1
|
Au J, Smith-Peirce RN, Carbone E, Moon A, Evans M, Jonides J, Jaeggi SM. Effects of Multisession Prefrontal Transcranial Direct Current Stimulation on Long-term Memory and Working Memory in Older Adults. J Cogn Neurosci 2022; 34:1015-1037. [PMID: 35195728 PMCID: PMC9836784 DOI: 10.1162/jocn_a_01839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive form of electrical brain stimulation popularly used to augment the effects of working memory (WM) training. Although success has been mixed, some studies report enhancements in WM performance persisting days, weeks, or even months that are actually more reminiscent of consolidation effects typically observed in the long-term memory (LTM) domain, rather than WM improvements per se. Although tDCS has been often reported to enhance both WM and LTM, these effects have never been directly compared within the same study. However, given their considerable neural and behavioral overlap, this is a timely comparison to make. This study reports results from a multisession intervention in older adults comparing active and sham tDCS over the left dorsolateral pFC during training on both an n-back WM task and a word learning LTM task. We found strong and robust effects on LTM, but mixed effects on WM that only emerged for those with lower baseline ability. Importantly, mediation analyses showed an indirect effect of tDCS on WM that was mediated by improvements in consolidation. We conclude that tDCS over the left dorsolateral pFC can be used as an effective intervention to foster long-term learning and memory consolidation in aging, which can manifest in performance improvements across multiple memory domains.
Collapse
Affiliation(s)
- Jacky Au
- School of Education, University of California, Irvine, Irvine CA, 92697, USA
| | | | - Elena Carbone
- Department of General Psychology, University of Padova, Padova, 35131, Italy
| | - Austin Moon
- Department of Psychology, University of California, Riverside, Riverside CA, 92521, USA
| | - Michelle Evans
- Department of Psychology, University of Michigan, Ann Arbor MI, 48109, USA
| | - John Jonides
- Department of Psychology, University of Michigan, Ann Arbor MI, 48109, USA
| | - Susanne M. Jaeggi
- School of Education, University of California, Irvine, Irvine CA, 92697, USA
| |
Collapse
|
2
|
Page J, Wakschlag LS, Norton ES. Nonrapid eye movement sleep characteristics and relations with motor, memory, and cognitive ability from infancy to preadolescence. Dev Psychobiol 2021; 63:e22202. [PMID: 34813099 PMCID: PMC8898567 DOI: 10.1002/dev.22202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
Sleep plays a critical role in neural neurodevelopment. Hallmarks of sleep reflected in the electroencephalogram during nonrapid eye movement (NREM) sleep are associated with learning processes, cognitive ability, memory, and motor functioning. Research in adults is well-established; however, the role of NREM sleep in childhood is less clear. Growing evidence suggests the importance of two NREM sleep features: slow-wave activity and sleep spindles. These features may be critical for understanding maturational change and the functional role of sleep during development. Here, we review the literature on NREM sleep from infancy to preadolescence to provide insight into the network dynamics of the developing brain. The reviewed findings show distinct relations between topographical and maturational aspects of slow waves and sleep spindles; however, the direction and consistency of these relationships vary, and associations with cognitive ability remain unclear. Future research investigating the role of NREM sleep and development would benefit from longitudinal approaches, increased control for circadian and homeostatic influences, and in early childhood, studies recording daytime naps and overnight sleep to yield increased precision for detecting age-related change. Such evidence could help explicate the role of NREM sleep and provide putative physiological markers of neurodevelopment.
Collapse
Affiliation(s)
- Jessica Page
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
| | - Lauren S. Wakschlag
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Au J, Katz B, Moon A, Talati S, Abagis TR, Jonides J, Jaeggi SM. Post-training stimulation of the right dorsolateral prefrontal cortex impairs working memory training performance. J Neurosci Res 2021; 99:2351-2363. [PMID: 33438297 PMCID: PMC8273206 DOI: 10.1002/jnr.24784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/23/2020] [Indexed: 11/08/2022]
Abstract
Research investigating transcranial direct current stimulation (tDCS) to enhance cognitive training augments both our understanding of its long-term effects on cognitive plasticity as well as potential applications to strengthen cognitive interventions. Previous work has demonstrated enhancement of working memory training while applying concurrent tDCS to the dorsolateral prefrontal cortex (DLPFC). However, the optimal stimulation parameters are still unknown. For example, the timing of tDCS delivery has been shown to be an influential variable that can interact with task learning. In the present study, we used tDCS to target the right DLPFC while participants trained on a visuospatial working memory task. We sought to compare the relative efficacy of online stimulation delivered during training to offline stimulation delivered either immediately before or afterwards. We were unable to replicate previously demonstrated benefits of online stimulation; however, we did find evidence that offline stimulation delivered after training can actually be detrimental to training performance relative to sham. We interpret our results in light of evidence suggesting a role of the right DLPFC in promoting memory interference, and conclude that while tDCS may be a promising tool to influence the results of cognitive training, more research and an abundance of caution are needed before fully endorsing its use for cognitive enhancement. This work suggests that effects can vary substantially in magnitude and direction between studies, and may be heavily dependent on a variety of intervention protocol parameters such as the timing and location of stimulation delivery, about which our understanding is still nascent.
Collapse
Affiliation(s)
- Jacky Au
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Austin Moon
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sheebani Talati
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tessa R. Abagis
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Jonides
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susanne M. Jaeggi
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
4
|
Scavone G, Baril AA, Montplaisir J, Carrier J, Desautels A, Zadra A. Autonomic Modulation During Baseline and Recovery Sleep in Adult Sleepwalkers. Front Neurol 2021; 12:680596. [PMID: 34248823 PMCID: PMC8263899 DOI: 10.3389/fneur.2021.680596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Sleepwalking has been conceptualized as deregulation between slow-wave sleep and arousal, with its occurrence in predisposed patients increasing following sleep deprivation. Recent evidence showed autonomic changes before arousals and somnambulistic episodes, suggesting that autonomic dysfunctions may contribute to the pathophysiology of sleepwalking. We investigated cardiac autonomic modulation during slow-wave sleep in sleepwalkers and controls during normal and recovery sleep following sleep deprivation. Fourteen adult sleepwalkers (5M; 28.1 ± 5.8 years) and 14 sex- and age-matched normal controls were evaluated by video-polysomnography for one baseline night and during recovery sleep following 25 h of sleep deprivation. Autonomic modulation was investigated with heart rate variability during participants' slow-wave sleep in their first and second sleep cycles. 5-min electrocardiographic segments from slow-wave sleep were analyzed to investigate low-frequency (LF) and high-frequency (HF) components of heart rate spectral decomposition. Group (sleepwalkers, controls) X condition (baseline, recovery) ANOVAs were performed to compare LF and HF in absolute and normalized units (nLF and nHF), and LF/HF ratio. When compared to controls, sleepwalkers' recovery slow-wave sleep showed lower LF/HF ratio and higher nHF during the first sleep cycle. In fact, compared to baseline recordings, sleepwalkers, but not controls, showed a significant decrease in nLF and LF/HF ratio as well as increased nHF during recovery slow-wave sleep during the first cycle. Although non-significant, similar findings with medium effect sizes were observed for absolute values (LF, HF). Patterns of autonomic modulation during sleepwalkers' recovery slow-wave sleep suggest parasympathetic dominance as compared to baseline sleep values and to controls. This parasympathetic predominance may be a marker of abnormal neural mechanisms underlying, or interfere with, the arousal processes and contribute to the pathophysiology of sleepwalking.
Collapse
Affiliation(s)
- Geneviève Scavone
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Montreal, QC, Canada.,The Framingham Heart Study, Boston University School of Medicine, Boston, MA, United States
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Montreal, QC, Canada.,Deparment of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Alex Desautels
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Montreal, QC, Canada.,Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Antonio Zadra
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Furrer M, Ringli M, Kurth S, Brandeis D, Jenni OG, Huber R. The experience-dependent increase in deep sleep activity is reduced in children with attention-deficit/hyperactivity disorder. Sleep Med 2020; 75:50-53. [PMID: 32853918 DOI: 10.1016/j.sleep.2019.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVE/BACKGROUND Learning of a visuomotor adaptation task during wakefulness leads to a local increase in slow-wave activity (SWA, EEG power between 1 and 4.5 Hz) during subsequent deep sleep. Here, we examined this relationship between learning and SWA in children with attention-deficit/hyperactivity disorder (ADHD). PATIENTS/METHODS Participants were 15 children with ADHD (9.7-14.8 y, one female) and 15 age-matched healthy controls (9.6-15.7 y, three female). After the completion of a visuomotor adaptation task in the evening, participants underwent an all-night high-density (HD, 128 electrodes) sleep-EEG measurement. RESULTS Healthy control children showed the expected right-parietal increase in sleep SWA after visuomotor learning. Despite no difference in visuomotor learning, the local up-regulation during sleep was significantly reduced in ADHD patients compared to healthy controls. CONCLUSIONS Our results indicate that the local, experience-dependent regulation of SWA is different in ADHD patients. Because the customarily observed heightened regulation in children was related to sensitive period maturation, ADHD patients may lack certain sensitive periods or show a developmental delay.
Collapse
Affiliation(s)
- Melanie Furrer
- Child Development Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
| | - Maya Ringli
- Child Development Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
| | - Salome Kurth
- Pulmonary Clinic, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland; Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany; Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland.
| |
Collapse
|
6
|
Cerasuolo M, Conte F, Giganti F, Ficca G. Sleep changes following intensive cognitive activity. Sleep Med 2019; 66:148-158. [PMID: 31877506 DOI: 10.1016/j.sleep.2019.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Studies over the last 40 years have mainly investigated sleep structure changes as a result of wake duration, in the frame of the classical sleep regulation theories. However, wake intervals of the same duration can profoundly differ in their intensity, which actually reflects the degree of cognitive and physical activity. Data on how sleep can be modified by wake intensity changes (initially sparse and of little consistence) have become much more substantial, especially in the frame of the intense research debate on sleep-memory relationships. Our aim is to examine the vast repertoire of sleep modifications that depend on waking cognitive manipulations, highlighting the sleep features that appear most affected. By systematically addressing this issue, we want to set the basis for future research exploring both the specific nature of the mechanisms involved and the applicative psychosocial and clinical fall-outs, in terms of possible behavioural interventions for sleep quality improvement.
Collapse
Affiliation(s)
- Mariangela Cerasuolo
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Francesca Conte
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Fiorenza Giganti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Gianluca Ficca
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy.
| |
Collapse
|
7
|
Ferrarelli F, Kaskie R, Laxminarayan S, Ramakrishnan S, Reifman J, Germain A. An increase in sleep slow waves predicts better working memory performance in healthy individuals. Neuroimage 2019; 191:1-9. [DOI: 10.1016/j.neuroimage.2019.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
|
8
|
The Role of Sleep in Song Learning Processes in Songbird. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-12-813743-7.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
9
|
Dentico D, Bachhuber D, Riedner BA, Ferrarelli F, Tononi G, Davidson RJ, Lutz A. Acute effects of meditation training on the waking and sleeping brain: Is it all about homeostasis? Eur J Neurosci 2018; 48:2310-2321. [PMID: 30144201 DOI: 10.1111/ejn.14131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Our recent finding of a meditation-related increase in low-frequency NREM sleep EEG oscillatory activities peaking in the theta-alpha range (4-12 Hz) was not predicted. From a consolidated body of research on sleep homeostasis, we would expect a change peaking in slow wave activity (1-4 Hz) following an intense meditation session. Here we compared these changes in sleep with the post-meditation changes in waking rest scalp power to further characterize their functional significance. High-density EEG recordings were acquired from 27 long-term meditators (LTM) on three separate days at baseline and following two 8-hr sessions of either mindfulness or compassion-and-loving-kindness meditation. Thirty-one meditation-naïve participants (MNP) were recorded at the same time points. As a common effect of meditation practice, we found increases in low and fast waking EEG oscillations for LTM only, peaking at eight and 15 Hz respectively, over prefrontal, and left centro-parietal electrodes. Paralleling our previous findings in sleep, there was no significant difference between meditation styles in LTM as well as no difference between matched sessions in MNP. Meditation-related changes in wakefulness and NREM sleep were correlated across space and frequency. A significant correlation was found in the EEG low frequencies (<12 Hz). Since the peak of coupling was observed in the theta-alpha oscillatory range, sleep homeostatic response to meditation practice is not sufficient to explain our findings. Another likely phenomenon into play is a reverberation of meditation-related processes during subsequent sleep. Future studies should ascertain the interplay between these processes in promoting the beneficial effects of meditation practice.
Collapse
Affiliation(s)
- Daniela Dentico
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisconsin.,Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - David Bachhuber
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisconsin.,Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Brady A Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisconsin.,Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Antoine Lutz
- Lyon Neuroscience Research Center INSERM U1028, CNRS, UMR5292, Lyon 1 University, Lyon, France
| |
Collapse
|
10
|
Quach J, Spencer-Smith M, Anderson PJ, Roberts G. Can working memory training improve children's sleep? Sleep Med 2018; 47:113-116. [PMID: 29787937 DOI: 10.1016/j.sleep.2017.11.1143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Improving children's sleep could lead to significant benefits in several functional domains. Recent research in adults suggests that intensive, adaptive cognitive training may be beneficial in improving sleep, although there is limited understanding whether this approach yields similar results in children. OBJECTIVE To determine whether a working memory training program improved sleep latency, sleep problems, and sleep duration on school and nonschool nights and whether there was a differential effect of the timing of training during the school day on sleep outcomes. DESIGN/METHODS Design: Population-based randomised controlled trial. SETTING Forty-four schools in Melbourne, Australia. PARTICIPANTS All Grade 1 children (mean age = 6.9 years, SD 0.4) underwent WM screening using two subtests from the Automated Working Memory Assessment. Children with low verbal and/or visuo-spatial WM scores relative to their peers ('low WM', ∼25%) were randomised to intervention or control arms. INTERVENTION 20 to 25 computerised 25-min training sessions were conducted using the CogMed program, over 5-7 weeks at school. OUTCOMES Parent-reported child sleep characteristics (time, latency, duration and problem) at 6 months post randomisation. RESULTS A total of 452 (26.0%) of 1723 children screened (64.1% of approached) met trial eligibility criteria, with 226 in each study arm. Of intervention children, 91% completed the minimum 20 days of training. Retention was 90.5% at 6 months. Adjusted regressions showed that intervention children did not have better sleep latency, duration, bedtime consistency or less sleep problems. CONCLUSION It does not appear that adaptive working memory training during the school day can be used as a novel approach to improve children's sleep attributes up to 6 months post-randomisation, regardless of the time of day training is delivered.
Collapse
Affiliation(s)
- Jon Quach
- Melbourne Graduate School of Education, The University of Melbourne, Parkville, VIC, 3052, Australia; Murdoch Childrens Research Institute, Parkville, VIC, 3052, Australia.
| | - Megan Spencer-Smith
- Murdoch Childrens Research Institute, Parkville, VIC, 3052, Australia; School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, VIC, 3800, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Parkville, VIC, 3052, Australia; School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, VIC, 3800, Australia
| | - Gehan Roberts
- Centre for Community Child Health, The Royal Children's Hospital, Parkville, VIC, 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
11
|
Abstract
Rocking movements appear to affect human sleep. Recent research suggested a facilitated transition from wake to sleep and a boosting of slow oscillations and sleep spindles due to lateral rocking movements during an afternoon nap. This study aimed at investigating the effect of vestibular stimulation on sleep onset, nocturnal sleep and its potential to increase sleep spindles and slow waves, which could influence memory performance. Polysomnography was recorded in 18 males (age: 20–28 years) during three nights: movement until sleep onset (C1), movement for 2 hours (C2), and one baseline (B) without motion. Sleep dependent changes in memory performance were assessed with a word-pair learning task. Although subjects preferred nights with vestibular stimulation, a facilitated sleep onset or a boost in slow oscillations was not observed. N2 sleep and the total number of sleep spindles increased during the 2 h with vestibular stimulation (C2) but not over the entire night. Memory performance increased over night but did not differ between conditions. The lack of an effect might be due to the already high sleep efficiency (96%) and sleep quality of our subjects during baseline. Nocturnal sleep in good sleepers might not benefit from the potential facilitating effects of vestibular stimulation.
Collapse
|
12
|
Rochette AC, Soulières I, Berthiaume C, Godbout R. NREM sleep EEG activity and procedural memory: A comparison between young neurotypical and autistic adults without sleep complaints. Autism Res 2018; 11:613-623. [PMID: 29381247 DOI: 10.1002/aur.1933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 11/07/2022]
Abstract
Delta EEG activity (0.75-3.75 Hz) during non-Rapid eye movement (NREM) sleep reflects the thalamo-cortical system contribution to memory consolidation. The functional integrity of this system is thought to be compromised in the Autism spectrum disorder (ASD). This lead us to investigate the topography of NREM sleep Delta EEG activity in young adults with ASD and typically-developed individuals (TYP). The relationship between Delta EEG activity and sensory-motor procedural information was also examined using a rotary pursuit task. Two dependent variables were computed: a learning index (performance increase across trials) and a performance index (average performance for all trials). The ASD group showed less Delta EEG activity during NREM sleep over the parieto-occipital recording sites compared to the TYP group. Delta EEG activity dropped more abruptly from frontal to posterior regions in the ASD group. Both groups of participants learned the task at a similar rate but the ASD group performed less well in terms of contact time with the target. Delta EEG activity during NREM sleep, especially during stage 2, correlated positively with the learning index for electrodes located all over the cortex in the TYP group, but only in the frontal region in the ASD group. Delta EEG activity, especially during stage 2, correlated positively with the performance index, but in the ASD group only. These results reveal an atypical thalamo-cortical functioning over the parieto-occipital region in ASD. They also point toward an atypical relationship between the frontal area and the encoding of sensory-motor procedural memory in ASD. Autism Res 2018, 11: 613-623. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Slow EEG waves recorded from the scalp during sleep are thought to facilitate learning and memory during daytime. We compared these EEG waves in young autistic adults to typically-developing young adults. We found less slow EEG waves in the ASD group and the pattern of relationship with memory differed between groups. This suggests atypicalities in the way sleep mechanisms are associated with learning and performance in a sensory-motor procedural memory task in ASD individuals.
Collapse
Affiliation(s)
- Annie-Claude Rochette
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada.,Autism Center of Excellence, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada.,Research Center, Hôpital Rivière-des-Prairies, CIUSSS-du-Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada.,Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Isabelle Soulières
- Autism Center of Excellence, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada.,Research Center, Hôpital Rivière-des-Prairies, CIUSSS-du-Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada.,Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Claude Berthiaume
- Research Center, Hôpital Rivière-des-Prairies, CIUSSS-du-Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Roger Godbout
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada.,Autism Center of Excellence, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada.,Research Center, Hôpital Rivière-des-Prairies, CIUSSS-du-Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada.,Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada.,Department of Psychiatry, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Ferreri F, Vecchio F, Guerra A, Miraglia F, Ponzo D, Vollero L, Iannello G, Maatta S, Mervaala E, Rossini PM, Di Lazzaro V. Age related differences in functional synchronization of EEG activity as evaluated by means of TMS-EEG coregistrations. Neurosci Lett 2017; 647:141-146. [DOI: 10.1016/j.neulet.2017.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 11/16/2022]
|
14
|
Headley DB, Paré D. Common oscillatory mechanisms across multiple memory systems. NPJ SCIENCE OF LEARNING 2017; 2:1. [PMID: 30294452 PMCID: PMC6171763 DOI: 10.1038/s41539-016-0001-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 05/09/2023]
Abstract
The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a 'slow' or 'fast' mode. The slow mode happens during slow-wave sleep (SWS) and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and REM and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have the similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to SWS, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during SWS seem to promote declarative and procedural memories.
Collapse
Affiliation(s)
- Drew B. Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102 USA
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102 USA
| |
Collapse
|
15
|
Cohen S, Kaplan Z, Zohar J, Cohen H. Preventing sleep on the first resting phase following a traumatic event attenuates anxiety-related responses. Behav Brain Res 2016; 320:450-456. [PMID: 27789342 DOI: 10.1016/j.bbr.2016.10.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 12/20/2022]
Abstract
Sleep deprivation (SD) in the early aftermath of stress exposure at the onset of the inactive (resting)-phase, has been shown to ameliorate stress-related sequelae. We examined whether this effect is affected by the temporal proximity between SD and the stressful event or whether it was related to the prevention of sleep in the first resting phase following the exposure. Rats were exposed to stress at the onset of their active phase. Then, they were prevented from sleeping immediately thereafter [forced wakefulness (FW)], or during the first resting phase (SD). The behavior in the elevated plus-maze and acoustic startle response paradigms were assessed seven days post-exposure for retrospective classification into behavioral response groups. We found that resting phase SD (with or without FW) decreased PTSD-like phenotype, whereas immediate FW had no significant effect. The long-term anxiolytic effects of SD appear to stem from a diurnal cycle-dependent mechanism, such that preventing sleep during the first natural resting phase following the traumatic exposure is beneficial in preventing the traumatic sequelae.
Collapse
Affiliation(s)
- Shlomi Cohen
- Ben-Gurion University of the Negev, Department of Psychology, Beer Sheva, Israel; Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Zeev Kaplan
- Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Joseph Zohar
- Division of Psychiatry, The State of Israel Ministry of Health, The Chaim Sheba Medical Center, Sackler Medical School, Tel-Aviv University, Tel Hashomer, Israel
| | - Hagit Cohen
- Ben-Gurion University of the Negev, Department of Psychology, Beer Sheva, Israel; Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
16
|
Dentico D, Ferrarelli F, Riedner BA, Smith R, Zennig C, Lutz A, Tononi G, Davidson RJ. Short Meditation Trainings Enhance Non-REM Sleep Low-Frequency Oscillations. PLoS One 2016; 11:e0148961. [PMID: 26900914 PMCID: PMC4764716 DOI: 10.1371/journal.pone.0148961] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/26/2016] [Indexed: 12/16/2022] Open
Abstract
STUDY OBJECTIVES We have recently shown higher parietal-occipital EEG gamma activity during sleep in long-term meditators compared to meditation-naive individuals. This gamma increase was specific for NREM sleep, was present throughout the entire night and correlated with meditation expertise, thus suggesting underlying long-lasting neuroplastic changes induced through prolonged training. The aim of this study was to explore the neuroplastic changes acutely induced by 2 intensive days of different meditation practices in the same group of practitioners. We also repeated baseline recordings in a meditation-naive cohort to account for time effects on sleep EEG activity. DESIGN High-density EEG recordings of human brain activity were acquired over the course of whole sleep nights following intervention. SETTING Sound-attenuated sleep research room. PATIENTS OR PARTICIPANTS Twenty-four long-term meditators and twenty-four meditation-naïve controls. INTERVENTIONS Two 8-h sessions of either a mindfulness-based meditation or a form of meditation designed to cultivate compassion and loving kindness, hereafter referred to as compassion meditation. MEASUREMENTS AND RESULTS We found an increase in EEG low-frequency oscillatory activities (1-12 Hz, centered around 7-8 Hz) over prefrontal and left parietal electrodes across whole night NREM cycles. This power increase peaked early in the night and extended during the third cycle to high-frequencies up to the gamma range (25-40 Hz). There was no difference in sleep EEG activity between meditation styles in long-term meditators nor in the meditation naïve group across different time points. Furthermore, the prefrontal-parietal changes were dependent on meditation life experience. CONCLUSIONS This low-frequency prefrontal-parietal activation likely reflects acute, meditation-related plastic changes occurring during wakefulness, and may underlie a top-down regulation from frontal and anterior parietal areas to the posterior parietal and occipital regions showing chronic, long-lasting plastic changes in long-term meditators.
Collapse
Affiliation(s)
- Daniela Dentico
- Department of Psychiatry, University of Wisconsin Madison, 6001 Research Park Blvd, Madison, WI, 53719, United States of America
- Waisman Center for Brain Imaging and Behavior, University of Wisconsin Madison, Madison, WI, 53705, United States of America
- Center for Healthy Minds, University of Wisconsin Madison, Madison, WI, 53705, United States of America
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Wisconsin Madison, 6001 Research Park Blvd, Madison, WI, 53719, United States of America
| | - Brady A. Riedner
- Department of Psychiatry, University of Wisconsin Madison, 6001 Research Park Blvd, Madison, WI, 53719, United States of America
| | - Richard Smith
- Department of Psychiatry, University of Wisconsin Madison, 6001 Research Park Blvd, Madison, WI, 53719, United States of America
| | - Corinna Zennig
- Department of Psychiatry, University of Wisconsin Madison, 6001 Research Park Blvd, Madison, WI, 53719, United States of America
| | - Antoine Lutz
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, 69500, France
- Department of Psychology, University of Wisconsin Madison, Madison, WI, 53706, United States of America
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin Madison, 6001 Research Park Blvd, Madison, WI, 53719, United States of America
| | - Richard J. Davidson
- Waisman Center for Brain Imaging and Behavior, University of Wisconsin Madison, Madison, WI, 53705, United States of America
- Center for Healthy Minds, University of Wisconsin Madison, Madison, WI, 53705, United States of America
- Department of Psychology, University of Wisconsin Madison, Madison, WI, 53706, United States of America
- * E-mail:
| |
Collapse
|
17
|
Yan J, Wei Y, Wang Y, Xu G, Li Z, Li X. Use of functional near-infrared spectroscopy to evaluate the effects of anodal transcranial direct current stimulation on brain connectivity in motor-related cortex. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:46007. [PMID: 25894253 DOI: 10.1117/1.jbo.20.4.046007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/25/2015] [Indexed: 05/05/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory technique in neurological rehabilitation, treatment, and other aspects of brain disorders. However, evaluating the effects of tDCS is still difficult. We aimed to evaluate the effects of tDCS using hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Five healthy participants were employed and anodal tDCS was applied to the left motor-related cortex, with cathodes positioned on the right dorsolateral supraorbital area. fNIRS data were collected from the right motor-related area at the same time. Functional connectivity (FC)between intracortical regions was calculated between fNIRS channels using a minimum variance distortion-less response magnitude squared coherence (MVDR-MSC) method. The levels of Oxy-HbO change and the FC between channels during the prestimulation, stimulation, and poststimulation stages were compared. Results showed no significant level difference, but the FC measured by MVDR-MSC significantly decreased during tDCS compared with pre-tDCS and post-tDCS, although the FC difference between pre-tDCS and post-tDCS was not significant. We conclude that coherence calculated from resting state fNIRS may be a useful tool for evaluating the effects of anodal tDCS and optimizing parameters for tDCS application.
Collapse
Affiliation(s)
- Jiaqing Yan
- Yanshan University, Institute of Electrical Engineering, No. 438, Hebei Street, Haigang District, Qinhuangdao 066004, China
| | - Yun Wei
- Yanshan University, Institute of Electrical Engineering, No. 438, Hebei Street, Haigang District, Qinhuangdao 066004, China
| | - Yinghua Wang
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, ChinacBeijing Normal University, Center for Collaboration an
| | - Gang Xu
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, ChinacBeijing Normal University, Center for Collaboration an
| | - Zheng Li
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, ChinacBeijing Normal University, Center for Collaboration an
| | - Xiaoli Li
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, ChinacBeijing Normal University, Center for Collaboration an
| |
Collapse
|
18
|
Pugin F, Metz AJ, Wolf M, Achermann P, Jenni OG, Huber R. Local increase of sleep slow wave activity after three weeks of working memory training in children and adolescents. Sleep 2015; 38:607-14. [PMID: 25669190 DOI: 10.5665/sleep.4580] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 11/07/2014] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Evidence is accumulating that electroencephalographic (EEG) sleep slow wave activity (SWA), the key characteristic of deep sleep, is regulated not only globally, but also locally. Several studies have shown local learning- and use-dependent changes in SWA. In vitro and in vivo animal experiments and studies in humans indicate that these local changes in SWA reflect synaptic plasticity. During maturation, when synaptic changes are most prominent, learning is of utmost importance. Thus, in this study, we aimed to examine whether intensive working memory training for 3 w would lead to a local increase of sleep SWA using high-density EEG recordings in children and young adolescents. SETTING Sleep laboratory at the University Children's Hospital Zurich. PARTICIPANTS Fourteen healthy subjects between 10 and 16 y. INTERVENTIONS Three weeks of intensive working memory training. MEASUREMENTS AND RESULTS After intensive working memory training, sleep SWA was increased in a small left frontoparietal cluster (11.06 ± 1.24%, mean ± standard error of the mean). In addition, the local increase correlated positively with increased working memory performance assessed immediately (r = 0.66) and 2 to 5 mo (r = 0.68) after the training. CONCLUSIONS The increase in slow wave activity (SWA) correlates with cognitive training-induced plasticity in a region known to be involved in working memory performance. Thus, in future, the mapping of sleep SWA may be used to longitudinally monitor the effects of working memory training in children and adolescents with working memory deficiencies.
Collapse
Affiliation(s)
- Fiona Pugin
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Switzerland
| | - Andreas J Metz
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, Switzerland
| | - Martin Wolf
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, Switzerland
| | - Peter Achermann
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,Chronobiology and Sleep Research, Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | - Oskar G Jenni
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Reto Huber
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Switzerland
| |
Collapse
|
19
|
Abstract
Experience-dependent plasticity, the ability of the brain to constantly adapt to an ever-changing environment, has been suggested to be highest during childhood and to decline thereafter. However, empirical evidence for this is rather scarce. Slow-wave activity (SWA; EEG activity of 1-4.5 Hz) during deep sleep can be used as a marker of experience-dependent plasticity. For example, performing a visuomotor adaptation task in adults increased SWA during subsequent sleep over a locally restricted region of the right parietal cortex, which is known to be involved in visuomotor adaptation. Here, we investigated whether local experience-dependent changes in SWA vary as a function of brain maturation. Three age groups (children, adolescents, and adults) participated in a high-density EEG study with two conditions (baseline and adaptation) of a visuomotor learning task. Compared with the baseline condition, sleep SWA was increased after visuomotor adaptation in a cluster of eight electrodes over the right parietal cortex. The local boost in SWA was highest in children. Baseline SWA in the parietal cluster and right parietal gray matter volume, which both indicate region-specific maturation, were significantly correlated with the local increase in SWA. Our findings indicate that processes of brain maturation favor experience-dependent plasticity and determine how sensitive a specific brain region is for learning experiences. Moreover, our data confirm that SWA is a highly sensitive tool to map maturational differences in experience-dependent plasticity.
Collapse
|
20
|
Astill RG, Piantoni G, Raymann RJEM, Vis JC, Coppens JE, Walker MP, Stickgold R, Van Der Werf YD, Van Someren EJW. Sleep spindle and slow wave frequency reflect motor skill performance in primary school-age children. Front Hum Neurosci 2014; 8:910. [PMID: 25426055 PMCID: PMC4227520 DOI: 10.3389/fnhum.2014.00910] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/23/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND AIM The role of sleep in the enhancement of motor skills has been studied extensively in adults. We aimed to determine involvement of sleep and characteristics of spindles and slow waves in a motor skill in children. HYPOTHESIS We hypothesized sleep-dependence of skill enhancement and an association of interindividual differences in skill and sleep characteristics. METHODS 30 children (19 females, 10.7 ± 0.8 years of age; mean ± SD) performed finger sequence tapping tasks in a repeated-measures design spanning 4 days including 1 polysomnography (PSG) night. Initial and delayed performance were assessed over 12 h of wake; 12 h with sleep; and 24 h with wake and sleep. For the 12 h with sleep, children were assigned to one of three conditions: modulation of slow waves and spindles was attempted using acoustic perturbation, and compared to yoked and no-sound control conditions. ANALYSES Mixed effect regression models evaluated the association of sleep, its macrostructure and spindles and slow wave parameters with initial and delayed speed and accuracy. RESULTS AND CONCLUSIONS Children enhance their accuracy only over an interval with sleep. Unlike previously reported in adults, children enhance their speed independent of sleep, a capacity that may to be lost in adulthood. Individual differences in the dominant frequency of spindles and slow waves were predictive for performance: children performed better if they had less slow spindles, more fast spindles and faster slow waves. On the other hand, overnight enhancement of accuracy was most pronounced in children with more slow spindles and slower slow waves, i.e., the ones with an initial lower performance. Associations of spindle and slow wave characteristics with initial performance may confound interpretation of their involvement in overnight enhancement. Slower frequencies of characteristic sleep events may mark slower learning and immaturity of networks involved in motor skills.
Collapse
Affiliation(s)
- Rebecca G Astill
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Clinical Neurophysiology, Amsterdam Sleep Centre, Slotervaartziekenhuis Amsterdam, Netherlands
| | - Giovanni Piantoni
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Neurology, Massachusetts General Hospital Boston, MA, USA
| | - Roy J E M Raymann
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Jose C Vis
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Sleepvision, Berg en Dal Netherlands
| | - Joris E Coppens
- Department of Technology and Software Development, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Matthew P Walker
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California Berkeley, CA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| | - Ysbrand D Van Der Werf
- Department of Emotion and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Anatomy and Neurosciences, VU University and Medical Center Amsterdam, Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Departments of Integrative Neurophysiology and Medical Psychology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University and Medical Center Amsterdam, Netherlands
| |
Collapse
|
21
|
Guerra A, Petrichella S, Vollero L, Ponzo D, Pasqualetti P, Määttä S, Mervaala E, Könönen M, Bressi F, Iannello G, Rossini PM, Ferreri F. Neurophysiological features of motor cortex excitability and plasticity in Subcortical Ischemic Vascular Dementia: a TMS mapping study. Clin Neurophysiol 2014; 126:906-13. [PMID: 25262646 DOI: 10.1016/j.clinph.2014.07.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate neurophysiological features of M1 excitability and plasticity in Subcortical Ischemic Vascular Dementia (SIVD), by means of a TMS mapping study. METHODS Seven SIVD and nine AD patients, along with nine control subjects were tested. The M1 excitability was studied by resting thresholds, area and volume of active cortical sites for forearm and hand's examined muscles. For M1 plasticity, coordinates of the hot-spot and the center of gravity (CoG) were evaluated. The correlation between the degree of hyperexcitability and the amount of M1 plastic rearrangement was also calculated. RESULTS Multivariate analysis of excitability measures demonstrated similarly enhanced cortical excitability in AD and SIVD patients with respect to controls. SIVD patients showed a medial and frontal shift of CoG from the hot-spot, not statistically different from that observed in AD. A significant direct correlation was seen between parameters related to cortical excitability and those related to cortical plasticity. CONCLUSIONS The results suggest the existence of common compensatory mechanisms in different kind of dementing diseases supporting the idea that cortical hyperexcitability can promote cortical plasticity. SIGNIFICANCE This study characterizes neurophysiological features of motor cortex excitability and plasticity in SIVD, providing new insights on the correlation between cortical excitability and plasticity.
Collapse
Affiliation(s)
- Andrea Guerra
- Department of Neurology, University Campus Bio-Medico, Rome, Italy
| | - Sara Petrichella
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Luca Vollero
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - David Ponzo
- Department of Neurology, University Campus Bio-Medico, Rome, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Patrizio Pasqualetti
- Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Esa Mervaala
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Federica Bressi
- Department of Physical Medicine and Rehabilitation, University Campus Biomedico, Rome, Italy
| | - Giulio Iannello
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Paolo Maria Rossini
- Institute of Neurology, Dept. Geriatrics, Neurosciences, Orthopaedics, Policlinic A. Gemelli, Catholic University, Rome, Italy; IRCCS S. Raffaele-Pisana, Rome, Italy
| | - Florinda Ferreri
- Department of Neurology, University Campus Bio-Medico, Rome, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
22
|
Sigala R, Haufe S, Roy D, Dinse HR, Ritter P. The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models. Front Comput Neurosci 2014; 8:36. [PMID: 24772077 PMCID: PMC3983484 DOI: 10.3389/fncom.2014.00036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/11/2014] [Indexed: 12/15/2022] Open
Abstract
During the past two decades growing evidence indicates that brain oscillations in the alpha band (~10 Hz) not only reflect an "idle" state of cortical activity, but also take a more active role in the generation of complex cognitive functions. A recent study shows that more than 60% of the observed inter-subject variability in perceptual learning can be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha oscillations for perceptual learning and hence motivates to explore the potential underlying mechanisms. Hence, it is the purpose of this review to highlight existent evidence that ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review, we disentangle the alpha rhythm into different neural signatures that control information processing within individual functional building blocks of perceptual learning. We further highlight computational studies that shed light on potential mechanisms regarding how alpha oscillations may modulate information transfer and connectivity changes relevant for learning. To enable testing of those model based hypotheses, we emphasize the need for multidisciplinary approaches combining assessment of behavior and multi-scale neuronal activity, active modulation of ongoing brain states and computational modeling to reveal the mathematical principles of the complex neuronal interactions. In particular we highlight the relevance of multi-scale modeling frameworks such as the one currently being developed by "The Virtual Brain" project.
Collapse
Affiliation(s)
- Rodrigo Sigala
- Department Neurology, Charité—University MedicineBerlin, Germany
- Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Sebastian Haufe
- Department Neurology, Charité—University MedicineBerlin, Germany
- Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Dipanjan Roy
- Department Neurology, Charité—University MedicineBerlin, Germany
- Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Hubert R. Dinse
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University BochumBochum, Germany
| | - Petra Ritter
- Department Neurology, Charité—University MedicineBerlin, Germany
- Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational NeuroscienceBerlin, Germany
- Minerva Research Group BrainModes, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
- Berlin School of Mind and Brain, Mind and Brain Institute, Humboldt UniversityBerlin, Germany
| |
Collapse
|
23
|
Pisarenco I, Caporro M, Prosperetti C, Manconi M. High-density electroencephalography as an innovative tool to explore sleep physiology and sleep related disorders. Int J Psychophysiol 2014; 92:S0167-8760(14)00003-8. [PMID: 24412343 DOI: 10.1016/j.ijpsycho.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
High density EEG represents a promising tool to achieve new insights regarding sleep physiology and pathology. It combines the advantages of an EEG technique as an optimal temporal resolution with the spatial resolution of the neuroimaging. So far its application in sleep research contributed to better characterize some of the peculiar microstructural figures of sleep such as spindles and K-complexes, and to understand the fundamental relationships between sleep and synaptic plasticity, learning and consciousness. Its application is not limited to neurophysiology, being recently also applied to study some sleep related psychiatric and neurological disorders such as depression, schizophrenia, attention-deficit hyperactivity disorder, and stroke. adding some interesting new pieces in the pathophysiological puzzle of these diseases. Due to its non-invasive, repetitive and reliable tempo-spatial resolution it is reasonable that the field of application of this tool will be soon enlarged to other areas of neuroscience. The present review aims to offer a complete overview regarding the use of high density EEG over the last decade in sleep research and sleep medicine, including its possible future perspective.
Collapse
Affiliation(s)
- I Pisarenco
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - M Caporro
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - C Prosperetti
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - M Manconi
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland.
| |
Collapse
|
24
|
Abstract
BACKGROUND Sleep has been demonstrated to enhance simple motor skill learning "offline" in young adults. "Offline learning" refers to either the stabilization or the enhancement of a memory through the passage of time without additional practice. It remains unclear whether a functional motor task will benefit from sleep to produce offline motor skill enhancement. Physical therapists often teach clients functional motor skills; therefore, it is important to understand how sleep affects learning of these skills. OBJECTIVE The purpose of this study was to determine whether sleep enhances the learning of a functional motor task. DESIGN A prospective, cross-sectional, repeated-measures design was used. METHODS Young participants who were healthy (N=24) were randomly assigned to either a sleep group or a no-sleep group. The sleep group practiced a novel walking task in the evening and underwent retention testing the following morning, and the no-sleep group practiced the task in the morning and underwent retention testing in the evening. Outcome measures included time around the walking path and spatiotemporal gait parameters. RESULTS Only participants who slept after practicing the novel walking task demonstrated a significant offline improvement in performance. Compared with the no-sleep group, participants in the sleep group demonstrated a significant decrease in the time around the walking path, an increase in tandem velocity, an increase in tandem step length, and a decline in tandem step time. LIMITATIONS Time-of-day effect and inability to ensure a certain amount of sleep quantity and quality of participants were limitations of the study. CONCLUSIONS This study is the first to provide evidence that sleep facilitates learning clinically relevant functional motor tasks. Sleep is an important factor that physical therapists should consider when teaching clients motor skills.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Sleep undergoes major changes during development. Its relationship to the complex process of maturation in health and disease has recently received increased attention. This review aims to highlight the recent literature examining the interplay of altered sleep, brain development and emerging psychiatric illnesses in children and adolescents. RECENT FINDINGS In addition to a temporal relationship of sleep disturbances preceding the onset of psychiatric illnesses, a bi-directional interaction of altered sleep and symptom severity has increasingly been shown. Sleep architecture shows drastic age-dependent alterations on a structural level during the first 2 decades of life. However, findings regarding disease-specific patterns have remained inconsistent. On a functional level, recent evidence about sleep electroencephalographic characteristics points to a close relationship between slow waves, reflecting the depth of sleep, and cortical plasticity. SUMMARY Sleep provides a rich source of information to gain insight into both the healthy and disturbed processes of brain function and maturation. Emerging data suggest that the investigation of slow wave activity is a novel and promising tool for monitoring both of these processes. It is important to understand when and how deviations from typical developmental sleep alterations occur in order to improve prevention and early treatment of disorders affecting a substantial number of children and adolescents.
Collapse
|
26
|
Sarasso S, Määttä S, Ferrarelli F, Poryazova R, Tononi G, Small SL. Plastic Changes Following Imitation-Based Speech and Language Therapy for Aphasia. Neurorehabil Neural Repair 2013; 28:129-38. [DOI: 10.1177/1545968313498651] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Objective measurement of plastic brain changes induced by a novel rehabilitative approach is a key requirement for validating its biological rationale linking the potential therapeutic gains to the changes in brain physiology. Objective. Based on an emerging notion linking cortical plastic changes to EEG sleep slow-wave activity (SWA) regulation, we aimed to assess the acute plastic changes induced by an imitation-based speech therapy in individuals with aphasia by comparing sleep SWA changes before and after therapy. Methods. A total of 13 left-hemispheric stroke patients underwent language assessment with the Western Aphasia Battery (WAB) before and after 2 consecutive high-density (hd) EEG sleep recordings interleaved by a daytime session of imitation-based speech therapy (Intensive Mouth Imitation and Talking for Aphasia Therapeutic Effects [IMITATE]). This protocol is thought to stimulate bilateral connections between the inferior parietal lobule and the ventral premotor areas. Results. A single exposure to IMITATE resulted in increases in local EEG SWA during subsequent sleep over the same regions predicted by the therapeutic rationale, particularly over the right hemisphere (unaffected by the lesion). Furthermore, changes in SWA over the left-precentral areas predicted changes in WAB repetition scores in our group, supporting the role of perilesional areas in predicting positive functional responses. Conclusions. Our results suggest that SWA changes occurring in brain areas activated during imitation-based aphasia therapy may reflect the acute plastic changes induced by this intervention. Further testing will be needed to evaluate SWA as a non-invasive assessment of changes induced by the therapy and as a predictor of positive long-term clinical outcome.
Collapse
Affiliation(s)
- Simone Sarasso
- University of Wisconsin–Madison, WI, USA
- University of Milan, Milan, Italy
| | - Sara Määttä
- University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Steven L. Small
- University of Chicago, IL, USA
- University of California–Irvine, CA, USA
| |
Collapse
|
27
|
Ferreri F, Vecchio F, Ponzo D, Pasqualetti P, Rossini PM. Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: an EEG-TMS study. Hum Brain Mapp 2013; 35:1969-80. [PMID: 23868714 DOI: 10.1002/hbm.22306] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 03/03/2013] [Accepted: 03/28/2013] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Motor evoked potentials (MEPs) elicited by a train of consecutive, individual transcranial magnetic stimuli demonstrate fluctuations in amplitude with respect to time when recorded from a relaxed muscle. The influence of time-varying, instantaneous modifications of the electroencephalography (EEG) properties immediately preceding the transcranial magnetic stimulation (TMS) has rarely been explored. The aim of this study was to investigate the influence of the pre-TMS motor cortex and related areas EEG profile on time variants of the MEPs amplitude. METHOD MRI-navigated TMS and multichannel TMS-compatible EEG devices were used. For each experimental subject, post-hoc analysis of the MEPs amplitude that was based on the 50th percentile of the MEPs amplitude distribution provided two subgroups corresponding to "high" (large amplitude) and "low" (small amplitude). The pre-stimulus EEG characteristics (coherence and spectral profile) from the motor cortex and related areas were analyzed separately for the "high" and "low" MEPs and were then compared. RESULTS On the stimulated hemisphere, EEG coupling was observed more often in the high compared to the low MEP trials. Moreover, a paradigmatic pattern in which TMS was able to lead to significantly larger MEPs was found when the EEG of the stimulated motor cortex was coupled in the beta 2 band with the ipsilateral prefrontal cortex and in the delta band with the bilateral centro-parietal-occipital cortices. CONCLUSION This data provide evidence for a statistically significant influence of time-varying and spatially patterned synchronization of EEG rhythms in determining cortical excitability, namely motor cortex excitability in response to TMS.
Collapse
Affiliation(s)
- Florinda Ferreri
- Department of Neurology, University Campus Biomedico, Rome, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
28
|
Ringli M, Kurth S, Huber R, Jenni OG. The sleep EEG topography in children and adolescents shows sex differences in language areas. Int J Psychophysiol 2013; 89:241-5. [PMID: 23608523 DOI: 10.1016/j.ijpsycho.2013.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 11/16/2022]
Abstract
The topographic distribution of slow wave activity (SWA, EEG power between 0.75 and 4.5 Hz) during non-rapid eye movement (NREM) sleep was proposed to mirror cortical maturation with a typical age-related pattern. Here, we examined whether sex differences occur in SWA topography of children and adolescents (22 age-matched subjects, 11 boys, mean age 13.4 years, range: 8.7-19.4, and 11 girls, mean age 13.4 years, range: 9.1-19.0 years). In females, SWA during the first 60 min of NREM sleep was higher over bilateral cortical areas that are related to language functions, while in males SWA was increased over the right prefrontal cortex, a region also involved in spatial abilities. We conclude that cortical areas governing functions in which one sex outperforms the other exhibit increased sleep SWA and, thus, may indicate maturation of sex-specific brain function and higher cortical plasticity during development.
Collapse
Affiliation(s)
- Maya Ringli
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
29
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
30
|
Hung CS, Sarasso S, Ferrarelli F, Riedner B, Ghilardi MF, Cirelli C, Tononi G. Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 2013; 36:59-72. [PMID: 23288972 DOI: 10.5665/sleep.2302] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES Prolonged wakefulness leads to a progressive increase in sleep pressure, reflected in a global increase in slow wave activity (SWA, 0.5-4.5 Hz) in the sleep electroencephalogram (EEG). A global increase in wake theta activity (5-9 Hz) also occurs. Recently, it was shown that prolonged wakefulness in rodents leads to signs of "local sleep" in an otherwise awake brain, accompanied by a slow/theta wave (2-6 Hz) in the local EEG that occurs at different times in different cortical areas. Compelling evidence in animals and humans also indicates that sleep is locally regulated by the amount of experience-dependent plasticity. Here, we asked whether the extended practice of tasks that involve specific brain circuits results in increased occurrence of local intermittent theta waves in the human EEG, above and beyond the global EEG changes previously described. DESIGN Participants recorded with high-density EEG completed 2 experiments during which they stayed awake ≥ 24 h practicing a language task (audiobook listening [AB]) or a visuomotor task (driving simulator [DS]). SETTING Sleep laboratory. PATIENTS OR PARTICIPANTS 16 healthy participants (7 females). INTERVENTIONS Two extended wake periods. MEASUREMENTS AND RESULTS Both conditions resulted in global increases in resting wake EEG theta power at the end of 24 h of wake, accompanied by increased sleepiness. Moreover, wake theta power as well as the occurrence and amplitude of theta waves showed regional, task-dependent changes, increasing more over left frontal derivations in AB, and over posterior parietal regions in DS. These local changes in wake theta power correlated with similar local changes in sleep low frequencies including SWA. CONCLUSIONS Extended experience-dependent plasticity of specific circuits results in a local increase of the wake theta EEG power in those regions, followed by more intense sleep, as reflected by SWA, over the same areas.
Collapse
Affiliation(s)
- Ching-Sui Hung
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI 53719, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Rossinia PM, Ferreri F. Neurophysiological techniques in the study of the excitability, connectivity, and plasticity of the human brain. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:1-17. [PMID: 24053029 DOI: 10.1016/b978-0-7020-5307-8.00001-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is increasing evidence to support the concept that brain plasticity involves distinct functional and structural components, each requiring several cellular mechanisms operating at different time scales, synaptic loci, and developmental phases within an extremely complex framework. However, the precise relationship between functional and structural components of brain plasticity/connectivity phenomena is still unclear and its explanation represents a major challenge within modern neuroscience. The key feature of neurophysiological techniques described in this review paper is their pivotal role in tracking temporal dynamics and inner hierarchies of brain functional and effective connectivities, possibly clarifying some crucial issues underlying brain plasticity. Taken together, the findings presented in this review open an intriguing new field in neuroscience investigation and are important for the adoption of neurophysiological techniques as a tool for basic research and, in future, even for clinical diagnostics purposes.
Collapse
|
32
|
D'Amelio M, Rossini PM. Brain excitability and connectivity of neuronal assemblies in Alzheimer's disease: from animal models to human findings. Prog Neurobiol 2012; 99:42-60. [PMID: 22789698 DOI: 10.1016/j.pneurobio.2012.07.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 06/08/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
The human brain contains about 100 billion neurons forming an intricate network of innumerable connections, which continuously adapt and rewire themselves following inputs from external and internal environments as well as the physiological synaptic, dendritic and axonal sculpture during brain maturation and throughout the life span. Growing evidence supports the idea that Alzheimer's disease (AD) targets selected and functionally connected neuronal networks and, specifically, their synaptic terminals, affecting brain connectivity well before producing neuronal loss and compartmental atrophy. The understanding of the molecular mechanisms underlying the dismantling of neuronal circuits and the implementation of 'clinically oriented' methods to map-out the dynamic interactions amongst neuronal assemblies will enhance early/pre-symptomatic diagnosis and monitoring of disease progression. More important, this will open the avenues to innovative treatments, bridging the gap between molecular mechanisms and the variety of symptoms forming disease phenotype. In the present review a set of evidence supports the idea that altered brain connectivity, exhausted neural plasticity and aberrant neuronal activity are facets of the same coin linked to age-related neurodegenerative dementia of Alzheimer type. Investigating their respective roles in AD pathophysiology will help in translating findings from basic research to clinical applications.
Collapse
Affiliation(s)
- Marcello D'Amelio
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | | |
Collapse
|
33
|
Kvint S, Bassiri B, Pruski A, Nia J, Nemet I, Lopresti M, Perfetti B, Moisello C, Tononi G, Ghilardi MF. Acquisition and retention of motor sequences: the effects of time of the day and sleep. Arch Ital Biol 2012; 149:303-12. [PMID: 22028091 DOI: 10.4449/aib.v149i3.1244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
STUDY OBJECTIVES We used a sequence-learning task to assess whether: 1. The time interval between awakening and training equally affects the rate of acquisition of sequence order, a declarative component, and the kinematic optimization process, an implicit component; 2. Sleep enhances the retention of both these aspects of sequence learning. DESIGN For aim 1, we compare the acquisition rate of a new motor sequence in a group trained in the morning and another in the evening. For aim 2., we tested retention of the same motor sequence twelve hours later, either without sleep (normal day activity or a night of sleep deprivation) or with interposed sleep (afternoon napping or regular full night sleep). SETTING Training and Testing were performed in a controlled laboratory setting. PARTICIPANTS Thirty-six right-handed normal subjects (age range 18-24 years; 16 women). RESULTS During the training, acquisition rate of the sequence order was significantly higher in the AM-trained than in the PM-trained group, without differences in the kinematic optimization processes. Both declarative and implicit learning indices were significantly higher in the subjects tested after sleep compared to those tested without interposed sleep. CONCLUSION The best time for fast and efficient acquisition of new declarative material is the morning, while the kinematic aspects of skill acquisition are not sensitive to the time of day. However, better retention of both declarative material and motor skills requires two conditions: a period of post-training sleep and the achievement of performance saturation during training.
Collapse
Affiliation(s)
- Svetlana Kvint
- Department of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, [corrected] The City University of New York Medical School, 138th Street and Convent Avenue, New York, NY, [corrected] USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lustenberger C, Huber R. High density electroencephalography in sleep research: potential, problems, future perspective. Front Neurol 2012; 3:77. [PMID: 22593753 PMCID: PMC3350944 DOI: 10.3389/fneur.2012.00077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/20/2012] [Indexed: 12/30/2022] Open
Abstract
High density EEG (hdEEG) during sleep combines the superior temporal resolution of EEG recordings with high spatial resolution. Thus, this method allows a topographical analysis of sleep EEG activity and thereby fosters the shift from a global view of sleep to a local one. HdEEG allowed to investigate sleep rhythms in terms of their characteristic behavior (e.g., the traveling of slow waves) and in terms of their relationship to cortical functioning (e.g., consciousness and cognitive abilities). Moreover, recent studies successfully demonstrated that hdEEG can be used to study brain functioning in neurological and neuro-developmental disorders, and to evaluate therapeutic approaches. This review highlights the potential, the problems, and future perspective of hdEEG in sleep research.
Collapse
|
35
|
Ringli M, Huber R. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior. PROGRESS IN BRAIN RESEARCH 2012; 193:63-82. [PMID: 21854956 DOI: 10.1016/b978-0-444-53839-0.00005-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sleep slow waves are the major electrophysiological features of non-rapid eye movement (NREM) sleep. Although there is growing understanding of where slow waves originate and how they are generated during sleep, the function of slow waves is still largely unclear. A recently proposed hypothesis relates slow waves to the homeostatic regulation of synaptic plasticity. While several studies confirm a correlation between experimentally triggered synaptic changes and slow-wave activity (SWA), little is known about its association to synaptic changes occurring during cortical maturation. Interestingly, slow waves undergo remarkable changes during development that parallel the time course of cortical maturation. In a recent cross-sectional study including children and adolescents, the topographical distribution of SWA was analyzed with high-density electroencephalography. The results showed age-dependent differences in SWA topography: SWA was highest over posterior regions during early childhood and then shifted over central derivations to the frontal cortex in late adolescence. This trajectory of SWA topography matches the course of cortical gray maturation. In this chapter, the major changes in slow waves during development are highlighted and linked to cortical maturation and behavior. Interestingly, synaptic density and slow-wave amplitude increase during childhood are highest shortly before puberty, decline thereafter during adolescence, reaching overall stable levels during adulthood. The question arises whether SWA is merely reflecting cortical changes or if it plays an active role in brain maturation. We thereby propose a model, by which sleep slow waves may contribute to cortical maturation. We hypothesize that while there is a balance between synaptic strengthening and synaptic downscaling in adults, the balance of strengthening/formation and weakening/elimination is tilted during development.
Collapse
Affiliation(s)
- Maya Ringli
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
| | | |
Collapse
|
36
|
Modulation of gamma and theta spectral amplitude and phase synchronization is associated with the development of visuo-motor learning. J Neurosci 2011; 31:14810-9. [PMID: 21994398 DOI: 10.1523/jneurosci.1319-11.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of new motor memories, which is fundamental for efficient performance during adaptation to a visuo-motor rotation, occurs when accurate planning is achieved mostly with feedforward mechanisms. The dynamics of brain activity underlying the switch from feedback to feedforward control is still matter of debate. Based on the results of studies in declarative learning, it is likely that phase synchronization of low and high frequencies as well as their temporal modulation in power amplitude underlie the formation of new motor memories during visuo-motor adaptation. High-density EEG (256 electrodes) was recorded in 17 normal human subjects during adaptation to a visuo-motor rotation of 60° in four incremental steps of 15°. We found that initial learning is associated with enhancement of gamma power in a right parietal region during movement execution as well as gamma/theta phase coherence during movement planning. Late stages of learning are instead accompanied by an increase of theta power over that same right parietal region during movement planning, which is correlated with the degree of learning and retention. Altogether, these results suggest that the formation of new motor memories and, thus, the switch from feedback to feedforward control is associated with the modulation of gamma and theta spectral activities, with respect to their amplitude and phase, during movement planning and execution. Specifically, we propose that gamma/theta phase coupling plays a pivotal role in the integration of a new representation into motor memories.
Collapse
|
37
|
Landsness EC, Ferrarelli F, Sarasso S, Goldstein MR, Riedner BA, Cirelli C, Perfetti B, Moisello C, Ghilardi MF, Tononi G. Electrophysiological traces of visuomotor learning and their renormalization after sleep. Clin Neurophysiol 2011; 122:2418-25. [PMID: 21652261 DOI: 10.1016/j.clinph.2011.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/16/2011] [Accepted: 05/04/2011] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Adapting movements to a visual rotation involves the activation of right posterior parietal areas. Further performance improvement requires an increase of slow wave activity in subsequent sleep in the same areas. Here we ascertained whether a post-learning trace is present in wake EEG and whether such a trace is influenced by sleep slow waves. METHODS In two separate sessions, we recorded high-density EEG in 17 healthy subjects before and after a visuomotor rotation task, which was performed both before and after sleep. High-density EEG was recorded also during sleep. One session aimed to suppress sleep slow waves, while the other session served as a control. RESULTS After learning, we found a trace in the eyes-open wake EEG as a local, parietal decrease in alpha power. After the control night, this trace returned to baseline levels, but it failed to do so after slow wave deprivation. The overnight change of the trace correlated with the dissipation of low frequency (<8 Hz) NREM sleep activity only in the control session. CONCLUSIONS Visuomotor learning leaves a trace in the wake EEG alpha power that appears to be renormalized by sleep slow waves. SIGNIFICANCE These findings link visuomotor learning to regional changes in wake EEG and sleep homeostasis.
Collapse
Affiliation(s)
- E C Landsness
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Parrino L, Ferri R, Bruni O, Terzano MG. Cyclic alternating pattern (CAP): the marker of sleep instability. Sleep Med Rev 2011; 16:27-45. [PMID: 21616693 DOI: 10.1016/j.smrv.2011.02.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 11/16/2022]
Abstract
Cyclic alternating pattern CAP is the EEG marker of unstable sleep, a concept which is poorly appreciated among the metrics of sleep physiology. Besides, duration, depth and continuity, sleep restorative properties depend on the capacity of the brain to create periods of sustained stable sleep. This issue is not confined only to the EEG activities but reverberates upon the ongoing autonomic activity and behavioral functions, which are mutually entrained in a synchronized oscillation. CAP can be identified both in adult and children sleep and therefore represents a sensitive tool for the investigation of sleep disorders across the lifespan. The present review illustrates the story of CAP in the last 25 years, the standardized scoring criteria, the basic physiological properties and how the dimension of sleep instability has provided new insight into pathophysiolology and management of sleep disorders.
Collapse
Affiliation(s)
- Liborio Parrino
- Sleep Disorders Center, Department of Neurosciences, University of Parma, Italy
| | | | | | | |
Collapse
|
39
|
Roatta S, Rolando M, Notaro V, Testa M, Bassi F, Passatore M. Objective assessment of mandibular motor control using a 'reach-and-hold' task. J Oral Rehabil 2011; 38:737-45. [PMID: 21517931 DOI: 10.1111/j.1365-2842.2011.02215.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mandibular motor function is well known to be impaired in the presence of temporomandibular disorders. However, while a vast literature is available concerning accuracy of motor control in limbs, quantitative and objective assessment of mandibular motor control has been seldom performed, also because of the lack of adequate investigative tools. Aim of this work is to present a technique for reliable evaluation of the motor performance of the mandible based on a kinesiography-monitored reach-and-hold task. Nineteen healthy subjects were engaged in a task in which they had to drive a cursor on a screen by corresponding movements of the mandible in the frontal plane and reach 30 random targets sequentially displayed on the screen. The whole task was repeated three times per session in two different days. The individual performance was assessed by different indices evaluating precision and steadiness of target matching. The performance progressively improved in the three trials of the first session, further improved and stabilised in the second session, with an average positioning error of 0·59 ± 038 mm and was slightly correlated with the horizontal dimension of the mandible border movement (r = 0·55). Intraclass correlation coefficient ranged between 0·76 and 0·94 for the different indices indicating good repeatability. The kinesiographic technique allowed for objective and reliable assessment of the voluntary control of the mandible position. Its potential applications include support to the characterisation of temporomandibular disorders and to motor training and progress monitoring in rehabilitation treatments.
Collapse
Affiliation(s)
- Silvestro Roatta
- Department of Neuroscience, University of Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Lesku JA, Vyssotski AL, Martinez-Gonzalez D, Wilzeck C, Rattenborg NC. Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds? Proc Biol Sci 2011; 278:2419-28. [PMID: 21208955 DOI: 10.1098/rspb.2010.2316] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.
Collapse
Affiliation(s)
- John A Lesku
- Sleep and Flight Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | | | | | | |
Collapse
|
41
|
Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J Neurosci 2010; 30:13211-9. [PMID: 20926647 DOI: 10.1523/jneurosci.2532-10.2010] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evidence that electroencephalography (EEG) slow-wave activity (SWA) (EEG spectral power in the 1-4.5 Hz band) during non-rapid eye movement sleep (NREM) reflects plastic changes is increasing (Tononi and Cirelli, 2006). Regional assessment of gray matter development from neuroimaging studies reveals a posteroanterior trajectory of cortical maturation in the first three decades of life (Shaw et al., 2008). Our aim was to test whether this regional cortical maturation is reflected in regional changes of sleep SWA. We evaluated all-night high-density EEG (128 channels) in 55 healthy human subjects (2.4-19.4 years) and assessed age-related changes in NREM sleep topography. As in adults, we observed frequency-specific topographical distributions of sleep EEG power in all subjects. However, from early childhood to late adolescence, the location on the scalp showing maximal SWA underwent a shift from posterior to anterior regions. This shift along the posteroanterior axis was only present in the SWA frequency range and remained stable across the night. Changes in the topography of SWA during sleep parallel neuroimaging study findings indicating cortical maturation starts early in posterior areas and spreads rostrally over the frontal cortex. Thus, SWA might reflect the underlying processes of cortical maturation. In the future, sleep SWA assessments may be used as a clinical tool to detect aberrations in cortical maturation.
Collapse
|
42
|
Sarasso S, Santhanam P, Määtta S, Poryazova R, Ferrarelli F, Tononi G, Small SL. Non-fluent aphasia and neural reorganization after speech therapy: insights from human sleep electrophysiology and functional magnetic resonance imaging. Arch Ital Biol 2010; 148:271-8. [PMID: 21175013 PMCID: PMC3058764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Stroke is associated with long-term functional deficits. Behavioral interventions are often effective in promoting functional recovery and plastic changes. Recent studies in normal subjects have shown that sleep, and particularly slow wave activity (SWA), is tied to local brain plasticity and may be used as a sensitive marker of local cortical reorganization after stroke. In a pilot study, we assessed the local changes induced by a single exposure to a therapeutic session of IMITATE (Intensive Mouth Imitation and Talking for Aphasia Therapeutic Effects), a behavioral therapy used for recovery in patients with post-stroke aphasia. In addition, we measured brain activity changes with functional magnetic resonance imaging (fMRI) in a language observation task before, during and after the full IMITATE rehabilitative program. Speech production improved both after a single exposure and the full therapy program as measured by the Western Aphasia Battery (WAB) Repetition subscale. We found that IMITATE induced reorganization in functionally-connected, speech-relevant areas in the left hemisphere. These preliminary results suggest that sleep hd-EEGs, and the topographical analysis of SWA parameters, are well suited to investigate brain plastic changes underpinning functional recovery in neurological disorders.
Collapse
Affiliation(s)
- S Sarasso
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning. J Neurosci 2010; 30:8332-41. [PMID: 20554884 DOI: 10.1523/jneurosci.5569-09.2010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Our capacity to learn movement sequences is fundamental to our ability to interact with the environment. Although different brain networks have been linked with different stages of learning, there is little evidence for how these networks change across learning. We used functional magnetic resonance imaging to identify the specific contributions of the cerebellum and primary motor cortex (M1) during early learning, consolidation, and retention of a motor sequence task. Performance was separated into two components: accuracy (the more explicit, rapidly learned, stimulus-response association component) and synchronization (the more procedural, slowly learned component). The network of brain regions active during early learning was dominated by the cerebellum, premotor cortex, basal ganglia, presupplementary motor area, and supplementary motor area as predicted by existing models. Across days of learning, as performance improved, global decreases were found in the majority of these regions. Importantly, within the context of these global decreases, we found specific regions of the left M1 and right cerebellar VIIIA/VIIB that were positively correlated with improvements in synchronization performance. Improvements in accuracy were correlated with increases in hippocampus, BA 9/10, and the putamen. Thus, the two behavioral measures, accuracy and synchrony, were found to be related to two different sets of brain regions-suggesting that these networks optimize different components of learning. In addition, M1 activity early on day 1 was shown to be predictive of the degree of consolidation on day 2. Finally, functional connectivity between M1 and cerebellum in late learning points to their interaction as a mechanism underlying the long-term representation and expression of a well learned skill.
Collapse
|