1
|
Jin Y, Zhao L, Zhang Y, Chen T, Shi H, Sun H, Ding S, Chen S, Cao H, Zhang G, Li Q, Gao J, Xiao M, Sheng C. BIN1 deficiency enhances ULK3-dependent autophagic flux and reduces dendritic size in mouse hippocampal neurons. Autophagy 2025; 21:223-242. [PMID: 39171951 DOI: 10.1080/15548627.2024.2393932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Genome-wide association studies identified variants around the BIN1 (bridging integrator 1) gene locus as prominent risk factors for late-onset Alzheimer disease. In the present study, we decreased the expression of BIN1 in mouse hippocampal neurons to investigate its neuronal function. Bin1 knockdown via RNAi reduced the dendritic arbor size in primary cultured hippocampal neurons as well as in mature Cornu Ammonis 1 excitatory neurons. The AAV-mediated Bin1 RNAi knockdown also generated a significant regional volume loss around the injection sites at the organ level, as revealed by 7-Tesla structural magnetic resonance imaging, and an impaired spatial reference memory performance in the Barnes maze test. Unexpectedly, Bin1 knockdown led to concurrent activation of both macroautophagy/autophagy and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Autophagy inhibition with the lysosome inhibitor chloroquine effectively mitigated the Bin1 knockdown-induced dendritic regression. The subsequent molecular studydemonstrated that increased expression of ULK3 (unc-51 like kinase 3), which is MTOR-insensitive, supported autophagosome formation in BIN1 deficiency. Reducing ULK3 activity with SU6668, a receptor tyrosine kinase inhibitor, or decreasing neuronal ULK3 expression through AAV-mediated RNAi, significantly attenuated Bin1 knockdown-induced hippocampal volume loss and spatial memory decline. In Alzheimer disease patients, the major neuronal isoform of BIN1 is specifically reduced. Our work suggests this reduction is probably an important molecular event that increases the autophagy level, which might subsequently promote brain atrophy and cognitive impairment through reducing dendritic structures, and ULK3 is a potential interventional target for relieving these detrimental effects.Abbreviations: AV: adeno-associated virus; Aβ: amyloid-β; ACTB: actin, beta; AD: Alzheimer disease; Aduk: Another Drosophila Unc-51-like kinase; AKT1: thymoma viral proto-oncogene 1; AMPK: AMP-activated protein kinase; AP: autophagosome; BafA1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BIN1: bridging integrator 1; BIN1-iso1: BIN1, isoform 1; CA1: cornu Ammonis 1; CA3: cornu Ammonis 3; CLAP: clathrin and adapter binding; CQ: chloroquine; DMEM: Dulbecco's modified Eagle medium; EGFP: enhanced green fluorescent protein; GWAS: genome-wide association study; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MRI: magnetic resonance imaging; MTOR; mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; PET: positron emission tomography; qRT-PCR: real-time quantitative reverse transcription PCR; ROS: reactive oxygen species; RPS6KB1: ribosomal protein S6 kinase B1; TFEB: transcription factor EB; ULK1: unc-51 like kinase 1; ULK3: unc-51 like kinase 3.
Collapse
Affiliation(s)
- Yuxi Jin
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lin Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yanli Zhang
- Department of Psychiatry, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Tingzhen Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huili Shi
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Huaiqing Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shixin Ding
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Sijia Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Haifeng Cao
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Guannan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chengyu Sheng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Meng R, Li Y, Yang X, Cheng Y, Xu M, Zhou L, Wu C, Yu S, Huang W, Wang T, Zhang Q. Polyphenol Mediated Assembly: Tailored Nano-Dredger Unblocks Axonal Autophagosomes Retrograde Transport Traffic Jam for Accelerated Alzheimer's Waste Clearance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413614. [PMID: 39686827 DOI: 10.1002/adma.202413614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Clear-cut evidence has linked defective autophagy to Alzheimer's disease (AD). Recent studies underscore a unique hurdle in AD neuronal autophagy: impaired retrograde axonal transport of autophagosomes, potent enough to induce autophagic stress and neurodegeneration. Nonetheless, pertinent therapy is unavailable. Here, a novel combinational therapy composed of siROCK2 and lithospermic acid B (LA) is introduced, tailored to dredge blocked axonal autophagy by multi-mitigating microtubule disruption, ATP depletion, oxidative stress, and autophagy initiation impediments in AD. Leveraging the recent discovery of multi-interactions between polyphenol LA and siRNA, ε-Poly-L-lysine, and anionic lipid nanovacuoles, LA and siROCK2 are successfully co-loaded into a fresh nano-drug delivery system, LIP@PL-LA/siRC, via a ratio-flexible and straightforward fabrication process. Further modification with the TPL peptide onto LIP@PL-LA/siRC creates a brain-neuron targeted, biocompatible, and pluripotent nanomedicine, named "Nano-dredger" (T-LIP@PL-LA/siRC). Nano-dredger efficiently accelerates axonal retrograde transport and lysosomal degradation of autophagosomes, thereby facilitating the clearance of neurotoxic proteins, improving neuronal complexity, and alleviating memory defects in 3×Tg-AD transgenic mice. This study provides a fresh and flexible polyphenol/siRNA co-delivery paradigm and furnishes conceptual proof that dredging axonal autophagy represents a promising AD therapeutic avenue.
Collapse
Affiliation(s)
- Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Xiyu Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yunlong Cheng
- Shanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, P. R. China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - LingLing Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chengqin Wu
- Guangzhou CSR Biotech Co. Ltd, Guangzhou, 510700, P. R. China
| | - Shuai Yu
- Guangzhou CSR Biotech Co. Ltd, Guangzhou, 510700, P. R. China
| | - Wenyi Huang
- Guangzhou CSR Biotech Co. Ltd, Guangzhou, 510700, P. R. China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
3
|
Singh M, Ali H, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Siva Prasad GV, Pramanik A, Hassan Almalki W, Imran M. Tau proteins and senescent Cells: Targeting aging pathways in Alzheimer's disease. Brain Res 2024; 1844:149165. [PMID: 39155034 DOI: 10.1016/j.brainres.2024.149165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by abnormal accumulation of tau proteins and amyloid-β, leading to neuronal death and cognitive impairment. Recent studies have implicated aging pathways, including dysregulation of tau and cellular senescence in AD pathogenesis. In AD brains, tau protein, which normally stabilizes microtubules, becomes hyperphosphorylated and forms insoluble neurofibrillary tangles. These tau aggregates impair neuronal function and are propagated across the brain's neurocircuitry. Meanwhile, the number of senescent cells accumulating in the aging brain is rising, releasing a pro-inflammatory SASP responsible for neuroinflammation and neurodegeneration. This review explores potential therapeutic interventions for AD targeting tau protein and senescent cells, and tau -directed compounds, senolytics, eliminating senescent cells, and agents that modulate the SASP-senomodulators. Ultimately, a combined approach that incorporates tau-directed medications and targeted senescent cell-based therapies holds promise for reducing the harmful impact of AD's shared aging pathways.
Collapse
Affiliation(s)
- Mahaveer Singh
- School of Pharmacy and Technology Management, SVKMs NMIMS University, Shirpur campus, Maharastra India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
4
|
Davri AS, Katsenos AP, Tulyaganova GK, Tzavellas NP, Simos YV, Kanellos FS, Konitsiotis S, Dounousi E, Niaka K, Bellou S, Lekkas P, Bekiari C, Batistatou A, Peschos D, Tsamis KI. The SGLT2 inhibitor empagliflozin exerts neuroprotective effect against hydrogen peroxide-induced toxicity on primary neurons. Metab Brain Dis 2024; 40:15. [PMID: 39560812 DOI: 10.1007/s11011-024-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 11/20/2024]
Abstract
Oxidative stress has been implicated in several chronic pathological conditions, leading to cell death and injury. Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) have several overlapping mechanisms as they are both characterized by increased oxidative stress, inflammation, insulin resistance, and autophagy dysfunction. The objective of this study was to elucidate the possible neuroprotective effect of empagliflozin, a sodium-glucose co-transporter 2 inhibitor (SGLT2i), against hydrogen peroxide-induced neurotoxicity in primary hippocampal neurons derived from wild-type (WT) and transgenic AD rats (TgF344-AD). An in vitro oxidative stress model was established using hydrogen peroxide to induce damage to neurons. Empagliflozin pretreatment was tested on this model initially through a cell viability assay. Flow cytometry and cell sorting were employed to discriminate the apoptotic and necrotic neuronal cell populations. Finally, the morphological and morphometric features of the neurons, including dendritic length and spine density, were evaluated using the SNT ImageJ plug-in following immunostaining with GFP. Sholl analysis was used to evaluate the impact of empagliflozin and hydrogen peroxide on dendritic arborization. Empagliflozin tended to ameliorate hydrogen peroxide-induced toxicity in primary neurons derived from WT rats and led to the preservation of dendritic spine density in both WT and TgF344-AD neurons (one-way ANOVA, p < 0.05). A modest improvement in dendrites' length was also observed. Empagliflozin pretreatment can partially mitigate dendritic and spine alterations induced by hydrogen peroxide in primary neurons. These results underscore the impact of empagliflozin on neuronal morphology and highlight its potential as a candidate for the treatment and/or prevention of AD.
Collapse
Affiliation(s)
- Athena S Davri
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Andreas P Katsenos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Guzal K Tulyaganova
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Nikolaos P Tzavellas
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Yannis V Simos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Foivos S Kanellos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, Ioannina, 45110, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, Dialysis Center, University of Ιoannina, Nephroxenia Ioannina, Ioannina, 45110, Greece
| | - Konstantina Niaka
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, Ioannina, 45110, Greece
| | - Sofia Bellou
- Biomedical Research Institute, University of Ioannina Network of Research Supporting Laboratories (NRSL) Confocal Laser Scanning Microscopy Unit and Foundation for Research & Technology-Hellas, University Campus, Ioannina, 45110, Greece
| | - Panagiotis Lekkas
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Chryssa Bekiari
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anna Batistatou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Konstantinos I Tsamis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece.
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece.
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, Ioannina, 45110, Greece.
| |
Collapse
|
5
|
Prange SE, Bhakta IN, Sysoeva D, Jean GE, Madisetti A, Le HHN, Duong LU, Hwu PT, Melton JG, Thompson-Peer KL. Dendrite injury triggers neuroprotection in Drosophila models of neurodegenerative disease. Sci Rep 2024; 14:24766. [PMID: 39433621 PMCID: PMC11494097 DOI: 10.1038/s41598-024-74670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Dendrite defects and loss are early cellular alterations observed across neurodegenerative diseases that play a role in early disease pathogenesis. Dendrite degeneration can be modeled by expressing pathogenic polyglutamine disease transgenes in Drosophila neurons in vivo. Here, we show that we can protect against dendrite loss in neurons modeling neurodegenerative polyglutamine diseases through injury to a single primary dendrite branch. We find that this neuroprotection is specific to injury-induced activation of dendrite regeneration: neither injury to the axon nor injury just to surrounding tissues induces this response. We show that the mechanism of this regenerative response is stabilization of the actin (but not microtubule) cytoskeleton. We also demonstrate that this regenerative response may extend to other neurodegenerative diseases. Together, we provide evidence that activating dendrite regeneration pathways has the potential to slow-or even reverse-dendrite loss in neurodegenerative disease.
Collapse
Affiliation(s)
- Sydney E Prange
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, Irvine, CA, USA
| | - Isha N Bhakta
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Daria Sysoeva
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Grace E Jean
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Anjali Madisetti
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Hieu H N Le
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Ly U Duong
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Patrick T Hwu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Jaela G Melton
- Center for the Neurobiology of Learning and Memory, Irvine, CA, USA
| | - Katherine L Thompson-Peer
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, Irvine, CA, USA.
- Reeve-Irvine Research Center, Irvine, CA, USA.
| |
Collapse
|
6
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
7
|
Kim BH, Seo SW, Park YH, Kim J, Kim HJ, Jang H, Yun J, Kim M, Kim JP. Clinical application of sparse canonical correlation analysis to detect genetic associations with cortical thickness in Alzheimer's disease. Front Neurosci 2024; 18:1428900. [PMID: 39381682 PMCID: PMC11458562 DOI: 10.3389/fnins.2024.1428900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cerebral cortex atrophy. In this study, we used sparse canonical correlation analysis (SCCA) to identify associations between single nucleotide polymorphisms (SNPs) and cortical thickness in the Korean population. We also investigated the role of the SNPs in neurological outcomes, including neurodegeneration and cognitive dysfunction. Methods We recruited 1125 Korean participants who underwent neuropsychological testing, brain magnetic resonance imaging, positron emission tomography, and microarray genotyping. We performed group-wise SCCA in Aβ negative (-) and Aβ positive (+) groups. In addition, we performed mediation, expression quantitative trait loci, and pathway analyses to determine the functional role of the SNPs. Results We identified SNPs related to cortical thickness using SCCA in Aβ negative and positive groups and identified SNPs that improve the prediction performance of cognitive impairments. Among them, rs9270580 was associated with cortical thickness by mediating Aβ uptake, and three SNPs (rs2271920, rs6859, rs9270580) were associated with the regulation of CHRNA2, NECTIN2, and HLA genes. Conclusion Our findings suggest that SNPs potentially contribute to cortical thickness in AD, which in turn leads to worse clinical outcomes. Our findings contribute to the understanding of the genetic architecture underlying cortical atrophy and its relationship with AD.
Collapse
Affiliation(s)
- Bo-Hyun Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Yu Hyun Park
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - JiHyun Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyemin Jang
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jihwan Yun
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Mansu Kim
- Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jun Pyo Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Enduru N, Fernandes BS, Zhao Z. Dissecting the shared genetic architecture between Alzheimer's disease and frailty: a cross-trait meta-analyses of genome-wide association studies. Front Genet 2024; 15:1376050. [PMID: 38706793 PMCID: PMC11069310 DOI: 10.3389/fgene.2024.1376050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: Frailty is the most common medical condition affecting the aging population, and its prevalence increases in the population aged 65 or more. Frailty is commonly diagnosed using the frailty index (FI) or frailty phenotype (FP) assessments. Observational studies have indicated the association of frailty with Alzheimer's disease (AD). However, the shared genetic and biological mechanism of these comorbidity has not been studied. Methods: To assess the genetic relationship between AD and frailty, we examined it at single nucleotide polymorphism (SNP), gene, and pathway levels. Results: Overall, 16 genome-wide significant loci (15 unique loci) (p meta-analysis < 5 × 10-8) and 22 genes (21 unique genes) were identified between AD and frailty using cross-trait meta-analysis. The 8 shared loci implicated 11 genes: CLRN1-AS1, CRHR1, FERMT2, GRK4, LINC01929, LRFN2, MADD, RP11-368P15.1, RP11-166N6.2, RNA5SP459, and ZNF652 between AD and FI, and 8 shared loci between AD and FFS implicated 11 genes: AFF3, C1QTNF4, CLEC16A, FAM180B, FBXL19, GRK4, LINC01104, MAD1L1, RGS12, ZDHHC5, and ZNF521. The loci 4p16.3 (GRK4) was identified in both meta-analyses. The colocalization analysis supported the results of our meta-analysis in these loci. The gene-based analysis revealed 80 genes between AD and frailty, and 4 genes were initially identified in our meta-analyses: C1QTNF4, CRHR1, MAD1L1, and RGS12. The pathway analysis showed enrichment for lipoprotein particle plasma, amyloid fibril formation, protein kinase regulator, and tau protein binding. Conclusion: Overall, our results provide new insights into the genetics of AD and frailty, suggesting the existence of non-causal shared genetic mechanisms between these conditions.
Collapse
Affiliation(s)
- Nitesh Enduru
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Brisa S. Fernandes
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
9
|
Rogers BB, Anderson AG, Lauzon SN, Davis MN, Hauser RM, Roberts SC, Rodriguez-Nunez I, Trausch-Lowther K, Barinaga EA, Hall PI, Knuesel MT, Taylor JW, Mackiewicz M, Roberts BS, Cooper SJ, Rizzardi LF, Myers RM, Cochran JN. Neuronal MAPT expression is mediated by long-range interactions with cis-regulatory elements. Am J Hum Genet 2024; 111:259-279. [PMID: 38232730 PMCID: PMC10870142 DOI: 10.1016/j.ajhg.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Tauopathies are a group of neurodegenerative diseases defined by abnormal aggregates of tau, a microtubule-associated protein encoded by MAPT. MAPT expression is near absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression could be controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding disease risk and pathogenesis. Here, we performed chromatin conformation assays (HiC & Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27ac and CTCF in NPCs and differentiated neurons to nominate candidate cis-regulatory elements (cCREs). We assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in neurodegeneration-affected individuals and control subjects. We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the H1/H2 haplotype inversion breakpoint. We also found that rare and predicted damaging genetic variation in nominated CREs was nominally depleted in dementia-affected individuals relative to control subjects, consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduced MAPT expression, may be protective against neurodegenerative disease. Overall, this study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.
Collapse
Affiliation(s)
- Brianne B Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Shelby N Lauzon
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - M Natalie Davis
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Rebecca M Hauser
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Sydney C Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | - Erin A Barinaga
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Paige I Hall
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Jared W Taylor
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Brian S Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| | | |
Collapse
|
10
|
Bermejo-Pareja F, del Ser T. Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. J Clin Med 2024; 13:536. [PMID: 38256670 PMCID: PMC10816332 DOI: 10.3390/jcm13020536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Background: The concept of Alzheimer disease (AD)-since its histological discovery by Alzheimer to the present day-has undergone substantial modifications. Methods: We conducted a classical narrative review of this field with a bibliography selection (giving preference to Medline best match). Results: The following subjects are reviewed and discussed: Alzheimer's discovery, Kraepelin's creation of a new disease that was a rare condition until the 1970's, the growing interest and investment in AD as a major killer in a society with a large elderly population in the second half of the 20th century, the consolidation of the AD clinicopathological model, and the modern AD nosology based on the dominant amyloid hypothesis among many others. In the 21st century, the development of AD biomarkers has supported a novel biological definition of AD, although the proposed therapies have failed to cure this disease. The incidence of dementia/AD has shown a decrease in affluent countries (possibly due to control of risk factors), and mixed dementia has been established as the most frequent etiology in the oldest old. Conclusions: The current concept of AD lacks unanimity. Many hypotheses attempt to explain its complex physiopathology entwined with aging, and the dominant amyloid cascade has yielded poor therapeutic results. The reduction in the incidence of dementia/AD appears promising but it should be confirmed in the future. A reevaluation of the AD concept is also necessary.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- CIBERNED, Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| |
Collapse
|
11
|
Nagori K, Pradhan M, Sharma M, Ajazuddin, Badwaik HR, Nakhate KT. Current Progress on Central Cholinergic Receptors as Therapeutic Targets for Alzheimer's Disease. Curr Alzheimer Res 2024; 21:50-68. [PMID: 38529600 DOI: 10.2174/0115672050306008240321034006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Acetylcholine (ACh) is ubiquitously present in the nervous system and has been involved in the regulation of various brain functions. By modulating synaptic transmission and promoting synaptic plasticity, particularly in the hippocampus and cortex, ACh plays a pivotal role in the regulation of learning and memory. These procognitive actions of ACh are mediated by the neuronal muscarinic and nicotinic cholinergic receptors. The impairment of cholinergic transmission leads to cognitive decline associated with aging and dementia. Therefore, the cholinergic system has been of prime focus when concerned with Alzheimer's disease (AD), the most common cause of dementia. In AD, the extensive destruction of cholinergic neurons occurs by amyloid-β plaques and tau protein-rich neurofibrillary tangles. Amyloid-β also blocks cholinergic receptors and obstructs neuronal signaling. This makes the central cholinergic system an important target for the development of drugs for AD. In fact, centrally acting cholinesterase inhibitors like donepezil and rivastigmine are approved for the treatment of AD, although the outcome is not satisfactory. Therefore, identification of specific subtypes of cholinergic receptors involved in the pathogenesis of AD is essential to develop future drugs. Also, the identification of endogenous rescue mechanisms to the cholinergic system can pave the way for new drug development. In this article, we discussed the neuroanatomy of the central cholinergic system. Further, various subtypes of muscarinic and nicotinic receptors involved in the cognition and pathophysiology of AD are described in detail. The article also reviewed primary neurotransmitters that regulate cognitive processes by modulating basal forebrain cholinergic projection neurons.
Collapse
Affiliation(s)
- Kushagra Nagori
- Department of Pharmaceutical Chemistry, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Madhulika Pradhan
- Department of Pharmaceutical Technology, Gracious College of Pharmacy, Abhanpur 493661, Chhattisgarh, India
| | - Mukesh Sharma
- Department of Pharmacognosy, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Hemant R Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| |
Collapse
|
12
|
Wang D, Zheng J, Sun X, Xie L, Yang Y. Study on the Pharmacological Mechanism of Icariin for the Treatment of Alzheimer's Disease Based on Network Pharmacology and Molecular Docking Techniques. Metabolites 2023; 14:1. [PMID: 38276291 PMCID: PMC10820555 DOI: 10.3390/metabo14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The purpose of this study is to explore the pharmacological mechanism of icariin (ICA) in the treatment of Alzheimer's disease (AD) based on network pharmacology and network molecular docking technology. In order to investigate the regulatory effect of ICA on the expression level of AD pathological phosphorylation regulatory proteins, this study further explored the possible molecular mechanism of ICA regulating AD autophagy through network pharmacology. Macromolecular docking network was verified by Autodock Vina 1.1.2 software. The main active ingredients of ICA, the physicochemical properties, and pharmacokinetic information of ICA were predicted using online databases and relevant information. The results showed that the targets of MAPK3, AKT1, HSP90AA1, ESR1, and HSP90AA1 were more critical in the treatment of AD. Autophagy, apoptosis, senescence factors, phosphatidylinositide 3-kinase/protein kinase B (P13K/AKT) signaling pathway, MAKP, mTOR, and other pathways were significantly associated with AD. Docking of ICA with HIF-1, BNIP3, PINK1, and Parkin pathway molecules showed that the key targets of the signaling pathway were more stably bound to ICA, which may provide a better pathway for ICA to regulate autophagy by providing a better pathway. ICA can improve AD, and its mechanism may be related to the P13K/AKT, MAKP, and mTOR signaling pathways, thereby regulating autophagy-related proteins.
Collapse
Affiliation(s)
- Dongwei Wang
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang 110854, China; (D.W.); (J.Z.); (X.S.); (L.X.)
| | - Jilong Zheng
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang 110854, China; (D.W.); (J.Z.); (X.S.); (L.X.)
| | - Xingsheng Sun
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang 110854, China; (D.W.); (J.Z.); (X.S.); (L.X.)
| | - Liuwei Xie
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang 110854, China; (D.W.); (J.Z.); (X.S.); (L.X.)
- The Second Affiliated Hospital of Shenyang Medical College, Shenyang 110031, China
| | - Yang Yang
- The Second Affiliated Hospital of Shenyang Medical College, Shenyang 110031, China
| |
Collapse
|
13
|
Maiuolo J, Costanzo P, Masullo M, D’Errico A, Nasso R, Bonacci S, Mollace V, Oliverio M, Arcone R. Hydroxytyrosol-Donepezil Hybrids Play a Protective Role in an In Vitro Induced Alzheimer's Disease Model and in Neuronal Differentiated Human SH-SY5Y Neuroblastoma Cells. Int J Mol Sci 2023; 24:13461. [PMID: 37686262 PMCID: PMC10488223 DOI: 10.3390/ijms241713461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative pathology among progressive dementias, and it is characterized by the accumulation in the brain of extracellular aggregates of beta-amyloid proteins and neurofibrillary intracellular tangles consisting of τ-hyperphosphorylated proteins. Under normal conditions, beta-amyloid peptides exert important trophic and antioxidant roles, while their massive presence leads to a cascade of events culminating in the onset of AD. The fibrils of beta-amyloid proteins are formed by the process of fibrillogenesis that, starting from individual monomers of beta-amyloid, can generate polymers of this protein, constituting the hypothesis of the "amyloid cascade". To date, due to the lack of pharmacological treatment for AD without toxic side effects, chemical research is directed towards the realization of hybrid compounds that can act as an adjuvant in the treatment of this neurodegenerative pathology. The hybrid compounds used in this work include moieties of a hydroxytyrosol, a nitrohydroxytyrosol, a tyrosol, and a homovanillyl alcohol bound to the N-benzylpiperidine moiety of donepezil, the main drug used in AD. Previous experiments have shown different properties of these hybrids, including low toxicity and antioxidant and chelating activities. The purpose of this work was to test the effects of hybrid compounds mixed with Aβ1-40 to induce fibrillogenesis and mimic AD pathogenesis. This condition has been studied both in test tubes and by an in vitro model of neuronal differentiated human SH-SY5Y neuroblastoma cells. The results obtained from test tube experiments showed that some hybrids inhibit the activity of the enzymes AChE, BuChE, and BACE-1. Cell experiments suggested that hybrids could inhibit fibrillogenesis, negatively modulating caspase-3. They were also shown to exert antioxidant effects, and the acetylated hybrids were found to be more functional and efficient than nonacetylated forms.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Græcia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Mariorosario Masullo
- Department of Movement Science and Well-Being, University “Parthenope” of Naples, Via Medina, 40, 80133 Napoli, Italy; (M.M.); (R.A.)
| | - Antonio D’Errico
- Department of Movement Science and Well-Being, University “Parthenope” of Naples, Via Medina, 40, 80133 Napoli, Italy; (M.M.); (R.A.)
| | - Rosarita Nasso
- Department of Movement Science and Well-Being, University “Parthenope” of Naples, Via Medina, 40, 80133 Napoli, Italy; (M.M.); (R.A.)
| | - Sonia Bonacci
- Department of Health Sciences, University Magna Græcia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy (M.O.)
| | - Vincenzo Mollace
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Græcia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Manuela Oliverio
- Department of Health Sciences, University Magna Græcia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy (M.O.)
| | - Rosaria Arcone
- Department of Movement Science and Well-Being, University “Parthenope” of Naples, Via Medina, 40, 80133 Napoli, Italy; (M.M.); (R.A.)
| |
Collapse
|
14
|
Rogers BB, Anderson AG, Lauzon SN, Davis MN, Hauser RM, Roberts SC, Rodriguez-Nunez I, Trausch-Lowther K, Barinaga EA, Taylor JW, Mackiewicz M, Roberts BS, Cooper SJ, Rizzardi LF, Myers RM, Cochran JN. MAPT expression is mediated by long-range interactions with cis-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531520. [PMID: 37090552 PMCID: PMC10120716 DOI: 10.1101/2023.03.07.531520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Tauopathies are a group of neurodegenerative diseases driven by abnormal aggregates of tau, a microtubule associated protein encoded by the MAPT gene. MAPT expression is absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression is controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding genetic risk factors. Methods We performed HiC, chromatin conformation capture (Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27Ac and CTCF in NPCs and neurons differentiated from human iPSC cultures. We nominated candidate cis-regulatory elements (cCREs) for MAPT in human NPCs, differentiated neurons, and pure cultures of inhibitory and excitatory neurons. We then assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in AD cases and controls. Results Using orthogonal genomics approaches, we nominated 94 cCREs for MAPT, including the identification of cCREs specifically active in differentiated neurons. Eleven regions enhanced reporter gene transcription in luciferase assays. Using CRISPRi, 5 of the 94 regions tested were identified as necessary for MAPT expression as measured by RT-qPCR and RNA-seq. Rare and predicted damaging genetic variation in both nominated and confirmed CREs was depleted in AD cases relative to controls (OR = 0.40, p = 0.004), consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduce MAPT expression, may be protective against neurodegenerative disease. Conclusions We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the well-described H1/H2 haplotype inversion breakpoint. This study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.
Collapse
Affiliation(s)
- Brianne B. Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | - Jared W. Taylor
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Sara J. Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | | |
Collapse
|
15
|
Ramírez-Hernández E, Sánchez-Maldonado C, Patricio-Martínez A, Limón ID. Amyloid-β (25-35) induces the morphological alteration of dendritic spines and decreases NR2B and PSD-95 expression in the hippocampus. Neurosci Lett 2023; 795:137030. [PMID: 36572143 DOI: 10.1016/j.neulet.2022.137030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Research on the memory impairment caused by the Amyloid-β 25-35 (Aβ25-35) peptide in animal models has provided an understanding of the causes that occurs in Alzheimer's disease. However, it is uncertain whether this cognitive impairment occurs due to disruption of information encoding and consolidation or impaired retrieval of stored memory. The aim of this study was to determine the effect of the Aβ25-35 peptide on the morphology of dendritic spines and the changes in the expression of NR2B and PSD-95 in the hippocampus associated with learning and memory deficit. Vehicle or Aβ25-35 peptide (0.1 µg/µL) was bilaterally administered into the CA1 subfield of the rat hippocampus, then tested for spatial learning and memory in the Morris Water Maze. On Day 39, the morphological changes in the CA1 of the hippocampus and dentate gyrus were examined via Golgi-Cox stain. It was observed that the Aβ25-35 peptide administered in the CA1 region of the rat hippocampus induced changes to the morphology of dendritic spines and the expression of the NR2B subunit of the NMDA receptor co-localized with both the spatial memory and PSD-95 protein in the hippocampus of learning rats. We conclude that, in soluble form, the Aβ25-35 peptide perturbs synaptic plasticity, specifically in the formation of new synapses, thus promoting the progression of memory impairment.
Collapse
Affiliation(s)
- Eleazar Ramírez-Hernández
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Claudia Sánchez-Maldonado
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico; Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhiucamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico.
| |
Collapse
|
16
|
Cai HY, Hou SJ, Wen R, Feng QF, Xi YJ, Zhang SX, Qiao J, Wu MN. Causal Association Between mTOR-Dependent Protein Levels and Alzheimer's Disease: A Mendelian Randomization Study. J Alzheimers Dis 2023; 94:1477-1485. [PMID: 37393500 DOI: 10.3233/jad-230128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Most previous studies supported that the mammalian target of rapamycin (mTOR) is over-activated in Alzheimer's disease (AD) and exacerbates the development of AD. It is unclear whether the causal associations between the mTOR signaling-related protein and the risk for AD exist. OBJECTIVE This study aims to investigate the causal effects of the mTOR signaling targets on AD. METHODS We explored whether the risk of AD varied with genetically predicted AKT, RP-S6K, EIF4E-BP, eIF4E, eIF4A, and eIF4G circulating levels using a two-sample Mendelian randomization analysis. The summary data for targets of the mTOR signaling were acquired from published genome-wide association studies for the INTERVAL study. Genetic associations with AD were retrieved from the International Genomics of Alzheimer's Project. We utilized the inverse variance weighted as the primary approach to calculate the effect estimates. RESULTS The elevated levels of AKT (OR = 0.910, 95% CI=0.840-0.986, p = 0.02) and RP-S6K (OR = 0.910, 95% CI=0.840-0.986, p = 0.02) may decrease the AD risk. In contrast, the elevated eIF4E levels (OR = 1.805, 95% CI=1.002-1.174, p = 0.045) may genetically increase the AD risk. No statistical significance was identified for levels of EIF4-BP, eIF4A, and eIF4G with AD risk (p > 0.05). CONCLUSION There was a causal relationship between the mTOR signaling and the risk for AD. Activating AKT and RP-S6K, or inhibiting eIF4E may be potentially beneficial to the prevention and treatment of AD.
Collapse
Affiliation(s)
- Hong-Yan Cai
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Si-Jia Hou
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Rui Wen
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qi-Fan Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yu-Jia Xi
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
| | - Jun Qiao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
| | - Mei-Na Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| |
Collapse
|
17
|
Kan B, Dong Z, Tang Z, Zhao L, Li Z. Acupuncture Improves Synaptic Plasticity of SAMP8 Mice through the RhoA/ROCK Pathway. Curr Alzheimer Res 2023; 20:420-430. [PMID: 37723951 DOI: 10.2174/1567205020666230828095826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Studies have found synaptic plasticity damage to be an early marker of Alzheimer's disease (AD). RhoA/ROCK pathway is involved in the regulation of synaptic plasticity. Acupuncture can significantly improve the cognitive state of AD. OBJECTIVE We aimed to use modern biological technology to detect the changes in synaptic plasticity and RhoA/ROCK pathway in SAMP8 mice, as well as the intervention effect of acupuncture. METHODS Morris water maze and electrophysiological techniques were used in vivo to detect the changes in spatial memory and LTP of mice. Golgi Cox staining and CASEVIEWER2.1 software were used to quantitatively analyze the changes in the morphology and number of dendritic spines in the hippocampus of mice. The activity of RhoA and ROCK2 in the hippocampus of mice was detected, respectively, by pull-down technique and ELISA. WB technique was used to detect the protein expression of ROCK2 and phosphorylation level of MLC2, LIMK2, and CRMP2 in the hippocampus of mice. RESULTS The neurobehavior and synaptic plasticity of 8-month-old SAMP8 mice were found to be significantly impaired. Acupuncture could improve the spatial learning and memory ability of SAMP8 mice, and partially prevent the reduction in the number of spines on the secondary branches of the apical dendrites in the hippocampus and the attenuation of LTP. The RhoA/ROCK pathway was significantly activated in the hippocampus of 8-month-old SAMP8 mice, and acupuncture had an inhibitory effect on it. CONCLUSION Acupuncture can improve synaptic plasticity by inhibiting the abnormal activation of the RhoA/ROCK pathway, and improve the spatial learning and memory ability of AD, so as to achieve the purpose of treating AD.
Collapse
Affiliation(s)
- Bohong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhengjia Dong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhenyu Tang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Zhen Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
18
|
Rowland C, Smith JH, Moslehi S, Harland B, Dalrymple-Alford J, Taylor RP. Neuron arbor geometry is sensitive to the limited-range fractal properties of their dendrites. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1072815. [PMID: 36926542 PMCID: PMC10013056 DOI: 10.3389/fnetp.2023.1072815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
Fractal geometry is a well-known model for capturing the multi-scaled complexity of many natural objects. By analyzing three-dimensional images of pyramidal neurons in the rat hippocampus CA1 region, we examine how the individual dendrites within the neuron arbor relate to the fractal properties of the arbor as a whole. We find that the dendrites reveal unexpectedly mild fractal characteristics quantified by a low fractal dimension. This is confirmed by comparing two fractal methods-a traditional "coastline" method and a novel method that examines the dendrites' tortuosity across multiple scales. This comparison also allows the dendrites' fractal geometry to be related to more traditional measures of their complexity. In contrast, the arbor's fractal characteristics are quantified by a much higher fractal dimension. Employing distorted neuron models that modify the dendritic patterns, deviations from natural dendrite behavior are found to induce large systematic changes in the arbor's structure and its connectivity within a neural network. We discuss how this sensitivity to dendrite fractality impacts neuron functionality in terms of balancing neuron connectivity with its operating costs. We also consider implications for applications focusing on deviations from natural behavior, including pathological conditions and investigations of neuron interactions with artificial surfaces in human implants.
Collapse
Affiliation(s)
- Conor Rowland
- Physics Department, University of Oregon, Eugene, OR, United States
| | - Julian H Smith
- Physics Department, University of Oregon, Eugene, OR, United States
| | - Saba Moslehi
- Physics Department, University of Oregon, Eugene, OR, United States
| | - Bruce Harland
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - John Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.,New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Richard P Taylor
- Physics Department, University of Oregon, Eugene, OR, United States
| |
Collapse
|
19
|
Hogestyn JM, Salois G, Xie L, Apa C, Youngyunpipatkul J, Pröschel C, Mayer-Pröschel M. Expression of the human herpesvirus 6A latency-associated transcript U94A impairs cytoskeletal functions in human neural cells. Mol Cell Neurosci 2022; 123:103770. [PMID: 36055520 PMCID: PMC10124163 DOI: 10.1016/j.mcn.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022] Open
Abstract
Many neurodegenerative diseases have a multifactorial etiology and variable course of progression that cannot be explained by current models. Neurotropic viruses have long been suggested to play a role in these diseases, although their exact contributions remain unclear. Human herpesvirus 6A (HHV-6A) is one of the most common viruses detected in the adult brain, and has been clinically associated with multiple sclerosis (MS), and, more recently, Alzheimer's disease (AD). HHV-6A is a ubiquitous viral pathogen capable of infecting glia and neurons. Primary infection in childhood is followed by the induction of latency, characterized by expression of the U94A viral transcript in the absence of viral replication. Here we examine the effects of U94A on cells of the central nervous system. We found that U94A expression inhibits the migration and impairs cytoplasmic maturation of human oligodendrocyte precursor cells (OPCs) without affecting their viability, a phenotype that may contribute to the failure of remyelination seen in many patients with MS. A subsequent proteomics analysis of U94A expression OPCs revealed altered expression of genes involved in tubulin associated cytoskeletal regulation. As HHV-6A seems to significantly be associated with early AD pathology, we extended our initially analysis of the impact of U94A on human derived neurons. We found that U94A expression inhibits neurite outgrowth of primary human cortical neurons and impairs synapse maturation. Based on these data we suggest that U94A expression by latent HHV-6A in glial cells and neurons renders them susceptible to dysfunction and degeneration. Therefore, latent viral infections of the brain represent a unique pathological risk factor that may contribute to disease processes.
Collapse
Affiliation(s)
- Jessica M Hogestyn
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Garrick Salois
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Li Xie
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Connor Apa
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Justin Youngyunpipatkul
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA,.
| |
Collapse
|
20
|
August I, Semendeferi K, Marchetto MC. Brain aging, Alzheimer's disease, and the role of stem cells in primate comparative studies. J Comp Neurol 2022; 530:2940-2953. [PMID: 35929189 DOI: 10.1002/cne.25394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is ultimately fatal. Currently, millions of Americans are living with AD, and this number is predicted to grow with increases in the aging population. Interestingly, despite the prevalence of AD in human populations, the full AD phenotype has not been observed in any nonhuman primate (NHP) species, and it has been suggested that NHPs are immune to neurodegenerative diseases such as AD. Here, we review the typical age-related changes and pathologies in humans along with the neuropathologic changes associated with AD, and we place this information in the context of the comparative neuropathology of NHPs. We further propose the use of induced pluripotent stem cell technology as a way of addressing initial molecular processes and changes that occur in neurons and glia (in both humans and NHPs) when exposed to AD-inducing pathology prior to cell death.
Collapse
Affiliation(s)
- Isabel August
- Department of Anthropology, University of California, San Diego, San Diego, California, USA
| | - Katerina Semendeferi
- Department of Anthropology, University of California, San Diego, San Diego, California, USA.,Center for Academic Research and Training in Anthropogeny (CARTA), San Diego, California, USA
| | - Maria Carolina Marchetto
- Department of Anthropology, University of California, San Diego, San Diego, California, USA.,Center for Academic Research and Training in Anthropogeny (CARTA), San Diego, California, USA
| |
Collapse
|
21
|
A single-molecule with multiple investigations: Synthesis, characterization, computational methods, inhibitory activity against Alzheimer's disease, toxicity, and ADME studies. Comput Biol Med 2022; 146:105514. [DOI: 10.1016/j.compbiomed.2022.105514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 04/09/2022] [Indexed: 01/18/2023]
|
22
|
Lapresa R, Agulla J, Gonzalez-Guerrero S, Bolaños JP, Almeida A. Amyloid-β Induces Cdh1-Mediated Rock2 Stabilization Causing Neurodegeneration. Front Pharmacol 2022; 13:884470. [PMID: 35496276 PMCID: PMC9047900 DOI: 10.3389/fphar.2022.884470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, which is causally related to the accumulation of abnormally folded amyloid-β (Aβ) peptide and hyperphosphorylated tau protein aggregates. The dendritic spine regulator Rho protein kinase 2 (Rock2) accumulates in the brain at the earliest stages of AD and remains increased during disease progression. However, the molecular mechanism that upregulates Rock2 in AD, and its role in the disease progression, are unknown. Here, we found that oligomers of the amyloidogenic fragment 25–35 of the Aβ peptide (Aβ25-35) trigger Rock2 accumulation and activation in mouse cortical neurons in primary culture and in mouse hippocampus in vivo. Neuronal apoptotic death and memory impairment caused by Aβ25-35 administration were rescued by genetic and pharmacological inhibition of Rock2 activity. Mechanistically, Aβ25-35 elicited cyclin dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1, a cofactor that is essential for the activity of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) in neurons. Notably, phosphorylated Cdh1 was disassembled from the APC/C complex, causing its inactivation and subsequent Rock2 protein stabilization and activation. Moreover, Aβ25-35-induced neuronal apoptosis was prevented by expressing a phosphodefective form of Cdh1, but not by a phosphomimetic Cdh1. Finally, Cdh1 inactivation, using both genetic and pharmacological approaches, enhanced Aβ25-35-mediated neuronal death through a mechanism that was prevented by inhibition of Rock2 activity. These results indicate that the Cdk5-Cdh1 signaling pathway accounts for the increased Rock2 activity by amyloidogenic Aβ peptides and that this mechanism may contribute to neurodegeneration and memory loss in AD.
Collapse
Affiliation(s)
- Rebeca Lapresa
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Jesus Agulla
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Sonia Gonzalez-Guerrero
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
- *Correspondence: Angeles Almeida,
| |
Collapse
|
23
|
Taniguchi K, Yamamoto F, Amamo A, Tamaoka A, Sanjo N, Yokota T, Kametani F, Araki W. Amyloid-β oligomers interact with NMDA receptors containing GluN2B subunits and metabotropic glutamate receptor 1 in primary cortical neurons: relevance to the synapse pathology of Alzheimer’s disease. Neurosci Res 2022; 180:90-98. [DOI: 10.1016/j.neures.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 01/22/2023]
|
24
|
Liu L, Liu TT, Xie GG, Zhu XQ, Wang Y. Ubiquitin ligase TRIM32 promotes dendrite arborization by mediating degradation of the epigenetic factor CDYL. FASEB J 2021; 36:e22087. [PMID: 34888944 DOI: 10.1096/fj.202100031rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/11/2022]
Abstract
Proper dendritic morphology is fundamental to nerve signal transmission; thus, revealing the mechanism by which dendrite arborization is regulated is of great significance. Our previous studies have found that the epigenetic molecule chromodomain Y-like (CDYL) negatively regulates dendritic branching. Current research mostly focuses on the processes downstream of CDYL, whereas the upstream regulatory process has not been investigated to date. In this study, we identified an upstream regulator of CDYL, the E3 ubiquitin ligase tripartite motif-containing protein 32 (TRIM32), which promotes dendrite arborization by mediating the ubiquitylation and degradation of CDYL. By using mass spectrometry and biochemistry strategies, we proved that TRIM32 interacted with CDYL and mediated CDYL ubiquitylation modification in vivo and in vitro. Overexpressing TRIM32 decreased the protein level of CDYL, leading to an increase in the dendritic complexity of primary cultured rat neurons. In contrast, knocking down TRIM32 increased the protein level of CDYL and decreased the dendritic complexity. The truncated form of TRIM32 without E3 ligase activity (ΔRING) lost its ability to regulate dendritic complexity. Most importantly, knockdown of CDYL abolished the reduced complexity of dendrites caused by TRIM32 knockdown, indicating that the TRIM32-mediated regulation of dendritic development depends on its regulation of downstream CDYL. Hence, our findings reveal that TRIM32 could promote dendrite arborization by mediating CDYL degradation. This work initially defines a novel biological role of TRIM32 in regulating mechanisms upstream of CDYL and further presents a potential therapeutic target for the treatment of CDYL-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lei Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Ting-Ting Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Guo-Guang Xie
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiao-Qi Zhu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
25
|
Murchison AG. Hypothesis: Modulation of microglial phenotype in Alzheimer's disease drives neurodegeneration. Alzheimers Dement 2021; 18:1537-1544. [PMID: 34786841 DOI: 10.1002/alz.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/11/2022]
Abstract
The pathophysiology of Alzheimer's disease (AD) remains to be elucidated. The amyloid hypothesis holds explanatory power but has limitations. This article suggests that amyloid deposition and increased permeability of the blood-brain barrier are independent early events in the disease process, which together fashion a distinct microglial activation phenotype. Downstream events including, phagocytosis of synapses and persistent glutamate signaling through N-methyl-D-aspartate receptors drive neurodegeneration and tau pathology. This hypothesis draws on several strands of evidence and aims to illuminate several of the unexplained temporal and spatial features of AD.
Collapse
|
26
|
Thom T, Schmitz M, Fischer AL, Correia A, Correia S, Llorens F, Pique AV, Möbius W, Domingues R, Zafar S, Stoops E, Silva CJ, Fischer A, Outeiro TF, Zerr I. Cellular Prion Protein Mediates α-Synuclein Uptake, Localization, and Toxicity In Vitro and In Vivo. Mov Disord 2021; 37:39-51. [PMID: 34448510 DOI: 10.1002/mds.28774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The cellular prion protein (PrPC ) is a membrane-bound, multifunctional protein mainly expressed in neuronal tissues. Recent studies indicate that the native trafficking of PrPC can be misused to internalize misfolded amyloid beta and α-synuclein (aSyn) oligomers. OBJECTIVES We define PrPC 's role in internalizing misfolded aSyn in α-synucleinopathies and identify further involved proteins. METHODS We performed comprehensive behavioral studies on four transgenic mouse models (ThySyn and ThySynPrP00, TgM83 and TgMPrP00) at different ages. We developed PrPC -(over)-expressing cell models (cell line and primary cortical neurons), used confocal laser microscopy to perform colocalization studies, applied mass spectrometry to identify interactomes, and determined disassociation constants using surface plasmon resonance (SPR) spectroscopy. RESULTS Behavioral deficits (memory, anxiety, locomotion, etc.), reduced lifespans, and higher oligomeric aSyn levels were observed in PrPC -expressing mice (ThySyn and TgM83), but not in homologous Prnp ablated mice (ThySynPrP00 and TgMPrP00). PrPC colocalized with and facilitated aSyn (oligomeric and monomeric) internalization in our cell-based models. Glimepiride treatment of PrPC -overexpressing cells reduced aSyn internalization in a dose-dependent manner. SPR analysis showed that the binding affinity of PrPC to monomeric aSyn was lower than to oligomeric aSyn. Mass spectrometry-based proteomic studies identified clathrin in the immunoprecipitates of PrPC and aSyn. SPR was used to show that clathrin binds to recombinant PrP, but not aSyn. Experimental disruption of clathrin-coated vesicles significantly decreased aSyn internalization. CONCLUSION PrPC 's native trafficking can be misused to internalize misfolded aSyn through a clathrin-based mechanism, which may facilitate the spreading of pathological aSyn. Disruption of aSyn-PrPC binding is, therefore, an appealing therapeutic target in α-synucleinopathies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tobias Thom
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Anna-Lisa Fischer
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Angela Correia
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Susana Correia
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain.,Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Anna-Villar Pique
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain.,Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Wiebke Möbius
- Department for Neurogenetics, EM Core Unit Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Renato Domingues
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.,Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | | | - Christopher J Silva
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, USA
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| |
Collapse
|
27
|
Jin T, Rehani P, Ying M, Huang J, Liu S, Roussos P, Wang D. scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks. Genome Med 2021; 13:95. [PMID: 34044854 PMCID: PMC8161957 DOI: 10.1186/s13073-021-00908-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer's disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom .
Collapse
Affiliation(s)
- Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Peter Rehani
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Present address: Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Mufang Ying
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Present address: Department of Statistics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jiawei Huang
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Panagiotis Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA.
- Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| |
Collapse
|
28
|
Al Hussein Al Awamlh S, Wareham LK, Risner ML, Calkins DJ. Insulin Signaling as a Therapeutic Target in Glaucomatous Neurodegeneration. Int J Mol Sci 2021; 22:4672. [PMID: 33925119 PMCID: PMC8124776 DOI: 10.3390/ijms22094672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/28/2023] Open
Abstract
Glaucoma is a multifactorial disease that is conventionally managed with treatments to lower intraocular pressure (IOP). Despite these efforts, many patients continue to lose their vision. The degeneration of retinal ganglion cells (RGCs) and their axons in the optic tract that characterizes glaucoma is similar to neurodegeneration in other age-related disorders of the central nervous system (CNS). Identifying the different molecular signaling pathways that contribute to early neuronal dysfunction can be utilized for neuroprotective strategies that prevent degeneration. The discovery of insulin and its receptor in the CNS and retina led to exploration of the role of insulin signaling in the CNS. Historically, insulin was considered a peripherally secreted hormone that regulated glucose homeostasis, with no obvious roles in the CNS. However, a growing number of pre-clinical and clinical studies have demonstrated the potential of modulating insulin signaling in the treatment of neurodegenerative diseases. This review will highlight the role that insulin signaling plays in RGC neurodegeneration. We will focus on how this pathway can be therapeutically targeted to promote RGC axon survival and preserve vision.
Collapse
Affiliation(s)
- Sara Al Hussein Al Awamlh
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - Lauren K. Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - Michael L. Risner
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - David J. Calkins
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
29
|
A Propagated Skeleton Approach to High Throughput Screening of Neurite Outgrowth for In Vitro Parkinson's Disease Modelling. Cells 2021; 10:cells10040931. [PMID: 33920556 PMCID: PMC8072564 DOI: 10.3390/cells10040931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Neuronal models of neurodegenerative diseases such as Parkinson's Disease (PD) are extensively studied in pathological and therapeutical research with neurite outgrowth being a core feature. Screening of neurite outgrowth enables characterization of various stimuli and therapeutic effects after lesion. In this study, we describe an autonomous computational assay for a high throughput skeletonization approach allowing for quantification of neurite outgrowth in large data sets from fluorescence microscopic imaging. Development and validation of the assay was conducted with differentiated SH-SY5Y cells and primary mesencephalic dopaminergic neurons (MDN) treated with the neurotoxic lesioning compound Rotenone. Results of manual annotation using NeuronJ and automated data were shown to correlate strongly (R2-value 0.9077 for SH-SY5Y cells and R2-value 0.9297 for MDN). Pooled linear regressions of results from SH-SY5Y cell image data could be integrated into an equation formula (y=0.5410·x+1792; y=0.8789·x+0.09191 for normalized results) with y depicting automated and x depicting manual data. This automated neurite length algorithm constitutes a valuable tool for modelling of neurite outgrowth that can be easily applied to evaluate therapeutic compounds with high throughput approaches.
Collapse
|
30
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
Compta Y, Revesz T. Neuropathological and Biomarker Findings in Parkinson's Disease and Alzheimer's Disease: From Protein Aggregates to Synaptic Dysfunction. JOURNAL OF PARKINSONS DISEASE 2021; 11:107-121. [PMID: 33325398 PMCID: PMC7990431 DOI: 10.3233/jpd-202323] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is mounting evidence that Parkinson’s disease (PD) and Alzheimer’s disease (AD) share neuropathological hallmarks, while similar types of biomarkers are being applied to both. In this review we aimed to explore similarities and differences between PD and AD at both the neuropathology and the biomarker levels, specifically focusing on protein aggregates and synapse dysfunction. Thus, amyloid-β peptide (Aβ) and tau lesions of the Alzheimer-type are common in PD and α-synuclein Lewy-type aggregates are frequent findings in AD. Modern neuropathological techniques adding to routine immunohistochemistry might take further our knowledge of these diseases beyond protein aggregates and down to their presynaptic and postsynaptic terminals, with potential mechanistic and even future therapeutic implications. Translation of neuropathological discoveries to the clinic remains challenging. Cerebrospinal fluid (CSF) and positron emission tomography (PET) markers of Aβ and tau have been shown to be reliable for AD diagnosis. Conversely, CSF markers of α-synuclein have not been that consistent. In terms of PET markers, there is no PET probe available for α-synuclein yet, while the AD PET markers range from consistent evidence of their specificity (amyloid imaging) to greater uncertainty of their reliability due to off-target binding (tau imaging). CSF synaptic markers are attractive, still needing more evidence, which currently suggests those might be non-specific markers of disease progression. It can be summarized that there is neuropathological evidence that protein aggregates of AD and PD are present both at the soma and the synapse. Thus, a number of CSF and PET biomarkers beyond α-synuclein, tau and Aβ might capture these different faces of protein-related neurodegeneration. It remains to be seen what the longitudinal outcomes and the potential value as surrogate markers of these biomarkers are.
Collapse
Affiliation(s)
- Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic / IDIBAPS / CIBERNED, Barcelona, Catalonia, Spain.,Institut de Neurociències, Maextu's excellence center, University of Barcelona, Barcelona, Catalonia, Spain
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
32
|
Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health. Nutrients 2021; 13:nu13010196. [PMID: 33435203 PMCID: PMC7826636 DOI: 10.3390/nu13010196] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
The relatively rapid shift from consuming preagricultural wild foods for thousands of years, to consuming postindustrial semi-processed and ultra-processed foods endemic of the Western world less than 200 years ago did not allow for evolutionary adaptation of the commensal microbial species that inhabit the human gastrointestinal (GI) tract, and this has significantly impacted gut health. The human gut microbiota, the diverse and dynamic population of microbes, has been demonstrated to have extensive and important interactions with the digestive, immune, and nervous systems. Western diet-induced dysbiosis of the gut microbiota has been shown to negatively impact human digestive physiology, to have pathogenic effects on the immune system, and, in turn, cause exaggerated neuroinflammation. Given the tremendous amount of evidence linking neuroinflammation with neural dysfunction, it is no surprise that the Western diet has been implicated in the development of many diseases and disorders of the brain, including memory impairments, neurodegenerative disorders, and depression. In this review, we discuss each of these concepts to understand how what we eat can lead to cognitive and psychiatric diseases.
Collapse
|
33
|
Nafees S, Akram MF, Khan MA. Drug Therapy of Alzheimer’s Disease: Cholinesterase Inhibitors, NMDA Antagonists. AUTISM SPECTRUM DISORDER AND ALZHEIMER'S DISEASE 2021:95-110. [DOI: 10.1007/978-981-16-4558-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
34
|
Sansores-España D, Carrillo-Avila A, Melgar-Rodriguez S, Díaz-Zuñiga J, Martínez-Aguilar V. Periodontitis and Alzheimer´s disease. Med Oral Patol Oral Cir Bucal 2021; 26:e43-e48. [PMID: 32701930 PMCID: PMC7806353 DOI: 10.4317/medoral.23940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the main cause of dementia in the adult population, is characterized by a progressive loss of cognitive function. It is considered that neuroinflammation plays a fundamental role in its onset and progression. The bacteria present in the disbiotic microbiome generated during the course of periodontitis (PE) are capable of inducing a systemic inflammatory response, exacerbating the production of proinflammatory mediators that have the potential to spread to the systemic circulation. MATERIAL AND METHODS A literature review was made using the databases Scielo, PubMed, EBSCO and key words "Alzheimer disease", "Periodontitis", "Neurodegeneration", "Inflammation mediators", "Elderly". RESULTS Several hypotheses point to similar pathophysiological pathways in the establishment of AD and PE, sharing cellular and molecular proinflammatory characteristics. In periodontitis, locally produced cytokines and pro-inflammatory products spread from the ulcerated periodontal pocket into the systemic circulation, or around the trigeminal nerve terminals, which allows the passage of bacteria or their products to the brain. This fact leads to the formation of plaques of amyloid peptide and intraneuronal neurofibrillar tangles (NFTs) that activate the glial cells producing a significant increase in proinflammatory cytokines in the affected regions that lead to a loss of neuronal synapses and neurodegeneration, contributing to the progression of AD. CONCLUSIONS This review of the literature contributes to the understanding of the pathological pathways shared by both diseases such as oxidative damage and inflammation. There is not enough evidence to determine an association between this two pathologies, so it is considered necessary to conduct studies for determine if periodontitis is capable of inducing or exacerbating the neuroinflammation that will trigger AD.
Collapse
Affiliation(s)
- D- Sansores-España
- School of Dentistry, Autonomous University of Yucatan 61a street number 492a Donwtown Zip Code, 97000 Mérida, México
| | | | | | | | | |
Collapse
|
35
|
Bartelt-Kirbach B, Wiegreffe C, Birk S, Baur T, Moron M, Britsch S, Golenhofen N. HspB5/αB-crystallin phosphorylation at S45 and S59 is essential for protection of the dendritic tree of rat hippocampal neurons. J Neurochem 2020; 157:2055-2069. [PMID: 33220080 DOI: 10.1111/jnc.15247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Rarefaction of the dendritic tree leading to neuronal dysfunction is a hallmark of many neurodegenerative diseases and we have shown previously that heat shock protein B5 (HspB5)/αB-crystallin is able to increase dendritic complexity in vitro. The aim of this study was to investigate if this effect is also present in vivo, if HspB5 can counteract dendritic rarefaction under pathophysiological conditions and the impact of phosphorylation of HspB5 in this process. HspB5 and eight mutants inhibiting or mimicking phosphorylation at the three phosphorylation sites serine (S)19, S45, and S59 were over-expressed in cultured rat hippocampal neurons with subsequent investigation of the complexity of the dendritic tree. Sholl analysis revealed significant higher complexity of the dendritic tree after over-expression of wild-type HspB5 and the mutant HspB5-AEE. All other mutants showed no or minor effects. For in vivo investigation in utero electroporation of mouse embryos was applied. At embryonal day E15.5 the respective plasmids were injected, cornu ammonis 1 (CA1) pyramidal cells transfected by electroporation and their basal dendritic trees were analyzed at post-natal day P15. In vivo, HspB5 and HspB5-AEE led to an increase of total dendritic length as well as a higher complexity. Finally, the dendritic effect of HspB5 was investigated under a pathophysiological condition, that is, iron deficiency which reportedly results in dendritic rarefaction. HspB5 and HspB5-AEE but not the non-phosphorylatable mutant HspB5-AAA significantly counteracted the dendritic rarefaction. Thus, our data suggest that up-regulation and selective phosphorylation of HspB5 in neurodegenerative diseases may preserve dendritic morphology and counteract neuronal dysfunction.
Collapse
Affiliation(s)
| | - Christoph Wiegreffe
- Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany
| | - Samuel Birk
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Tina Baur
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Margarethe Moron
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| |
Collapse
|
36
|
L-3-n-Butylphthalide improves synaptic and dendritic spine plasticity and ameliorates neurite pathology in Alzheimer's disease mouse model and cultured hippocampal neurons. Mol Neurobiol 2020; 58:1260-1274. [PMID: 33146400 DOI: 10.1007/s12035-020-02183-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/20/2020] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among elderly people. Despite enormous efforts, the pathogenesis of AD still remains unclear and no drug has yet been proved to be disease-modifying. As the basis of learning and memory, the plasticity of synapse and dendritic spine has been impaired during AD progression. Previous studies have showed a protective effect of L-3-n-butylphthalide (L-NBP) on cognitive deficits in AD, we wonder whether this protective effect is associated with positive alterations on synapse and dendritic spines. In this study, we first of all confirmed the anti-dementia effect of L-NBP in 13-month-old APP/PS1 mice, and then investigated the alterations in synaptic and dendritic spine plasticity due to L-NBP treatment both in vivo and in vitro. We also conducted preliminary studies and found the possible mechanisms related to the inhibition of over-activated complement cascade and the remodeling of actin cytoskeleton. Besides, we also found extra benefits of L-NBP on presynaptic dystrophic neurites and attempted to give explanations from the view of autophagy regulation. Taken together, our study added some new evidence to the application of L-NBP in AD treatment and provided deeper insight into the relevant mechanisms for future study.
Collapse
|
37
|
Experience-Dependent Development of Dendritic Arbors in Mouse Visual Cortex. J Neurosci 2020; 40:6536-6556. [PMID: 32669356 DOI: 10.1523/jneurosci.2910-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
The dendritic arbor of neurons constrains the pool of available synaptic partners and influences the electrical integration of synaptic currents. Despite these critical functions, our knowledge of the dendritic structure of cortical neurons during early postnatal development and how these dendritic structures are modified by visual experience is incomplete. Here, we present a large-scale dataset of 849 3D reconstructions of the basal arbor of pyramidal neurons collected across early postnatal development in visual cortex of mice of either sex. We found that the basal arbor grew substantially between postnatal day 7 (P7) and P30, undergoing a 45% increase in total length. However, the gross number of primary neurites and dendritic segments was largely determined by P7. Growth from P7 to P30 occurred primarily through extension of dendritic segments. Surprisingly, comparisons of dark-reared and typically reared mice revealed that a net gain of only 15% arbor length could be attributed to visual experience; most growth was independent of experience. To examine molecular contributions, we characterized the role of the activity-regulated small GTPase Rem2 in both arbor development and the maintenance of established basal arbors. We showed that Rem2 is an experience-dependent negative regulator of dendritic segment number during the visual critical period. Acute deletion of Rem2 reduced directionality of dendritic arbors. The data presented here establish a highly detailed, quantitative analysis of basal arbor development that we believe has high utility both in understanding circuit development as well as providing a framework for computationalists wishing to generate anatomically accurate neuronal models.SIGNIFICANCE STATEMENT Dendrites are the sites of the synaptic connections among neurons. Despite their importance for neural circuit function, only a little is known about the postnatal development of dendritic arbors of cortical pyramidal neurons and the influence of experience. Here we show that the number of primary basal dendritic arbors is already established before eye opening, and that these arbors primarily grow through lengthening of dendritic segments and not through addition of dendritic segments. Surprisingly, visual experience has a modest net impact on overall arbor length (15%). Experiments in KO animals revealed that the gene Rem2 is positive regulator of dendritic length and a negative regulator of dendritic segments.
Collapse
|
38
|
Schmuck MR, Keil KP, Sethi S, Morgan RK, Lein PJ. Automated high content image analysis of dendritic arborization in primary mouse hippocampal and rat cortical neurons in culture. J Neurosci Methods 2020; 341:108793. [PMID: 32461071 PMCID: PMC7357201 DOI: 10.1016/j.jneumeth.2020.108793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/17/2020] [Accepted: 05/18/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Primary neuronal cell cultures are useful for studying mechanisms that influence dendritic morphology during normal development and in response to various stressors. However, analyzing dendritic morphology is challenging, particularly in cultures with high cell density, and manual methods of selecting neurons and tracing dendritic arbors can introduce significant bias, and are labor-intensive. To overcome these challenges, semi-automated and automated methods are being developed, with most software solutions requiring computer-assisted dendrite tracing with subsequent quantification of various parameters of dendritic morphology, such as Sholl analysis. However fully automated approaches for classic Sholl analysis of dendritic complexity are not currently available. NEW METHOD The previously described Omnisphero software, was extended by adding new functions to automatically assess dendritic mass, total length of the dendritic arbor and the number of primary dendrites, branch points, and terminal tips, and to perform Sholl analysis. RESULTS The new functions for assessing dendritic morphology were validated using primary mouse hippocampal and rat cortical neurons transfected with a fluorescently tagged MAP2 cDNA construct. These functions allow users to select specific populations of neurons as a training set for subsequent automated selection of labeled neurons in high-density cultures. COMPARISON WITH EXISTING SEMI-AUTOMATED METHODS Compared to manual or semi-automated analyses of dendritic arborization, the new functions increase throughput while significantly decreasing researcher bias associated with neuron selection, tracing, and thresholding. CONCLUSION These results demonstrate the importance of using unbiased automated methods to mitigate experimenter-dependent bias in analyzing dendritic morphology.
Collapse
Affiliation(s)
- Martin R Schmuck
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Rhianna K Morgan
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
39
|
Tiras NR, Mikheeva IB, Mikhailova GZ, Pen'kova NA, Khutsyan SS. Dopamine Improves Resistance of Dendrites of Mauthner Neurons to Destruction Induced by Sensory Stimulation and Application of Β-Amyloid. Bull Exp Biol Med 2020; 169:266-269. [PMID: 32651816 DOI: 10.1007/s10517-020-04865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 11/25/2022]
Abstract
Mauthner neurons in goldfish fry were studied by the methods of light and electron microscopy. The structure and volume of individual dendrites as well as the structure of axodendritic synapses were examined using virtual images of neurons formed from serial 3-μ sections. In short-time (5 h) experiments with application of dopamine, β-amyloid fragment (25-35), and long-term sensory stimulation affecting afferent inputs to Mauthner neurons, the dendrites were larger than the same dendrites under the same conditions without dopamine application. Application of dopamine induced no pathological changes in the structure of axodendritic chemical and electric synapses containing desmosome-like contacts.
Collapse
Affiliation(s)
- N R Tiras
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia.
| | - I B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - G Z Mikhailova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - N A Pen'kova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - S S Khutsyan
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| |
Collapse
|
40
|
Yi JH, Whitcomb DJ, Park SJ, Martinez-Perez C, Barbati SA, Mitchell SJ, Cho K. M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer's disease pathology. Brain Commun 2020; 2:fcaa058. [PMID: 32766549 PMCID: PMC7391992 DOI: 10.1093/braincomms/fcaa058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Aggregation of amyloid beta and loss of cholinergic innervation in the brain are predominant components of Alzheimer’s disease pathology and likely underlie cognitive impairment. Acetylcholinesterase inhibitors are one of the few treatment options for Alzheimer’s disease, where levels of available acetylcholine are enhanced to counteract the cholinergic loss. However, these inhibitors show limited clinical efficacy. One potential explanation for this is a concomitant dysregulation of cholinergic receptors themselves as a consequence of the amyloid beta pathology. We tested this hypothesis by examining levels of M1 muscarinic acetylcholine receptors in the temporal cortex from seven Alzheimer’s disease and seven non-disease age-matched control brain tissue samples (control: 85 ± 2.63 years old, moderate Alzheimer’s disease: 84 ± 2.32 years old, P-value = 0.721; eight female and six male patients). The samples were categorized into two groups: ‘control’ (Consortium to Establish a Registry for Alzheimer’s Disease diagnosis of ‘No Alzheimer’s disease’, and Braak staging pathology of I–II) and ‘moderate Alzheimer’s disease’ (Consortium to Establish a Registry for Alzheimer’s Disease diagnosis of ‘possible/probable Alzheimer’s disease’, and Braak staging pathology of IV). We find that in comparison to age-matched controls, there is a loss of M1 muscarinic acetylcholine receptors in moderate Alzheimer’s disease tissue (control: 2.17 ± 0.27 arbitrary units, n = 7, Mod-AD: 0.83 ± 0.16 arbitrary units, n = 7, two-tailed t-test, t = 4.248, P = 0.00113). Using a functional rat cortical brain slice model, we find that postsynaptic muscarinic acetylcholine receptor function is dysregulated by aberrant amyloid beta-mediated activation of metabotropic glutamate receptor 5. Crucially, blocking metabotropic glutamate receptor 5 restores muscarinic acetylcholine receptor function and object recognition memory in 5XFAD transgenic mice. This indicates that the amyloid beta-mediated activation of metabotropic glutamate receptor 5 negatively regulates muscarinic acetylcholine receptor and illustrates the importance of muscarinic acetylcholine receptors as a potential disease-modifying target in the moderate pathological stages of Alzheimer’s disease.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Daniel J Whitcomb
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Se Jin Park
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Celia Martinez-Perez
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Saviana A Barbati
- UK Dementia Research Institute at King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Scott J Mitchell
- UK Dementia Research Institute at King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Kwangwook Cho
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK.,UK Dementia Research Institute at King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| |
Collapse
|
41
|
Repeated intrastriatal application of botulinum neurotoxin-A did not influence choline acetyltransferase-immunoreactive interneurons in hemiparkinsonian rat brain - A histological, stereological and correlational analysis. Brain Res 2020; 1742:146877. [PMID: 32387181 DOI: 10.1016/j.brainres.2020.146877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
In Parkinson's disease, dopamine depletion leads to hyperactivity of cholinergic interneurons in the caudate-putamen (CPu). Botulinum neurotoxin-A (BoNT-A) inhibits the release of acetylcholine in the peripheral nervous system and is also thought to act as a local anticholinergic drug when injected intrastriatally. In hemiparkinsonian (hemi-PD) rats, a unilateral intrastriatal injection of 1 ng BoNT-A significantly diminished apomorphine-induced rotation behavior for at least 3 months, the effect fading thereafter. A second intrastriatal BoNT-A application, 6 months after the first one, led to a stronger and longer-lasting, beneficial behavioral reaction. As a single BoNT-A injection was not cytotoxic in the rat striatum and resembled BoNT-A treatment in clinical practice, here, we investigated the structural outcome of repeated intrastriatal BoNT-A injections with respect to striatal volume, the number of choline acetyltransferase-immunoreactive (ChAT-ir) interneurons and of the length of their dendritic arbors, and the numeric density of ChAT-ir BoNT-A-induced varicosities (BiVs). Repeated unilateral intrastriatal BoNT-A application decreased the volume of the injected CPu, but did not significantly change the number of striatal ChAT-ir interneurons. Also, the total dendrite length of ChAT-ir interneurons after repeated BoNT-A application resembled the values in double vehicle-injected hemi-PD rats. In repeatedly BoNT-A-injected hemi-PD rats, the numeric density of ChAT-ir BiVs in the CPu was increased compared with rats only intrastriatally injected once with BoNT-A. Even repeated BoNT-A injections in rat striata did not cause substantial morphological changes in ChAT-ir neuron, except for the increased numeric density of ChAT-ir BiVs.
Collapse
|
42
|
Corsetti V, Borreca A, Latina V, Giacovazzo G, Pignataro A, Krashia P, Natale F, Cocco S, Rinaudo M, Malerba F, Florio R, Ciarapica R, Coccurello R, D’Amelio M, Ammassari-Teule M, Grassi C, Calissano P, Amadoro G. Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse Alzheimer's disease models. Brain Commun 2020; 2:fcaa039. [PMID: 32954296 PMCID: PMC7425324 DOI: 10.1093/braincomms/fcaa039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer's disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26-36aa of tau protein) could improve the Alzheimer's disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidβ metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer's disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20-22 kDa NH2-terminal tau fragment is crucial target for Alzheimer's disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloidβ-dependent and independent neuropathological and cognitive alterations in affected subjects.
Collapse
Affiliation(s)
| | - Antonella Borreca
- Humanitas University Laboratory of Pharmacology and Brain Pathology, Neuro Center, 20089 Milan, Italy
- Institute of Neuroscience, 20129 Milan, Italy
| | | | | | | | - Paraskevi Krashia
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | - Francesca Natale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Cocco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Rita Florio
- European Brain Research Institute (EBRI), 00161 Rome, Italy
| | | | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Institute for Complex Systems (ISC), CNR, 00185 Rome, Italy
| | - Marcello D’Amelio
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | | | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT)–National Research Council (CNR), 00133 Rome, Italy
| |
Collapse
|
43
|
Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:1106-1125. [PMID: 32484110 PMCID: PMC7709159 DOI: 10.2174/1570159x18666200528142429] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The only conclusive way to diagnose Alzheimer's is to carry out brain autopsy of the patient's brain tissue and ascertain whether the subject had Alzheimer's or any other form of dementia. However, due to the non-feasibility of such methods, to diagnose and conclude the conditions, medical practitioners use tests that examine a patient's mental ability. OBJECTIVE Accurate diagnosis at an early stage is the need of the hour for initiation of therapy. The cause for most Alzheimer's cases still remains unknown except where genetic distinctions have been observed. Thus, a standard drug regimen ensues in every Alzheimer's patient, irrespective of the cause, which may not always be beneficial in halting or reversing the disease progression. To provide a better life to such patients by suppressing existing symptoms, early diagnosis, curative therapy, site-specific delivery of drugs, and application of hyphenated methods like artificial intelligence need to be brought into the main field of Alzheimer's therapeutics. METHODS In this review, we have compiled existing hypotheses to explain the cause of the disease, and highlighted gene therapy, immunotherapy, peptidomimetics, metal chelators, probiotics and quantum dots as advancements in the existing strategies to manage Alzheimer's. CONCLUSION Biomarkers, brain-imaging, and theranostics, along with artificial intelligence, are understood to be the future of the management of Alzheimer's.
Collapse
Affiliation(s)
- Sahil Khan
- SVKM’S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle West, Mumbai-400056, India
| | - Kalyani H. Barve
- SVKM’S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle West, Mumbai-400056, India
| | - Maushmi S. Kumar
- SVKM’S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle West, Mumbai-400056, India
| |
Collapse
|
44
|
Taniguchi K, Yamamoto F, Arai T, Yang J, Sakai Y, Itoh M, Mamada N, Sekiguchi M, Yamada D, Saitoh A, Kametani F, Tamaoka A, Araki YM, Wada K, Mizusawa H, Araki W. Tyrosol Reduces Amyloid-β Oligomer Neurotoxicity and Alleviates Synaptic, Oxidative, and Cognitive Disturbances in Alzheimer’s Disease Model Mice. J Alzheimers Dis 2019; 70:937-952. [DOI: 10.3233/jad-190098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kaori Taniguchi
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Fumiko Yamamoto
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Arai
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Jinwei Yang
- Tokiwa Phytochemical Co., Ltd, Sakura, Chiba, Japan
| | - Yusuke Sakai
- Tokiwa Phytochemical Co., Ltd, Sakura, Chiba, Japan
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Naomi Mamada
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yumiko M. Araki
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Hidehiro Mizusawa
- National Center Hospital, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Wataru Araki
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| |
Collapse
|
45
|
Agostinone J, Alarcon-Martinez L, Gamlin C, Yu WQ, Wong ROL, Di Polo A. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 2019; 141:1963-1980. [PMID: 29931057 PMCID: PMC6022605 DOI: 10.1093/brain/awy142] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Jessica Agostinone
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Cacace R, Heeman B, Van Mossevelde S, De Roeck A, Hoogmartens J, De Rijk P, Gossye H, De Vos K, De Coster W, Strazisar M, De Baets G, Schymkowitz J, Rousseau F, Geerts N, De Pooter T, Peeters K, Sieben A, Martin JJ, Engelborghs S, Salmon E, Santens P, Vandenberghe R, Cras P, P. De Deyn P, C. van Swieten J, M. van Duijn C, van der Zee J, Sleegers K, Van Broeckhoven C. Loss of DPP6 in neurodegenerative dementia: a genetic player in the dysfunction of neuronal excitability. Acta Neuropathol 2019; 137:901-918. [PMID: 30874922 PMCID: PMC6531610 DOI: 10.1007/s00401-019-01976-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4 Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frameshift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel Kv4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or Kv4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate.
Collapse
Affiliation(s)
- Rita Cacace
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Bavo Heeman
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Sara Van Mossevelde
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA), Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Arne De Roeck
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Julie Hoogmartens
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Peter De Rijk
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Helena Gossye
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA), Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Kristof De Vos
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Wouter De Coster
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Mojca Strazisar
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Greet De Baets
- Switch Laboratory, VIB-KU Leuven Centre for Brain and Disease Research, Louvain, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Centre for Brain and Disease Research, Louvain, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Centre for Brain and Disease Research, Louvain, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Nathalie Geerts
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Tim De Pooter
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Karin Peeters
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Anne Sieben
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | | | - Sebastiaan Engelborghs
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA), Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Eric Salmon
- Department of Neurology, Centre Hospitalier Universitaire de Liège and University of Liège, Liège, Belgium
| | - Patrick Santens
- Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Faculty of Medicine, KU Leuven, Louvain, Belgium
- Laboratory of Cognitive Neurology, Department of Neurology, University Hospitals Leuven, Louvain, Belgium
| | - Patrick Cras
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Peter P. De Deyn
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA), Middelheim and Hoge Beuken, Antwerp, Belgium
| | - John C. van Swieten
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Julie van der Zee
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
47
|
Branching mechanisms shaping dendrite architecture. Dev Biol 2018; 451:16-24. [PMID: 30550882 DOI: 10.1016/j.ydbio.2018.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
A neuron's contribution to the information flow within a neural circuit is governed by the structure of its dendritic arbor. The geometry of the dendritic arbor directly determines synaptic density and the size of the receptive field, both of which influence the firing pattern of the neuron. Importantly, the position of individual dendritic branches determines the identity of the neuron's presynaptic partner and thus the nature of the incoming sensory information. To generate the unique stereotypic architecture of a given neuronal subtype, nascent branches must emerge from the dendritic shaft at preprogramed branch points. Subsequently, a complex array of extrinsic factors regulates the degree and orientation of branch expansion to ensure maximum coverage of the receptive field whilst constraining growth within predetermined territories. In this review we focus on studies that best illustrate how environmental cues such as the Wnts and Netrins and their receptors sculpt the dendritic arbor. We emphasize the pivotal role played by the actin cytoskeleton and its upstream regulators in branch initiation, outgrowth and navigation. Finally, we discuss how protocadherin and DSCAM contact-mediated repulsion prevents inappropriate synapse formation between sister dendrites or dendrites and the axon from the same neuron. Together these studies highlight the clever ways evolution has solved the problem of constructing complex branch geometries.
Collapse
|
48
|
Lapresa R, Agulla J, Sánchez-Morán I, Zamarreño R, Prieto E, Bolaños JP, Almeida A. Amyloid-ß promotes neurotoxicity by Cdk5-induced p53 stabilization. Neuropharmacology 2018; 146:19-27. [PMID: 30452955 DOI: 10.1016/j.neuropharm.2018.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/28/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
Neurodegeneration in selective brain areas underlies the pathology of Alzheimer's disease (AD). Although oligomeric amyloid-β (Aβ) plays a central role in the AD pathogenesis, the mechanism of neuronal loss in response to Aβ remains elusive. The p53 tumor suppressor protein, a key regulator of cell apoptosis, has been described to accumulate in affected brain areas from AD patients. However, whether p53 plays any role in AD pathogenesis remains unknown. To address this issue, here we investigated the involvement of p53 on Aß-induced neuronal apoptosis. We found that exposure of neurons to oligomers of the amyloidogenic fragment 25-35 of the Aß peptide (Aβ25-35) promoted p53 protein phosphorylation and stabilization, leading to mitochondrial dysfunction and neuronal apoptosis. To address the underlying mechanism, we focused on cyclin dependent kinase-5 (Cdk5), a known p53-phosphorylating kinase. The results revealed that Aβ25-35 treatment activated Cdk5, and that inhibiting Cdk5 activity prevented p53 protein stabilization. Furthermore, Aβ25-35-mediated mitochondrial dysfunction and neuronal apoptosis were prevented by both genetic and pharmacological inhibition of either p53 or Cdk5 activities. This effect was mimicked with the full-length peptide Aβ1-42. To confirm the mechanism in vivo, Aβ25-35 was stereotaxically injected in the cerebral right ventricle of mice, a treatment that caused p53 protein accumulation, dendrite disruption and neuronal death. Furthermore, these effects were prevented in p53 knockout mice or by pharmacologically inhibiting p53. Thus, Aβ25-35 triggers Cdk5 activation to induce p53 phosphorylation and stabilization, which leads to neuronal damage. Inhibition of the Cdk5-p53 pathway may therefore represent a novel therapeutic strategy against Aβ-induced neurodegeneration.
Collapse
Affiliation(s)
- Rebeca Lapresa
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Calle Zacarías González 2, 37007, Salamanca, Spain; Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| | - Jesús Agulla
- Institute of Biology and Molecular Genetics, University of Valladolid, CSIC, Calle Sanz y Fores 3, 47003, Valladolid, Spain.
| | - Irene Sánchez-Morán
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Calle Zacarías González 2, 37007, Salamanca, Spain; Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| | - Rubén Zamarreño
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| | - Estefanía Prieto
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Calle Zacarías González 2, 37007, Salamanca, Spain; Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| | - Juan P Bolaños
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Calle Zacarías González 2, 37007, Salamanca, Spain; Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain; CIBERFES, Instituto de Salud Carlos III, Madrid, Spain.
| | - Angeles Almeida
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Calle Zacarías González 2, 37007, Salamanca, Spain; Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
49
|
Store depletion-induced h-channel plasticity rescues a channelopathy linked to Alzheimer's disease. Neurobiol Learn Mem 2018; 154:141-157. [PMID: 29906573 DOI: 10.1016/j.nlm.2018.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.
Collapse
|
50
|
Abstract
Circuit operations are determined jointly by the properties of the circuit elements and the properties of the connections among these elements. In the nervous system, neurons exhibit diverse morphologies and branching patterns, allowing rich compartmentalization within individual cells and complex synaptic interactions among groups of cells. In this review, we summarize work detailing how neuronal morphology impacts neural circuit function. In particular, we consider example neurons in the retina, cerebral cortex, and the stomatogastric ganglion of crustaceans. We also explore molecular coregulators of morphology and circuit function to begin bridging the gap between molecular and systems approaches. By identifying motifs in different systems, we move closer to understanding the structure-function relationships that are present in neural circuits.
Collapse
Affiliation(s)
| | - Stephen D Van Hooser
- Department of Biology, Brandeis University , Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts.,Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University , Waltham, Massachusetts
| |
Collapse
|