1
|
Li Q, Fu Y, Liu C, Meng Z. Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex for Treatment of Neuropsychiatric Disorders. Front Behav Neurosci 2022; 16:893955. [PMID: 35711693 PMCID: PMC9195619 DOI: 10.3389/fnbeh.2022.893955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
Background The dorsolateral prefrontal cortex (DLPFC) is a key node of the frontal cognitive circuit. It is involved in executive control and many cognitive processes. Abnormal activities of DLPFC are likely associated with many psychiatric diseases. Modulation of DLPFC may have potential beneficial effects in many neural and psychiatric diseases. One of the widely used non-invasive neuromodulation technique is called transcranial direct current stimulation (or tDCS), which is a portable and affordable brain stimulation approach that uses direct electrical currents to modulate brain functions. Objective This review aims to discuss the results from the past two decades which have shown that tDCS can relieve clinical symptoms in various neurological and psychiatric diseases. Methods Here, we performed searches on PubMed to collect clinical and preclinical studies that using tDCS as neuromodulation technique, DLPFC as the stimulation target in treating neuropsychiatric disorders. We summarized the stimulation sites, stimulation parameters, and the overall effects in these studies. Results Overall, tDCS stimulation of DLPFC could alleviate the clinical symptoms of schizophrenia, depression, drug addiction, attention deficit hyperactivity disorder and other mental disorders. Conclusion The stimulation parameters used in these studies were different from each other. The lasting effect of stimulation was also not consistent. Nevertheless, DLPFC is a promising target for non-invasive stimulation in many psychiatric disorders. TDCS is a safe and affordable neuromodulation approach that has potential clinical uses. Larger clinical studies will be needed to determine the optimal stimulation parameters in each condition.
Collapse
Affiliation(s)
- Qing Li
- Medical School, Kunming University of Science and Technology, Kunming, China
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Fu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Chang Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Chang Liu,
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Zhiqiang Meng,
| |
Collapse
|
2
|
Kronick J, Sabesan P, Burhan AM, Palaniyappan L. Assessment of treatment resistance criteria in non-invasive brain stimulation studies of schizophrenia. Schizophr Res 2022; 243:349-360. [PMID: 34183208 DOI: 10.1016/j.schres.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023]
Abstract
Novel treatment modalities, such as non-invasive brain stimulation (NIBS), typically focus on patient groups that have failed multiple treatment interventions. Despite its promise, the clinical translation of NIBS in schizophrenia has been limited. One important obstacle to implementation is the inconsistent reporting of treatment resistance in the clinical trial literature contributing to heterogeneity in reported effects. In response, we develop a numerical approach to synthesize quality of assessment of Treatment-Resistant Schizophrenia (TRS) and apply this to studies investigating therapeutic response to NIBS in patients with schizophrenia. Literature search conducted through PubMed database identified 119 studies investigating Transcranial Magnetic Stimulation and Transcranial Electrical Stimulation in treating resistant schizophrenia symptoms. A quality score out of 11 was assigned to each study based on adherence to the international consensus guidelines for TRS developed by the Treatment Response and Resistance in Psychosis (TRRIP) group. Results revealed an overall paucity of studies with thorough assessment and/or reporting of TRS phenomenon, as evidenced by a mean quality score of 3.38/11 (SD: 1.01) for trials and 5.16/11 (SD: 1.57) for case reports, though this improved minimally since the publication of consensus criteria. Most studies considered treatment-resistance as a single dimensional construct by reporting resistance of a single symptom, and failed to establish treatment adherence, resistance time course and functional impairment. We conclude that the current NIBS literature in schizophrenia do not reflect its true effects on treatment-resistance. There is an urgent need to improve assessment and reporting standards of clinical trials that target TRS.
Collapse
Affiliation(s)
- Jami Kronick
- Schulich School of Medicine & Dentistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada.
| | - Priyadharshini Sabesan
- Department of Psychiatry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.
| | - Amer M Burhan
- Department of Psychiatry, University of Toronto, 250 College Street 8th floor, Toronto, Ontario M5T 1R8, Canada; Ontario Shores Centre for Mental Health Sciences, 700 Gordon Street, Whitby, Ontario L1N 5S9, Canada; Department of Psychiatry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; Robarts Research Institute, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; Lawson Health Research Institute, 750 Base Line Road East Suite 300, London, Ontario N6C 2R5, Canada.
| |
Collapse
|
3
|
Cho H, Razza LB, Borrione L, Bikson M, Charvet L, Dennis-Tiwary TA, Brunoni AR, Sudbrack-Oliveira P. Transcranial Electrical Stimulation for Psychiatric Disorders in Adults: A Primer. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:19-31. [PMID: 35746931 PMCID: PMC9063596 DOI: 10.1176/appi.focus.20210020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcranial electrical stimulation (tES) comprises noninvasive neuromodulation techniques that deliver low-amplitude electrical currents to targeted brain regions with the goal of modifying neural activities. Expanding evidence from the past decade, specifically using transcranial direct current simulation and transcranial alternating current stimulation, presents promising applications of tES as a treatment for psychiatric disorders. In this review, the authors discuss the basic technical aspects and mechanisms of action of tES in the context of clinical research and practice and review available evidence for its clinical use, efficacy, and safety. They also review recent advancements in use of tES for the treatment of depressive disorders, schizophrenia, substance use disorders, and obsessive-compulsive disorder. Findings largely support growing evidence for the safety and efficacy of tES in the treatment of patients with resistance to existing treatment options, particularly demonstrating promising treatment outcomes for depressive disorders. Future directions of tES research for optimal application in clinical settings are discussed, including the growing home-based, patient-friendly methods and the potential pairing with existing pharmacological or psychotherapeutic treatments for enhanced outcomes. Finally, neuroimaging advancements may provide more specific mapping of brain networks, aiming at more precise tES therapeutic targeting in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Hyein Cho
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Lais B Razza
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Lucas Borrione
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Marom Bikson
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Leigh Charvet
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Tracy A Dennis-Tiwary
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Andre R Brunoni
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Pedro Sudbrack-Oliveira
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| |
Collapse
|
4
|
Herrera-Melendez AL, Bajbouj M, Aust S. Application of Transcranial Direct Current Stimulation in Psychiatry. Neuropsychobiology 2021; 79:372-383. [PMID: 31340213 DOI: 10.1159/000501227] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/28/2019] [Indexed: 11/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulation technique, which noninvasively alters cortical excitability via weak polarizing currents between two electrodes placed on the scalp. Since it is comparably easy to handle, cheap to use and relatively well tolerated, tDCS has gained increasing interest in recent years. Based on well-known behavioral effects, a number of clinical studies have been performed in populations including patients with major depressive disorder followed by schizophrenia and substance use disorders, in sum with heterogeneous results with respect to efficacy. Nevertheless, the potential of tDCS must not be underestimated since it could be further improved by systematically investigating the various stimulation parameters to eventually increase clinical efficacy. The present article briefly explains the underlying physiology of tDCS, summarizes typical stimulation protocols and then reviews clinical efficacy for various psychiatric disorders as well as prevalent adverse effects. Future developments include combined and more complex interactions of tDCS with pharmacological or psychotherapeutic interventions. In particular, using computational models to individualize stimulation protocols, considering state dependency and applying closed-loop technologies will pave the way for tDCS-based personalized interventions as well as the development of home treatment settings promoting the role of tDCS as an effective treatment option for patients with mental health problems.
Collapse
Affiliation(s)
- Ana-Lucia Herrera-Melendez
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,
| | - Malek Bajbouj
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Straube B, van Kemenade BM, Kircher T, Schülke R. Transcranial direct current stimulation improves action-outcome monitoring in schizophrenia spectrum disorder. Brain Commun 2020; 2:fcaa151. [PMID: 33543133 PMCID: PMC7850031 DOI: 10.1093/braincomms/fcaa151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
Patients with schizophrenia spectrum disorder often demonstrate impairments in action-outcome monitoring. Passivity phenomena and hallucinations, in particular, have been related to impairments of efference copy-based predictions which are relevant for the monitoring of outcomes produced by voluntary action. Frontal transcranial direct current stimulation has been shown to improve action-outcome monitoring in healthy subjects. However, whether transcranial direct current stimulation can improve action monitoring in patients with schizophrenia spectrum disorder remains unknown. We investigated whether transcranial direct current stimulation can improve the detection of temporal action-outcome discrepancies in patients with schizophrenia spectrum disorder. On 4 separate days, we applied sham or left cathodal/right anodal transcranial direct current stimulation in a randomized order to frontal (F3/F4), parietal (CP3/CP4) and frontoparietal (F3/CP4) areas of 19 patients with schizophrenia spectrum disorder and 26 healthy control subjects. Action-outcome monitoring was assessed subsequent to 10 min of sham/transcranial direct current stimulation (1.5 mA). After a self-generated (active) or externally generated (passive) key press, subjects were presented with a visual outcome (a dot on the screen), which was presented after various delays (0-417 ms). Participants had to detect delays between the key press and the visual consequence. Symptom subgroups were explored based on the presence or absence of symptoms related to a paranoid-hallucinatory syndrome. In general, delay-detection performance was impaired in the schizophrenia spectrum disorder compared to the healthy control group. Interaction analyses showed group-specific (schizophrenia spectrum disorder versus healthy control group) and symptom-specific (with/without relevant paranoid-hallucinatory symptoms) transcranial direct current stimulation effects. Post hoc tests revealed that frontal transcranial direct current stimulation improved the detection of long delays in active conditions and reduced the proportion of false alarms in undelayed trials of the passive condition in patients. The patients with no or few paranoid-hallucinatory symptoms benefited especially from frontal transcranial direct current stimulation in active conditions, while improvement in the patients with paranoid-hallucinatory symptoms was predominantly reflected in reduced false alarm rates in passive conditions. These data provide some first evidence for the potential utility of transcranial direct current stimulation in improving efference copy mechanisms and action-outcome monitoring in schizophrenia spectrum disorder. Current data indicate that improving efference copy-related processes can be especially effective in patients with no or few positive symptoms, while intersensory matching (i.e. task-relevant in passive conditions) could be more susceptible to improvement in patients with paranoid-hallucinatory symptoms.
Collapse
Affiliation(s)
- Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Rasmus Schülke
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
6
|
Kumar PNS, Krishnan AG, Suresh R, Andrade C. Transcranial direct current stimulation for refractory auditory hallucinations in schizophrenia: Acute and 16-week outcomes. Indian J Psychiatry 2020; 62:572-576. [PMID: 33678840 PMCID: PMC7909021 DOI: 10.4103/psychiatry.indianjpsychiatry_182_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/20/2019] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has demonstrated efficacy against antipsychotic-refractory auditory verbal hallucinations (AVH) in schizophrenia. The duration of persistence of benefit is not well characterized. MATERIALS AND METHODS Thirty-one adults with schizophrenia and medication-refractory AVH were treated with 2-3 mA tDCS in 30 min sessions, twice a day, 6 days a week, for 2-4 weeks. The anode was sited over F3 and the cathode midway between T3 and P3 in the 10-20 EEG system. Patients were assessed until a 4-month study endpoint using two auditory hallucination rating scales and the Positive and Negative Syndrome Scale (PANSS-N). RESULTS Auditory hallucinations were moderately reduced by tDCS with 25%-29% improvement evident by the end of the 2nd week and another 10% improvement between week 2 and 4 months. There was no loss of benefit at the end of the 4-month study. There was also a small (11%) but statistically significant improvement in PANSS-N scores. CONCLUSIONS Although this study is limited by the nonblind, uncontrolled design, the results suggest that tDCS, as delivered, holds promise for treating refractory AVH in schizophrenia; the benefits persist beyond the short term.
Collapse
Affiliation(s)
| | | | - Rohith Suresh
- Department of Medicine, Government Medical College, Ernamkulam, Kerala, India
| | - Chittaranjan Andrade
- Department of Psychopharmacology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Kim M, Lee TH, Hwang WJ, Lee TY, Kwon JS. Auditory P300 as a Neurophysiological Correlate of Symptomatic Improvement by Transcranial Direct Current Stimulation in Patients With Schizophrenia: A Pilot Study. Clin EEG Neurosci 2020; 51:252-258. [PMID: 30474393 DOI: 10.1177/1550059418815228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. The reduced amplitude, prolonged latency, and increased intertrial variability of auditory P300 have been consistently reported in relation to the symptomatic severity of schizophrenia. This study investigated whether auditory P300 event-related potentials can be used as an objective indicator of symptomatic improvement by transcranial direct current stimulation (tDCS) in patients with schizophrenia. Methods. Ten patients with schizophrenia received 20 minutes of 2-mA tDCS twice a day for 5 consecutive weekdays. The anode was placed over the left dorsolateral prefrontal cortex, and the cathode was placed over the left temporo-parietal cortex. The Positive and Negative Syndrome Scale (PANSS) and the auditory P300 were measured for each participant at baseline and after the completion of the tDCS applications. Results. The participants showed significant improvement in the positive and negative symptoms as indexed by change in the PANSS scores by the tDCS. The P300 amplitude, latency, and intertrial variability did not statistically significantly differ after the tDCS application. However, a significant association was observed between the reduced P300 intertrial variability and improvement in the positive symptoms by tDCS. In addition, the changes in both the P300 latency and intertrial variability were significantly correlated with reduced negative symptoms after the tDCS application. Conclusions. Although this pilot study is limited by the small sample size and lack of a sham control, the results suggest that auditory P300 may be a putative marker reflecting the effect of tDCS on the positive and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tak Hyung Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
8
|
Dondé C, Haesebaert F, Poulet E, Mondino M, Brunelin J. [Not Available]. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2020; 65:237-244. [PMID: 31835905 PMCID: PMC7385421 DOI: 10.1177/0706743719895641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: The aim of this study was to validate the French version of the 7-item
Auditory Hallucination Rating Scale (AHRS) so as to facilitate fine-grained
assessment of auditory hallucinations (AH) in native French-speaking
patients with schizophrenia (SZ) in clinical settings and studies. Method: Patients (N = 66) were diagnosed with SZ according to the
Diagnostic and Statistical Manual of Mental Disorders.
The French version of the AHRS was developed using a forward–backward
translation procedure. Psychometric properties of the French version of the
AHRS were tested including (i) construct validity with a confirmatory
one-factor analysis, (ii) internal validity with Pearson correlations and
Cronbach α coefficients, and (iii) external validity by correlations with
the Scale for Assessment of Positive Symptoms (SAPS-H1), the Positive and
Negative Syndrome Scale (PANSS-P3; concurrent), the PANSS-Negative subscale
and age of subjects (divergent), and inter-rater intraclass correlation
coefficients (ICCs). Results: (i) The confirmatory one-factor analysis found a root mean square error of
approximation (RMSEA) = 0.00, 90% confidence interval = [0.000 to 0.011],
and a comparative fit index = 0.994. (ii) Correlations between AHRS total
score and individual items were mostly ≥0.4. Cronbach α coefficient was
0.61. (iii) Correlations with PANSS-P3 and SAPS-H1 were 0.42 and 0.53,
respectively. In a subset of participants (N = 16), ICC
values were extremely high and significant for AHRS total and individual
item scores (ICCs range 0.899 to 0.996) Conclusion: The French version of the AHRS is a psychometrically acceptable instrument
for the evaluation of AH severity in French-speaking patients with SZ.
Collapse
Affiliation(s)
- Clément Dondé
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,University Lyon 1, Villeurbanne, France.,Centre Hospitalier Le Vinatier, Bron, France
| | - Frédéric Haesebaert
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,University Lyon 1, Villeurbanne, France.,Centre Hospitalier Le Vinatier, Bron, France
| | - Emmanuel Poulet
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,University Lyon 1, Villeurbanne, France.,Department of Emergency Psychiatry, University Hospital Edouard Herriot, Hospices civils de Lyon, France
| | - Marine Mondino
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,University Lyon 1, Villeurbanne, France.,Centre Hospitalier Le Vinatier, Bron, France
| | - Jérôme Brunelin
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,University Lyon 1, Villeurbanne, France.,Centre Hospitalier Le Vinatier, Bron, France
| |
Collapse
|
9
|
Smith RC, Md WL, Wang Y, Jiang J, Wang J, Szabo V, Faull R, Jin H, Davis JM, Li C. Effects of transcranial direct current stimulation on cognition and symptoms in Chinese patients with schizophrenia ✰. Psychiatry Res 2020; 284:112617. [PMID: 31806403 DOI: 10.1016/j.psychres.2019.112617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 01/10/2023]
Abstract
There is preliminary evidence that transcranial direct current stimulation(tDCS) may improve symptoms and cognitive function in schizophrenia, but the generalizability of these results needs further investigation. We present a study of the effects of active vs. sham tDCS on cognition and symptoms in a sample of 45 Chinese patients with schizophrenia who showed significant cognitive deficits and were treated for 10 sessions with active or sham tDCS. Psychiatric symptoms were assessed by PANSS scores, and cognitive symptoms assessed by MATRICS battery and other tests. There were no differences between cognitive or symptom scores between subjects treated with active vs. sham tDCS tested within 1-2 days after the end of the 10th session. However, two weeks later subjects treated with active tDCS showed significantly more improvements on MATRICS Speed of Processing domain. MATRICS Overall Composite and a CogState measure related to accuracy on a 1-back working memory task were improved at two weeks in statistical tests without multiple corrections. The improvement in cognitive test scores 2 weeks after the last tDCS session, suggests longer term effects may be related to changes in neuroplasticity induced by 10 sessions of tDCS. The lack of significant changes in cognition shortly after the completion of 10 tDCS sessions contrasts with our earlier positive findings in U.S. patients with schizophrenia.
Collapse
Affiliation(s)
- Robert C Smith
- Nathan Kline Institute for Psychiatric Research; Department of Psychiatry, NYU Medical School; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine.
| | - Wei Li Md
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Yiran Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Jiangling Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | | | - Robert Faull
- Psychiatric institute, Department of Psychiatry, Univ. of Illinois College of Medicine, and John Hopkins School of Medicine
| | - Hua Jin
- University of California San Diego, Department of Psychiatry, San Diego, California, and VA San Diego Healthcare System, San Diego, CA, United States of America
| | - John M Davis
- Psychiatric institute, Department of Psychiatry, Univ. of Illinois College of Medicine, and John Hopkins School of Medicine
| | - Chunbo Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
10
|
Lindenmayer JP, Kulsa MKC, Sultana T, Kaur A, Yang R, Ljuri I, Parker B, Khan A. Transcranial direct-current stimulation in ultra-treatment-resistant schizophrenia. Brain Stimul 2018; 12:54-61. [PMID: 30316742 DOI: 10.1016/j.brs.2018.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Transcranial direct-current stimulation (tDCS), a non-invasive neurostimulation treatment, has been reported in a number of sham-controlled studies to show significant improvements in treatment-resistant auditory hallucinations in schizophrenia patients, primarily in ambulatory and higher-functioning patients, but little is known of the effects of tDCS on hospitalized, low-functioning inpatients. OBJECTIVE/HYPOTHESIS The purpose of this study was to examine the efficacy and safety of tDCS for auditory hallucinations in hospitalized ultra-treatment-resistant schizophrenia (TRS) and to evaluate the effects of tDCS on cognitive functions. We hypothesized that treatment non-response reported in previous tDCS studies may have been due to the insufficient duration of direct-current stimulation. METHODS Inpatient participants with DSM-V schizophrenia, long-standing treatment-resistance, and auditory verbal hallucinations (AVH) participated in this 4-week sham-controlled, randomized trial. Assessments included the Positive and Negative Syndrome Scale (PANSS) and MATRICS Consensus Cognitive Battery (MCCB) at baseline and endpoint (at the end of Week 4), and the Auditory Hallucinations Rating Scale (AHRS) administered at baseline, endpoint, and weekly throughout the study. Participants were randomized to receive active vs. sham tDCS treatments twice daily for 4 weeks. RESULTS Twenty-eight participants were enrolled (tDCS, n = 15; control, n = 13) and 21 participants completed all 4 weeks of the trial. Results showed a significant reduction for the auditory hallucination total score (p ≤ 0.05). We found a 21.9% decrease in AHRS Total Score for the tDCS group and a 12.6% decrease in AHRS Total Score for the control group. Significant reductions in frequency, number of voices over time, length of auditory hallucinations, and overall psychopathology were also observed for the tDCS group. When assessing cognitive functioning, only Working Memory showed improvement for the tDCS group. CONCLUSION Although there was only a small improvement noted in auditory hallucination scores for the tDCS group, this improvement was meaningful when compared to no standard treatment of the control group. While this makes the interpretation of clinical significance debatable, it does confirm that tDCS combined with pharmacological intervention can provide clinical gains over pharmacological intervention alone. Therefore, tDCS treatment appears to be effective not only for ambulatory, higher-functioning patients, but also for patients with ultra-treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- J P Lindenmayer
- Manhattan Psychiatric Center, 600 East 125th Street Wards Island, New York, NY, 10035, USA; Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA; New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| | - Mila Kirstie C Kulsa
- Manhattan Psychiatric Center, 600 East 125th Street Wards Island, New York, NY, 10035, USA; Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA; Teachers College Columbia University, 525 West 120th Street, New York, NY, 10027, USA.
| | - Tania Sultana
- Manhattan Psychiatric Center, 600 East 125th Street Wards Island, New York, NY, 10035, USA; Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
| | - Amandeep Kaur
- Manhattan Psychiatric Center, 600 East 125th Street Wards Island, New York, NY, 10035, USA; Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
| | - Ran Yang
- Manhattan Psychiatric Center, 600 East 125th Street Wards Island, New York, NY, 10035, USA; Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA; Teachers College Columbia University, 525 West 120th Street, New York, NY, 10027, USA.
| | - Isidora Ljuri
- Manhattan Psychiatric Center, 600 East 125th Street Wards Island, New York, NY, 10035, USA; Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
| | - Benedicto Parker
- Manhattan Psychiatric Center, 600 East 125th Street Wards Island, New York, NY, 10035, USA; Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
| | - Anzalee Khan
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA; NeuroCog Trials, 3211 Shannon Road #300, Durham, NC, 27707, USA.
| |
Collapse
|
11
|
A Review of the Effects of Transcranial Direct Current Stimulation for the Treatment of Hallucinations in Patients With Schizophrenia. J ECT 2018; 34:164-171. [PMID: 30024458 DOI: 10.1097/yct.0000000000000525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Some 25% to 30% of patients with schizophrenia report auditory verbal hallucinations (AVHs) that fail to respond adequately to antipsychotic treatments. In such cases, transcranial direct current stimulation (tDCS) has been proposed as a therapeutic option. Here, we aim to provide an exhaustive review of the literature examining the clinical effects of tDCS on AVH in patients with schizophrenia. A systematic search in the PubMed and Web of Science databases yielded 14 results, 7 randomized controlled trials (RCTs) and 7 open-label studies. Among them, 4 RCTs and 7 open-label studies reported a significant reduction of AVH after repeated sessions of tDCS, whereas 3 RCTs did not show any advantage of active tDCS over sham tDCS. Altogether, current studies showed an overall decrease of approximately 26% of AVH after active tDCS and 11% after sham tDCS. One suitable approach to decreasing AVH was to deliver twice-daily sessions of tDCS over 5 consecutive days (10 sessions at 20 minutes each, 2 mA) with the anode over the left dorsolateral prefrontal cortex and the cathode over the left temporoparietal junction. Demographic and clinical parameters such as young age, nonsmoking status, and higher frequencies of AVH occurrence seemed to be predictors of clinical improvement. Further RCTs, with larger sample sizes, are needed to confirm the usefulness of tDCS for AVH.
Collapse
|
12
|
Moffa AH, Brunoni AR, Nikolin S, Loo CK. Transcranial Direct Current Stimulation in Psychiatric Disorders: A Comprehensive Review. Psychiatr Clin North Am 2018; 41:447-463. [PMID: 30098657 DOI: 10.1016/j.psc.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that has been gaining favor as a viable tool in Psychiatry. The purpose of this review is to summarize the evidence of tDCS as a treatment of disorders such as depression, schizophrenia, and obsessive-compulsive disorder (OCD). Current findings indicate that tDCS is probably effective in non-treatment-resistant depressive patients. Regarding schizophrenia and OCD, present evidence is not robust enough, although preliminary results indicate that tDCS is a promising technique. Therefore, more trials are needed before using tDCS in a clinical setting.
Collapse
Affiliation(s)
- Adriano H Moffa
- School of Psychiatry, University of New South Wales, Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, Sydney, New South Wales 2031, Australia.
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27) and National Institute of Biomarkers in Psychiatry (INBioN), Department and Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr. Ovídio Pires de Campos 785, Sao Paulo, Sao Paulo 01060-970, Brazil; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Leopoldstr. 13, Munich 80802, Germany
| | - Stevan Nikolin
- School of Psychiatry, University of New South Wales, Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, Sydney, New South Wales 2031, Australia
| | - Colleen K Loo
- School of Psychiatry, University of New South Wales, Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, Sydney, New South Wales 2031, Australia
| |
Collapse
|
13
|
Rassovsky Y, Dunn W, Wynn JK, Wu AD, Iacoboni M, Hellemann G, Green MF. Single transcranial direct current stimulation in schizophrenia: Randomized, cross-over study of neurocognition, social cognition, ERPs, and side effects. PLoS One 2018; 13:e0197023. [PMID: 29734347 PMCID: PMC5937783 DOI: 10.1371/journal.pone.0197023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/13/2018] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, the treatment of schizophrenia has shifted fundamentally from a focus on symptom reduction to a focus on recovery and improving aspects of functioning. In this study, we examined the effect of transcranial direct current stimulation (tDCS) on social cognitive and nonsocial neurocognitive functions, as well as on electroencephalogram (EEG) measures, in individuals with schizophrenia. Thirty-seven individuals with schizophrenia were administered one of three different tDCS conditions (cathodal, anodal, and sham) per visit over the course of three visits, with approximately one week between each visit. Order of conditions was randomized and counterbalanced across subjects. For the active conditions, the electrode was placed over the left dorsolateral prefrontal cortex with the reference electrode over right supraorbital cortex. Current intensity was 2 mA and was maintained for two 20-minute sessions, with a one hour break between the sessions. Assessments were conducted immediately following each session, in a counterbalanced order of administration. No systematic effects were found across the social and nonsocial cognitive domains, and no significant effects were detected on event-related potentials (ERPs). The very small effect sizes, further validated by post-hoc power analyses (large Critical Ns), demonstrated that these findings were not due to lack of statistical power. Except for mild local discomfort, no significant side effects were reported. Findings demonstrate the safety and ease of administration of this procedure, but suggest that a single dose of tDCS over these areas does not yield a therapeutic effect on cognition in schizophrenia. Trial registration: ClinicalTrials.gov NCT02539797.
Collapse
Affiliation(s)
- Yuri Rassovsky
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States of America
- * E-mail:
| | - Walter Dunn
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States of America
- Department of Veteran Affairs VISN-22 Mental Illness Research, Education and Clinical Center, Los Angeles, CA, United States of America
| | - Jonathan K. Wynn
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States of America
- Department of Veteran Affairs VISN-22 Mental Illness Research, Education and Clinical Center, Los Angeles, CA, United States of America
| | - Allan D. Wu
- Department of Neurology, University of California, Los Angeles, California, United States of America
| | - Marco Iacoboni
- Department of Neurology, University of California, Los Angeles, California, United States of America
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, California, United States of America
| | - Gerhard Hellemann
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael F. Green
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States of America
| |
Collapse
|
14
|
Abstract
Neuroplasticity represents the dynamic structural and functional reorganization of the central nervous system, including its connectivity, due to environmental and internal demands. It is recognized as a major physiological basis for adaption of cognition and behaviour, and, thus, of utmost importance for normal brain function. Cognitive dysfunctions are major symptoms in psychiatric disorders, which are often associated with pathological alteration of neuroplasticity. Transcranial direct current stimulation (tDCS), a recently developed non-invasive brain stimulation technique, is able to induce and modulate cortical plasticity in humans via the application of relatively weak current through the scalp of the head. It has the potential to alter pathological plasticity and restore dysfunctional cognitions in psychiatric diseases. In the last decades, its efficacy to treat psychiatric disorders has been explored increasingly. This review will give an overview of pathological alterations of plasticity in psychiatric diseases, gather clinical studies involving tDCS to ameliorate symptoms, and discuss future directions of application, with an emphasis on optimizing stimulation effects.
Collapse
Affiliation(s)
- Min-Fang Kuo
- a Department of Psychology and Neurosciences , Leibniz Research Centre for Working Environment and Human Factors , Dortmund , Germany
| | - Po-See Chen
- b Department of Psychiatry , National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan , Taiwan.,c Addiction Research Centre, National Cheng Kung University , Tainan , Taiwan
| | - Michael A Nitsche
- a Department of Psychology and Neurosciences , Leibniz Research Centre for Working Environment and Human Factors , Dortmund , Germany.,d Department of Neurology , University Medical Hospital Bergmannsheil , Bochum , Germany
| |
Collapse
|
15
|
Castaño-Castaño S, Garcia-Moll A, Morales-Navas M, Fernandez E, Sanchez-Santed F, Nieto-Escamez F. Transcranial direct current stimulation improves visual acuity in amblyopic Long-Evans rats. Brain Res 2017; 1657:340-346. [DOI: 10.1016/j.brainres.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/28/2016] [Accepted: 01/01/2017] [Indexed: 10/20/2022]
|
16
|
Das S, Holland P, Frens MA, Donchin O. Impact of Transcranial Direct Current Stimulation (tDCS) on Neuronal Functions. Front Neurosci 2016; 10:550. [PMID: 27965533 PMCID: PMC5127836 DOI: 10.3389/fnins.2016.00550] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/15/2016] [Indexed: 02/04/2023] Open
Abstract
Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes are highly sensitive to stimulation parameters, leading to difficulty maximizing the technique's effectiveness. Although reversing the polarity of stimulation often causes opposite effects, this is not always the case. Effective clinical application will require an understanding of how tDCS works; how it modulates a neuron; how it affects the local network; and how it alters inter-network signaling. We have summarized what is known regarding the mechanisms of tDCS from sub-cellular processing to circuit level communication with a particular focus on what can be learned from the polarity specificity of the effects.
Collapse
Affiliation(s)
- Suman Das
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben Gurion University of the NegevBe'er Sheva, Israel; Department of Neuroscience, Erasmus MCRotterdam, Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Peter Holland
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben Gurion University of the NegevBe'er Sheva, Israel; Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Maarten A Frens
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands; Faculty of Social and Behavioral Sciences, Erasmus University College, Erasmus UniversityRotterdam, Netherlands
| | - Opher Donchin
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben Gurion University of the NegevBe'er Sheva, Israel; Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| |
Collapse
|
17
|
Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2016; 128:56-92. [PMID: 27866120 DOI: 10.1016/j.clinph.2016.10.087] [Citation(s) in RCA: 1113] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/19/2022]
Abstract
A group of European experts was commissioned by the European Chapter of the International Federation of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of transcranial direct current stimulation (tDCS) from studies published up until September 2016, regarding pain, Parkinson's disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis, epilepsy, consciousness disorders, Alzheimer's disease, tinnitus, depression, schizophrenia, and craving/addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham tDCS control procedure; 25 patients or more having received active treatment was required for Class I, while a lower number of 10-24 patients was accepted for Class II studies. Current evidence does not allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommendation (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible efficacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B recommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally perform tDCS in a therapeutic setting. In addition, the easy management and low cost of tDCS devices allow at home use by the patient, but this might raise ethical and legal concerns with regard to potential misuse or overuse. We must be careful to avoid inappropriate applications of this technique by ensuring rigorous training of the professionals and education of the patients.
Collapse
|
18
|
Hasan A, Wobrock T, Palm U, Strube W, Padberg F, Falkai P, Fallgatter A, Plewnia C. [Non-invasive brain stimulation for treatment of schizophrenic psychoses]. DER NERVENARZT 2016; 86:1481-91. [PMID: 26341690 DOI: 10.1007/s00115-015-4323-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite many different available pharmacological and psychosocial treatment options, an optimal control of symptoms is only partly possible for most schizophrenia patients. Especially, persistent auditory hallucinations, negative symptoms and cognitive impairment are difficult to treat symptoms. Several non-invasive brain stimulation techniques are increasingly being considered as new therapeutic add on options for the management of schizophrenia, targeting these symptom domains. The technique which has been available for the longest time and that is best established in clinical care is electroconvulsive therapy (ECT). New stimulation techniques, such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) allow a more pathophysiological-based approach. This review article introduces various non-invasive brain stimulation techniques and discusses recent treatment studies on schizophrenia. In total, the novel brain stimulation techniques discussed here can be considered relevant add on therapeutic approaches for schizophrenia. In this context, the best evidence is available for the application of rTMS for the treatment of negative symptoms and persistent auditory hallucinations; however, negative studies have also been published for both indications. Studies using other non-invasive brain stimulation techniques showed promising results but further research is needed to establish the clinical efficacy. Based on a growing pathophysiological knowledge, non-invasive brain stimulation techniques provide new treatment perspectives for patients with schizophrenia.
Collapse
Affiliation(s)
- A Hasan
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München Ludwig-Maximilians Universität, Nußbaumstr. 7, 80336, München, Deutschland.
| | - T Wobrock
- Zentrum für seelische Gesundheit, Kreiskliniken Darmstadt-Dieburg, Darmstadt-Dieburg, Deutschland.,Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität Göttingen, Göttingen, Deutschland
| | - U Palm
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München Ludwig-Maximilians Universität, Nußbaumstr. 7, 80336, München, Deutschland
| | - W Strube
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München Ludwig-Maximilians Universität, Nußbaumstr. 7, 80336, München, Deutschland
| | - F Padberg
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München Ludwig-Maximilians Universität, Nußbaumstr. 7, 80336, München, Deutschland
| | - P Falkai
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München Ludwig-Maximilians Universität, Nußbaumstr. 7, 80336, München, Deutschland
| | - A Fallgatter
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinik Tübingen, Tübingen, Deutschland
| | - C Plewnia
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinik Tübingen, Tübingen, Deutschland
| |
Collapse
|
19
|
Foss-Feig JH, McPartland JC, Anticevic A, Wolf J. Re-conceptualizing ASD Within a Dimensional Framework: Positive, Negative, and Cognitive Feature Clusters. J Autism Dev Disord 2016; 46:342-351. [PMID: 26267330 DOI: 10.1007/s10803-015-2539-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction of the National Institute of Mental Health's Research Domain Criteria and revision of diagnostic classification for Autism Spectrum Disorder in the latest diagnostic manual call for a new way of conceptualizing heterogeneous ASD features. We propose a novel conceptualization of ASD, borrowing from the schizophrenia literature in clustering ASD features along positive, negative, and cognitive dimensions. We argue that this dimensional conceptualization can offer improved ability to classify, diagnose, and treat, to apply and predict response to treatment, and to explore underlying neural and genetic alterations that may contribute to particular feature clusters. We suggest the proposed conceptualization can advance the field in a manner that may prove clinically and biologically useful for understanding and addressing heterogeneity within ASD.
Collapse
Affiliation(s)
- Jennifer H Foss-Feig
- Yale University Child Study Center, 230 South Frontage Rd, New Haven, CT, 06520, USA.
| | - James C McPartland
- Yale University Child Study Center, 230 South Frontage Rd, New Haven, CT, 06520, USA.
| | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Julie Wolf
- Yale University Child Study Center, 230 South Frontage Rd, New Haven, CT, 06520, USA
| |
Collapse
|
20
|
A systematic review of the clinical efficacy of transcranial direct current stimulation (tDCS) in psychiatric disorders. J Psychiatr Res 2016; 74:70-86. [PMID: 26765514 DOI: 10.1016/j.jpsychires.2015.12.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/23/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique, which can be used to selectively disrupt patterns of neural activity that are associated with symptoms of mental illness. tDCS has been implemented in numerous therapeutic trials across a range of patient populations, with a rapidly increasing number of studies being published each year. This systematic review aimed to evaluate the efficacy of tDCS in the treatment of psychiatric disorders. Four electronic databases were searched from inception until December 2015 by two independent reviewers, and 66 eligible studies were identified. Depression was the most extensively researched condition, followed by schizophrenia and substance use disorders. Data on obsessive compulsive disorder, generalised anxiety disorder, and anorexia nervosa were also obtained. The quality of included studies was appraised using a standardised assessment framework, which yielded a median score corresponding to "weak" on the three-point scale. This improved to "moderate" when case reports/series were excluded from the analysis. Overall, data suggested that tDCS interventions comprising multiple sessions can ameliorate symptoms of several major psychiatric disorders, both acutely and in the long-term. Nevertheless, the tDCS field is still in its infancy, and several methodological and ethical issues must be addressed before clinical efficacy can truly be determined. Studies probing the mechanisms of action of tDCS and those facilitating the definition of optimised stimulation protocols are warranted. Furthermore, evidence from large-scale, multi-centre randomised controlled trials is required if the transition of this therapy from the laboratory to the clinic is to be considered.
Collapse
|
21
|
Mondino M, Jardri R, Suaud-Chagny MF, Saoud M, Poulet E, Brunelin J. Effects of Fronto-Temporal Transcranial Direct Current Stimulation on Auditory Verbal Hallucinations and Resting-State Functional Connectivity of the Left Temporo-Parietal Junction in Patients With Schizophrenia. Schizophr Bull 2016; 42:318-26. [PMID: 26303936 PMCID: PMC4753593 DOI: 10.1093/schbul/sbv114] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Auditory verbal hallucinations (AVH) in patients with schizophrenia are associated with abnormal hyperactivity in the left temporo-parietal junction (TPJ) and abnormal connectivity between frontal and temporal areas. Recent findings suggest that fronto-temporal transcranial Direct Current stimulation (tDCS) with the cathode placed over the left TPJ and the anode over the left prefrontal cortex can alleviate treatment-resistant AVH in patients with schizophrenia. However, brain correlates of the AVH reduction are unclear. Here, we investigated the effect of tDCS on the resting-state functional connectivity (rs-FC) of the left TPJ. Twenty-three patients with schizophrenia and treatment-resistant AVH were randomly allocated to receive 10 sessions of active (2 mA, 20 min) or sham tDCS (2 sessions/d for 5 d). We compared the rs-FC of the left TPJ between patients before and after they received active or sham tDCS. Relative to sham tDCS, active tDCS significantly reduced AVH as well as the negative symptoms. Active tDCS also reduced rs-FC of the left TPJ with the left anterior insula and the right inferior frontal gyrus and increased rs-FC of the left TPJ with the left angular gyrus, the left dorsolateral prefrontal cortex and the precuneus. The reduction of AVH severity was correlated with the reduction of the rs-FC between the left TPJ and the left anterior insula. These findings suggest that the reduction of AVH induced by tDCS is associated with a modulation of the rs-FC within an AVH-related brain network, including brain areas involved in inner speech production and monitoring.
Collapse
Affiliation(s)
- Marine Mondino
- EA4615, Université de Lyon & CH Le Vinatier, F-69678 Bron, France
| | - Renaud Jardri
- Laboratoire de Sciences Cognitives & Affectives (SCA-Lab), UMR CNRS 9193, Université de Lille & CURE, Hôpital Fontan, CHRU de Lille, F-59000, Lille, France
| | | | - Mohamed Saoud
- EA4615, Université de Lyon & CH Le Vinatier, F-69678 Bron, France
| | - Emmanuel Poulet
- EA4615, Université de Lyon & CH Le Vinatier, F-69678 Bron, France
| | - Jérôme Brunelin
- EA4615, Université de Lyon & CH Le Vinatier, F-69678 Bron, France;
| |
Collapse
|
22
|
Pérez C, Leite J, Carvalho S, Fregni F. Transcranial Electrical Stimulation (tES) for the Treatment of Neuropsychiatric Disorders Across Lifespan. EUROPEAN PSYCHOLOGIST 2016. [DOI: 10.1027/1016-9040/a000252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract. Transcranial electrical stimulation (tES) is a safe, painless, and inexpensive noninvasive brain stimulation (NIBS) technique. tES has been shown to reduce symptoms in a variety of neuropsychiatric conditions such as depression, schizophrenia, anxiety, autism, and craving. There are many factors that can influence the effects of tES, such as current intensity, duration, baseline level of activity, gender, and age. Age is a critical variable, since the human brain undergoes several anatomic and functional changes across the lifespan. Therefore, tES-induced effects may not be the same across the lifespan. In this review we summarize the effects of tES, including tDCS, tACS, and tRNS, on clinical outcomes in several neuropsychiatric conditions, using a framework in which studies are organized according to the age of subjects. The use of tES in neuropsychiatric disorders has yielded promising results with mild, if any, adverse effects. Most of the published studies with tES have been conducted with tDCS in adult population. Future studies should focus on interventions guided by surrogate outcomes of neuroplasticity. A better understanding of neuroplasticity across the lifespan will help optimize current tES stimulation parameters, especially for use with children and elderly populations.
Collapse
Affiliation(s)
- Carolina Pérez
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Leite
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Sandra Carvalho
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Boggio PS, Asthana MK, Costa TL, Valasek CA, Osório AAC. Promoting social plasticity in developmental disorders with non-invasive brain stimulation techniques. Front Neurosci 2015; 9:294. [PMID: 26388712 PMCID: PMC4555066 DOI: 10.3389/fnins.2015.00294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/05/2015] [Indexed: 12/11/2022] Open
Abstract
Being socially connected directly impacts our basic needs and survival. People with deficits in social cognition might exhibit abnormal behaviors and face many challenges in our highly social-dependent world. These challenges and limitations are associated with a substantial economical and subjective impact. As many conditions where social cognition is affected are highly prevalent, more treatments have to be developed. Based on recent research, we review studies where non-invasive neuromodulatory techniques have been used to promote Social Plasticity in developmental disorders. We focused on three populations where non-invasive brain stimulation seems to be a promising approach in inducing social plasticity: Schizophrenia, Autism Spectrum Disorder (ASD) and Williams Syndrome (WS). There are still very few studies directly evaluating the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) in the social cognition of these populations. However, when considering the promising preliminary evidences presented in this review and the limited amount of clinical interventions available for treating social cognition deficits in these populations today, it is clear that the social neuroscientist arsenal may profit from non-invasive brain stimulation techniques for rehabilitation and promotion of social plasticity.
Collapse
Affiliation(s)
- Paulo S Boggio
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University Sao Paulo, Brazil
| | - Manish K Asthana
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University Sao Paulo, Brazil
| | - Thiago L Costa
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University Sao Paulo, Brazil
| | - Cláudia A Valasek
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University Sao Paulo, Brazil
| | - Ana A C Osório
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University Sao Paulo, Brazil
| |
Collapse
|
24
|
Mondino M, Bennabi D, Poulet E, Galvao F, Brunelin J, Haffen E. Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? World J Biol Psychiatry 2014; 15:261-75. [PMID: 24447054 DOI: 10.3109/15622975.2013.876514] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Since the discovery of psychopharmacological treatments in the early 1950s, followed by the development of second-generation antidepressants and antipsychotics, biological psychiatry has not achieved much progress. Recent technological advances in the field of non-invasive brain stimulation open new perspectives in the treatment of psychiatric disorders. Amongst them, transcranial direct current stimulation (tDCS) modulates cortical excitability and induces long-lasting effects. Here, we aimed at evaluating whether tDCS has potential to be developed as an innovative treatment in psychiatry. METHODS We conducted a systematic review of the current state of development and application of tDCS in psychiatric disorders, exploring clinical and cognitive effects, especially in major depressive disorder (MDD), schizophrenia and substance use disorder. RESULTS Systematic literature search yielded 40 publications: 22 in MDD, nine in schizophrenia, seven in substance use disorder, one in obsessive-compulsive disorder and one in mania. Our findings indicated beneficial clinical effects of tDCS for MDD and a promising literature in schizophrenia and substance use disorder. CONCLUSIONS Despite methodological differences, the data published to date are promising and supports the use of tDCS as a treatment for psychiatric disorders. However, its place regarding other treatments still has to be determined before becoming a routine clinical treatment.
Collapse
Affiliation(s)
- Marine Mondino
- Centre Hospitalier le Vinatier, Université Claude Bernard Lyon I , Bron , France
| | | | | | | | | | | |
Collapse
|
25
|
Rado JT, Hernandez EI. Therapeutic Neuromodulation for Treatment of Schizophrenia. SCHIZOPHRENIA 2014:139-160. [DOI: 10.1007/978-1-4939-0656-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Santarnecchi E, Feurra M, Barneschi F, Acampa M, Bianco G, Cioncoloni D, Rossi A, Rossi S. Time Course of Corticospinal Excitability and Autonomic Function Interplay during and Following Monopolar tDCS. Front Psychiatry 2014; 5:86. [PMID: 25101009 PMCID: PMC4104833 DOI: 10.3389/fpsyt.2014.00086] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/07/2014] [Indexed: 12/21/2022] Open
Abstract
While polarity-specific after-effects of monopolar transcranial direct current stimulation (tDCS) on corticospinal excitability are well-documented, modulation of vital parameters due to current spread through the brainstem is still a matter of debate, raising potential concerns about its use through the general public, as well as for neurorehabilitation purposes. We monitored online and after-effects of monopolar tDCS (primary motor cortex) in 10 healthy subjects by adopting a neuronavigated transcranial magnetic stimulation (TMS)/tDCS combined protocol. Motor evoked potentials (MEPs) together with vital parameters [e.g., blood pressure, heart-rate variability (HRV), and sympathovagal balance] were recorded and monitored before, during, and after anodal, cathodal, or sham tDCS. Ten MEPs, every 2.5-min time windows, were recorded from the right first dorsal interosseous (FDI), while 5-min epochs were used to record vital parameters. The protocol included 15 min of pre-tDCS and of online tDCS (anodal, cathodal, or sham). After-effects were recorded for 30 min. We showed a polarity-independent stabilization of cortical excitability level, a polarity-specific after-effect for cathodal and anodal stimulation, and an absence of persistent excitability changes during online stimulation. No significant effects on vital parameters emerged both during and after tDCS, while a linear increase in systolic/diastolic blood pressure and HRV was observed during each tDCS condition, as a possible unspecific response to experimental demands. Taken together, current findings provide new insights on the safety of monopolar tDCS, promoting its application both in research and clinical settings.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Unit of Neurology and Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena , Siena , Italy ; Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| | - Matteo Feurra
- Unit of Neurology and Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena , Siena , Italy ; Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| | - Federico Barneschi
- Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| | - Maurizio Acampa
- U.O.C. Stroke Unit, Department of Medicine, Surgery and Neuroscience, Le Scotte Policlinic , Siena , Italy
| | - Giovanni Bianco
- Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| | - David Cioncoloni
- Unit of Neurology and Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena , Siena , Italy ; Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| | - Alessandro Rossi
- Unit of Neurology and Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena , Siena , Italy
| | - Simone Rossi
- Unit of Neurology and Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena , Siena , Italy ; Brain Investigation and Neuromodulation Lab, University of Siena , Siena , Italy
| |
Collapse
|
27
|
Agarwal SM, Shivakumar V, Bose A, Subramaniam A, Nawani H, Chhabra H, Kalmady SV, Narayanaswamy JC, Venkatasubramanian G. Transcranial direct current stimulation in schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2013; 11:118-25. [PMID: 24465247 PMCID: PMC3897759 DOI: 10.9758/cpn.2013.11.3.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/01/2023]
Abstract
Transcranial direct current stimulation (tDCS) is an upcoming treatment modality for patients with schizophrenia. A series of recent observations have demonstrated improvement in clinical status of schizophrenia patients with tDCS. This review summarizes the research work that has examined the effects of tDCS in schizophrenia patients with respect to symptom amelioration, cognitive enhancement and neuroplasticity evaluation. tDCS is emerging as a safe, rapid and effective treatment for various aspects of schizophrenia symptoms ranging from auditory hallucinations-for which the effect is most marked, to negative symptoms and cognitive symptoms as well. An interesting line of investigation involves using tDCS for altering and examining neuroplasticity in patients and healthy subjects and is likely to lead to new insights into the neurological aberrations and pathophysiology of schizophrenia. The mechanistic aspects of the technique are discussed in brief. Future work should focus on establishing the clinical efficacy of this novel technique and on evaluating this modality as an adjunct to cognitive enhancement protocols. Understanding the mechanism of action of tDCS as well as the determinants and neurobiological correlates of clinical response to tDCS remains an important goal, which will help us expand the clinical applications of tDCS for the treatment of patients with schizophrenia.
Collapse
Affiliation(s)
- Sri Mahavir Agarwal
- The Schizophrenia Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- The Schizophrenia Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anushree Bose
- The Schizophrenia Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Aditi Subramaniam
- The Schizophrenia Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Hema Nawani
- The Schizophrenia Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Harleen Chhabra
- The Schizophrenia Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil V Kalmady
- The Schizophrenia Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- The Schizophrenia Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- The Schizophrenia Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
28
|
Modulating neural plasticity with non-invasive brain stimulation in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2013; 263:621-31. [PMID: 24061608 DOI: 10.1007/s00406-013-0446-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 09/02/2013] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a severe mental disorder characterised by a complex phenotype including positive, negative, affective and cognitive symptoms. Various theories have been developed to integrate the clinical phenotype into a strong neurobiological framework. One theory describes schizophrenia as a disorder of impaired neural plasticity. Recently, non-invasive brain stimulation techniques have garnered much attention to their ability to modulate plasticity and treat schizophrenia. The aim of this review is to introduce the basic physiological principles of conventional non-invasive brain stimulation techniques and to review the available evidence for schizophrenia. Despite promising evidence for efficacy in a large number of clinical trials, we continue to have a rudimentary understanding of the underlying neurobiology. Additional investigation is required to improve the response rates to non-invasive brain stimulation, to reduce the interindividual variability and to improve the understanding of non-invasive brain stimulation in schizophrenia.
Collapse
|
29
|
Palm U, Keeser D, Blautzik J, Pogarell O, Ertl-Wagner B, Kupka MJ, Reiser M, Padberg F. Prefrontal transcranial direct current stimulation (tDCS) changes negative symptoms and functional connectivity MRI (fcMRI) in a single case of treatment-resistant schizophrenia. Schizophr Res 2013; 150:583-5. [PMID: 24060570 DOI: 10.1016/j.schres.2013.08.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 06/25/2013] [Accepted: 08/31/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Ulrich Palm
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Palm U, Hasan A, Keeser D, Falkai P, Padberg F. Transcranial random noise stimulation for the treatment of negative symptoms in schizophrenia. Schizophr Res 2013; 146:372-3. [PMID: 23517664 DOI: 10.1016/j.schres.2013.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/19/2013] [Accepted: 03/01/2013] [Indexed: 12/28/2022]
|
31
|
David CN, Rapoport JL, Gogtay N. Treatments in context: transcranial direct current brain stimulation as a potential treatment in pediatric psychosis. Expert Rev Neurother 2013; 13:447-58. [PMID: 23545058 PMCID: PMC4063712 DOI: 10.1586/ern.13.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Childhood-onset schizophrenia is a chronic, severe form of schizophrenia, and is typically treatment resistant. Even after optimized pharmacotherapy, a majority (over 70%) of these pediatric patients present lasting psychotic symptoms and impaired cognition, necessitating the need for novel treatment modalities. Recent work in transcranial magnetic stimulation suggests moderate efficacy in symptom reduction in adult patients with schizophrenia; however, the transcranial magnetic stimulation treatment is cumbersome for this severely ill population. Transcranial direct current stimulation may provide a safe and effective adjuvant treatment for continued residual symptoms of schizophrenia.
Collapse
Affiliation(s)
- Christopher N David
- Child Psychiatry Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Building 10, Room 3N202, 10 Center Drive, Bethesda, MD 20890, USA
| | - Judith L Rapoport
- Child Psychiatry Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Building 10, Room 3N202, 10 Center Drive, Bethesda, MD 20890, USA
| | - Nitin Gogtay
- Child Psychiatry Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Building 10, Room 3N202, 10 Center Drive, Bethesda, MD 20890, USA
| |
Collapse
|
32
|
Rajji TK, Rogasch NC, Daskalakis ZJ, Fitzgerald PB. Neuroplasticity-based brain stimulation interventions in the study and treatment of schizophrenia: a review. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2013; 58:93-8. [PMID: 23442896 DOI: 10.1177/070674371305800206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We reviewed novel brain stimulation approaches that modify neuroplasticity and are used in the treatment and study of schizophrenia. We searched PubMed and Scholars Portal using search terms related to schizophrenia, brain stimulation, and neuroplasticity. Various brain stimulation approaches simulating a range of experimental protocols that induce synaptic long-term potentiation or depression have been developed. By far, repetitive transcranial magnetic stimulation (rTMS) has been the most widely used in the field of schizophrenia. Its application has been associated with mixed results in treating treatment-resistant symptoms and cognitive deficits associated with schizophrenia. Compared to the other approaches, rTMS is probably the least similar to plasticity-inducing cellular paradigms. Other approaches, such as paired associative stimulation, theta-burst stimulation, and transcranial direct current stimulation, are in their incipient stages in the study and treatment of schizophrenia, with promising early results. Numerous brain stimulation approaches have been developed to treat resistant dimensions of schizophrenia. Notwithstanding some promising reports, optimization of the methods and large randomized controlled trials are still needed.
Collapse
Affiliation(s)
- Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
33
|
Hasan A, Bergener T, Nitsche MA, Strube W, Bunse T, Falkai P, Wobrock T. Impairments of motor-cortex responses to unilateral and bilateral direct current stimulation in schizophrenia. Front Psychiatry 2013; 4:121. [PMID: 24109457 PMCID: PMC3790105 DOI: 10.3389/fpsyt.2013.00121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/16/2013] [Indexed: 12/27/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive stimulation technique that can be applied to modulate cortical activity through induction of cortical plasticity. Since various neuropsychiatric disorders are characterized by fluctuations in cortical activity levels (e.g., schizophrenia), tDCS is increasingly investigated as a treatment tool. Several studies have shown that the induction of cortical plasticity following classical, unilateral tDCS is reduced or impaired in the stimulated and non-stimulated primary motor cortices (M1) of patients with schizophrenia. Moreover, an alternative, bilateral tDCS setup has recently been shown to modulate cortical plasticity in both hemispheres in healthy subjects, highlighting another potential treatment approach. Here we present the first study comparing the efficacy of unilateral tDCS (cathode left M1, anode right supraorbital) with simultaneous bilateral tDCS (cathode left M1, anode right M1) in patients with schizophrenia. tDCS-induced cortical plasticity was monitored by investigating motor-evoked potentials induced by single-pulse transcranial magnetic stimulation applied to both hemispheres. Healthy subjects showed a reduction of left M1 excitability following unilateral tDCS on the stimulated left hemisphere and an increase in right M1 excitability following bilateral tDCS. In schizophrenia, no plasticity was induced following both stimulation paradigms. The pattern of these results indicates a complex interplay between plasticity and connectivity that is impaired in patients with schizophrenia. Further studies are needed to clarify the biological underpinnings and clinical impact of these findings.
Collapse
Affiliation(s)
- Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich , Munich , Germany
| | | | | | | | | | | | | |
Collapse
|