1
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Theparambil SM, Begum G, Rose CR. pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain. Cell Calcium 2024; 120:102882. [PMID: 38631162 PMCID: PMC11423562 DOI: 10.1016/j.ceca.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Faculty of Health and Medicine, Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, Lancaster, UK.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
3
|
Babenko VA, Varlamova EG, Saidova AA, Turovsky EA, Plotnikov EY. Lactate protects neurons and astrocytes against ischemic injury by modulating Ca 2+ homeostasis and inflammatory response. FEBS J 2024; 291:1684-1698. [PMID: 38226425 DOI: 10.1111/febs.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Lactate is now considered an additional fuel or signaling molecule in the brain. In this study, using an oxygen-glucose deprivation (OGD) model, we found that treatment with lactate inhibited the global increase in intracellular calcium ion concentration ([Ca2+]) in neurons and astrocytes, decreased the percentage of dying cells, and caused a metabolic shift in astrocytes and neurons toward aerobic oxidation of substrates. OGD resulted in proinflammatory changes and increased expression of cytokines and chemokines, whereas incubation with lactate reduced these changes. Pure astrocyte cultures were less sensitive than neuroglia cultures during OGD. Astrocytes exposed to lipopolysaccharide (LPS) also showed pro-inflammatory changes that were reduced by incubation with lactate. Our study suggests that lactate may have neuroprotective effects under ischemic and inflammatory conditions.
Collapse
Affiliation(s)
- Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russia
| | - Aleena A Saidova
- Cell Biology and Histology Department, School of Biology, Lomonosov Moscow State University, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| |
Collapse
|
4
|
Delgado MG, Delgado R. Transient Synaptic Enhancement Triggered by Exogenously Supplied Monocarboxylate in Drosophila Motoneuron Synapse. Neuroscience 2024; 539:66-75. [PMID: 38220128 DOI: 10.1016/j.neuroscience.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Current evidence suggests that glial cells provide C3 carbon sources to fuel neuronal activity; however, this notion has become challenged by biosensor studies carried out in acute brain slices or in vivo, showing that neuronal activity does not rely on the import of astrocyte-produced L-lactate. Rather, stimulated neurons become net lactate exporters, as it was also shown in Drosophila neurons, in which astrocyte-provided lactate returns as lipid droplets to be stored in glial cells. In this view, we investigate whether exogenously supplied monocarboxylates can support Drosophila motoneuron neurotransmitter release (NTR). By assessing the excitatory post-synaptic current (EPSC) amplitude under voltage-clamp as NTR indicative, we found that both pyruvate and L-lactate, as the only carbon sources in the synapses bathing-solution, cause a large transient NTR enhancement, which declines to reach a synaptic depression state, from which the synapses do not recover. The FM1-43 pre-synaptic loading ability, however, is maintained under monocarboxylate, suggesting that SV cycling should not contribute to the synaptic depression state. The NTR recovery was reached by supplementing the monocarboxylate medium with sucrose. However, monocarboxylate addition to sucrose medium does not enhance NTR, but it does when the disaccharide concentration becomes too reduced. Thus, when pyruvate concentrations become too reduced, exogenously supplied L-lactate could be converted to pyruvate and metabolized by the neural mitochondria, triggering the NTR enhancement. SIGNIFICANCE STATEMENT: The question of whether monocarboxylic acids can fuel the Drosophila motoneuron NTR was challenged. Our findings show that exogenously supplied monocarboxylates trigger a large transient synaptic enhancement just under extreme glycolysis reduction but fail to maintain NTR under sustained synaptic demand, still at low frequency stimulation, driven to the synapses to a synaptic depression state. Glycolysis activation, by adding sucrose to the monocarboxylate bath solution, restores the motoneuron NTR ability, giving place to a hexoses role in SV recruitment. Moreover these results suggest exogenously supplied C3 carbon sources could have an additional role beyond providing energetic support for neural activity.
Collapse
Affiliation(s)
- María-Graciela Delgado
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, 7800001 Santiago, Chile.
| | - Ricardo Delgado
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, 7800001 Santiago, Chile.
| |
Collapse
|
5
|
Arai-Okuda M, Murai Y, Maeda H, Kanamori A, Miki T, Naito T, Sugihara K, Kono M, Tanito M, Onoe H, Hirooka K, Kiuchi Y, Shinohara M, Kusuhara S, Mori S, Ueda K, Sakamoto M, Yamada-Nakanishi Y, Nakamura M. Potentially compromised systemic and local lactate metabolic balance in glaucoma, which could increase retinal glucose and glutamate concentrations. Sci Rep 2024; 14:3683. [PMID: 38355836 PMCID: PMC10866861 DOI: 10.1038/s41598-024-54383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
To investigate the association between lactate metabolism and glaucoma, we conducted a multi-institutional cross-sectional clinical study and a retinal metabolomic analysis of mice with elevated intraocular pressure (IOP) induced by intracameral microbead injection. We compared lactate concentrations in serum and aqueous humor in age-matched 64 patients each with primary open-angle glaucoma (POAG) and cataract. Neither serum nor aqueous humor lactate concentrations differed between the two groups. Multiple regression analysis revealed that only body mass index showed a significant positive correlation with serum and aqueous humor lactate concentration in POAG patients (rs = 0.376, P = 0.002, and rs = 0.333, P = 0.007, respectively), but not in cataract patients. L-Lactic acid was one of the most abundantly detected metabolites in mouse retinas with gas chromatography and mass spectrometry, but there were no significant differences among control, 2-week, and 4-week IOP elevation groups. After 4 weeks of elevated IOP, D-glucose and L-glutamic acid ranked as the top two for a change in raised concentration, roughly sevenfold and threefold, respectively (ANOVA, P = 0.004; Tukey-Kramer, P < 0.05). Glaucoma may disrupt the systemic and intraocular lactate metabolic homeostasis, with a compensatory rise in glucose and glutamate in the retina.
Collapse
Affiliation(s)
- Mina Arai-Okuda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yusuke Murai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | - Akiyasu Kanamori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Kanamori Eye Clinic, Akashi, Japan
| | | | | | - Kazunobu Sugihara
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Michihiro Kono
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Hiromitsu Onoe
- Department of Ophthalmology and Visual Science, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Kazuyuki Hirooka
- Department of Ophthalmology and Visual Science, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Department of Future Medical Sciences, Kobe University Graduate School of Medicine, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kaori Ueda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Mari Sakamoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuko Yamada-Nakanishi
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
6
|
Erdogan MA, Turk M, Doganay GD, Sever IH, Ozkul B, Sogut I, Eroglu E, Uyanikgil Y, Erbas O. Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral Changes in Male Neonatal Rats. J Neuroimmune Pharmacol 2023; 18:573-591. [PMID: 37889404 DOI: 10.1007/s11481-023-10089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Recent research on placental, embryo, and brain organoids suggests that the COVID-19 virus may potentially affect embryonic organs, including the brain. Given the established link between SARS-CoV-2 spike protein and neuroinflammation, we sought to investigate the effects of exposure to this protein during pregnancy. We divided pregnant rats into three groups: Group 1 received a 1 ml/kg saline solution, Group 2 received 150 μg/kg adjuvant aluminum hydroxide (AAH), and Group 3 received 40 μg/kg spike protein + 150 μg/kg AAH at 10 and 14 days of gestation. On postnatal day 21 (P21), we randomly separated 60 littermates (10 male-female) into control, AAH-exposed, and spike protein-exposed groups. At P50, we conducted behavioral analyses on these mature animals and performed MR spectroscopy. Subsequently, all animals were sacrificed, and their brains were subject to biochemical and histological analysis. Our findings indicate that male rats exposed to the spike protein displayed a higher rate of impaired performance on behavioral studies, including the three-chamber social test, passive avoidance learning analysis, open field test, rotarod test, and novelty-induced cultivation behavior, indicative of autistic symptoms. Exposure to the spike protein (male) induced gliosis and neuronal cell death in the CA1-CA3 regions of the hippocampus and cerebellum. The spike protein-exposed male rats exhibited significantly greater levels of malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and lactate and lower levels of brain-derived neurotrophic factor (BDNF) than the control group. Our study suggests a potential association between prenatal exposure to COVID-19 spike protein and neurodevelopmental problems, such as ASD. These findings highlight the importance of further research into the potential effects of the COVID-19 virus on embryonic and fetal development and the potential long-term consequences for neurodevelopment.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey.
| | - Miray Turk
- Graduate School, Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Gizem Dinler Doganay
- Graduate School, Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34469, Istanbul, Turkey
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Ibrahim Halil Sever
- Faculty of Medicine, Department of Radiology, Demiroğlu Bilim University, Istanbul, Turkey
| | - Bahattin Ozkul
- School of Medicine, Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Ibrahim Sogut
- Faculty of Medicine, Department of Biochemistry, Demiroğlu Bilim University, Istanbul, Turkey
| | - Ebru Eroglu
- Faculty of Medicine, Department of Histology and Embryology, Ege University, Izmir, Turkey
| | - Yigit Uyanikgil
- Faculty of Medicine, Department of Histology and Embryology, Ege University, Izmir, Turkey
| | - Oytun Erbas
- Faculty of Medicine, Department of Physiology, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
7
|
Soltanzadeh M, Blanchard S, Soucy JP, Benali H. Lactate's behavioral switch in the brain: An in-silico model. J Theor Biol 2023; 575:111648. [PMID: 37865309 DOI: 10.1016/j.jtbi.2023.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/26/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Emerging evidence emphasizes lactate's involvement in both physiological processes (energy metabolism, memory, etc.) and disease (traumatic brain injury, epilepsy, etc.). Furthermore, the usefulness of mathematical modeling in deciphering underlying dynamics of the brain to investigate lactate roles and mechanisms of action has been well established. Here, we analyze a novel mathematical model of brain lactate exchanges between four compartments: neurons, astrocytes, capillaries, and extracellular space. A system of four ordinary differential equations is proposed to explain interactions between these compartments. We first optimize and analyze the model's parameters under normal, resting state conditions, and then use it to simulate changes linked to elevated arterial lactate. Our results show that even though increased arterial lactate results in increased uptake by astrocytes and release to the extracellular space, it cannot strongly recover the initial drop in neuronal lactate concentration. Also, we show that the direction of lactate transport between the compartments is influenced by the maximum astrocyte production rate and the transport rate between astrocytes and extracellular space.
Collapse
Affiliation(s)
- Milad Soltanzadeh
- PERFORM Centre, Concordia University, Montreal, Canada; Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
| | - Solenna Blanchard
- University of Rennes, INSERM, LTSI-UMR 1099, F-35000, Rennes, France
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada; Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Habib Benali
- PERFORM Centre, Concordia University, Montreal, Canada; Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
| |
Collapse
|
8
|
Kotchetkov P, Blakeley N, Lacoste B. Involvement of brain metabolism in neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:67-113. [PMID: 37993180 DOI: 10.1016/bs.irn.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Neurodevelopmental disorders (NDDs) affect a significant portion of the global population and have a substantial social and economic impact worldwide. Most NDDs manifest in early childhood and are characterized by deficits in cognition, communication, social interaction and motor control. Due to a limited understanding of the etiology of NDDs, current treatment options primarily focus on symptom management rather than on curative solutions. Moreover, research on NDDs is problematic due to its reliance on a neurocentric approach. However, recent studies are broadening the scope of research on NDDs, to include dysregulations within a diverse network of brain cell types, including vascular and glial cells. This review aims to summarize studies from the past few decades on potential new contributions to the etiology of NDDs, with a special focus on metabolic signatures of various brain cells. In particular, we aim to convey how the metabolic functions are intimately linked to the onset and/or progression of common NDDs such as autism spectrum disorders, fragile X syndrome, Rett syndrome and Down syndrome.
Collapse
Affiliation(s)
- Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Murai Y, Mori S, Okuda M, Kusuhara S, Kurimoto T, Nakamura M. Effects of Elevated Intraocular Pressure on Retinal Ganglion Cell Density and Expression and Interaction of Retinal Aquaporin 9 and Monocarboxylate Transporters. Ophthalmic Res 2023; 66:1222-1229. [PMID: 37647868 PMCID: PMC10614569 DOI: 10.1159/000533497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Astrocyte-to-neuron lactate shuttle (ANLS) plays an important role in the energy metabolism of neurons, including retinal ganglion cells (RGCs). Aquaporin 9 (AQP9), which is an aquaglyceroporin that can transport lactate, may be involved in ANLS together with monocarboxylate transporters (MCTs) to maintain RGC function and survival. This study aimed to investigate the impact of elevated intraocular pressure (IOP) on AQP9-MCT interaction and RGC survival. METHODS IOP was elevated in Aqp9 knock-out (KO) mice and wild-type (WT) littermates by anterior chamber microbead injection. RGC density was measured by TUBB3 immunostaining on retinal flat mounts. Immunolabeling, immunoblot, and immunoprecipitation were conducted to identify and quantitate expressions of AQP9, MCT1, MCT2, and MCT4 in whole retinas and ganglion cell layer (GCL). RESULTS Aqp9 KO and WT mice had similar RGC density at baseline. Microbead injection increased cumulative IOP by approximately 32% up to 4 weeks, resulting in RGC density loss of 42% and 34% in WT and Aqp9 KO mice, respectively, with no statistical difference. In the retina of WT mice, elevated IOP decreased the amount of AQP9, MCT1, and MCT2 protein and changed the AQP9 immunoreactivity and reduced MCT1 and MCT2 immunoreactivities in GCL. Meanwhile, it decreased MCT1 and increased MCT2 that interact with AQP9, without affecting MCT4 expression. Aqp9 gene deletion increased baseline MCT2 expression in the GCL and counteracted IOP elevation regarding MCT1 and MCT2 expressions. CONCLUSION The compensatory upregulation of MCT1 and MCT2 with Aqp9 gene deletion and ocular hypertension may reflect the need to maintain lactate transport in the retina for RGC survival.
Collapse
Affiliation(s)
- Yusuke Murai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mina Okuda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuji Kurimoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
10
|
Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology 2023; 223:109311. [PMID: 36328064 DOI: 10.1016/j.neuropharm.2022.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Astrocytes are active constituents of the brain that manage ion homeostasis and metabolic support of neurons and directly tune synaptic transmission and plasticity. Astrocytes express all known P2Y receptors. These regulate a multitude of physiological functions such as cell proliferation, Ca2+ signalling, gliotransmitter release and neurovascular coupling. In addition, P2Y receptors are fundamental in the transition of astrocytes into reactive astrocytes, as occurring in many brain disorders such as neurodegenerative diseases, neuroinflammation and epilepsy. This review summarizes the current literature addressing the function of P2Y receptors in astrocytes in the healthy brain as well as in brain diseases.
Collapse
Affiliation(s)
- Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Germany.
| |
Collapse
|
11
|
Köhler S, Winkler U, Junge T, Lippmann K, Eilers J, Hirrlinger J. Gray and white matter astrocytes differ in basal metabolism but respond similarly to neuronal activity. Glia 2023; 71:229-244. [PMID: 36063073 DOI: 10.1002/glia.24268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes are a heterogeneous population of glial cells in the brain, which adapt their properties to the requirements of the local environment. Two major groups of astrocytes are protoplasmic astrocytes residing in gray matter as well as fibrous astrocytes of white matter. Here, we compared the energy metabolism of astrocytes in the cortex and corpus callosum as representative gray matter and white matter regions, in acute brain slices taking advantage of genetically encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP. Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+ redox ratio, and a lower cytosolic concentration of ATP compared to cortical astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased extracellular concentrations of K+ , typical correlates of neuronal activity, induced a more reduced NADH/NAD+ redox ratio. While application of glutamate decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+ and glutamate was observed in astrocytes in the corpus callosum. Finally, strong intrinsic neuronal activity provoked by application of bicuculline and withdrawal of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state as well as a slight reduction of [ATP] in gray and white matter astrocytes. In summary, the metabolism of astrocytes in cortex and corpus callosum shows distinct basal properties, but qualitatively similar responses to neuronal activity, probably reflecting the different environment and requirements of these brain regions.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Tabea Junge
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Kristina Lippmann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
12
|
Monocarboxylate transporters (MCTs) in skeletal muscle and hypothalamus of less or more physically active mice exposed to aerobic training. Life Sci 2022; 307:120872. [PMID: 35948119 DOI: 10.1016/j.lfs.2022.120872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
AIMS The synthesis of monocarboxylate transporters (MCTs) can be stimulated by aerobic training, but few is known about this effect associated or not with non-voluntary daily activities. We examined the effect of eight weeks of aerobic training in MCTs on the skeletal muscle and hypothalamus of less or more physically active mice, which can be achieved by keeping them in two different housing models, a small cage (SC) and a large cage (LC). MAIN METHODS Forty male C57BL/6J mice were divided into four groups. In each housing condition, mice were divided into untrained (N) and trained (T). For 8 weeks, the trained animals ran on a treadmill with an intensity equivalent to 80 % of the individual critical velocity (CV), considered aerobic capacity, 40 min/day, 5 times/week. Protein expression of MCTs was determined with fluorescence Western Blot. KEY FINDINGS T groups had higher hypothalamic MCT2 than N groups (ANOVA, P = 0.032). Significant correlations were detected between hypothalamic MCT2 and CV. There was a difference between the SC and LC groups in relation to MCT4 in the hypothalamus (LC > SC, P = 0.044). Trained mice housed in LC (but not SC-T) exhibited a reduction in MCT4 muscle (P < 0.001). SIGNIFICANCE Our findings indicate that aerobically trained mice increased the expression of MCT2 protein in the hypothalamus, which has been related to the uptake of lactate in neurons. Changes in energy metabolism in physically active mice (kept in LC) may be related to upregulation of hypothalamic MCT4, probably participating in the regulation of satiety.
Collapse
|
13
|
Das M, Ajit K, Mate N, Roy R, Haldar C, Gupta L, Banerjee A. Lactate-Dependent Cross-Talk Between Astrocyte and GnRH-I Neurons in Hypothalamus of Aged Brain: Decreased GnRH-I Transcription. Reprod Sci 2022; 29:2546-2564. [PMID: 35138586 DOI: 10.1007/s43032-021-00814-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022]
Abstract
GnRH-I produced by hypothalamic neurosecretory cells is considered a master regulator of mammalian reproduction. Although GnRH-I transcription is well studied, the effect of ageing on transcriptional regulation of GnRH-I has not yet been explored. Here, we elucidate the effects of ageing on the metabolic environment like lactate level and TNF-α and how these affect GnRH-I transcription. Using pathway analysis of transcriptomic data, we found that lactate is upregulated in ageing astrocytes due to the downregulation of cellular respiration pathways possibly resulting in greater pyruvate concentration for lactate production. This lactate could then be shuttled into neurons where it would affect GnRH-I transcription. We showed that supra-physiological level of lactate in young mouse brain can mimic metabolic disturbances in the old brain and cause downregulation in GnRH-I transcription at a young age. In particular, we found upregulation of GnRH-I repressors in the young brain treated with high levels of lactate similar to old brain. Hence, this confirmed that aged metabolic environment can affect GnRH-I transcription even in the young brain. Further downstream analysis using the TRUST database showed NF-Kb signalling which lies downstream of both lactate and TNF-α as being capable of upregulating GnRH-I repressors. Since NF-Kb signalling has been shown in our study as well as others to be induced by TNF-α during ageing, it is likely that GnRH-I transcriptional regulation is mediated through these pathways. Thus, we formed a model for explaining the downregulation of GnRH-I transcription during ageing through differential expression of its TFs in an aged metabolic environment.
Collapse
Affiliation(s)
- Moitreyi Das
- Department of Zoology, Goa University, Taleigao Plateau, Goa, India.
| | - Kamal Ajit
- Department of Biological Sciences, KK Birla, BITS Pilani, Goa Campus, Zuarinagar, Goa, India
| | - Nayan Mate
- Department of Biological Sciences, KK Birla, BITS Pilani, Goa Campus, Zuarinagar, Goa, India
| | - Ramaballav Roy
- Department of Zoology, Goa University, Taleigao Plateau, Goa, India
| | | | - Lalita Gupta
- Department of Zoology, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Arnab Banerjee
- Department of Biological Sciences, KK Birla, BITS Pilani, Goa Campus, Zuarinagar, Goa, India.
| |
Collapse
|
14
|
Benaroya H. Brain energetics, mitochondria, and traumatic brain injury. Rev Neurosci 2021; 31:363-390. [PMID: 32004148 DOI: 10.1515/revneuro-2019-0086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
We review current thinking about, and draw connections between, brain energetics and metabolism, and between mitochondria and traumatic brain injury. Energy is fundamental to proper brain function. Its creation in a useful form for neurons and glia, and consistently in response to the brain's high energy needs, is critical for physiological pathways. Dysfunction in the mechanisms of energy production is at the center of neurological and neuropsychiatric pathologies. We examine the connections between energetics and mitochondria - the organelle responsible for almost all the energy production in the cell - and how secondary pathologies in traumatic brain injury result from energetic dysfunction. This paper interweaves these topics, a necessity since they are closely coupled, and identifies where there exist a lack of understanding and of data. In addition to summarizing current thinking in these disciplines, our goal is to suggest a framework for the mathematical modeling of mechanisms and pathways based on optimal energetic decisions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Smolič T, Tavčar P, Horvat A, Černe U, Halužan Vasle A, Tratnjek L, Kreft ME, Scholz N, Matis M, Petan T, Zorec R, Vardjan N. Astrocytes in stress accumulate lipid droplets. Glia 2021; 69:1540-1562. [PMID: 33609060 PMCID: PMC8248329 DOI: 10.1002/glia.23978] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
When the brain is in a pathological state, the content of lipid droplets (LDs), the lipid storage organelles, is increased, particularly in glial cells, but rarely in neurons. The biology and mechanisms leading to LD accumulation in astrocytes, glial cells with key homeostatic functions, are poorly understood. We imaged fluorescently labeled LDs by microscopy in isolated and brain tissue rat astrocytes and in glia-like cells in Drosophila brain to determine the (sub)cellular localization, mobility, and content of LDs under various stress conditions characteristic for brain pathologies. LDs exhibited confined mobility proximal to mitochondria and endoplasmic reticulum that was attenuated by metabolic stress and by increased intracellular Ca2+ , likely to enhance the LD-organelle interaction imaged by electron microscopy. When de novo biogenesis of LDs was attenuated by inhibition of DGAT1 and DGAT2 enzymes, the astrocyte cell number was reduced by ~40%, suggesting that in astrocytes LD turnover is important for cell survival and/or proliferative cycle. Exposure to noradrenaline, a brain stress response system neuromodulator, and metabolic and hypoxic stress strongly facilitated LD accumulation in astrocytes. The observed response of stressed astrocytes may be viewed as a support for energy provision, but also to be neuroprotective against the stress-induced lipotoxicity.
Collapse
Affiliation(s)
- Tina Smolič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Tavčar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Urška Černe
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Halužan Vasle
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Maja Matis
- Medical Faculty, Institute of Cell Biology, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
16
|
Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites. Cell Rep 2021; 34:108642. [PMID: 33472059 DOI: 10.1016/j.celrep.2020.108642] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Thalamic astrocytes and oligodendrocytes are coupled via gap junctions and form panglial networks. Here, we show that these networks have a key role in energy supply of neurons. Filling an astrocyte or an oligodendrocyte in acute slices with glucose or lactate is sufficient to rescue the decline of stimulation-induced field post-synaptic potential (fPSP) amplitudes during extracellular glucose deprivation (EGD). In mice lacking oligodendroglial coupling, loading an astrocyte with glucose does not rescue the EGD-mediated loss of fPSPs. Monocarboxylate and glucose transporters are required for rescuing synaptic activity during EGD. In mice deficient in astrocyte coupling, filling of an oligodendrocyte with glucose does not rescue fPSPs during EGD. Our results demonstrate that, in the thalamus, astrocytes and oligodendrocytes are jointly engaged in delivering energy substrates for sustaining neuronal activity and suggest that oligodendrocytes exert their effect mainly by assisting astrocytes in metabolite transfer to the postsynapse.
Collapse
|
17
|
Köhler S, Schmidt H, Fülle P, Hirrlinger J, Winkler U. A Dual Nanosensor Approach to Determine the Cytosolic Concentration of ATP in Astrocytes. Front Cell Neurosci 2020; 14:565921. [PMID: 33192312 PMCID: PMC7530325 DOI: 10.3389/fncel.2020.565921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Adenosine triphosphate (ATP) is the central energy carrier of all cells and knowledge on the dynamics of the concentration of ATP ([ATP]) provides important insights into the energetic state of a cell. Several genetically encoded fluorescent nanosensors for ATP were developed, which allow following the cytosolic [ATP] at high spatial and temporal resolution using fluorescence microscopy. However, to calibrate the fluorescent signal to [ATP] has remained challenging. To estimate basal cytosolic [ATP] ([ATP]0) in astrocytes, we here took advantage of two ATP nanosensors of the ATeam-family (ATeam1.03; ATeam1.03YEMK) with different affinities for ATP. Altering [ATP] by external stimuli resulted in characteristic pairs of signal changes of both nanosensors, which depend on [ATP]0. Using this dual nanosensor strategy and epifluorescence microscopy, [ATP]0 was estimated to be around 1.5 mM in primary cultures of cortical astrocytes from mice. Furthermore, in astrocytes in acutely isolated cortical slices from mice expressing both nanosensors after stereotactic injection of AAV-vectors, 2-photon microscopy revealed [ATP]0 of 0.7 mM to 1.3 mM. Finally, the change in [ATP] induced in the cytosol of cultured cortical astrocytes by application of azide, glutamate, and an increased extracellular concentration of K+ were calculated as −0.50 mM, −0.16 mM, and 0.07 mM, respectively. In summary, the dual nanosensor approach adds another option for determining the concentration of [ATP] to the increasing toolbox of fluorescent nanosensors for metabolites. This approach can also be applied to other metabolites when two sensors with different binding properties are available.
Collapse
Affiliation(s)
- Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Paula Fülle
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Wilhelm-Ostwald-Schule, Gymnasium der Stadt Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Lactate induces synapse-specific potentiation on CA3 pyramidal cells of rat hippocampus. PLoS One 2020; 15:e0242309. [PMID: 33180836 PMCID: PMC7660554 DOI: 10.1371/journal.pone.0242309] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Neuronal activity within the physiologic range stimulates lactate production that, via metabolic pathways or operating through an array of G-protein-coupled receptors, regulates intrinsic excitability and synaptic transmission. The recent discovery that lactate exerts a tight control of ion channels, neurotransmitter release, and synaptic plasticity-related intracellular signaling cascades opens up the possibility that lactate regulates synaptic potentiation at central synapses. Here, we demonstrate that extracellular lactate (1–2 mM) induces glutamatergic potentiation on the recurrent collateral synapses of hippocampal CA3 pyramidal cells. This potentiation is independent of lactate transport and further metabolism, but requires activation of NMDA receptors, postsynaptic calcium accumulation, and activation of a G-protein-coupled receptor sensitive to cholera toxin. Furthermore, perfusion of 3,5- dihydroxybenzoic acid, a lactate receptor agonist, mimics this form of synaptic potentiation. The transduction mechanism underlying this novel form of synaptic plasticity requires G-protein βγ subunits, inositol-1,4,5-trisphosphate 3-kinase, PKC, and CaMKII. Activation of these signaling cascades is compartmentalized in a synapse-specific manner since lactate does not induce potentiation at the mossy fiber synapses of CA3 pyramidal cells. Consistent with this synapse-specific potentiation, lactate increases the output discharge of CA3 neurons when recurrent collaterals are repeatedly activated during lactate perfusion. This study provides new insights into the cellular mechanisms by which lactate, acting via a membrane receptor, contributes to the memory formation process.
Collapse
|
19
|
Mori S, Kurimoto T, Miki A, Maeda H, Kusuhara S, Nakamura M. Aqp9 Gene Deletion Enhances Retinal Ganglion Cell (RGC) Death and Dysfunction Induced by Optic Nerve Crush: Evidence that Aquaporin 9 Acts as an Astrocyte-to-Neuron Lactate Shuttle in Concert with Monocarboxylate Transporters To Support RGC Function and Survival. Mol Neurobiol 2020; 57:4530-4548. [PMID: 32748371 PMCID: PMC7515957 DOI: 10.1007/s12035-020-02030-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Aquaporin 9 (AQP9) is an aquaglyceroporin that can transport lactate. Accumulating evidence suggests that astrocyte-to-neuron lactate shuttle (ANLS) plays a critical role in energy metabolism in neurons, including retinal ganglion cells (RGCs). To test the hypothesis that AQP9, in concert with monocarboxylate transporters (MCTs), participates in ANLS to maintain function and survival of RGCs, Aqp9-null mice and wild-type (WT) littermates were subjected to optic nerve crush (ONC) with or without intravitreal injection of an MCT2 inhibitor. RGC density was similar between the Aqp9-null mice and WT mice without ONC, while ONC resulted in significantly more RGC density reduction in the Aqp9-null mice than in the WT mice at day 7. Positive scotopic threshold response (pSTR) amplitude values were similar between the two groups without ONC, but were significantly more reduced in the Aqp9-null mice than in the WT mice 7days after ONC. MCT2 inhibitor injection accelerated RGC death and pSTR amplitude reduction only in the WT mice with ONC. Immunolabeling revealed that both RGCs and astrocytes expressed AQP9, that ONC predominantly reduced astrocytic AQP9 expression, and that MCTs 1, 2, and 4 were co-localized with AQP9 at the ganglion cell layer. These retinal MCTs were also co-immunoprecipitated with AQP9 in the WT mice. ONC decreased the co-immunoprecipitation of MCTs 1 and 4, but did not impact co-immunoprecipitation of MCT2. Retinal glucose transporter 1 expression was increased in Aqp9-null mice. Aqp9 gene deletion reduced and increased the intraretinal L-lactate and D-glucose concentrations, respectively. Results suggest that AQP9 acts as the ANLS to maintain function and survival of RGCs.
Collapse
Affiliation(s)
- Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuji Kurimoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Akiko Miki
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hidetaka Maeda
- Maeda Eye Clinic, 1-1-1, Uchihonmachi, Chuo-ku, Osaka, 540-0012, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
20
|
Klein M, Lohr C, Droste D. Age-Dependent Heterogeneity of Murine Olfactory Bulb Astrocytes. Front Aging Neurosci 2020; 12:172. [PMID: 32581775 PMCID: PMC7296154 DOI: 10.3389/fnagi.2020.00172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Astrocytes have a high impact on the structure of the central nervous system, as they control neural activity, development, and plasticity. Heterogeneity of astrocytes has been shown before, but so far only a few studies have demonstrated heterogeneous morphology of astrocytes concerning aging. In this study, we examined morphologic differences of astrocyte subpopulations in adult mice and the progression of these differences with age. We surveyed astrocytes in olfactory bulb slices of mice aged 3 months, 1 year and 2 years (three animals each age group), based on their appearance in anti-GFAP immunostaining. Based on this data we established three different types of astrocytes: type I (stellate), type II (elliptic), and type III (squid-like). We found that with the advanced age of the mice, astrocytes grow in size and complexity. Major changes occurred between the ages of 3 months and 1 year, while between 1 and 2 years no significant development in cell size and complexity could be detected. Our results show that astrocytes in the olfactory bulb are heterogeneous and undergo morphological transformation until late adolescence but not upon senescence. Structural plasticity is further substantiated by the expression of vimentin in some astrocyte processes in all age groups.
Collapse
Affiliation(s)
- Marcel Klein
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Damian Droste
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
21
|
Arce-Molina R, Cortés-Molina F, Sandoval PY, Galaz A, Alegría K, Schirmeier S, Barros LF, San Martín A. A highly responsive pyruvate sensor reveals pathway-regulatory role of the mitochondrial pyruvate carrier MPC. eLife 2020; 9:53917. [PMID: 32142409 PMCID: PMC7077990 DOI: 10.7554/elife.53917] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/05/2020] [Indexed: 11/25/2022] Open
Abstract
Mitochondria generate ATP and building blocks for cell growth and regeneration, using pyruvate as the main substrate. Here we introduce PyronicSF, a user-friendly GFP-based sensor of improved dynamic range that enables real-time subcellular quantitation of mitochondrial pyruvate transport, concentration and flux. We report that cultured mouse astrocytes maintain mitochondrial pyruvate in the low micromolar range, below cytosolic pyruvate, which means that the mitochondrial pyruvate carrier MPC is poised to exert ultrasensitive control on the balance between respiration and anaplerosis/gluconeogenesis. The functionality of the sensor in living tissue is demonstrated in the brain of Drosophila melanogaster larvae. Mitochondrial subpopulations are known to coexist within a given cell, which differ in their morphology, mobility, membrane potential, and vicinity to other organelles. The present tool can be used to investigate how mitochondrial diversity relates to metabolism, to study the role of MPC in disease, and to screen for small-molecule MPC modulators.
Collapse
Affiliation(s)
- Robinson Arce-Molina
- Centro de Estudios Científicos-CECs, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Alex Galaz
- Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Karin Alegría
- Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, University of Münster, Münster, Germany
| | | | | |
Collapse
|
22
|
Scheib J, Byrd-Jacobs C. Zebrafish Astroglial Morphology in the Olfactory Bulb Is Altered With Repetitive Peripheral Damage. Front Neuroanat 2020; 14:4. [PMID: 32116575 PMCID: PMC7026507 DOI: 10.3389/fnana.2020.00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Zebrafish do not possess the typical astrocytes that are found in mammalian systems. In some brain areas, this teleost has radial glia that appears to perform astrocyte-like functions, but these cells have not been described in the zebrafish olfactory bulb. Mammalian astrocytes facilitate neuroplasticity and undergo astrogliosis after insult. The role of these cells in the zebrafish olfactory system after the damage has been poorly explored. This is important to examine because zebrafish have a high degree of neuroplasticity and the olfactory bulb is a brain area renowned for plasticity. The goal of this study was to explore the potential role of zebrafish astrocytes in the olfactory bulb damage response, with a goal to exploit the high level of regeneration in this system. We found that anti-glial fibrillary acidic protein (GFAP) labels numerous processes in the zebrafish olfactory bulb that are concentrated in the nerve and glomerular layers (GL) and do not show radial glial-like morphology. We propose to term this astroglia, since their location and response to damage suggests that they are similar in function to the mammalian astrocyte. To induce repetitive peripheral damage to the olfactory organ, a wax plug was inserted into the nasal cavity of adult zebrafish every 12 h for up to 7 days; this crushes the olfactory organ and leads to degradation of olfactory sensory neuron axons that project to the olfactory bulb. After 1 day, we found a significant increase in astroglial labeling in the affected bulb when compared to the internal control bulb and astroglial branches appeared to increase in number and size. By the third day of plug insertions there was no significant difference in astroglial labeling between the affected bulb and the internal control bulb. These data lead us to believe that astrogliosis does occur in the presence of peripheral damage, but this process attenuates within 1 week and no glial scar is evident upon recovery from the damage. Further exploration of astrocytes in zebrafish, in particular this apparent attenuation of astrogliosis, has the potential to elucidate key differences in glial function between teleosts and mammals.
Collapse
Affiliation(s)
- Jackson Scheib
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Christine Byrd-Jacobs
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
23
|
Intertwined ROS and Metabolic Signaling at the Neuron-Astrocyte Interface. Neurochem Res 2020; 46:23-33. [PMID: 31989468 DOI: 10.1007/s11064-020-02965-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Metabolism and redox signalling share critical nodes in the nervous system. In the last years, a series of major findings have challenged the current vision on how neural reactive oxygen species (ROS) are produced and handled in the nervous system. Once regarded as deleterious by-products, ROS are now shown to be essential for a metabolic and redox crosstalk. In turn, this coupling defines neural viability and function to control behaviour or leading to neurodegeneration when compromised. Findings like a different assembly of mitochondrial respiratory supercomplexes in neurons and astrocytes stands behind a divergent production of ROS in either cell type, more prominent in astrocytes. ROS levels are however tightly controlled by an antioxidant machinery in astrocytes, assumed as more efficient than that of neurons, to regulate redox signalling. By exerting this control in ROS abundance, metabolic functions are finely tuned in both neural cells. Further, a higher engagement of mitochondrial respiration and oxidative function in neurons, underpinned by redox equivalents supplied from the pentose phosphate pathway and from glia, differs from the otherwise strong glycolytic capacity of astrocytes. Here, we recapitulate major findings on how ROS and metabolism differ between neural cells but merge to define reciprocal signalling pathways, ultimately defining neural function and fate.
Collapse
|
24
|
Kapogiannis D, Avgerinos KI. Brain glucose and ketone utilization in brain aging and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:79-110. [PMID: 32739015 PMCID: PMC9989941 DOI: 10.1016/bs.irn.2020.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To meet its high energy demands, the brain mostly utilizes glucose. However, the brain has evolved to exploit additional fuels, such as ketones, especially during prolonged fasting. With aging and neurodegenerative diseases (NDDs), the brain becomes inefficient at utilizing glucose due to changes in glia and neurons that involve glucose transport, glycolytic and Krebs cycle enzyme activities, and insulin signaling. Positron emission tomography and magnetic resonance spectroscopy studies have identified glucose metabolism abnormalities in aging, Alzheimer's disease (AD) and other NDDs in vivo. Despite glucose hypometabolism, brain cells can utilize ketones efficiently, thereby providing a rationale for the development of therapeutic ketogenic interventions in AD and other NDDs. This review compares available ketogenic interventions and discusses the potential of the potent oral Ketone Ester for future therapeutic use in AD and other NDDs characterized by inefficient glucose utilization.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - Konstantinos I Avgerinos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
25
|
Patsatzis DG, Tingas EA, Goussis DA, Sarathy SM. Computational singular perturbation analysis of brain lactate metabolism. PLoS One 2019; 14:e0226094. [PMID: 31846455 PMCID: PMC6917278 DOI: 10.1371/journal.pone.0226094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
Lactate in the brain is considered an important fuel and signalling molecule for neuronal activity, especially during neuronal activation. Whether lactate is shuttled from astrocytes to neurons or from neurons to astrocytes leads to the contradictory Astrocyte to Neuron Lactate Shuttle (ANLS) or Neuron to Astrocyte Lactate Shuttle (NALS) hypotheses, both of which are supported by extensive, but indirect, experimental evidence. This work explores the conditions favouring development of ANLS or NALS phenomenon on the basis of a model that can simulate both by employing the two parameter sets proposed by Simpson et al. (J Cereb. Blood Flow Metab., 27:1766, 2007) and Mangia et al. (J of Neurochemistry, 109:55, 2009). As most mathematical models governing brain metabolism processes, this model is multi-scale in character due to the wide range of time scales characterizing its dynamics. Therefore, we utilize the Computational Singular Perturbation (CSP) algorithm, which has been used extensively in multi-scale systems of reactive flows and biological systems, to identify components of the system that (i) generate the characteristic time scale and the fast/slow dynamics, (ii) participate to the expressions that approximate the surfaces of equilibria that develop in phase space and (iii) control the evolution of the process within the established surfaces of equilibria. It is shown that a decisive factor on whether the ANLS or NALS configuration will develop during neuronal activation is whether the lactate transport between astrocytes and interstitium contributes to the fast dynamics or not. When it does, lactate is mainly generated in astrocytes and the ANLS hypothesis is realised, while when it doesn't, lactate is mainly generated in neurons and the NALS hypothesis is realised. This scenario was tested in exercise conditions.
Collapse
Affiliation(s)
- Dimitris G. Patsatzis
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
- Department of Mechanics, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Efstathios-Al. Tingas
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
- Perth College, University of the Highlands and Islands, Crieff Rd, Perth PH1 2NX, United Kingdom
| | - Dimitris A. Goussis
- Department of Mechanical Engineering, Khalifa University of Science, Technology and Research (KUSTAR), Abu Dhabi, United Arab Emirates
| | - S. Mani Sarathy
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
| |
Collapse
|
26
|
Contreras-Baeza Y, Sandoval PY, Alarcón R, Galaz A, Cortés-Molina F, Alegría K, Baeza-Lehnert F, Arce-Molina R, Guequén A, Flores CA, San Martín A, Barros LF. Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem 2019; 294:20135-20147. [PMID: 31719150 DOI: 10.1074/jbc.ra119.009093] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/09/2019] [Indexed: 11/06/2022] Open
Abstract
Monocarboxylate transporter 4 (MCT4) is an H+-coupled symporter highly expressed in metastatic tumors and at inflammatory sites undergoing hypoxia or the Warburg effect. At these sites, extracellular lactate contributes to malignancy and immune response evasion. Intriguingly, at 30-40 mm, the reported Km of MCT4 for lactate is more than 1 order of magnitude higher than physiological or even pathological lactate levels. MCT4 is not thought to transport pyruvate. Here we have characterized cell lactate and pyruvate dynamics using the FRET sensors Laconic and Pyronic. Dominant MCT4 permeability was demonstrated in various cell types by pharmacological means and by CRISPR/Cas9-mediated deletion. Respective Km values for lactate uptake were 1.7, 1.2, and 0.7 mm in MDA-MB-231 cells, macrophages, and HEK293 cells expressing recombinant MCT4. In MDA-MB-231 cells MCT4 exhibited a Km for pyruvate of 4.2 mm, as opposed to >150 mm reported previously. Parallel assays with the pH-sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) indicated that previous Km estimates based on substrate-induced acidification were severely biased by confounding pH-regulatory mechanisms. Numerical simulation using revised kinetic parameters revealed that MCT4, but not the related transporters MCT1 and MCT2, endows cells with the ability to export lactate in high-lactate microenvironments. In conclusion, MCT4 is a high-affinity lactate transporter with physiologically relevant affinity for pyruvate.
Collapse
Affiliation(s)
| | - Pamela Y Sandoval
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | - Romina Alarcón
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile.,Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Alex Galaz
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | | | - Karin Alegría
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | - Felipe Baeza-Lehnert
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile.,Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Robinson Arce-Molina
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile.,Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Anita Guequén
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | - Carlos A Flores
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | | | - L Felipe Barros
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| |
Collapse
|
27
|
Beiersdorfer A, Wolburg H, Grawe J, Scheller A, Kirchhoff F, Lohr C. Sublamina-specific organization of the blood brain barrier in the mouse olfactory nerve layer. Glia 2019; 68:631-645. [PMID: 31696993 DOI: 10.1002/glia.23744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023]
Abstract
Astrocytes constitute the main glial component of the mammalian blood brain barrier (BBB). However, in the olfactory bulb (OB), the olfactory nerve layer (ONL) is almost devoid of astrocytes, raising the question which glial cells are part of the BBB. We used mice expressing EGFP in astrocytes and tdTomato in olfactory ensheathing cells (OECs), a specialized type of glial cells in the ONL, to unequivocally identify both glial cell types and investigate their contribution to the BBB in the olfactory bulb. OECs were located exclusively in the ONL, while somata of astrocytes were located in deeper layers and extended processes in the inner sublamina of the ONL. These processes surrounded blood vessels and contained aquaporin-4, an astrocytic protein enriched at the BBB. In the outer sublamina of the ONL, in contrast, blood vessels were surrounded by aquaporin-4-negative processes of OECs. Transcardial perfusion of blood vessels with lanthanum and subsequent visualization by electron microscopy showed that blood vessels enwrapped by OECs possessed intact tight junctions. In acute olfactory bulb preparations, injection of fluorescent glucose 6-NBDG into blood vessels resulted in labeling of OECs, indicating glucose transport from the perivascular space into OECs. In addition, Ca2+ transients in OECs in the outer sublamina evoked vasoconstriction, whereas Ca2+ signaling in OECs of the inner sublamina had no effect on adjacent blood vessels. Our results demonstrate that the BBB in the inner sublamina of the ONL contains astrocytes, while in the outer ONL OECs are part of the BBB.
Collapse
Affiliation(s)
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Janine Grawe
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
28
|
Wan W, He C, Du C, Wang Y, Wu S, Wang T, Zou R. Effect of ILK on small-molecule metabolism of human periodontal ligament fibroblasts with mechanical stretching. J Periodontal Res 2019; 55:229-237. [PMID: 31630411 DOI: 10.1111/jre.12706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mechanical stimuli can cause periodontal tissue reconstruction. Studies have found that changes in metabolites can be the terminal effect of integrin-mediated mechanical signaling. As a key kinase in integrin regulation, integrin-linked kinase (ILK) mediates mechanical signal transduction, which may contribute to metabolite changes. Defining the components of small-molecule metabolites can optimize mechanical stimuli and periodontal tissue reconstruction. Our purpose is to detect the effect of ILK-mediated mechanical signaling on intracellular small-molecule metabolites (amino acids and organic acids) in human periodontal ligament fibroblasts (HPDLFs). METHODS Primary HPDLFs were isolated by enzyme digestion method. Tensile stresses were applied on HPDLFs in vitro using a Flexcell system. ILK gene in HPDLFs was knocked down by RNA interference (RNAi). Twenty common amino acids and seven organic acids in HPDLFs were analyzed by gas chromatography/mass spectrometry technique. RESULTS Five amino acids (ie, alanine, glutamine, glutamate, glycine, and threonine) and three organic acids (ie, pyruvate, lactate, and citric acid) were found to be changed remarkably after mechanical stretching. In addition, baseline levels of four amino acids (ie, glutamate, glutamine, threonine, and glycine) and two organic acids (ie, lactate and citric acid) were significantly different in ILK knockdown compared with wild-type HPDLFs. CONCLUSION This study suggests that five amino acids (ie, alanine, glutamine, glutamate, glycine, and threonine) and three organic acids (ie, pyruvate, lactate, and citric acid) may act as cellular mediators for mechanical signals in HPDLFs. Among them, four amino acids (ie, glutamate, glutamine, threonine, and glycine) and two organic acids (ie, lactate and citric acid) may be closely linked to ILK.
Collapse
Affiliation(s)
- Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chuan He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | | | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shiyang Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tairan Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
29
|
Hu Y, Deng J, Tian K, Yang W, Luo N, Lian Y, Gan L, Tang X, Luo H, Zhang J, Wang X. MiR‐8‐3p regulates hyperthermia‐induced lactate secretion by targeting PPP2R5B in boar Sertoli cells. Mol Reprod Dev 2019; 86:1720-1730. [PMID: 31489750 DOI: 10.1002/mrd.23265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Yu Hu
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and TechnologySouthwest University Chongqing China
| | - Jie Deng
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and TechnologySouthwest University Chongqing China
| | - Ke Tian
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and TechnologySouthwest University Chongqing China
| | - Wei‐Rong Yang
- Institute of Ecological ResearchChina West Normal University Nanchong China
| | - Nan‐Jian Luo
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and TechnologySouthwest University Chongqing China
| | - Yu Lian
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and TechnologySouthwest University Chongqing China
| | - Lu Gan
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and TechnologySouthwest University Chongqing China
| | - Xing‐Yi Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and TechnologySouthwest University Chongqing China
| | - Hong‐Yan Luo
- College of Resource and EnvironmentSouthwest University Chongqing China
| | - Jiao‐Jiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and TechnologySouthwest University Chongqing China
| | - Xian‐Zhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and TechnologySouthwest University Chongqing China
| |
Collapse
|
30
|
García-Cañaveras JC, Chen L, Rabinowitz JD. The Tumor Metabolic Microenvironment: Lessons from Lactate. Cancer Res 2019; 79:3155-3162. [PMID: 31171526 DOI: 10.1158/0008-5472.can-18-3726] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/15/2019] [Accepted: 04/10/2019] [Indexed: 01/15/2023]
Abstract
The extracellular milieu of tumors is generally assumed to be immunosuppressive due in part to metabolic factors. Here, we review methods for probing the tumor metabolic microenvironment. In parallel, we consider the resulting available evidence, with a focus on lactate, which is the most strongly increased metabolite in bulk tumors. Limited microenvironment concentration measurements suggest depletion of glucose and modest accumulation of lactate (less than 2-fold). Isotope tracer measurements show rapid lactate exchange between the tumor and circulation. Such exchange is catalyzed by MCT transporters, which cotransport lactate and protons (H+). Rapid lactate exchange seems at odds with tumor lactate accumulation. We propose a potential resolution to this paradox. Because of the high pH of tumor cells relative to the microenvironment, H+-coupled transport by MCTs tends to drive lactate from the interstitium into tumor cells. Accordingly, lactate may accumulate preferentially in tumor cells, not the microenvironment. Thus, although they are likely subject to other immunosuppressive metabolic factors, tumor immune cells may not experience a high lactate environment. The lack of clarity regarding microenvironmental lactate highlights the general need for careful metabolite measurements in the tumor extracellular milieu.
Collapse
Affiliation(s)
- Juan C García-Cañaveras
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Li Chen
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Joshua D Rabinowitz
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey.
| |
Collapse
|
31
|
Yuan Y, Liu X, Wan J, Wong J, Bedwell AA, Persohn SA, Shen C, Fishbein MC, Chen LS, Chen Z, Everett TH, Territo PR, Chen PS. Subcutaneous nerve stimulation for rate control in ambulatory dogs with persistent atrial fibrillation. Heart Rhythm 2019; 16:1383-1391. [PMID: 31150819 DOI: 10.1016/j.hrthm.2019.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Subcutaneous nerve stimulation (ScNS) damages the stellate ganglion and improves rhythm control of atrial fibrillation (AF) in ambulatory dogs. OBJECTIVE The purpose of this study was to test the hypothesis that thoracic ScNS can improve rate control in persistent AF. METHODS We created persistent AF in 13 dogs and randomly assigned them to ScNS (n = 6) and sham control (n = 7) groups. 18F-2-Fluoro-2-deoxyglucose positron emission tomography/magnetic resonance imaging of the brain stem was performed at baseline and at the end of the study. RESULTS The average stellate ganglion nerve activity reduced from 4.00 ± 1.68 μV after the induction of persistent AF to 1.72 ± 0.42 μV (P = .032) after ScNS. In contrast, the average stellate ganglion nerve activity increased from 3.01 ± 1.26 μV during AF to 5.52 ± 2.69 μV after sham stimulation (P = .023). The mean ventricular rate during persistent AF reduced from 149 ± 36 to 84 ± 16 beats/min (P = .011) in the ScNS group, but no changes were observed in the sham control group. The left ventricular ejection fraction remained unchanged in the ScNS group but reduced significantly in the sham control group. Immunostaining showed damaged ganglion cells in bilateral stellate ganglia and increased brain stem glial cell reaction in the ScNS group but not in the control group. The 18F-2-fluoro-2-deoxyglucose uptake in the pons and medulla was significantly (P = .011) higher in the ScNS group than the sham control group at the end of the study. CONCLUSION Thoracic ScNS causes neural remodeling in the brain stem and stellate ganglia, controls the ventricular rate, and preserves the left ventricular ejection fraction in ambulatory dogs with persistent AF.
Collapse
Affiliation(s)
- Yuan Yuan
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Liu
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Juyi Wan
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiothoracic Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Johnson Wong
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda A Bedwell
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Scott A Persohn
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Changyu Shen
- Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Lan S Chen
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhenhui Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas H Everett
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Peng-Sheng Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
32
|
Hackett MJ, Hollings A, Majimbi M, Brook E, Cochran B, Giles C, Lam V, Nesbit M, Rye KA, Mamo JCL, Takechi R. Multimodal Imaging Analyses of Brain Hippocampal Formation Reveal Reduced Cu and Lipid Content and Increased Lactate Content in Non-Insulin-Dependent Diabetic Mice. ACS Chem Neurosci 2019; 10:2533-2540. [PMID: 30855947 DOI: 10.1021/acschemneuro.9b00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-insulin-dependent diabetes mellitus (NIDDM) is reported to increase the risk of cognitive impairment and dementia. However, the underlying mechanisms are not fully understood. While the brain homeostasis of metals and lipids is pivotal to maintaining energy metabolism and redox homeostasis for healthy brain function, no studies have reported hippocampal metal and biochemical changes in NIDDM. Therefore, we here utilized direct spectroscopic imaging to reveal the elemental distribution within the hippocampal subregions of an established murine model of NIDDM, db/db mice. In 26-week-old insulin resistant db/db mice, X-ray fluorescence microscopy revealed that the Cu content within the dentate gyrus and CA3 was significantly greater than that of the age-matched nondiabetic control mice. In addition, Fourier transform infrared (FTIR) spectroscopy analysis indicated a significant increase in the abundance of lactate within the corpus callosum (CC), dentate gyrus, CA1, and CA3 regions of diabetic db/db mice compared to that of the control, indicating altered energy metabolism. FTIR analysis also showed a significant decrease in the level of lipid methylene and ester within the CC of db/db mice. Furthermore, immunomicroscopy analyses demonstrated the increase in the level of glial fibrillary acidic protein expression and peri-vascular extravasation of IgG, indicating astrogliosis and blood-brain barrier dysfunction, respectively. These data suggest that astrogliosis-induced alterations in the supply of Cu, lipids, and energy substrates may be involved in the mechanisms of NIDDM-associated cognitive decline.
Collapse
Affiliation(s)
- Mark J. Hackett
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Ashley Hollings
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Maimuna Majimbi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Emily Brook
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Blake Cochran
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
33
|
Rotermund N, Schulz K, Hirnet D, Lohr C. Purinergic Signaling in the Vertebrate Olfactory System. Front Cell Neurosci 2019; 13:112. [PMID: 31057369 PMCID: PMC6477478 DOI: 10.3389/fncel.2019.00112] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adenosine 5'-triphosphate (ATP) is an ubiquitous co-transmitter in the vertebrate brain. ATP itself, as well as its breakdown products ADP and adenosine are involved in synaptic transmission and plasticity, neuron-glia communication and neural development. Although purinoceptors have been demonstrated in the vertebrate olfactory system by means of histological techniques for many years, detailed insights into physiological properties and functional significance of purinergic signaling in olfaction have been published only recently. We review the current literature on purinergic neuromodulation, neuron-glia interactions and neurogenesis in the vertebrate olfactory system.
Collapse
Affiliation(s)
- Natalie Rotermund
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Kristina Schulz
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Daniela Hirnet
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
34
|
Dakic T, Jevdjovic T, Lakic I, Djurasevic SF, Djordjevic J, Vujovic P. Food For Thought: Short-Term Fasting Upregulates Glucose Transporters in Neurons and Endothelial Cells, But Not in Astrocytes. Neurochem Res 2018; 44:388-399. [PMID: 30460639 DOI: 10.1007/s11064-018-2685-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Our group previously reported that 6-h fasting increased both insulin II mRNA expression and insulin level in rat hypothalamus. Given that insulin effects on central glucose metabolism are insufficiently understood, we wanted to examine if the centrally produced insulin affects expression and/or regional distribution of glucose transporters, and glycogen stores in the hypothalamus during short-term fasting. In addition to determining the amount of total and activated insulin receptor, glucose transporters, and glycogen, we also studied distribution of insulin receptors and glucose transporters within the hypothalamus. We found that short-term fasting did not affect the astrocytic 45 kDa GLUT1 isoform, but it significantly increased the amount of endothelial 55 kDa GLUT1, and neuronal GLUT3 in the membrane fractions of hypothalamic proteins. The level of GLUT2 whose presence was detected in neurons, ependymocytes and tanycytes was also elevated. Unlike hepatic glycogen which was decreased, hypothalamic glycogen content was not changed after 6-h fasting. Our findings suggest that neurons may be given a priority over astrocytes in terms of glucose supply even during the initial phase of metabolic response to fasting. Namely, increase in glucose influx into the brain extracellular fluid and neurons by increasing the translocation of GLUT1, and GLUT3 in the cell membrane may represent the first line of defense in times of scarcity. The absence of co-localization of these membrane transporters with the activated insulin receptor suggests this process takes place in an insulin-independent manner.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sinisa F Djurasevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
35
|
Köhler S, Winkler U, Sicker M, Hirrlinger J. NBCe1 mediates the regulation of the NADH/NAD + redox state in cortical astrocytes by neuronal signals. Glia 2018; 66:2233-2245. [PMID: 30208253 DOI: 10.1002/glia.23504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
Astrocytes are a glial cell type, which is indispensable for brain energy metabolism. Within cells, the NADH/NAD+ redox state is a crucial node in metabolism connecting catabolic pathways to oxidative phosphorylation and ATP production in mitochondria. To characterize the dynamics of the intracellular NADH/NAD+ redox state in cortical astrocytes Peredox, a genetically encoded sensor for the NADH/NAD+ redox state, was expressed in cultured cortical astrocytes as well as in cortical astrocytes in acutely isolated brain slices. Calibration of the sensor in cultured astrocytes revealed a mean basal cytosolic NADH/NAD+ redox ratio of about 0.01; however, with a broad distribution and heterogeneity in the cell population, which was mirrored by a heterogeneous basal cellular concentration of lactate. Inhibition of glucose uptake decreased the NADH/NAD+ redox state while inhibition of lactate dehydrogenase or of lactate release resulted in an increase in the NADH/NAD+ redox ratio. Furthermore, the NADH/NAD+ redox state was regulated by the extracellular concentration of K+ , and application of the neurotransmitters ATP or glutamate increased the NADH/NAD+ redox state dependent on purinergic receptors and glutamate uptake, respectively. This regulation by K+ , ATP, and glutamate involved NBCe1 mediated sodium-bicarbonate transport. These results demonstrate that the NADH/NAD+ redox state in astrocytes is a metabolic node regulated by neuronal signals reflecting physiological activity, most likely contributing to adjust astrocytic metabolism to energy demand of the brain.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Marit Sicker
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
36
|
Coggan JS, Keller D, Calì C, Lehväslaiho H, Markram H, Schürmann F, Magistretti PJ. Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLoS Comput Biol 2018; 14:e1006392. [PMID: 30161133 PMCID: PMC6160207 DOI: 10.1371/journal.pcbi.1006392] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/27/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
The mechanism of rapid energy supply to the brain, especially to accommodate the heightened metabolic activity of excited states, is not well-understood. We explored the role of glycogen as a fuel source for neuromodulation using the noradrenergic stimulation of glia in a computational model of the neural-glial-vasculature ensemble (NGV). The detection of norepinephrine (NE) by the astrocyte and the coupled cAMP signal are rapid and largely insensitive to the distance of the locus coeruleus projection release sites from the glia, implying a diminished impact for volume transmission in high affinity receptor transduction systems. Glucosyl-conjugated units liberated from glial glycogen by NE-elicited cAMP second messenger transduction winds sequentially through the glycolytic cascade, generating robust increases in NADH and ATP before pyruvate is finally transformed into lactate. This astrocytic lactate is rapidly exported by monocarboxylate transporters to the associated neuron, demonstrating that the astrocyte-to-neuron lactate shuttle activated by glycogenolysis is a likely fuel source for neuromodulation and enhanced neural activity. Altogether, the energy supply for both astrocytes and neurons can be supplied rapidly by glycogenolysis upon neuromodulatory stimulus. Although efficient compared to computers, the human brain utilizes energy at 10-fold the rate of other organs by mass. How the brain is supplied with sufficient on-demand energy to support its activity in the absence of neuronal storage capacity remains unknown. Neurons are not capable of meeting their own energy requirements, instead energy supply in the brain is managed by an oligocellular cartel composed of neurons, glia and the local vasculature (NGV), wherein glia can provide the ergogenic metabolite lactate to the neuron in a process called the astrocyte-to-neuron shuttle (ANLS). The only means of energy storage in the brain is glycogen, a polymerized form of glucose that is localized largely to astrocytes, but its exact role and conditions of use are not clear. In this computational model we show that neuromodulatory stimulation by norepinephrine induces astrocytes to recover glucosyl subunits from glycogen for use in a glycolytic process that favors the production of lactate. The ATP and NADH produced support metabolism in the astrocyte while the lactate is exported to feed the neuron. Thus, rapid energy demands by both neurons and glia in a stimulated brain can be met by glycogen mobilization.
Collapse
Affiliation(s)
- Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- * E-mail: (JSC); (PJM)
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Corrado Calì
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Heikki Lehväslaiho
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Pierre J. Magistretti
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- * E-mail: (JSC); (PJM)
| |
Collapse
|
37
|
Jha MK, Morrison BM. Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters. Exp Neurol 2018; 309:23-31. [PMID: 30044944 DOI: 10.1016/j.expneurol.2018.07.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
The brain is, by weight, only 2% the volume of the body and yet it consumes about 20% of the total glucose, suggesting that the energy requirements of the brain are high and that glucose is the primary energy source for the nervous system. Due to this dependence on glucose, brain physiology critically depends on the tight regulation of glucose transport and its metabolism. Glucose transporters ensure efficient glucose uptake by neural cells and contribute to the physiology and pathology of the nervous system. Despite this, a growing body of evidence demonstrates that for the maintenance of several neuronal functions, lactate, rather than glucose, is the preferred energy metabolite in the nervous system. Monocarboxylate transporters play a crucial role in providing metabolic support to axons by functioning as the principal transporters for lactate in the nervous system. Monocarboxylate transporters are also critical for axonal myelination and regeneration. Most importantly, recent studies have demonstrated the central role of glial cells in brain energy metabolism. A close and regulated metabolic conversation between neurons and both astrocytes and oligodendroglia in the central nervous system, or Schwann cells in the peripheral nervous system, has recently been shown to be an important determinant of the metabolism and function of the nervous system. This article reviews the current understanding of the long existing controversies regarding energy substrate and utilization in the nervous system and discusses the role of metabolic transporters in health and diseases of the nervous system.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, The Johns Hopkins University, Baltimore, MD 21205, United States
| | - Brett M Morrison
- Department of Neurology, The Johns Hopkins University, Baltimore, MD 21205, United States.
| |
Collapse
|
38
|
Noor SI, Jamali S, Ames S, Langer S, Deitmer JW, Becker HM. A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells. eLife 2018; 7:35176. [PMID: 29809145 PMCID: PMC5986270 DOI: 10.7554/elife.35176] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023] Open
Abstract
Many tumor cells produce vast amounts of lactate and acid, which have to be removed from the cell to prevent intracellular lactacidosis and suffocation of metabolism. In the present study, we show that proton-driven lactate flux is enhanced by the intracellular carbonic anhydrase CAII, which is colocalized with the monocarboxylate transporter MCT1 in MCF-7 breast cancer cells. Co-expression of MCTs with various CAII mutants in Xenopus oocytes demonstrated that CAII facilitates MCT transport activity in a process involving CAII-Glu69 and CAII-Asp72, which could function as surface proton antennae for the enzyme. CAII-Glu69 and CAII-Asp72 seem to mediate proton transfer between enzyme and transporter, but CAII-His64, the central residue of the enzyme's intramolecular proton shuttle, is not involved in proton shuttling between the two proteins. Instead, this residue mediates binding between MCT and CAII. Taken together, the results suggest that CAII features a moiety that exclusively mediates proton exchange with the MCT to facilitate transport activity.
Collapse
Affiliation(s)
- Sina Ibne Noor
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Somayeh Jamali
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Samantha Ames
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Silke Langer
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Holger M Becker
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.,Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
39
|
Ngernsutivorakul T, White TS, Kennedy RT. Microfabricated Probes for Studying Brain Chemistry: A Review. Chemphyschem 2018; 19:1128-1142. [PMID: 29405568 PMCID: PMC6996029 DOI: 10.1002/cphc.201701180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 12/13/2022]
Abstract
Probe techniques for monitoring in vivo chemistry (e.g., electrochemical sensors and microdialysis sampling probes) have significantly contributed to a better understanding of neurotransmission in correlation to behaviors and neurological disorders. Microfabrication allows construction of neural probes with high reproducibility, scalability, design flexibility, and multiplexed features. This technology has translated well into fabricating miniaturized neurochemical probes for electrochemical detection and sampling. Microfabricated electrochemical probes provide a better control of spatial resolution with multisite detection on a single compact platform. This development allows the observation of heterogeneity of neurochemical activity precisely within the brain region. Microfabricated sampling probes are starting to emerge that enable chemical measurements at high spatial resolution and potential for reducing tissue damage. Recent advancement in analytical methods also facilitates neurochemical monitoring at high temporal resolution. Furthermore, a positive feature of microfabricated probes is that they can be feasibly built with other sensing and stimulating platforms including optogenetics. Such integrated probes will empower researchers to precisely elucidate brain function and develop novel treatments for neurological disorders.
Collapse
Affiliation(s)
| | - Thomas S. White
- Macromolecular Science and Engineering, University of Michigan, 3003E, NCRC Building 28, 2800 Plymouth Rd., Ann Arbor, MI 48109
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| |
Collapse
|
40
|
Abstract
Lactate in the brain has long been associated with ischaemia; however, more recent evidence shows that it can be found there under physiological conditions. In the brain, lactate is formed predominantly in astrocytes from glucose or glycogen in response to neuronal activity signals. Thus, neurons and astrocytes show tight metabolic coupling. Lactate is transferred from astrocytes to neurons to match the neuronal energetic needs, and to provide signals that modulate neuronal functions, including excitability, plasticity and memory consolidation. In addition, lactate affects several homeostatic functions. Overall, lactate ensures adequate energy supply, modulates neuronal excitability levels and regulates adaptive functions in order to set the 'homeostatic tone' of the nervous system.
Collapse
|
41
|
|
42
|
Brosel S, Grothe B, Kunz L. An auditory brainstem nucleus as a model system for neuronal metabolic demands. Eur J Neurosci 2018; 47:222-235. [PMID: 29205598 DOI: 10.1111/ejn.13789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 02/03/2023]
Abstract
The correlation between neuronal activity and metabolism is essential for coding, plasticity, neurological disorders and the interpretation of functional neuroimaging data. Most likely, metabolic requirements depend upon neuron type, and macroscopic energy demands vary with brain region. However, specific needs of individual neuron types are enigmatic. Therefore, we monitored metabolic activity in the lateral superior olive (LSO), an auditory brainstem nucleus containing only one neuron type. LSO neurons exhibit extreme but well-described biophysics with firing rates of several hundred hertz and low input resistances of a few megaohms. We recorded changes in NADH and flavin adenine dinucleotide (FAD) autofluorescence and O2 concentration in acute brainstem slices of Mongolian gerbils (Meriones unguiculatus) following electrical stimulation. The LSO shows the typical biphasic NADH/FAD response up to a physiologically relevant frequency of 400 Hz. In the same animal, we compared the LSO with the hippocampal CA1 region and the cerebral cortex. The rate of NADH/FADH2 consumption and regeneration was slowest in LSO. However, frequency dependence was only similar during the consumption phase but varied during regeneration within the three brain regions. Changes in NADH, FAD and O2 levels and blocking metabolic reactions indicate a pronounced contribution of mitochondrial oxidative phosphorylation in the LSO which is known for the other brain regions as well. Lactate transport and interconversion are involved in LSO metabolism as we found in immunohistochemical and pharmacological experiments. Our findings show that the LSO represents an apt, biophysically distinct model for brain metabolism and that neuronal properties determine metabolic needs.
Collapse
Affiliation(s)
- Sonja Brosel
- Department Biology II, Division of Neurobiology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Department Biology II, Division of Neurobiology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Lars Kunz
- Department Biology II, Division of Neurobiology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
43
|
Val‐Laillet D, Guérin S, Coquery N, Nogret I, Formal M, Romé V, Le Normand L, Meurice P, Randuineau G, Guilloteau P, Malbert C, Parnet P, Lallès J, Segain J. Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs. FASEB J 2018; 32:2160-2171. [DOI: 10.1096/fj.201700547rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Val‐Laillet
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
- Centre de Recherche en Nutrition Humaine Ouest (CRNH‐Ouest)NantesFrance
| | - Sylvie Guérin
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Nicolas Coquery
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Isabelle Nogret
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Michèle Formal
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Véronique Romé
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Laurence Le Normand
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Paul Meurice
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Gwénaëlle Randuineau
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Paul Guilloteau
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | | | - Patricia Parnet
- Centre de Recherche en Nutrition Humaine Ouest (CRNH‐Ouest)NantesFrance
- INRA, Unité Mixte de Recherche (UMR) 1280INRA‐Université de Nantes, Physiologie des Adaptations Nutritionnelles (PhAN)NantesFrance
- Institut des Maladies de l'Appareil DigestifCentre Hospitalier Universitaire (CHU) Ho tel‐DieuNantesFrance
| | - Jean‐Paul Lallès
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
- Centre de Recherche en Nutrition Humaine Ouest (CRNH‐Ouest)NantesFrance
| | - Jean‐Pierre Segain
- Centre de Recherche en Nutrition Humaine Ouest (CRNH‐Ouest)NantesFrance
- INRA, Unité Mixte de Recherche (UMR) 1280INRA‐Université de Nantes, Physiologie des Adaptations Nutritionnelles (PhAN)NantesFrance
- Institut des Maladies de l'Appareil DigestifCentre Hospitalier Universitaire (CHU) Ho tel‐DieuNantesFrance
| |
Collapse
|
44
|
Disrupted Neuroglial Metabolic Coupling after Peripheral Surgery. J Neurosci 2017; 38:452-464. [PMID: 29175959 DOI: 10.1523/jneurosci.1797-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023] Open
Abstract
Immune-related events in the periphery can remotely affect brain function, contributing to neurodegenerative processes and cognitive decline. In mice, peripheral surgery induces a systemic inflammatory response associated with changes in hippocampal synaptic plasticity and transient cognitive decline, however, the underlying mechanisms remain unknown. Here we investigated the effect of peripheral surgery on neuronal-glial function within hippocampal neuronal circuits of relevance to cognitive processing in male mice at 6, 24, and 72 h postsurgery. At 6 h we detect the proinflammatory cytokine IL-6 in the hippocampus, followed up by alterations in the mRNA and protein expression of astrocytic and neuronal proteins necessary for optimal energy supply to the brain and for the reuptake and recycling of glutamate in the synapse. Similarly, at 24 h postsurgery the mRNA expression of structural proteins (GFAP and AQP4) was compromised. At this time point, functional analysis in astrocytes revealed a decrease in resting calcium signaling. Examination of neuronal activity by whole-cell patch-clamp shows elevated levels of glutamatergic transmission and changes in AMPA receptor subunit composition at 72 h postsurgery. Finally, lactate, an essential energy substrate produced by astrocytes and critical for memory formation, decreases at 6 and 72 h after surgery. Based on temporal parallels with our previous studies, we propose that the previously reported cognitive decline observed at 72 h postsurgery in mice might be the consequence of temporal hippocampal metabolic, structural, and functional changes in astrocytes that lead to a disruption of the neuroglial metabolic coupling and consequently to a neuronal dysfunction.SIGNIFICANCE STATEMENT A growing body of evidence suggests that surgical trauma launches a systemic inflammatory response that reaches the brain and associates with immune activation and cognitive decline. Understanding the mechanisms by which immune-related events in the periphery can influence brain processes is essential for the development of therapies to prevent or treat postoperative cognitive dysfunction and other forms of cognitive decline related to immune-to-brain communication, such as Alzheimer's and Parkinson's diseases. Here we describe the temporal orchestration of a series of metabolic, structural, and functional changes after aseptic trauma in mice related to astrocytes and later in neurons that emphasize the role of astrocytes as key intermediaries between peripheral immune events, neuronal processing, and potentially cognition.
Collapse
|
45
|
Shao X, Tang Y, Long H, Gu H, Zhang J, Deng P, Zhao Y, Cen X. HMG-CoA synthase 2 drives brain metabolic reprogramming in cocaine exposure. Neuropharmacology 2017; 148:377-393. [PMID: 28987936 DOI: 10.1016/j.neuropharm.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/25/2017] [Accepted: 10/01/2017] [Indexed: 02/05/2023]
Abstract
The brain is a high energy-consuming organ that typically utilizes glucose as the main energy source for cerebral activity. When glucose becomes scarce under conditions of stress, ketone bodies, such as β-hydroxybutyrate, acetoacetate and acetone, become extremely important. Alterations in brain energy metabolism have been observed in psychostimulant abusers; however, the mode of brain metabolic programming in cocaine dependence remains largely unknown. Here, we profiled the metabolites and metabolic enzymes from brain nucleus accumbens (NAc) of mice exposed to cocaine. We found that cocaine modified energy metabolism and markedly activated ketogenesis pathway in the NAc. The expression of HMG-CoA synthase 2 (HMGCS2), a critical rate-limiting ketogenesis enzyme, was markedly up-regulated. After switching metabolic pathways from ketogenesis to glycolysis through activation of glucokinase, cocaine-evoked metabolic reprogramming regained homeostasis, and the cocaine effect was attenuated. Importantly, both the pharmacological and genetic inhibition of HMGCS2 significantly suppressed cocaine-induced ketogenesis and behavior. In conclusion, cocaine induces a remarkable energy reprogramming in the NAc, which is characterized by HMGCS2-driven ketogenesis. Such effect may facilitate adaptations to cocaine-induced energy stress in the brain. Our findings establish an important link between drug-induced energy reprogramming and cocaine effect, and may have implication in the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Xue Shao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Yunxuan Tang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Hui Gu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pengchi Deng
- Analytical &Testing Center, Sichuan University, Chengdu 610041, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
46
|
Sonnay S, Gruetter R, Duarte JMN. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo. Front Neurosci 2017; 11:288. [PMID: 28603480 PMCID: PMC5445183 DOI: 10.3389/fnins.2017.00288] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers), the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here, we review state-of-the-art MR methods to study brain function and metabolism in vivo, and their contribution to the current understanding of how astrocytic energy metabolism supports glutamatergic activity and cerebral function. In this context, recent data suggests that astrocytic metabolism has been underestimated. Namely, the rate of oxidative metabolism in astrocytes is about half of that in neurons, and it can increase as much as the rate of neuronal metabolism in response to sensory stimulation.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland.,Department of Radiology, University of LausanneLausanne, Switzerland.,Department of Radiology, University of GenevaGeneva, Switzerland
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
47
|
Wu G, Liu XX, Lu NN, Liu QB, Tian Y, Ye WF, Jiang GJ, Tao RR, Han F, Lu YM. Endothelial ErbB4 deficit induces alterations in exploratory behavior and brain energy metabolism in mice. CNS Neurosci Ther 2017; 23:510-517. [PMID: 28421673 DOI: 10.1111/cns.12695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022] Open
Abstract
AIMS The receptor tyrosine kinase ErbB4 is present throughout the primate brain and has a distinct functional profile. In this study, we investigate the potential role of endothelial ErbB4 receptor signaling in the brain. RESULTS Here, we show that the endothelial cell-specific deletion of ErbB4 induces decreased exploratory behavior in adult mice. However, the water maze task for spatial memory and the memory reconsolidation test reveal no changes; additionally, we observe no impairment in CaMKII phosphorylation in Cdh5Cre;ErbB4f/f mice, which indicates that the endothelial ErbB4 deficit leads to decreased exploratory activity rather than direct memory deficits. Furthermore, decreased brain metabolism, which was measured using micro-positron emission tomography, is observed in the Cdh5Cre;ErbB4f/f mice. Consistently, the immunoblot data demonstrate the downregulation of brain Glut1, phospho-ULK1 (Ser555), and TIGAR in the endothelial ErbB4 conditional knockout mice. Collectively, our findings suggest that endothelial ErbB4 plays a critical role in regulating brain function, at least in part, through maintaining normal brain energy homeostasis. CONCLUSIONS Targeting ErbB4 or the modulation of endothelial ErbB4 signaling may represent a rational pharmacological approach to treat neurological disorders.
Collapse
Affiliation(s)
- Gang Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Xiu-Xiu Liu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Nan-Nan Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi-Bing Liu
- School of Pharmacy, Hainan Medical College, Haikou, China
| | - Yun Tian
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Feng Ye
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guo-Jun Jiang
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang, China
| | - Rong-Rong Tao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Han
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Winkler U, Seim P, Enzbrenner Y, Köhler S, Sicker M, Hirrlinger J. Activity-dependent modulation of intracellular ATP in cultured cortical astrocytes. J Neurosci Res 2017; 95:2172-2181. [PMID: 28151554 DOI: 10.1002/jnr.24020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023]
Abstract
Brain function is absolutely dependent on an appropriate supply of energy. A shortfall in supply-as occurs, for instance, following stroke-can lead rapidly to irreversible damage to this vital organ. While the consequences of pathophysiological energy depletion have been well documented, much less is known about the physiological energy dynamics of brain cells, although changes in the intracellular concentration of adenosine triphosphate (ATP), the major energy carrier of cells, have been postulated to contribute to cellular signaling. To address this issue more closely, we have investigated intracellular ATP in cultured primary cortical astrocytes by time-lapse microscopy using a genetically encoded fluorescent sensor for ATP. The cytosolic ATP sensor signal decreased after application of the neurotransmitter glutamate in a manner dependent on both glutamate concentration and glutamate transporter activity, but independent of glutamate receptors. The application of dopamine did not affect ATP levels within astrocytes. These results confirm that intracellular ATP levels in astrocytes do indeed respond to changes in physiological activity and pave the way for further studies addressing factors that affect regulation of ATP. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Pauline Seim
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Yvonne Enzbrenner
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Marit Sicker
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
49
|
Riske L, Thomas RK, Baker GB, Dursun SM. Lactate in the brain: an update on its relevance to brain energy, neurons, glia and panic disorder. Ther Adv Psychopharmacol 2017; 7:85-89. [PMID: 28255438 PMCID: PMC5315230 DOI: 10.1177/2045125316675579] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lactate is considered an important metabolite in the human body, but there has been considerable debate about its roles in brain function. Research in recent years has suggested that lactate from astrocytes may be crucial for supporting axonal function, especially during times of high metabolic demands or hypoglycemia. The astrocyte-neuron lactate transfer shuttle system serves a protective function to ensure a supply of substrates for brain metabolism, and oligodendrocytes appear to also influence availability of lactate. There is increasing evidence for lactate acting as a signaling molecule in the brain to link metabolism, substrate availability, blood flow and neuronal activity. This review will attempt to connect evidence to the relationship lactate has to panic disorder (PD), which suggests that its transporters, receptors or metabolism warrant investigation as potential therapeutic targets in PD.
Collapse
Affiliation(s)
- Laurel Riske
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Rejish K Thomas
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Department of Psychiatry (Neurochemical Research Unit, NRU), 12th Floor, Clinical Science Building, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
50
|
Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of Ketone Body Metabolism and the Role of PPARα. Int J Mol Sci 2016; 17:ijms17122093. [PMID: 27983603 PMCID: PMC5187893 DOI: 10.3390/ijms17122093] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/28/2022] Open
Abstract
Ketogenesis and ketolysis are central metabolic processes activated during the response to fasting. Ketogenesis is regulated in multiple stages, and a nuclear receptor peroxisome proliferator activated receptor α (PPARα) is one of the key transcription factors taking part in this regulation. PPARα is an important element in the metabolic network, where it participates in signaling driven by the main nutrient sensors, such as AMP-activated protein kinase (AMPK), PPARγ coactivator 1α (PGC-1α), and mammalian (mechanistic) target of rapamycin (mTOR) and induces hormonal mediators, such as fibroblast growth factor 21 (FGF21). This work describes the regulation of ketogenesis and ketolysis in normal and malignant cells and briefly summarizes the positive effects of ketone bodies in various neuropathologic conditions.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland.
| | - Malgorzata Pierzchalska
- Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland.
| | - Matthew Dean
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.
| | - Krzysztof Reiss
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.
| |
Collapse
|