases (MAPK) signaling pathways were also determined by Western blot analysis at the same time point. The levels of TREM2 were increased at 12 h, peaked at 24 h and recovered on 7d following ICH. TREM2 overexpression ameliorated ICH induced neurological dysfunction, inhibited neuroinflammation, and attenuated apoptosis and brain edema. Further mechanistic study revealed that TREM2 overexpression inhibited TLR4 activation and NF-κB and MAPK signaling pathways. ICH increased the percentage of TUNEL-positive cells, which was markedly decreased by TREM2 overexpression. A similar improvement was also observed by the administration of TAK242 following ICH. TREM2 improves neurological dysfunction and attenuates neuroinflammation and neuronal apoptosis in the acute phase of ICH, which is, at least in part, mediated by negatively regulating TLR4 signaling pathway. These findings highlight TREM2 as a potential target for early brain injury following ICH.
Collapse
Affiliation(s)
- Sidan Liu
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Xuezhao Cao
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Zhe Wu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Shumin Deng
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Hefei Fu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Yanzhe Wang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Fang Liu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
- *Correspondence: Fang Liu,
| |
Collapse
|
6
|
Zhang Y, Yu W, Liu Y, Chang W, Wang M, Zhang L. Regulation of nuclear factor erythroid-2-related factor 2 as a potential therapeutic target in intracerebral hemorrhage. Front Mol Neurosci 2022; 15:995518. [PMID: 36245922 PMCID: PMC9559574 DOI: 10.3389/fnmol.2022.995518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Hemorrhagic stroke can be categorized into several subtypes. The most common is intracerebral hemorrhage (ICH), which exhibits significant morbidity and mortality, affecting the lives of millions of people worldwide every year. Brain injury after ICH includes the primary injury that results from direct compression as well as stimulation by the hematoma and secondary brain injury (SBI) that is due to ischemia and hypoxia in the penumbra around the hematoma. A number of recent studies have analyzed the mechanisms producing the oxidative stress and inflammation that develop following hematoma formation and are associated with the ICH induced by the SBI as well as the resulting neurological dysfunction. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a critical component in mediating oxidative stress and anti-inflammatory response. We summarize the pathological mechanisms of ICH focusing on oxidative stress and the regulatory role of Nrf2, and review the mechanisms regulating Nrf2 at the transcriptional and post-transcriptional levels by influencing gene expression levels, protein stability, subcellular localization, and synergistic effects with other transcription factors. We further reviewing the efficacy of several Nrf2 activators in the treatment of ICH in experimental ICH models. Activation of Nrf2 might produce antioxidant, anti-inflammatory, and neuron-protection effects, which could potentially be a focus for developing future treatments and prevention of ICH.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Yuan Zhang,
| | - Wanpeng Yu
- Medical College, Qingdao University, Qingdao, China
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenguang Chang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Man Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Shao L, Chen S, Ma L. Secondary Brain Injury by Oxidative Stress After Cerebral Hemorrhage: Recent Advances. Front Cell Neurosci 2022; 16:853589. [PMID: 35813506 PMCID: PMC9262401 DOI: 10.3389/fncel.2022.853589] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a clinical syndrome in which blood accumulates in the brain parenchyma because of a nontraumatic rupture of a blood vessel. Because of its high morbidity and mortality rate and the lack of effective therapy, the treatment of ICH has become a hot research topic. Meanwhile, Oxidative stress is one of the main causes of secondary brain injury(SBI) after ICH. Therefore, there is a need for an in-depth study of oxidative stress after ICH. This review will discuss the pathway and effects of oxidative stress after ICH and its relationship with inflammation and autophagy, as well as the current antioxidant therapy for ICH with a view to deriving better therapeutic tools or targets for ICH.
Collapse
|
8
|
Scuto M, Modafferi S, Rampulla F, Zimbone V, Tomasello M, Spano’ S, Ontario M, Palmeri A, Trovato Salinaro A, Siracusa R, Di Paola R, Cuzzocrea S, Calabrese E, Wenzel U, Calabrese V. Redox modulation of stress resilience by Crocus Sativus L. for potential neuroprotective and anti-neuroinflammatory applications in brain disorders: From molecular basis to therapy. Mech Ageing Dev 2022; 205:111686. [DOI: 10.1016/j.mad.2022.111686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
|
9
|
The Novel Nrf2 Activator Omaveloxolone Regulates Microglia Phenotype and Ameliorates Secondary Brain Injury after Intracerebral Hemorrhage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4564471. [PMID: 35308167 PMCID: PMC8933082 DOI: 10.1155/2022/4564471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
The polarization of microglia is recognized as a crucial factor in reducing neuroinflammation and promoting hematoma clearance after intracerebral hemorrhage (ICH). Previous studies have revealed that redox components participate in the regulation of microglial polarization. Recently, the novel Nrf2 activator omaveloxolone (Omav) has been validated to improve neurological function in patients with neurodegenerative disorders by regulating antioxidant responses. In this study, we examined the efficacy of Omav in ICH. Omav significantly promoted Nrf2 nuclear accumulation and the expression of HO-1 and NQO1 in BV2 cells. In addition, both in vitro and in vivo experiments showed that Omav treatment inhibited M1-like activation and promoted the activation of the M2-like microglial phenotype. Omav inhibited OxyHb-induced ROS generation and preserved the function of mitochondria in BV2 cells. Intraperitoneal administration of Omav improved sensorimotor function in the ICH mouse model. Importantly, these effects were blocked by pretreatment with ML385, a selective inhibitor of Nrf2. Collectively, Omav modulated microglial polarization by activating Nrf2 and inhibiting ROS generation in ICH models, suggesting that it might be a promising drug candidate for the treatment of ICH.
Collapse
|
10
|
Mesenchymal Stem Cell-Derived Neuron-Like Cell Transplantation Combined with Electroacupuncture Improves Synaptic Plasticity in Rats with Intracerebral Hemorrhage via mTOR/p70S6K Signaling. Stem Cells Int 2022; 2022:6450527. [PMID: 35211177 PMCID: PMC8863490 DOI: 10.1155/2022/6450527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that the combination of mesenchymal stem cell (MSC) transplantation and electroacupuncture (EA) stimulation is a neuroprotective strategy for treating intracerebral hemorrhage (ICH). However, the underlying mechanisms by which the combined treatment promotes neuroprotection remain unclear. This study was designed to investigate the effects of the combined treatment on synaptic plasticity and elucidate their underlying mechanisms. Therefore, rat ICH models were established by injecting collagenase and heparin, and the animals were randomly divided into model control (MC), EA stimulation (EA), MSC-derived neuron-like cell transplantation (MSC-dNLCs), and MSC-dNLC transplantation combined with EA stimulation (MSC-dNLCs+EA) groups. We observed the ultrastructure of the brain and measured the brain water content (BWC) and the levels of the microtubule-associated protein 2 (MAP2), galactocerebrosidase (GALC), and glial fibrillary acidic protein (GFAP) proteins. We also measured the levels of the phosphorylated mammalian target of rapamycin (mTOR) and 70 kDa ribosomal protein S6 kinase (p70S6K) proteins, as well as the expression of synapse-related proteins. The BWC increased in rats after ICH and decreased significantly in ICH rats treated with MSC-dNLC transplantation, EA stimulation, or combined therapy. Meanwhile, after ICH, the number of blood vessels increased more evidently, but only the combined treatment reduced the number of blood vessels among rats receiving the three treatments. Moreover, the levels of MAP2, GALC, postsynaptic density 95 (PSD95), and synaptophysin (SYP) proteins, as well as the levels of the phosphorylated mTOR and p70S6k proteins, increased in the MSC-dNLCs+EA group compared with those in the MSC-dNLCs and EA groups. Compared with the MC group, GFAP expression was significantly reduced in the MSC-dNLCs, EA, and MSC-dNLCs+EA groups, but the differences among the three treatment groups were not significant. In addition, the number of synapses increased only in the MSC-dNLCs+EA group compared to the MC group. Based on these data, the combination of MSC-dNLC transplantation and EA stimulation exerts a synergistic effect on improving the consequences of ICH by relieving cerebral edema and glial scarring, promoting the survival of neurons and oligodendrocytes, and activating mTOR/p70S6K signaling to enhance synaptic plasticity.
Collapse
|
11
|
LI T, WANG X, DONG K. Extraction and purification of oridonin from Rabdosia rubescens and its protective effect on intracerebral hemorrhage-induced brain injury in rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.24921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tie LI
- Tianjin University of Traditional Chinese Medicine, China
| | - Xueyan WANG
- Tianjin University of Traditional Chinese Medicine, China
| | - Kun DONG
- Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
12
|
Wan Y, Wang J, Yang B, Huang C, Tang X, Yi H, Liu Y, Wang S. Effects and mechanisms of CTRP3 overexpression in secondary brain injury following intracerebral hemorrhage in rats. Exp Ther Med 2021; 23:35. [PMID: 34849150 PMCID: PMC8613529 DOI: 10.3892/etm.2021.10957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
C1q/TNF-related protein-3 (CTRP3) is a novel adipokine that serves an important role in oxidative stress, anti-apoptosis, anti-inflammation and immune regulation. The aim of the present study was to investigate the protective role of CTRP3 against intracerebral hemorrhage (ICH)-induced brain injury. A model of autologous arterial blood-induced ICH was constructed in rats. Intracerebral infusion of a lentivirus carrying the CTRP3 gene was used to induce CTRP3 overexpression in the brain. The effects and mechanisms of CTRP3 overexpression on brain injury were investigated by detecting brain edema, blood-brain barrier (BBB) integrity, neurological function and inflammatory-associated factors 3 days after ICH. The present results demonstrated that CTRP3 overexpression ameliorated ICH-induced neurological dysfunction, decreased brain edema, maintained BBB integrity and attenuated inflammation. The protective effect of CTRP3 overexpression was associated with increased activation of silent information regulator 1 (SIRT1). In conclusion, the present study demonstrated that CTRP3 overexpression protected against ICH-induced brain injury in rats, potentially via activating the SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yu Wan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Jieqiong Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Bo Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Conggai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Xiaoqin Tang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Hong Yi
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Yun Liu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Shaohua Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| |
Collapse
|
13
|
Imai T, Matsubara H, Hara H. Potential therapeutic effects of Nrf2 activators on intracranial hemorrhage. J Cereb Blood Flow Metab 2021; 41:1483-1500. [PMID: 33444090 PMCID: PMC8221764 DOI: 10.1177/0271678x20984565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracranial hemorrhage (ICH) is a devastating disease which induces high mortality and poor outcomes including severe neurological dysfunctions. ICH pathology is divided into two types: primary brain injury (PBI) and secondary brain injury (SBI). Although there are numerous preclinical studies documenting neuroprotective agents in experimental ICH models, no effective drugs have been developed for clinical use due to complicated ICH pathology. Oxidative and inflammatory stresses play central roles in the onset and progression of brain injury after ICH, especially SBI. Nrf2 is a crucial transcription factor in the anti-oxidative stress defense system. Under normal conditions, Nrf2 is tightly regulated by the Keap1. Under ICH pathological conditions, such as overproduction of reactive oxygen species (ROS), Nrf2 is translocated into the nucleus where it up-regulates the expression of several anti-oxidative phase II enzymes such as heme oxygenase-1 (HO-1). Recently, many reports have suggested the therapeutic potential of Nrf2 activators (including natural or synthesized compounds) for treating neurodegenerative diseases. Moreover, several Nrf2 activators attenuate ischemic stroke-induced brain injury in several animal models. This review summarizes the efficacy of several Nrf2 activators in ICH animal models. In the future, Nrf2 activators might be approved for the treatment of ICH patients.
Collapse
Affiliation(s)
- Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirofumi Matsubara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Neurosurgery, School of Medicine, Gifu University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
14
|
Mechanisms of Oxidative Stress and Therapeutic Targets following Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8815441. [PMID: 33688394 PMCID: PMC7920740 DOI: 10.1155/2021/8815441] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress (OS) is induced by the accumulation of reactive oxygen species (ROS) following intracerebral hemorrhage (ICH) and plays an important role in secondary brain injury caused by the inflammatory response, apoptosis, autophagy, and blood-brain barrier (BBB) disruption. This review summarizes the current state of knowledge regarding the pathogenic mechanisms of brain injury after ICH, markers for detecting OS, and therapeutic strategies that target OS to mitigate brain injury.
Collapse
|
15
|
Crilly S, Withers SE, Allan SM, Parry-Jones AR, Kasher PR. Revisiting promising preclinical intracerebral hemorrhage studies to highlight repurposable drugs for translation. Int J Stroke 2021; 16:123-136. [PMID: 33183165 PMCID: PMC7859586 DOI: 10.1177/1747493020972240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022]
Abstract
Intracerebral hemorrhage is a devastating global health burden with limited treatment options and is responsible for 49% of 6.5 million annual stroke-related deaths comparable to ischemic stroke. Despite the impact of intracerebral hemorrhage, there are currently no effective treatments and so weaknesses in the translational pipeline must be addressed. There have been many preclinical studies in intracerebral hemorrhage models with positive outcomes for potential therapies in vivo, but beyond advancing the understanding of intracerebral hemorrhage pathology, there has been no translation toward successful clinical application. Multidisciplinary preclinical research, use of multiple models, and validation in human tissue are essential for effective translation. Repurposing of therapeutics for intracerebral hemorrhage may be the most promising strategy to help relieve the global health burden of intracerebral hemorrhage. Here, we have reviewed the existing literature to highlight repurposable drugs with successful outcomes in preclinical models of intracerebral hemorrhage that have realistic potential for development into the clinic for intracerebral hemorrhage.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Sarah E Withers
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Adrian R Parry-Jones
- Division of Cardiovascular Sciences,
Lydia Becker Institute of Immunology and Inflammation, School of Medical Sciences,
Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre,
The University of Manchester, Manchester, UK
- Manchester Centre for Clinical
Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health
Science Centre, Salford, UK
| | - Paul R Kasher
- Division of Neuroscience and
Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester
Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Acupuncture Ameliorates Neuronal Cell Death, Inflammation, and Ferroptosis and Downregulated miR-23a-3p After Intracerebral Hemorrhage in Rats. J Mol Neurosci 2021; 71:1863-1875. [PMID: 33403590 DOI: 10.1007/s12031-020-01770-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Baihui-penetrating-Qubin acupuncture is frequently used to treat intracerebral hemorrhage (ICH) in China. Acupuncture affects multiple microRNAs in diseases. MicroRNA-23a-3p (miR-23a-3p) has been demonstrated to be up-regulated in ICH patients. Herein, the effect of Baihui-penetrating-Qubin acupuncture on miR-23a-3p expression after ICH and the role of miR-23a-3p in ICH were discussed. A rat model of ICH was induced by infusing autologous blood into caudate nucleus. Acupuncture was performed after ICH once a day for 30 min. After 3 consecutive days of acupuncture, the neurobehavioral function, brain edema, neuronal cell death, inflammation, ferroptosis, nuclear factor E2-like 2 (NFE2L2) signaling and miR-23a-3p levels in brain tissues were analyzed. Additionally, antagomiR-23a-3p was injected into rats 3 days prior to ICH modeling to analyze the function of miR-23a-3p in neuronal cell death, inflammation, ferroptosis, and NFE2L2 signaling. Acupuncture relieved the ICH-induced neurological function deficits, increases in brain water content and Fluoro-Jade B (FJB)-positive cells and release of proinflammatory cytokines. Acupuncture also alleviated ferroptosis and decreased miR-23a-3p expression, as evidenced by the increased NFE2L2 nuclear translocation and expressions of heme oxygenase-1 and glutathione peroxidase 4 and the decreased iron and malondialdehyde contents and reactive oxygen species accumulation. Additionally, antagomiR-23a-3p inhibited the ICH-induced increases in FJB-positive cells, release of proinflammatory cytokines, ferroptosis, and promoted NFE2L2 activation. Notably, the binding site of miR-23a-3p existed in NFE2L2. Taken together, acupuncture may alleviate the neuronal cell death, inflammation, and ferroptosis after ICH by down-regulating miR-23a-3p. This study provides a potential mechanism underlying the Baihui-penetrating-Qubin acupuncture improving the early injury after ICH.
Collapse
|
17
|
Ji XC, Shi YJ, Zhang Y, Chang MZ, Zhao G. Reducing Suppressors of Cytokine Signaling-3 (SOCS3) Expression Promotes M2 Macrophage Polarization and Functional Recovery After Intracerebral Hemorrhage. Front Neurol 2020; 11:586905. [PMID: 33281724 PMCID: PMC7688919 DOI: 10.3389/fneur.2020.586905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a fatal subtype of stroke, and effective interventions to improve the functional outcomes are still lacking. Suppressor of cytokine signaling 3 (SOCS3) plays critical roles in the inflammatory response by negatively regulating cytokine-Jak-Stat signaling. However, the role of SOCS3 in the regulation of macrophage polarization is highly controversial and the fine regulation exerted by SOCS3 needs further understanding. In this study, rat ICH models were established by infusion of collagenase into the caudate nucleus. To decrease SOCS3 expression into microglia/macrophages in the hemorrhagic lesion area, we injected lentiviral short hairpin RNA (shSOCS3) (Lenti-shSOCS3) into the hematoma cavity at 24 h following ICH. We found that the number of iNOS-positive cells (M1 phenotype) was significantly reduced, whereas arginase-1-positive cells (M2 phenotype) were markedly elevated in animals that received Lenti-shSOCS3 injections compared with those in the Lenti-EGFP and saline groups. The increase in arginase-1-positive cells was associated with a significantly lower pro-inflammatory microenvironment, which included the downregulation of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, and TNF-α] and concurrent upregulation of anti-inflammatory (IL-10) mediators. In addition, this marked shift toward the M2 phenotype was associated with suppressed NF-κB activation. Furthermore, these changes notably enhanced the neuroprotective effects and functional recovery in Lenti-shSOCS3-injected animals. Our findings indicated that reduction in SOCS3 expression caused a marked bias toward the M2 phenotype and ameliorated the inflammatory microenvironment, which enhanced neuroprotective effects and resulted in notable improvement in functional recovery after ICH.
Collapse
Affiliation(s)
- Xin-Chao Ji
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ya-Jun Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Affiliated Bayi Brain Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ming-Ze Chang
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Imai T, Tsuji S, Matsubara H, Ohba T, Sugiyama T, Nakamura S, Hara H, Shimazawa M. Deferasirox, a trivalent iron chelator, ameliorates neuronal damage in hemorrhagic stroke models. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:73-84. [PMID: 32808069 DOI: 10.1007/s00210-020-01963-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Intracranial hemorrhage (ICH) is a devastating disease with high mortality and morbidity. After ICH, iron released from the hematoma plays a crucial role in secondary brain injury. Deferasirox (DFR) is a trivalent iron chelator, which was approved to treat iron overload syndrome after transfusion. The aim of the present study was to investigate the protective effects of DFR in both in vitro and in vivo ICH models. METHODS Using a hemin-induced SH-SY5Y cell damage model, we performed an intracellular bivalent iron (Fe2+) accumulation assay, cell death assay, oxidative stress assessments, and Western blotting analysis. Moreover, the effects of DFR intraventricular administration on hematoma, neurological deficits, and histological alteration were evaluated in an in vivo ICH mouse model by collagenase. RESULTS DFR significantly suppressed the intracellular Fe2+ accumulation and cell death caused by hemin exposure. These effects were related to the suppression of both reactive oxygen species and lipid peroxidation over-production. In Western blotting analysis, hemin increased the expression of ferritin (an iron storage protein), LC3 and p62 (autophagy-related markers), phosphorylated p38 (a stress response protein), and cleaved-caspase3 and cleaved-poly (adenosine diphosphate ribose) polymerase (PARP) (apoptosis-related makers). However, DFR suppressed the increase of these proteins. In addition, DFR attenuated the neurological deficits until 7 days after ICH without affecting hematoma and injury area. Furthermore, DFR also suppressed microglia/macrophage activation in peri-hematoma area at 3 days after ICH. CONCLUSION These findings indicate that DFR might be a useful therapeutic agent for the therapy of ICH.
Collapse
Affiliation(s)
- Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shohei Tsuji
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hirohumi Matsubara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
- Department of Neurosurgery, School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Takuya Ohba
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Tomoki Sugiyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
19
|
Li J, Ye M, Gao J, Zhang Y, Zhu Q, Liang W. Systematic Understanding of Mechanism of Yi-Qi-Huo-Xue Decoction Against Intracerebral Hemorrhagic Stroke Using a Network Pharmacology Approach. Med Sci Monit 2020; 26:e921849. [PMID: 32769962 PMCID: PMC7433745 DOI: 10.12659/msm.921849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH), a fatal type of stroke, profoundly affects public health. Yi-Qi-Huo-Xue decoction (YQHXD), a traditional Chinese medicine (TCM) prescription, is verified to be an efficient method to treat ICH stroke among the Chinese population. Nevertheless, the pharmacological mechanisms of YQHXD have been unclear. Material/Methods We used a strategy based on network pharmacology to explore the possible multi-component, multi-target, and multi-pathway pattern of YQHXD in treating ICH. First, candidate targets for YQHXD were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Then, these candidate YQHXD targets were used in combination with the known targets for the treatment of ICH stroke to construct the core network (cPPI) using data on protein–protein interaction (PPI). We calculated 5 topological parameters for identification of the main hubs. Pathway enrichment and GO biological process enrichment analyses were performed after the incorporation of the main hubs into ClueGO. Results In total, 55 candidate YQHXD targets for ICH were recognized to be the major hubs in accordance with their topological importance. As suggested by enrichment analysis, the YQHXD targets for ICH were roughly classified into several biological processes (related to redox equilibrium, cell–cell communication, adhesion and collagen biosynthesis, cytokine generation, lymphocyte differentiation and activation, neurocyte apoptosis and development, neuroendocrine system, and vascular development) and related pathways (VEGF, mTOR, NF-kB, RAS/MAPK, JAK/STAT and cytokine–cytokine receptors interaction), indicating those mechanisms underlying the therapeutic effect of YQHXD. Conclusions The present results may serve as a pharmacological framework for TCM studies in the future, helping to promote the use of YQHXD in clinical treatment of ICH.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Ming Ye
- Department of Neurosurgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Jueming Gao
- Department of Neurosurgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Yeqing Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Qiyong Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Weibang Liang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
20
|
Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4683943. [PMID: 32831999 PMCID: PMC7428967 DOI: 10.1155/2020/4683943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiocerebral vascular disease (CCVD) is a common disease with high morbidity, disability, and mortality. Oxidative stress (OS) is closely related to the progression of CCVD. Abnormal redox regulation leads to OS and overproduction of reactive oxygen species (ROS), which can cause biomolecular and cellular damage. The Nrf2/antioxidant response element (ARE) signaling pathway is one of the most important defense systems against exogenous and endogenous OS injury, and Nrf2 is regarded as a vital pharmacological target. The complexity of the CCVD pathological process and the current difficulties in conducting clinical trials have hindered the development of therapeutic drugs. Furthermore, little is known about the role of the Nrf2/ARE signaling pathway in CCVD. Clarifying the role of the Nrf2/ARE signaling pathway in CCVD can provide new ideas for drug design. This review details the recent advancements in the regulation of the Nrf2/ARE system and its role and activators in common CCVD development.
Collapse
|
21
|
Fu P, Liu J, Bai Q, Sun X, Yao Z, Liu L, Wu C, Wang G. Long-term outcomes of monascin - a novel dual peroxisome proliferator-activated receptor γ/nuclear factor-erythroid 2 related factor-2 agonist in experimental intracerebral hemorrhage. Ther Adv Neurol Disord 2020; 13:1756286420921083. [PMID: 32477427 PMCID: PMC7232052 DOI: 10.1177/1756286420921083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background Hematoma is the chief culprit in brain injury following intracranial cerebral hemorrhage (ICH). Noninvasive hematoma clearance could be an option to prevent and alleviate early brain injury after ICH. Peroxisome proliferator-activated receptor γ (PPAR-γ) and nuclear factor-erythroid 2 related factor-2 (Nrf2) facilitate removal of hematoma in ICH. Monascin acts as the natural Nrf2 activator with PPAR-γ agonist, and the long-term effects of monascin following ICH have not been elucidated. Methods ICH in rats was induced by stereotactic, intrastriatal injection of type IV collagenase. Monascin was administered twice daily by gastric perfusion for 14 days after ICH induction. Long-term neurological scores (T maze, Garcia scales, rotor rod test, and Morris water maze), hematoma volume, as well as iron overload around hematoma and brain atrophy were evaluated at 7, 14, and 28 days after ICH. Results The results showed that monascin improved long-term neurological deficits, spatial memory performance, learning ability, and brain shrinkage after ICH. Monascin also reduced hematoma volume at 7 days and iron content at 7 and 14 days after ICH. Conclusion PPAR γ and Nrf2 play a crucial role in hematoma clearance after ICH in rat. As a dual agonist of PPAR γ and Nrf2, monascin improved long-term outcomes by facilitating hematoma clearance, and by attenuating iron overload and brain atrophy after experimental ICH.
Collapse
Affiliation(s)
- Pengcheng Fu
- Department of Neurology, Longhua District Central Hospital, Shenzhen, Guangdong, 187 Guanlan St., 518110, China
| | - Jiachen Liu
- Clinical Medicine, Xiangya Medical College of Central South University, Changsha, Hunan, China
| | - Qinqin Bai
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xingang Sun
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhenjia Yao
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lirong Liu
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cuimei Wu
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Gaiqing Wang
- Department of Neurology, SanYa Central Hospital (The Third People's Hospital of HaiNan Province), 146 Jiefang forth Rd, SanYa, HaiNan, 372000, China
| |
Collapse
|
22
|
Matsuda Y, Machida M, Nakagami Y, Nakajima T, Azuma M. NFE2L2 activator RS9 protects against corneal epithelial cell damage in dry eye models. PLoS One 2020; 15:e0229421. [PMID: 32320433 PMCID: PMC7176120 DOI: 10.1371/journal.pone.0229421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/05/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress may cause ocular surface damage during the development of dry eye. Mammalian cells have defense systems against oxidative stress. A central regulator of the stress response is nuclear factor-erythroid 2-related factor 2 (NFE2L2). NFE2L2 is activated by the novel triterpenoid RS9 (a biotransformation compound of RTA 402). The purpose of this study was to assess the efficacy of RS9 against dry eye using in vitro and in vivo models. Bioactivity was estimated by the induction of mRNAs for two NFE2L2-targeted genes: NQO1 (prevents radical species) and GCLC (glutathione synthesis), using a corneal epithelial cell line (HCE-T). Protection against oxidation and cell damage was tested in vitro by culturing cells under hyperosmotic stress or by the addition of menadione, a generator of reactive oxygen species (ROS). Dry eye in vivo was induced by the injection of scopolamine into rats. Then, 930 nM of RS9 was applied to both eyes for 2 weeks. Oxidative stress was measured by the accumulation of 8-hydroxy-2’-deoxyguanosine (8-OHdG). Corneal wound healing was measured by scoring for superficial punctate keratitis (SPK). Corneal epithelial cell densities were evaluated histologically. RS9 and RTA 402 induced the expression of NQO1 and GCLC mRNAs in HCE-T cells. And both compounds suppressed hyperosmotic-ROS generation and menadione induced cellular damage. However RS9 had a stronger protective effect than RTA 402. Ocular instillation of RS9 also significantly upregulated the expression of Nqo1 mRNA in the corneal epithelium. Accumulation of 8-OHdG, increase of SPK scores and decrement of basal cell density were observed in corneal epithelium from scopolamine-injected rats. These changes were significantly ameliorated by the topical administration of RS9. RS9 induced Nfe2l2 activation and Nfe2l2-targeted genes, reduced oxidation, and ameliorated symptoms of dry eye using in vitro and in vivo models. Thus, RS9 might be a potent candidate agent against dry eye disease.
Collapse
Affiliation(s)
- Yuka Matsuda
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| | - Mamiko Machida
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| | | | - Takeshi Nakajima
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd., Kobe, Japan
- * E-mail:
| | - Mitsuyoshi Azuma
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| |
Collapse
|
23
|
Zhang ZW, Liang J, Yan JX, Ye YC, Wang JJ, Chen C, Sun HT, Chen F, Tu Y, Li XH. TBHQ improved neurological recovery after traumatic brain injury by inhibiting the overactivation of astrocytes. Brain Res 2020; 1739:146818. [PMID: 32275911 DOI: 10.1016/j.brainres.2020.146818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is a major leading cause of death and long-term disability. Although astrocytes play a key role in neuroprotection after TBI in the early stage, the overactivation of astrocytes can lead to long-term functional deficits, and the underlying pathophysiological mechanisms remain unclear. In addition, it is unknown whether the nuclear factor erythroid 2-related factor2/haem oxygenase-1 (Nrf-2/HO-1) pathway could elicit a neuroprotective effect by decreasing astrocyte overactivation after TBI. We aimed to study the effects of tert-butylhydroquinone (TBHQ) in reducing astrocyte overactivation after TBI and explored the underlying mechanisms. We first established a controlled cortical impact (CCI) model in rats and performed Haematoxylin and eosin (H&E) staining to observe brain tissue damage. The cognitive function of rats was assessed by modified neurological severity scoring (mNSS) and Morris water maze (MWM) test. Astrocyte and microglia activation was detected by immunofluorescence staining. Oxidative stress conditions were investigated using Western blotting. An enzyme-linked immunosorbent assay (ELISA) was designed to assess the level of the proinflammatory factor tumour necrosis factor-alpha (TNF-α). Dihydroethidium (DHE) staining was used to detect reactive oxygen species (ROS). Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The results showed that the administration of TBHQ ameliorated motor function and cognitive deficits and decreased the lesion volume. In addition, TBHQ significantly decreased astrocyte overactivation, diminished the pro-inflammatory phenotype M1 and inflammatory cytokines production after TBI, increased Nrf-2 nuclear accumulation, and enhanced the levels of the Nrf-2 downstream antioxidative genes HO-1 and NADPH-quinone oxidoreductase-1 (NQO-1). Furthermore, TBHQ treatment alleviated apoptosis and neuronal death in the cerebral cortex. Overall, our data indicated that the upregulation of Nrf-2 expression could enhance neuroprotection and decrease astrocyte overactivation and might represent a new theoretical basis for treating TBI.
Collapse
Affiliation(s)
- Zhen-Wen Zhang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China; Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Jun Liang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Jing-Xing Yan
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China; Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Yi-Chao Ye
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Chong Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Feng Chen
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China.
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
24
|
Levetiracetam, an Antiepileptic Drug has Neuroprotective Effects on Intracranial Hemorrhage Injury. Neuroscience 2020; 431:25-33. [DOI: 10.1016/j.neuroscience.2020.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
|
25
|
Cheng Y, Chen B, Xie W, Chen Z, Yang G, Cai Y, Shang H, Zhao W. Ghrelin attenuates secondary brain injury following intracerebral hemorrhage by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway in mice. Int Immunopharmacol 2020; 79:106180. [PMID: 31926478 DOI: 10.1016/j.intimp.2019.106180] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
Ghrelin, a brain-gut peptide, has been proven to exert neuroprotection in different kinds of neurological diseases; however, its role and the potential molecular mechanisms in secondary brain injury (SBI) after intracerebral hemorrhage (ICH) are still unknown. In this study, we investigate whether treatment with ghrelin may attenuate SBI in a murine ICH model, and if so, whether the neuroprotective effects are due to the inhibition of nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation and promotion of nuclear factor-E2-related factor 2 (Nrf2)/antioxidative response element (ARE) signaling pathway. Stereotactically intrastriatal infusion of autologous blood was performed to mimic ICH. Ghrelin was given intraperitoneally immediately following ICH and again 1 h later. Results showed that ghrelin attenuated neurobehavioral deficits, brain edema, hematoma volume, and perihematomal cell death post-ICH. Ghrelin inhibited the NLRP3 inflammasome activation and subsequently suppressed the neuroinflammatory response as evidenced by reduced microglia activation, neutrophil infiltration, and pro-inflammatory mediators release after ICH. Additionally, ghrelin alleviated ICH-induced oxidative stress according to the chemiluminescence of luminol and lucigenin, malondialdehyde (MDA) content, and total superoxide dismutase (SOD) activity assays. These changes were accompanied by upregulation of Nrf2 expression, Nrf2 nuclear accumulation, and enhanced Nrf2 DNA binding activity, as well as by increased expressions of Nrf2 downstream target antioxidative genes, including NAD(P)H quinine oxidoreductase-1 (NQO1), glutathione cysteine ligase regulatory subunit (GCLC), and glutathione cysteine ligase modulatory subunit (GCLM). Together, our data suggested that ghrelin protected against ICH-induced SBI by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bin Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wanqun Xie
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhenghong Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Guoyuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China; Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yu Cai
- Department of Neurosurgery, North Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
26
|
Nrf2 and oxidative stress. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Wu Q, Yan W, Liu C, Hung TC, Li G. Co-exposure with titanium dioxide nanoparticles exacerbates MCLR-induced brain injury in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133540. [PMID: 31374495 DOI: 10.1016/j.scitotenv.2019.07.346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/12/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Owing to the eutrophication in freshwater and industrial emissions, the detected concentrations of MCLR and nano-TiO2 in nature water increase year by year. The purpose of this study was to evaluate the joint effect of microcystin-LR (MCLR) and titanium dioxide nanoparticles (nano-TiO2) on the zebrafish brain and to investigate the underlying mechanisms. In this study, four-month old zebrafish were exposed to 0, 0.5, 4, and 32 μg/L MCLR and MCLR-co-nano-TiO2 (100 μg/L) for 45 days. Obvious brain injury characterized by formation of glial scars and ventriculomegaly was observed in both MCLR groups and MCLR-co-nano-TiO2 groups. In addition, our results showed the existence of nano-TiO2 aggravated MCLR-induced abnormity of swimming behavior and social behavior of zebrafish. To clarify the mechanisms of nano-TiO2 aggravated MCLR-induced brain injury, we firstly examined the reactive oxygen species (ROS) generation in the zebrafish brain. The results showed that co-exposure with nano-TiO2 could further increase ROS content compared with MCLR only groups. We also detected a significant change of lipid peroxidation products (MDA, malondialdehyde) content, antioxidant enzyme (SOD, superoxide dismutase) activity, and non-enzymatic antioxidant (GSH, glutathione) content in MCLR-co-nano-TiO2 groups. Transcriptional analysis indicated the expression of genes related to the antioxidant system was significantly altered in the zebrafish brain. Collectively, the observations in this study showed that the existence of nano-TiO2 could exacerbate the damage of the zebrafish brain through the aggravation of MCLR-induced oxidative stress, ultimately leading to the abnormity of swimming behavior and social behavior.
Collapse
Affiliation(s)
- Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Yan
- Institute of Quality Standard & Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
28
|
Diao X, Zhou Z, Xiang W, Jiang Y, Tian N, Tang X, Chen S, Wen J, Chen M, Liu K, Li Q, Liao R. Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction. Brain Res 2019; 1727:146514. [PMID: 31628933 DOI: 10.1016/j.brainres.2019.146514] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
Abstract
Glutathione (GSH) has been studied for its neuroprotection value in several diseases, but the effect of GSH on intracerebral hemorrhage (ICH) is unclear. In this study, we examined the protective effects of GSH in an experimentally induced ICH model and investigated the relative mechanisms. Adult male C57BL/6j mice were randomized into Sham, ICH and GSH treatment groups. GSH was injected with the dose of 50, 100 or 200 mg/kg once per day for 3 days, starting immediately after operation. The results revealed a GSH-mediated improvement of neurological deficits score (NDS), motor and sensory functions impairment in a dose-dependent manner three days post ICH (p < 0.01, GSH 200 vs ICH. Sham, n = 12; ICH, n = 9; GSH 50, n = 10; GSH 100, n = 10; GSH 200, n = 11) in addition to significantly reduced mortality rate (p = 0.2632, GSH 200 vs ICH. n = 12 per group) and damage volume (p < 0.05, GSH 200 vs ICH. n = 12 per group). GSH treatment also attenuated injury measured by decreased brain edema (p < 0.05, GSH 200 vs ICH. Sham, n = 10; ICH, n = 10; GSH 200, n = 12), blood-brain barrier disruption (p < 0.05, GSH 200 vs ICH. Sham, n = 10; ICH, n = 10; GSH 200, n = 12), and histopathological damage (p < 0.05, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8) 72 h after ICH. In addition, GSH treatment also decreased cell apoptosis (p < 0.01, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8) and resulted in up-regulated protein expression of complex I (p < 0.01, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8), which was consistent with an overall up-regulation of complex I function in mitochondria using Oxygraph-2 K high resolution respirometry (p < 0.05, GSH 200 vs ICH. Sham, n = 4; ICH, n = 5; GSH 200, n = 6). In conclusion, GSH effectively improved the prognosis of ICH mice by attenuating neurological impairment, decreasing neural damage, and inhibiting apoptosis. The neuroprotection by GSH resulted from the up-regulation of mitochondrial oxidative respiration function. The results of our study suggest that GSH can be a potential therapeutic agent for ICH.
Collapse
Affiliation(s)
- Xiaojun Diao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China; Guilin Medical University, Guilin 541004, China
| | - Zixian Zhou
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Wenjing Xiang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Yanlin Jiang
- Department of Pharmacology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Ning Tian
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Xiaoling Tang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Sangsang Chen
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Jian Wen
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Meiling Chen
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Kaixiang Liu
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Qinghua Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China; Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China.
| | - Rujia Liao
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
29
|
Establishment of an Experimental Intracerebral Haemorrhage Model for Mass Effect Research using a Thermo-sensitive Hydrogel. Sci Rep 2019; 9:13838. [PMID: 31554852 PMCID: PMC6761290 DOI: 10.1038/s41598-019-50188-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
The mechanical response of brain tissue closely relates to cerebral blood flow and brain diseases. During intracerebral haemorrhage (ICH), a mass effect occurs during the initial bleeding and results in significant tissue deformation. However, fewer studies have focused on the brain damage mechanisms and treatment approaches associated with mass effects compared to the secondary brain injuries after ICH, which may be a result of the absence of acceptable animal models mimicking a mass effect. Thus, a thermo-sensitive poly (N-isopropylacrylamide) (PNIPAM) hydrogel was synthesized and injected into the rat brain to establish an ICH model for mass effect research. The PNIPAM hydrogel or autologous blood was injected to establish an ICH animal model, and the space-occupying volumes, brain tissue elasticity, brain oedema, neuronal cell death, iron deposition and behavioural recovery were evaluated. The lower critical solution temperature of PNIPAM hydrogel was 32 °C, and the PNIPAM hydrogel had a rough surface with similar topography and pore structure to a blood clot. Furthermore, the ICH model animals who received an injection of PNIPAM and blood produced similar lesion volumes, elasticity changes and mechanically activated ion channel piezo-2 upregulation in brain tissue. Meanwhile, slight iron deposition, neuronal cell death and brain oedema were observed in the PNIPAM hydrogel model compared to the blood model. In addition, the PNIPAM hydrogel showed good biocompatibility and stability in vivo via subcutaneous implantation. Our findings show that PNIPAM hydrogel cerebral infusion can form a mass effect similar to haematoma and minimize the interference of blood, and the establishment of a mass effect ICH model is beneficial for understanding the mechanism of primary brain injury and the role of mass effects in secondary brain damage after ICH.
Collapse
|
30
|
Nakamura S, Noguchi T, Inoue Y, Sakurai S, Nishinaka A, Hida Y, Masuda T, Nakagami Y, Horai N, Tsusaki H, Hara H, Shimazawa M. Nrf2 Activator RS9 Suppresses Pathological Ocular Angiogenesis and Hyperpermeability. ACTA ACUST UNITED AC 2019; 60:1943-1952. [DOI: 10.1167/iovs.18-25745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuro Noguchi
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
- Shin Nippon Biomedical Laboratories Ltd. Drug Safety Research Laboratories (SNBL DSR), Kagoshima, Japan
| | - Yuki Inoue
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shuji Sakurai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Anri Nishinaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshifumi Hida
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomomi Masuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | | - Naoto Horai
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
- Shin Nippon Biomedical Laboratories Ltd. Drug Safety Research Laboratories (SNBL DSR), Kagoshima, Japan
| | - Hideshi Tsusaki
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
31
|
Imai T, Iwata S, Hirayama T, Nagasawa H, Nakamura S, Shimazawa M, Hara H. Intracellular Fe 2+ accumulation in endothelial cells and pericytes induces blood-brain barrier dysfunction in secondary brain injury after brain hemorrhage. Sci Rep 2019; 9:6228. [PMID: 30996325 PMCID: PMC6470176 DOI: 10.1038/s41598-019-42370-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/27/2019] [Indexed: 12/24/2022] Open
Abstract
After intracranial hemorrhage (ICH), iron is released from the hematoma and induces secondary brain injury. However, the detail effect of iron on blood-brain barrier (BBB) function is still unknown. We investigated whether hemoglobin (Hb), ferrous ammonium sulfate (FAS) or hemin which contains iron have the detrimental effect on both human brain microvascular endothelial cells and pericytes by cellular function analysis in vitro. We developed an iron (Fe2+)-detectable probe, Si-RhoNox-1, to investigate intracellular Fe2+ accumulation (Fe2+intra). After FAS treatment, there was the correlation between Fe2+intra and cell death. Moreover, Hb or hemin treatment induced cell death, increased reactive oxygen species and promoted Fe2+intra in both cells. These changes were inhibited by the Fe2+ chelator, 2,2′-bipyridil (BP). Furthermore, hemin induced endothelial barrier dysfunction via disruption of junction integrity. Based on in vitro studies, we used a hemin-injection ICH mice model in vivo. Hemin injection (10 mM/10 µL, i.c.) induced deleterious effects including BBB hyper-permeability, neuronal deficits, neuronal damage, altered proteins expression, and Fe2+intra in BBB composed cells. Lastly, BP (40 mg/kg, i.p.) administration attenuated neuronal deficits at 3 days after surgery. Collectively, Hb or hemin damaged BBB composed cells via Fe2+intra. Therefore, the regulation of the Fe2+ movement in BBB might be effective for treatment of ICH.
Collapse
Affiliation(s)
- Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Sena Iwata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Tasuku Hirayama
- Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hideko Nagasawa
- Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| |
Collapse
|