1
|
Jin F, Bruijn SM, Daffertshofer A. Machine learning approaches to predict whether MEPs can be elicited via TMS. J Neurosci Methods 2024; 410:110242. [PMID: 39127350 DOI: 10.1016/j.jneumeth.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/05/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a valuable technique for assessing the function of the motor cortex and cortico-muscular pathways. TMS activates the motoneurons in the cortex, which after transmission along cortico-muscular pathways can be measured as motor-evoked potentials (MEPs). The position and orientation of the TMS coil and the intensity used to deliver a TMS pulse are considered central TMS setup parameters influencing the presence/absence of MEPs. NEW METHOD We sought to predict the presence of MEPs from TMS setup parameters using machine learning. We trained different machine learners using either within-subject or between-subject designs. RESULTS We obtained prediction accuracies of on average 77 % and 65 % with maxima up to up to 90 % and 72 % within and between subjects, respectively. Across the board, a bagging ensemble appeared to be the most suitable approach to predict the presence of MEPs. CONCLUSIONS Although within a subject the prediction of MEPs via TMS setup parameter-based machine learning might be feasible, the limited accuracy between subjects suggests that the transfer of this approach to experimental or clinical research comes with significant challenges.
Collapse
Affiliation(s)
- Fang Jin
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sjoerd M Bruijn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Shraim MA, Massé-Alarie H, Farrell MJ, Cavaleri R, Loggia ML, Hodges PW. Neuroinflammatory activation in sensory and motor regions of the cortex is related to sensorimotor function in individuals with low back pain maintained by nociplastic mechanisms: A preliminary proof-of-concept study. Eur J Pain 2024; 28:1607-1626. [PMID: 39007713 DOI: 10.1002/ejp.2313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Chronic pain involves communication between neural and immune systems. Recent data suggest localization of glial (brain immune cells) activation to the sensorimotor regions of the brain cortex (S1/M1) in chronic low back pain (LBP). As glia perform diverse functions that impact neural function, activation might contribute to sensorimotor changes, particularly in LBP maintained by increased nervous system sensitivity (i.e., nociplastic pain). This preliminary proof-of-concept study aimed to: (i) compare evidence of neuroinflammatory activation in S1/M1 between individuals with and without LBP (and between nociceptive and nociplastic LBP phenotypes), and (ii) evaluate relationships between neuroinflammatory activation and sensorimotor function. METHODS Simultaneous PET-fMRI measured neuroinflammatory activation in functionally defined S1/M1 in pain-free individuals (n = 8) and individuals with chronic LBP (n = 9; nociceptive: n = 4, nociplastic: n = 5). Regions of S1/M1 related to the back were identified using fMRI during motor tasks and thermal stimuli. Sensorimotor measures included single and paired-pulse transcranial magnetic stimulation (TMS) and quantitative sensory testing (QST). Sleep, depression, disability and pain questionnaires were administered. RESULTS Neuroinflammatory activation was greater in the lower back cortical representation of S1/M1 of the nociplastic LBP group than both nociceptive LBP and pain-free groups. Neuroinflammatory activation in S1/M1 was positively correlated with sensitivity to hot (r = 0.52) and cold (r = 0.55) pain stimuli, poor sleep, depression, disability and BMI, and negatively correlated with intracortical facilitation (r = -0.41). CONCLUSION This preliminary proof-of-concept study suggests that neuroinflammation in back regions of S1/M1 in individuals with nociplastic LBP could plausibly explain some characteristic features of this LBP phenotype. SIGNIFICANCE STATEMENT Neuroinflammatory activation localized to sensorimotor areas of the brain in individuals with nociplastic pain might contribute to changes in sensory and motor function and aspects of central sensitization. If cause-effect relationships are established in longitudinal studies, this may direct development of therapies that target neuroinflammatory activation.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
- Centre Interdisciplinaire de Recherche en réadaptation et Integration Sociale (CIRRIS), Université Laval, Québec City, Québec, Canada
| | - Michael J Farrell
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation Lab, Western Sydney University, School of Health Sciences, Sydney, New South Wales, Australia
| | - Marco L Loggia
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul W Hodges
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
| |
Collapse
|
3
|
Chowdhury NS, Chang WJ, Cavaleri R, Chiang AKI, Schabrun SM. The reliability and validity of rapid transcranial magnetic stimulation mapping for muscles under active contraction. BMC Neurosci 2024; 25:43. [PMID: 39215217 PMCID: PMC11363547 DOI: 10.1186/s12868-024-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Rapid mapping is a transcranial magnetic stimulation (TMS) mapping method which can significantly reduce data collection time compared to traditional approaches. However, its validity and reliability has only been established for upper-limb muscles during resting-state activity. Here, we determined the validity and reliability of rapid mapping for non-upper limb muscles that require active contraction during TMS: the masseter and quadriceps muscles. Eleven healthy participants attended two sessions, spaced two hours apart, each involving rapid and 'traditional' mapping of the masseter muscle and three quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis). Map parameters included map volume, map area and centre of gravity (CoG) in the medial-lateral and anterior-posterior directions. Low to moderate measurement errors (%SEMeas = 10-32) were observed across muscles. Relative reliability varied from good-to-excellent (ICC = 0.63-0.99) for map volume, poor-to-excellent (ICC = 0.11-0.86) for map area, and fair-to-excellent for CoG (ICC = 0.25-0.8) across muscles. There was Bayesian evidence of equivalence (BF's > 3) in most map outcomes between rapid and traditional maps across all muscles, supporting the validity of the rapid mapping method. Overall, rapid TMS mapping produced similar estimates of map parameters to the traditional method, however the reliability results were mixed. As mapping of non-upper limb muscles is relatively challenging, rapid mapping is a promising substitute for traditional mapping, however further work is required to refine this method.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia.
- University of New South Wales, Sydney, NSW, Australia.
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research Australia, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia.
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia.
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - Alan K I Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
4
|
Alfihed S, Majrashi M, Ansary M, Alshamrani N, Albrahim SH, Alsolami A, Alamari HA, Zaman A, Almutairi D, Kurdi A, Alzaydi MM, Tabbakh T, Al-Otaibi F. Non-Invasive Brain Sensing Technologies for Modulation of Neurological Disorders. BIOSENSORS 2024; 14:335. [PMID: 39056611 PMCID: PMC11274405 DOI: 10.3390/bios14070335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
The non-invasive brain sensing modulation technology field is experiencing rapid development, with new techniques constantly emerging. This study delves into the field of non-invasive brain neuromodulation, a safer and potentially effective approach for treating a spectrum of neurological and psychiatric disorders. Unlike traditional deep brain stimulation (DBS) surgery, non-invasive techniques employ ultrasound, electrical currents, and electromagnetic field stimulation to stimulate the brain from outside the skull, thereby eliminating surgery risks and enhancing patient comfort. This study explores the mechanisms of various modalities, including transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), highlighting their potential to address chronic pain, anxiety, Parkinson's disease, and depression. We also probe into the concept of closed-loop neuromodulation, which personalizes stimulation based on real-time brain activity. While we acknowledge the limitations of current technologies, our study concludes by proposing future research avenues to advance this rapidly evolving field with its immense potential to revolutionize neurological and psychiatric care and lay the foundation for the continuing advancement of innovative non-invasive brain sensing technologies.
Collapse
Affiliation(s)
- Salman Alfihed
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Majed Majrashi
- Bioengineering Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Muhammad Ansary
- Neuroscience Center Research Unit, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Naif Alshamrani
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Shahad H. Albrahim
- Bioengineering Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdulrahman Alsolami
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Hala A. Alamari
- Bioengineering Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Adnan Zaman
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Dhaifallah Almutairi
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Abdulaziz Kurdi
- Advanced Materials Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Mai M. Alzaydi
- Bioengineering Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Thamer Tabbakh
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Faisal Al-Otaibi
- Neuroscience Center Research Unit, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
5
|
Klerx SP, Bruijn SM, Coppieters MW, Kiers H, Twisk JWR, Pool-Goudzwaard AL. Differences in the organization of the primary motor cortex in people with and without low back pain and associations with motor control and sensory tests. Exp Brain Res 2024; 242:1609-1622. [PMID: 38767666 PMCID: PMC11208231 DOI: 10.1007/s00221-024-06844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Differences in organization of the primary motor cortex and altered trunk motor control (sensing, processing and motor output) have been reported in people with low back pain (LBP). Little is known to what extent these differences are related. We investigated differences in 1) organization of the primary motor cortex and 2) motor and sensory tests between people with and without LBP, and 3) investigated associations between the organization of the primary motor cortex and motor and sensory tests. We conducted a case-control study in people with (N=25) and without (N=25) LBP. The organization of the primary motor cortex (Center of Gravity (CoG) and Area of the cortical representation of trunk muscles) was assessed using neuronavigated transcranial magnetic stimulation, based on individual MRIs. Sensory tests (quantitative sensory testing, graphaesthesia, two-point discrimination threshold) and a motor test (spiral-tracking test) were assessed. Participants with LBP had a more lateral and lower location of the CoG and a higher temporal summation of pain. For all participants combined, better vibration test scores were associated with a more anterior, lateral, and lower CoG and a better two-point discrimination threshold was associated with a lower CoG. A small subset of variables showed significance. Although this aligns with the concept of altered organization of the primary motor cortex in LBP, there is no strong evidence of the association between altered organization of the primary motor cortex and motor and sensory test performance in LBP. Focusing on subgroup analyses regarding pain duration can be a topic for future research.
Collapse
Affiliation(s)
- Sabrine P Klerx
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
- Research Group Lifestyle and Health, HU University of Applied Sciences, Utrecht, The Netherlands.
| | - Sjoerd M Bruijn
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Institute of Brain and Behaviour , Amsterdam, The Netherlands
| | - Michel W Coppieters
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Brisbane and Gold Coast, Griffith University, Brisbane and Gold Coast, Australia
| | - Henri Kiers
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Research Group Lifestyle and Health, HU University of Applied Sciences, Utrecht, The Netherlands
- Research Centre for Digital Business and Media, HU University of Applied Sciences, Utrecht, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Data Science, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Annelies L Pool-Goudzwaard
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- SOMT University of Physiotherapy, Amersfoort, The Netherlands
| |
Collapse
|
6
|
Chowdhury NS, Taseen K, Chiang A, Chang WJ, Millard SK, Seminowicz DA, Schabrun SM. A 5-day course of rTMS before pain onset ameliorates future pain and increases sensorimotor peak alpha frequency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598596. [PMID: 38915700 PMCID: PMC11195234 DOI: 10.1101/2024.06.11.598596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has shown promise as an intervention for pain. An unexplored research question is whether the delivery of rTMS prior to pain onset might protect against a future episode of prolonged pain. The present study aimed to determine i) whether 5 consecutive days of rTMS delivered prior to experimentally-induced prolonged jaw pain could reduce future pain intensity and ii) whether any effects of rTMS on pain were mediated by changes in corticomotor excitability (CME) and/or sensorimotor peak alpha frequency (PAF). On each day from Day 0-4, forty healthy individuals received a single session of active (n = 21) or sham (n = 19) rTMS over the left primary motor cortex. PAF and CME were assessed on Day 0 (before rTMS) and Day 4 (after rTMS). Prolonged pain was induced via intramuscular injection of nerve growth factor (NGF) in the right masseter muscle after the final rTMS session. From Days 5-25, participants completed twice-daily electronic dairies including pain on chewing and yawning (primary outcomes), as well as pain during other activities (e.g. talking), functional limitation in jaw function and muscle soreness (secondary outcomes). Compared to sham, individuals who received active rTMS subsequently experienced lower pain on chewing and yawning. Although active rTMS increased PAF, the effects of rTMS on pain were not mediated by changes in PAF or CME. This study is the first to show that rTMS delivered prior to pain onset can protect against future pain and associated functional impairment. Thus, rTMS may hold promise as a prophylactic intervention for persistent pain.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Khandoker Taseen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph's Healthcare, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
7
|
Suhood AY, Summers SJ, Opar DA, Astill T, An WW, Rio E, Cavaleri R. Bilateral Corticomotor Reorganization and Symptom Development in Response to Acute Unilateral Hamstring Pain: A Randomized, Controlled Study. THE JOURNAL OF PAIN 2024; 25:1000-1011. [PMID: 37907112 DOI: 10.1016/j.jpain.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/08/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
Accumulating evidence demonstrates that pain induces adaptations in the corticomotor representations of affected muscles. However, previous work has primarily investigated the upper limb, with few studies examining corticomotor reorganization in response to lower limb pain. This is important to consider, given the significant functional, anatomical, and neurophysiological differences between upper and lower limb musculature. Previous work has also focused on unilateral corticomotor changes in response to muscle pain, despite an abundance of literature demonstrating that unilateral pain conditions are commonly associated with bilateral motor dysfunction. For the first time, this study investigated the effect of unilateral acute hamstring pain on bilateral corticomotor organization using transcranial magnetic stimulation (TMS) mapping. Corticomotor outcomes (TMS maps), pain, mechanical sensitivity (pressure pain thresholds), and function (maximal voluntary contractions) were recorded from 28 healthy participants at baseline. An injection of pain-inducing hypertonic (n = 14) or pain-free isotonic (n = 14) saline was then administered to the right hamstring muscle, and pain ratings were collected every 30 seconds until pain resolution. Follow-up measures were taken immediately following pain resolution and at 25, 50, and 75 minutes post-pain resolution. Unilateral acute hamstring pain induced bilateral symptom development and changes in corticomotor reorganization. Two patterns of reorganization were observed-corticomotor facilitation and corticomotor depression. Corticomotor facilitation was associated with increased mechanical sensitivity and decreased function bilaterally (all P < .05). These effects persisted for at least 75 minutes after pain resolution. PERSPECTIVE: These findings suggest that individual patterns of corticomotor reorganization may contribute to ongoing functional deficits of either limb following acute unilateral lower limb pain. Further research is required to assess these adaptations and the possible long-term implications for rehabilitation and reinjury risk in cohorts with acute hamstring injury.
Collapse
Affiliation(s)
- Ariane Y Suhood
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia
| | - Simon J Summers
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David A Opar
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia; School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Tom Astill
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia
| | - Winko W An
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Ebonie Rio
- School of Allied Health, La Trobe University Melbourne, Melbourne, Victoria, Australia; The Victorian Institute of Sport, Albert Park, Victoria, Australia
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia; Translational Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
8
|
Sutter EN, Casey CP, Gillick BT. Single-pulse transcranial magnetic stimulation for assessment of motor development in infants with early brain injury. Expert Rev Med Devices 2024; 21:179-186. [PMID: 38166497 PMCID: PMC10947901 DOI: 10.1080/17434440.2023.2299310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/21/2023] [Indexed: 01/04/2024]
Abstract
INTRODUCTION Single-pulse transcranial magnetic stimulation (TMS) has many applications for pediatric clinical populations, including infants with perinatal brain injury. As a noninvasive neuromodulation tool, single-pulse TMS has been used safely in infants and children to assess corticospinal integrity and circuitry patterns. TMS may have important applications in early detection of atypical motor development or cerebral palsy. AREAS COVERED The authors identified and summarized relevant studies incorporating TMS in infants, including findings related to corticospinal development and circuitry, motor cortex localization and mapping, and safety. This special report also describes methodologies and safety considerations related to TMS assessment in infants, and discusses potential applications related to diagnosis of cerebral palsy and early intervention. EXPERT OPINION Single-pulse TMS has demonstrated safety and feasibility in infants with perinatal brain injury and may provide insight into neuromotor development and potential cerebral palsy diagnosis. Additional research in larger sample sizes will more fully evaluate the utility of TMS biomarkers in early diagnosis and intervention. Methodological challenges to performing TMS in infants and technical/equipment limitations require additional consideration and innovation toward clinical implementation. Future research may explore use of noninvasive neuromodulation techniques as an intervention in younger children with perinatal brain injury to improve motor outcomes.
Collapse
Affiliation(s)
- Ellen N. Sutter
- Waisman Center, University of Wisconsin-Madison
- Department of Rehabilitation Medicine, University of Minnesota-Twin Cities
| | | | - Bernadette T. Gillick
- Waisman Center, University of Wisconsin-Madison
- Department of Pediatrics, University of Wisconsin-Madison
| |
Collapse
|
9
|
Bigoni C, Pagnamenta S, Cadic-Melchior A, Bevilacqua M, Harquel S, Raffin E, Hummel FC. MEP and TEP features variability: is it just the brain-state? J Neural Eng 2024; 21:016011. [PMID: 38211341 DOI: 10.1088/1741-2552/ad1dc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Objective.The literature investigating the effects of alpha oscillations on corticospinal excitability is divergent. We believe inconsistency in the findings may arise, among others, from the electroencephalography (EEG) processing for brain-state determination. Here, we provide further insights in the effects of the brain-state on cortical and corticospinal excitability and quantify the impact of different EEG processing.Approach.Corticospinal excitability was measured using motor evoked potential (MEP) peak-to-peak amplitudes elicited with transcranial magnetic stimulation (TMS); cortical responses were studied through TMS-evoked potentials' TEPs features. A TMS-EEG-electromyography (EMG) dataset of 18 young healthy subjects who received 180 single-pulse (SP) and 180 paired pulses (PP) to determine short-intracortical inhibition (SICI) was investigated. To study the effect of different EEG processing, we compared the brain-state estimation deriving from three published methods. The influence of presence of neural oscillations was also investigated. To evaluate the effect of the brain-state on MEP and TEP features variability, we defined the brain-state based on specific EEG phase and power combinations, only in trials where neural oscillations were present. The relationship between TEPs and MEPs was further evaluated.Main results.The presence of neural oscillations resulted in more consistent results regardless of the EEG processing approach. Nonetheless, the latter still critically affected the outcomes, making conclusive claims complex. With our approach, the MEP amplitude was positively modulated by the alpha power and phase, with stronger responses during the trough phase and high power. Power and phase also affected TEP features. Importantly, similar effects were observed in both TMS conditions.Significance.These findings support the view that the brain state of alpha oscillations is associated with the variability observed in cortical and corticospinal responses to TMS, with a tight correlation between the two. The results further highlight the importance of closed-loop stimulation approaches while underlining that care is needed in designing experiments and choosing the analytical approaches, which should be based on knowledge from offline studies to control for the heterogeneity originating from different EEG processing strategies.
Collapse
Affiliation(s)
- Claudia Bigoni
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
| | - Sara Pagnamenta
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
| | - Andéol Cadic-Melchior
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
| | - Michele Bevilacqua
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
| | - Sylvain Harquel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
| | - Estelle Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, 1202 Geneva, Switzerland
| |
Collapse
|
10
|
Agboada D, Osnabruegge M, Rethwilm R, Kanig C, Schwitzgebel F, Mack W, Schecklmann M, Seiberl W, Schoisswohl S. Semi-automated motor hotspot search (SAMHS): a framework toward an optimised approach for motor hotspot identification. Front Hum Neurosci 2023; 17:1228859. [PMID: 38164193 PMCID: PMC10757939 DOI: 10.3389/fnhum.2023.1228859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Background Motor hotspot identification represents the first step in the determination of the motor threshold and is the basis for the specification of stimulation intensity used for various Transcranial Magnetic Stimulation (TMS) applications. The level of experimenters' experience and the methodology of motor hotspot identification differ between laboratories. The need for an optimized and time-efficient technique for motor hotspot identification is therefore substantial. Objective With the current work, we present a framework for an optimized and time-efficient semi-automated motor hotspot search (SAMHS) technique utilizing a neuronavigated robot-assisted TMS system (TMS-cobot). Furthermore, we aim to test its practicality and accuracy by a comparison with a manual motor hotspot identification method. Method A total of 32 participants took part in this dual-center study. At both study centers, participants underwent manual hotspot search (MHS) with an experienced TMS researcher, and the novel SAMHS procedure with a TMS-cobot (hereafter, called cobot hotspot search, CHS) in a randomized order. Resting motor threshold (RMT), and stimulus intensity to produce 1 mV (SI1mV) peak-to-peak of motor-evoked potential (MEP), as well as MEPs with 120% RMT and SI1mV were recorded as outcome measures for comparison. Results Compared to the MHS method, the CHS produced lower RMT, lower SI1mV and a trend-wise higher peak-to-peak MEP amplitude in stimulations with SI1mV. The duration of the CHS procedure was longer than that of the MHS (15.60 vs. 2.43 min on average). However, accuracy of the hotspot was higher for the CHS compared to the MHS. Conclusions The SAMHS procedure introduces an optimized motor hotspot determination system that is easy to use, and strikes a fairly good balance between accuracy and speed. This new procedure can thus be deplored by experienced as well as beginner-level TMS researchers.
Collapse
Affiliation(s)
- Desmond Agboada
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Mirja Osnabruegge
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Roman Rethwilm
- Institute of Sport Science, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Carolina Kanig
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Florian Schwitzgebel
- Department of Electrical Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Wolfgang Mack
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Wolfgang Seiberl
- Institute of Sport Science, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Stefan Schoisswohl
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Chen Y, Jiang Y, Zhang Z, Li Z, Zhu C. Transcranial magnetic stimulation mapping of the motor cortex: comparison of five estimation algorithms. Front Neurosci 2023; 17:1301075. [PMID: 38130697 PMCID: PMC10733534 DOI: 10.3389/fnins.2023.1301075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background There are currently five different kinds of transcranial magnetic stimulation (TMS) motor mapping algorithms available, from ordinary point-based algorithms to advanced field-based algorithms. However, there have been only a limited number of comparison studies conducted, and they have not yet examined all of the currently available algorithms. This deficiency impedes the judicious selection of algorithms for application in both clinical and basic neuroscience, and hinders the potential promotion of a potential superior algorithm. Considering the influence of algorithm complexity, further investigation is needed to examine the differences between fMRI peaks and TMS cortical hotspots that were identified previously. Methods Twelve healthy participants underwent TMS motor mapping and a finger-tapping task during fMRI. The motor cortex TMS mapping results were estimated by five algorithms, and fMRI activation results were obtained. For each algorithm, the prediction error was defined as the distance between the measured scalp hotspot and optimized coil position, which was determined by the maximum electric field strength in the estimated motor cortex. Additionally, the study identified the minimum number of stimuli required for stable mapping. Finally, the location difference between the TMS mapping cortical hotspot and the fMRI activation peak was analyzed. Results The projection yielded the lowest prediction error (5.27 ± 4.24 mm) among the point-based algorithms and the association algorithm yielded the lowest (6.66 ± 3.48 mm) among field-based estimation algorithms. The projection algorithm required fewer stimuli, possibly resulting from its suitability for the grid-based mapping data collection method. The TMS cortical hotspots from all algorithms consistently deviated from the fMRI activation peak (20.52 ± 8.46 mm for five algorithms). Conclusion The association algorithm might be a superior choice for clinical applications and basic neuroscience research, due to its lower prediction error and higher estimation sensitivity in the deep cortical structure, especially for the sulcus. It also has potential applicability in various other TMS domains, including language area mapping and more. Otherwise, our results provide further evidence that TMS motor mapping intrinsically differs from fMRI motor mapping.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yihan Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China
| | - Zong Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zheng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Zhuhai, Zhuhai, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Ma L, Zhong G, Yang Z, Lu X, Fan L, Liu H, Chu C, Xiong H, Jiang T. In-vivoverified anatomically aware deep learning for real-time electric field simulation. J Neural Eng 2023; 20:066018. [PMID: 37939483 DOI: 10.1088/1741-2552/ad0add] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Objective.Transcranial magnetic stimulation (TMS) has emerged as a prominent non-invasive technique for modulating brain function and treating mental disorders. By generating a high-precision magnetically evoked electric field (E-field) using a TMS coil, it enables targeted stimulation of specific brain regions. However, current computational methods employed for E-field simulations necessitate extensive preprocessing and simulation time, limiting their fast applications in the determining the optimal coil placement.Approach.We present an attentional deep learning network to simulate E-fields. This network takes individual magnetic resonance images and coil configurations as inputs, firstly transforming the images into explicit brain tissues and subsequently generating the local E-field distribution near the target brain region. Main results. Relative to the previous deep-learning simulation method, the presented method reduced the mean relative error in simulated E-field strength of gray matter by 21.1%, and increased the correlation between regional E-field strengths and corresponding electrophysiological responses by 35.0% when applied into another dataset.In-vivoTMS experiments further revealed that the optimal coil placements derived from presented method exhibit comparable stimulation performance on motor evoked potentials to those obtained using computational methods. The simplified preprocessing and increased simulation efficiency result in a significant reduction in the overall time cost of traditional TMS coil placement optimization, from several hours to mere minutes.Significance.The precision and efficiency of presented simulation method hold promise for its application in determining individualized coil placements in clinical practice, paving the way for personalized TMS treatments.
Collapse
Affiliation(s)
- Liang Ma
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Gangliang Zhong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xuefeng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hao Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Research Center for Augmented Intelligence, Artificial Intelligence Research Institute, Zhejiang Lab, Hangzhou, Zhejiang Province 311100, People's Republic of China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, Hunan Province 425000, People's Republic of China
| |
Collapse
|
13
|
Adams FC, Foglia SD, Drapeau CC, Turco CV, Ramdeo KR, Nelson AJ. Intersession reliability of fast motor mapping using TMS. Brain Stimul 2023; 16:1684-1685. [PMID: 37977334 DOI: 10.1016/j.brs.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Affiliation(s)
- Faith C Adams
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Chloe C Drapeau
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Claudia V Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Karishma R Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Passera B, Harquel S, Chauvin A, Gérard P, Lai L, Moro E, Meoni S, Fraix V, David O, Raffin E. Multi-scale and cross-dimensional TMS mapping: A proof of principle in patients with Parkinson's disease and deep brain stimulation. Front Neurosci 2023; 17:1004763. [PMID: 37214390 PMCID: PMC10192635 DOI: 10.3389/fnins.2023.1004763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/29/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) mapping has become a critical tool for exploratory studies of the human corticomotor (M1) organization. Here, we propose to gather existing cutting-edge TMS-EMG and TMS-EEG approaches into a combined multi-dimensional TMS mapping that considers local and whole-brain excitability changes as well as state and time-specific changes in cortical activity. We applied this multi-dimensional TMS mapping approach to patients with Parkinson's disease (PD) with Deep brain stimulation (DBS) of the sub-thalamic nucleus (STN) ON and OFF. Our goal was to identifying one or several TMS mapping-derived markers that could provide unprecedent new insights onto the mechanisms of DBS in movement disorders. Methods Six PD patients (1 female, mean age: 62.5 yo [59-65]) implanted with DBS-STN for 1 year, underwent a robotized sulcus-shaped TMS motor mapping to measure changes in muscle-specific corticomotor representations and a movement initiation task to probe state-dependent modulations of corticospinal excitability in the ON (using clinically relevant DBS parameters) and OFF DBS states. Cortical excitability and evoked dynamics of three cortical areas involved in the neural control of voluntary movements (M1, pre-supplementary motor area - preSMA and inferior frontal gyrus - IFG) were then mapped using TMS-EEG coupling in the ON and OFF state. Lastly, we investigated the timing and nature of the STN-to-M1 inputs using a paired pulse DBS-TMS-EEG protocol. Results In our sample of patients, DBS appeared to induce fast within-area somatotopic re-arrangements of motor finger representations in M1, as revealed by mediolateral shifts of corticomuscle representations. STN-DBS improved reaction times while up-regulating corticospinal excitability, especially during endogenous motor preparation. Evoked dynamics revealed marked increases in inhibitory circuits in the IFG and M1 with DBS ON. Finally, inhibitory conditioning effects of STN single pulses on corticomotor activity were found at timings relevant for the activation of inhibitory GABAergic receptors (4 and 20 ms). Conclusion Taken together, these results suggest a predominant role of some markers in explaining beneficial DBS effects, such as a context-dependent modulation of corticospinal excitability and the recruitment of distinct inhibitory circuits, involving long-range projections from higher level motor centers and local GABAergic neuronal populations. These combined measures might help to identify discriminative features of DBS mechanisms towards deep clinical phenotyping of DBS effects in Parkinson's Disease and in other pathological conditions.
Collapse
Affiliation(s)
- Brice Passera
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sylvain Harquel
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- CNRS, INSERM, IRMaGe, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Alan Chauvin
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Pauline Gérard
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Lisa Lai
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Elena Moro
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Sara Meoni
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Valerie Fraix
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Estelle Raffin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
15
|
Weise K, Numssen O, Kalloch B, Zier AL, Thielscher A, Haueisen J, Hartwigsen G, Knösche TR. Precise motor mapping with transcranial magnetic stimulation. Nat Protoc 2023; 18:293-318. [PMID: 36460808 DOI: 10.1038/s41596-022-00776-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/17/2022] [Indexed: 12/03/2022]
Abstract
We describe a routine to precisely localize cortical muscle representations within the primary motor cortex with transcranial magnetic stimulation (TMS) based on the functional relation between induced electric fields at the cortical level and peripheral muscle activation (motor-evoked potentials; MEPs). Besides providing insights into structure-function relationships, this routine lays the foundation for TMS dosing metrics based on subject-specific cortical electric field thresholds. MEPs for different coil positions and orientations are combined with electric field modeling, exploiting the causal nature of neuronal activation to pinpoint the cortical origin of the MEPs. This involves constructing an individual head model using magnetic resonance imaging, recording MEPs via electromyography during TMS and computing the induced electric fields with numerical modeling. The cortical muscle representations are determined by relating the TMS-induced electric fields to the MEP amplitudes. Subsequently, the coil position to optimally stimulate the origin of the identified cortical MEP can be determined by numerical modeling. The protocol requires 2 h of manual preparation, 10 h for the automated head model construction, one TMS session lasting 2 h, 12 h of computational postprocessing and an optional second TMS session lasting 30 min. A basic level of computer science expertise and standard TMS neuronavigation equipment suffices to perform the protocol.
Collapse
Affiliation(s)
- Konstantin Weise
- Methods and Development Group 'Brain Networks', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. .,Technische Universität Ilmenau, Advanced Electromagnetics Group, Ilmenau, Germany.
| | - Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Benjamin Kalloch
- Methods and Development Group 'Brain Networks', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Technische Universität Ilmenau, Institute of Biomedical Engineering and Informatics, Ilmenau, Germany
| | - Anna Leah Zier
- Institute of Medical Psychology, Medical Faculty, Goethe-University, Frankfurt/Main, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Technical University of Denmark, Center for Magnetic Resonance, Department of Health Technology, Kongens Lyngby, Denmark
| | - Jens Haueisen
- Technische Universität Ilmenau, Institute of Biomedical Engineering and Informatics, Ilmenau, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thomas R Knösche
- Methods and Development Group 'Brain Networks', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Technische Universität Ilmenau, Institute of Biomedical Engineering and Informatics, Ilmenau, Germany
| |
Collapse
|
16
|
Chowdhury NS, Skippen P, Si E, Chiang AKI, Millard SK, Furman AJ, Chen S, Schabrun SM, Seminowicz DA. The reliability of two prospective cortical biomarkers for pain: EEG peak alpha frequency and TMS corticomotor excitability. J Neurosci Methods 2023; 385:109766. [PMID: 36495945 PMCID: PMC9848447 DOI: 10.1016/j.jneumeth.2022.109766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/10/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many pain biomarkers fail to move from discovery to clinical application, attributed to poor reliability and an inability to accurately classify at-risk individuals. Preliminary evidence has shown that high pain sensitivity is associated with slow peak alpha frequency (PAF), and depression of corticomotor excitability (CME), potentially due to impairments in ascending sensory and descending motor pathway signalling respectively NEW METHOD: The present study evaluated the reliability of PAF and CME responses during sustained pain. Specifically, we determined whether, over several days of pain, a) PAF remains stable and b) individuals show two stable and distinct CME responses: facilitation and depression. Participants were given an injection of nerve growth factor (NGF) into the right masseter muscle on Day 0 and Day 2, inducing sustained pain. Electroencephalography (EEG) to assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on Day 0, Day 2 and Day 5. RESULTS Using a weighted peak estimate, PAF reliability (n = 75) was in the excellent range even without standard pre-processing and ∼2 min recording length. Using a single peak estimate, PAF reliability was in the moderate-good range. For CME (n = 74), 80% of participants showed facilitation or depression of CME beyond an optimal cut-off point, with the stability of these changes in the good range. COMPARISON WITH EXISTING METHODS No study has assessed the reliability of PAF or feasibility of classifying individuals as facilitators/depressors, in response to sustained pain. PAF was reliable even in the presence of pain. The use of a weighted peak estimate for PAF is recommended, as excellent test-retest reliability can be obtained even when using minimal pre-processing and ∼2 min recording. We also showed that 80% of individuals exhibit either facilitation or depression of CME, with these changes being stable across sessions. CONCLUSIONS Our study provides support for the reliability of PAF and CME as prospective cortical biomarkers. As such, our paper adds important methodological advances to the rapidly growing field of pain biomarkers.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia.
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Emily Si
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Alan K I Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Furman
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Shuo Chen
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Physical Therapy, University of Western Ontario, London, Canada
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA; Department of Medical Biophysics, University of Western Ontario, London, Canada
| |
Collapse
|
17
|
Kahl CK, Giuffre A, Wrightson JG, Zewdie E, Condliffe EG, MacMaster FP, Kirton A. Reliability of active robotic neuro-navigated transcranial magnetic stimulation motor maps. Exp Brain Res 2023; 241:355-364. [PMID: 36525072 DOI: 10.1007/s00221-022-06523-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Transcranial magnetic stimulation (TMS) motor mapping is a safe, non-invasive method used to study corticomotor organization and intervention-induced plasticity. Reliability of resting maps is well established, but understudied for active maps and unestablished for active maps obtained using robotic TMS techniques. The objective of this study was to determine the reliability of robotic neuro-navigated TMS motor map measures during active muscle contraction. We hypothesized that map area and volume would show excellent short- and medium-term reliability. Twenty healthy adults were tested on 3 days. Active maps of the first dorsal interosseous muscle were created using a 12 × 12 grid (7 mm spacing). Short- (24 h) and medium-term (3-5 weeks) relative (intra-class correlation coefficient) and absolute (minimal detectable change (MDC); standard error of measure) reliabilities were evaluated for map area, volume, center of gravity (CoG), and hotspot magnitude (peak-to-peak MEP amplitude at the hotspot), along with active motor threshold (AMT) and maximum voluntary contraction (MVC). This study found that AMT and MVC had good-to-excellent short- and medium-term reliability. Map CoG (x and y) were the most reliable map measures across sessions with excellent short- and medium-term reliability (p < 0.001). Map area, hotspot magnitude, and map volume followed with better reliability medium-term than short-term, with a change of 28%, 62%, and 78% needed to detect a true medium-term change, respectively. Therefore, robot-guided neuro-navigated TMS active mapping is relatively reliable but varies across measures. This, and MDC, should be considered in interventional study designs.
Collapse
Affiliation(s)
- Cynthia K Kahl
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Adrianna Giuffre
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada
| | - James G Wrightson
- Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Ephrem Zewdie
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Elizabeth G Condliffe
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Frank P MacMaster
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Addictions and Mental Health Strategic Clinical Network, Calgary, AB, Canada
| | - Adam Kirton
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, Calgary, AB, Canada. .,Department of Pediatrics, University of Calgary, Calgary, AB, Canada. .,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
18
|
Mouth rinsing and ingesting salty or bitter solutions does not influence corticomotor excitability or neuromuscular function. Eur J Appl Physiol 2023; 123:1179-1189. [PMID: 36700971 DOI: 10.1007/s00421-023-05141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE To explore the effect of tasting unpleasant salty or bitter solutions on lower limb corticomotor excitability and neuromuscular function. METHODS Nine females and eleven males participated (age: 27 ± 7 years, BMI: 25.3 ± 4.0 kg m-2). Unpleasant salty (1 M) and bitter (2 mM quinine) solutions were compared to water, sweetened water, and no solution, which functioned as control conditions. In a non-blinded randomized cross-over order, each solution was mouth rinsed (10 s) and ingested before perceptual responses, instantaneous heart rate (a marker of autonomic nervous system activation), quadricep corticomotor excitability (motor-evoked potential amplitude) and neuromuscular function during a maximal voluntary contraction (maximum voluntary force, resting twitch force, voluntary activation, 0-50 ms impulse, 0-100 impulse, 100-200 ms impulse) were measured. RESULTS Hedonic value (water: 47 ± 8%, sweet: 23 ± 17%, salt: 71 ± 8%, bitter: 80 ± 10%), taste intensity, unpleasantness and increases in heart rate (no solution: 14 ± 5 bpm, water: 18 ± 5 bpm, sweet: 20 ± 5 bpm, salt: 24 ± 7 bpm, bitter: 23 ± 6 bpm) were significantly higher in the salty and bitter conditions compared to control conditions. Nausea was low in all conditions (< 15%) but was significantly higher in salty and bitter conditions compared to water (water: 3 ± 5%, sweet: 6 ± 13%, salt: 7 ± 9%, bitter: 14 ± 16%). There was no significant difference between conditions in neuromuscular function or corticomotor excitability variables. CONCLUSION At rest, unpleasant tastes appear to have no influence on quadricep corticomotor excitability or neuromuscular function. These data question the mechanisms via which unpleasant tastes are proposed to influence exercise performance.
Collapse
|
19
|
Schein B, Beltran G, França BR, Sanches PRS, Silva Jr DP, Torres IL, Fegni F, Caumo W. Effects of Hypnotic Analgesia and Transcranial Direct Current Stimulation on Pain Tolerance and Corticospinal Excitability in Individuals with Fibromyalgia: A Cross-Over Randomized Clinical Trial. J Pain Res 2023; 16:187-203. [PMID: 36718400 PMCID: PMC9884000 DOI: 10.2147/jpr.s384373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/28/2022] [Indexed: 01/24/2023] Open
Abstract
Objective We compare the effect of HAS, a-tDCS on the left dorsolateral prefrontal cortex (l-DLPFC), and rest-testing on pain measures [(cold pressor test (CPT) (primary outcome) and heat pain threshold]. We also compare their effects on the motor evoked potential (MEP) (primary outcome), short intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP). Methods This randomized, blind, crossover trial included 18 women with fibromyalgia, aged from 18 to 65 years old. They received at random and in a crossover order a-tDCS over the l-DLPFC (2mA), HAS, or a rest-testing. Results HAS compared to a-tDCS increased the pain tolerance with a moderate effect size (ES) [Cohen's f=-0.78; (CI 95%; -1.48 to -0.12)]. While compared to rest-testing, HAS increased the CPT with a large ES [Cohen's f=-0.87; (CI 95%; -1.84 to -0.09)]. The a-tDCS compared to HAS increased the MEP amplitude with large ES [Cohen's f=-1.73 (CI 95%; -2.17 to -0.17)]. Likewise, its ES compared to rest-testing in the MEP size was large [Cohen's f=-1.03; (CI 95%; -2.06 to -0.08)]. Conclusion These findings revealed that HAS affects contra-regulating mechanisms involved in perception and pain tolerance, while the a-tDCS increased the excitability of the corticospinal pathways. They give a subsidy to investigate their effect as approaches to counter regulate the maladaptive neuroplasticity involved in fibromyalgia. Clinical Trial Registration www.ClinicalTrials.gov, identifier - NCT05066568.
Collapse
Affiliation(s)
- Bruno Schein
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul (RS), Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Gerardo Beltran
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul (RS), Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Institute of Neurosciences, Universidad Catolica de Cuenca, Cuenca, Ecuador
| | - Bárbara Regina França
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul (RS), Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | | | | | - Iraci Lucena Torres
- Pain and Palliative Care Service, HCPA, Porto Alegre, RS, Brazil
- Laboratory of Pharmacology of Pain and Neuromodulation, Experimental Research Center, HCPA, Porto Alegre, RS, Brazil
| | - Felipe Fegni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Physics and Rehabilitation Department, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul (RS), Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Pain and Palliative Care Service, HCPA, Porto Alegre, RS, Brazil
- Department of Surgery, School of Medicine, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
Hikita K, Gomez-Tames J, Hirata A. Mapping Brain Motor Functions Using Transcranial Magnetic Stimulation with a Volume Conductor Model and Electrophysiological Experiments. Brain Sci 2023; 13:brainsci13010116. [PMID: 36672097 PMCID: PMC9856731 DOI: 10.3390/brainsci13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) activates brain cells in a noninvasive manner and can be used for mapping brain motor functions. However, the complexity of the brain anatomy prevents the determination of the exact location of the stimulated sites, resulting in the limitation of the spatial resolution of multiple targets. The aim of this study is to map two neighboring muscles in cortical motor areas accurately and quickly. Multiple stimuli were applied to the subject using a TMS stimulator to measure the motor-evoked potentials (MEPs) in the corresponding muscles. For each stimulation condition (coil location and angle), the induced electric field (EF) in the brain was computed using a volume conductor model for an individualized head model of the subject constructed from magnetic resonance images. A post-processing method was implemented to determine a TMS hotspot using EF corresponding to multiple stimuli, considering the amplitude of the measured MEPs. The dependence of the computationally estimated hotspot distribution on two target muscles was evaluated (n = 11). The center of gravity of the first dorsal interosseous cortical representation was lateral to the abductor digiti minimi by a minimum of 2 mm. The localizations were consistent with the putative sites obtained from previous EF-based studies and fMRI studies. The simultaneous cortical mapping of two finger muscles was achieved with only several stimuli, which is one or two orders of magnitude smaller than that in previous studies. Our proposal would be useful in the preoperative mapping of motor or speech areas to plan brain surgery interventions.
Collapse
Affiliation(s)
- Keigo Hikita
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Aichi, Japan
| | - Jose Gomez-Tames
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Chiba, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Aichi, Japan
- Correspondence:
| |
Collapse
|
21
|
Presland JD, Tofari PJ, Timmins RG, Kidgell DJ, Opar DA. Reliability of corticospinal excitability and intracortical inhibition in biceps femoris during different contraction modes. Eur J Neurosci 2023; 57:91-105. [PMID: 36382424 PMCID: PMC10107877 DOI: 10.1111/ejn.15868] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to determine the test-retest reliability of a range of transcranial magnetic stimulation (TMS) outcomes in the biceps femoris during isometric, eccentric and concentric contractions. Corticospinal excitability (active motor threshold 120% [AMT120%] and area under recruitment curve [AURC]), short- and long-interval intracortical inhibition (SICI and LICI) and intracortical facilitation (ICF) were assessed from the biceps femoris in 10 participants (age 26.3 ± 6.0 years; height 180.2 ± 6.6 cm, body mass 77.2 ± 8.0 kg) in three sessions. Single- and paired-pulse stimuli were delivered under low-level muscle activity (5% ± 2% of maximal isometric root mean squared surface electromyography [rmsEMG]) during isometric, concentric and eccentric contractions. Participants were provided visual feedback on their levels of rmsEMG during all contractions. Single-pulse outcomes measured during isometric contractions (AURC, AMT110%, AMT120%, AMT130%, AMT150%, AMT170%) demonstrated fair to excellent reliability (ICC range, .51 to .92; CV%, 21% to 37%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .62 to .80; CV%, 19 to 42%). Single-pulse outcomes measured during concentric contractions demonstrated excellent reliability (ICC range, .75 to .96; CV%, 15% to 34%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .65 to .76; CV%, 16% to 71%). Single-pulse outcomes during eccentric contractions demonstrated fair to excellent reliability (ICC range, .56 to .96; CV%, 16% to 41%), whereas SICI, LICI and ICF demonstrated good to excellent (ICC range, .67 to .86; CV%, 20% to 42%). This study found that both single- and paired-pulse TMS outcomes can be measured from the biceps femoris muscle across all contraction modes with fair to excellent reliability. However, coefficient of variation values were typically greater than the smallest worthwhile change which may make tracking physiological changes in these variables difficult without moderate to large effect sizes.
Collapse
Affiliation(s)
- Joel D Presland
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Paul J Tofari
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia.,Sports Performance, Recovery, Injury & New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, Victoria, Australia
| | - Ryan G Timmins
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia.,Sports Performance, Recovery, Injury & New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, Victoria, Australia
| | - Dawson J Kidgell
- School of Primary and Allied Health Care, Monash University, Melbourne, Victoria, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia.,Sports Performance, Recovery, Injury & New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Yuasa A, Uehara S, Sawada Y, Otaka Y. Systematic determination of muscle groups and optimal stimulation intensity for simultaneous TMS mapping of multiple muscles in the upper limb. Physiol Rep 2022; 10:e15527. [PMID: 36461646 PMCID: PMC9718942 DOI: 10.14814/phy2.15527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 05/01/2023] Open
Abstract
Transcranial magnetic stimulation has been used to assess plastic changes in the cortical motor representations of targeted muscles. The present study explored the optimal settings and stimulation intensity for simultaneous motor mapping of multiple upper-limb muscles across segments. In 15 healthy volunteers, we evaluated cortical representations simultaneously from one muscle in the shoulder, two in the upper arm, two in the forearm, and two intrinsic hand muscles, using five stimulation intensities, ranging from 40% to 100% of the maximum stimulator output. We represented the motor map area acquired at each intensity as a percentage of the maximum for each muscle. We defined a motor map area between 25% and 75% of the maximum as the optimal area size with sufficient scope for both up- and down-regulation, and stimulation intensities producing the map area size within this range as the optimal intensities. We found that motor maps with optimal area sizes could be produced simultaneously for the four distal muscles of the forearm and hand in most participants when the stimulation intensity was set at 120-140% of the resting motor threshold (RMT) of the first dorsal interosseous. For the remaining three proximal muscles, motor maps with optimal area sizes were produced only in a few participants, even when using a higher intensity (180-220% RMT). These findings suggest that cortical representations can be assessed simultaneously in a group of distal muscles using a relatively low stimulation intensity, while a separate operation is required to assess that of the proximal muscles.
Collapse
Affiliation(s)
- Akiko Yuasa
- Department of Rehabilitation Medicine IFujita Health University School of MedicineToyoakeAichiJapan
| | - Shintaro Uehara
- Faculty of RehabilitationFujita Health University School of Health SciencesToyoakeAichiJapan
| | - Yusuke Sawada
- Fujita Health University Nanakuri Memorial HospitalTsuMieJapan
| | - Yohei Otaka
- Department of Rehabilitation Medicine IFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
23
|
Quadriceps motor evoked torque is a reliable measure of corticospinal excitability in individuals with anterior cruciate ligament reconstruction. J Electromyogr Kinesiol 2022; 67:102700. [PMID: 36063566 DOI: 10.1016/j.jelekin.2022.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
Abstract
This study comprehensively evaluated the test-retest reliability of raw and normalized quadriceps motor evoked responses elicited by transcranial magnetic stimulation (TMS) in individuals with anterior cruciate ligament (ACL) reconstruction. Fifteen participants were tested on three different days that were separated at least by 24 h. Motor evoked responses were collected during a small background contraction on the reconstructed leg across a range of TMS intensities using torque (MEPTORQUE) and electromyographic (MEPEMG) responses. MEPTORQUE and MEPEMG were evaluated using different normalization procedures (raw, normalized to maximum voluntary isometric contraction [MVIC], peak MEP, and background contraction). MEPTORQUE was also normalized to the magnetically-evoked peripheral resting twitch torque. The area under the recruitment curve was computed for both raw and normalized MEPs. Intraclass correlation coefficients (ICCs) were determined to assess test-retest reliability. Results indicated that MEPTORQUE generally showed greater reliability than MEPEMG for all normalization procedures. Vastus medialis MEPEMG generally showed greater reliability than rectus femoris MEPEMG. Finally, both MEPTORQUE and MEPEMG exhibited good reliability, even when not normalized. These findings indicate that MEPTORQUE and MEPEMG offer reliable measures of corticospinal function and suggest that MEPTORQUE is a suitable alternative to MEPEMG for measuring quadriceps corticospinal excitability in individuals with ACL reconstruction.
Collapse
|
24
|
Moukhaiber N, Summers SJ, Opar D, Imam J, Thomson D, Chang WJ, Andary T, Cavaleri R. The effect of theta burst stimulation over the primary motor cortex on experimental hamstring pain: A randomised, controlled study. THE JOURNAL OF PAIN 2022; 24:593-604. [PMID: 36464137 DOI: 10.1016/j.jpain.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Theta burst stimulation (TBS) over the primary motor cortex (M1) is an emerging technique that may have utility in the treatment of musculoskeletal pain. However, previous work exploring the analgesic effects of noninvasive brain stimulation has been limited largely to the arm or hand, despite 80% of acute musculoskeletal injuries occurring in the lower limb. This is a pertinent point, given the functional and neurophysiological differences between upper and lower limb musculature, as well as evidence suggesting that reorganization of corticomotor pathways is region-specific. This study investigated the effect of excitatory TBS on pain, function, and corticomotor organization during experimentally induced lower limb pain. Twenty-eight healthy participants attended 2 experimental sessions. On Day 0, participants completed 10 sets of 10 maximal eccentric contractions of the right hamstring muscles to induce delayed onset muscle soreness. Four consecutive blocks of either active or sham TBS were delivered on Day 2. Measures of mechanical sensitivity, pain (muscle soreness, pain intensity, pain area) function (single-leg hop distance, maximum voluntary isometric contraction, lower extremity functional scale), and corticomotor organization were recorded before and after TBS on Day 2. Pain and function were also assessed daily from Days 2 to 10. Active TBS reduced mechanical sensitivity compared to sham stimulation (P = .01). Corticomotor organization did not differ between groups, suggesting that improvements in mechanical sensitivity were not mediated by changes in M1. Subjective reports of pain intensity and function did not change following active TBS, contrasting previous reports in studies of the upper limb. PERSPECTIVE: M1 TBS reduces mechanical sensitivity associated with experimentally induced hamstring pain. Though further work is needed, these findings may hold important implications for those seeking to expedite recovery or reduce muscle sensitivity following hamstring injury.
Collapse
Affiliation(s)
- Nadia Moukhaiber
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Simon J Summers
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia; Queensland University of Technology, School of Biomedical Sciences, Queensland, Australia
| | - David Opar
- Australian Catholic University, Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, School of Behavioural and Health Sciences, Victoria, Australia
| | - Jawwad Imam
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Daniel Thomson
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Wei-Ju Chang
- University of Newcastle, College of Health Medicine and Wellbeing, School of Health Sciences, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Centre for Pain IMPACT, New South Wales, Australia
| | - Toni Andary
- South Western Sydney Local Health District, New South Wales, Australia
| | - Rocco Cavaleri
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia.
| |
Collapse
|
25
|
Associations between primary motor cortex organization, motor control and sensory tests during the clinical course of low back pain. A protocol for a cross-sectional and longitudinal case-control study. Contemp Clin Trials Commun 2022; 30:101022. [PMID: 36387987 PMCID: PMC9647172 DOI: 10.1016/j.conctc.2022.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Background In people with low back pain (LBP), altered motor control has been related to reorganization of the primary motor cortex (M1). Sensory impairments in LBP have also been suggested to be associated with reorganization of M1. Little is known about reorganization of M1 over time in people with LBP, and whether it relates to changes in motor control and sensory impairments and recovery. This study aims to investigate 1) differences in organization of M1 of trunk muscles between people with and without LBP, and whether the organization of M1 relates to motor control and sensory impairments (cross-sectional component) and 2) reorganization of M1 over time and its relation with changes in motor control and sensory impairments and experienced recovery (longitudinal component). Methods A case-control study with a cross-sectional and five-week longitudinal component is conducted in participants with LBP (N = 25) and participants without LBP (N = 25). Participants with LBP received usual care physiotherapy. Various tests were administered at baseline and follow-up. Following an anatomical MRI, organization of M1 (Center of Gravity and Area of the cortical representation of trunk muscles) was determined using transcranial magnetic stimulation. Quantitative sensory testing, a spiral-tracking motor control test, graphesthesia, two-point discrimination threshold and various self-reported questionnaires were also assessed. Multivariate multilevel analysis will be used for statistical analysis. Conclusion We will address the gaps in knowledge about the association between reorganization of M1 and motor control and sensory tests during the clinical course of LBP. This study is registered at DOI 10.17605/OSF.IO/5C8ZG. We assess relations between the organization of M1 and motor and sensory tests. This study provides insight in the organization of M1 in LBP in relation to recovery. The organization of M1 is assessed via TMS. We used whole-brain MRI's for high accuracy of representation of muscles on M1. We will use multivariate mixed model analysis to relate M1, motor and sensory tests.
Collapse
|
26
|
Yarossi M, Brooks DH, Erdoğmuş D, Tunik E. Similarity of hand muscle synergies elicited by transcranial magnetic stimulation and those found during voluntary movement. J Neurophysiol 2022; 128:994-1010. [PMID: 36001748 PMCID: PMC9550575 DOI: 10.1152/jn.00537.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022] Open
Abstract
Converging evidence in human and animal models suggests that exogenous stimulation of the motor cortex (M1) elicits responses in the hand with similar modular structure to that found during voluntary grasping movements. The aim of this study was to establish the extent to which modularity in muscle responses to transcranial magnetic stimulation (TMS) to M1 resembles modularity in muscle activation during voluntary hand movements involving finger fractionation. Electromyography (EMG) was recorded from eight hand-forearm muscles in eight healthy individuals. Modularity was defined using non-negative matrix factorization to identify low-rank approximations (spatial muscle synergies) of the complex activation patterns of EMG data recorded during high-density TMS mapping of M1 and voluntary formation of gestures in the American Sign Language alphabet. Analysis of synergies revealed greater than chance similarity between those derived from TMS and those derived from voluntary movement. Both data sets included synergies dominated by single intrinsic hand muscles presumably to meet the demand for highly fractionated finger movement. These results suggest that corticospinal connectivity to individual intrinsic hand muscles may be combined with modular multimuscle activation via synergies in the formation of hand postures.NEW & NOTEWORTHY This is the first work to examine the similarity of modularity in hand muscle responses to transcranial magnetic stimulation (TMS) of the motor cortex and that derived from voluntary hand movement. We show that TMS-elicited muscle synergies of the hand, measured at rest, reflect those found in voluntary behavior involving finger fractionation. This work provides a basis for future work using TMS to investigate muscle activation modularity in the human motor system.
Collapse
Affiliation(s)
- Mathew Yarossi
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, Massachusetts
- SPIRAL Center, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Dana H Brooks
- SPIRAL Center, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Deniz Erdoğmuş
- SPIRAL Center, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Eugene Tunik
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, Massachusetts
- SPIRAL Center, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| |
Collapse
|
27
|
Su B, Jia Y, Zhang L, Li D, Shen Q, Wang C, Chen Y, Gao F, Wei J, Huang G, Liu H, Wang L. Reliability of TMS measurements using conventional hand-hold method with different numbers of stimuli for tibialis anterior muscle in healthy adults. Front Neural Circuits 2022; 16:986669. [PMID: 36247728 PMCID: PMC9563236 DOI: 10.3389/fncir.2022.986669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: The objective of this study was to determine the reliability of corticomotor excitability measurements using the conventional hand-hold transcranial magnetic stimulation (TMS) method for the tibialis anterior (TA) muscle in healthy adults and the number of stimuli required for reliable assessment. Methods: Forty healthy adults participated in three repeated sessions of corticomotor excitability assessment in terms of resting motor threshold (rMT), slope of recruitment curve (RC), peak motor evoked potential amplitude (pMEP), and MEP latency using conventional TMS method. The first two sessions were conducted with a rest interval of 1 h, and the last session was conducted 7–10 days afterward. With the exception of rMT, the other three outcomes measure elicited with the block of first 3–10 stimuli were analyzed respectively. The within-day (session 1 vs. 2) and between-day (session 1 vs. 3) reliability for all four outcome measures were assessed using intraclass correlation coefficient (ICC), standard error of measurement, and minimum detectable difference at 95% confidence interval. Results: Good to excellent within-day and between-day reliability was found for TMS-induced outcome measures examined using 10 stimuli (ICC ≥ 0.823), except in pMEP, which showed between-day reliability at moderate level (ICC = 0.730). The number of three stimuli was adequate to achieve minimum acceptable within-day reliability for all TMS-induced parameters and between-day reliability for MEP latency. With regard to between-day reliability of RC slope and pMEP, at least seven and nine stimuli were recommended respectively. Conclusion: Our findings indicated the high reliability of corticomotor excitability measurement by TMS with adequate number of stimuli for the TA muscle in healthy adults. This result should be interpreted with caveats for the specific methodological choices, equipment setting, and the characteristics of the sample in the current study. Clinical Trial Registration:http://www.chictr.org.cn, identifier ChiCTR2100045141.
Collapse
Affiliation(s)
- Bin Su
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Yanbing Jia
- School of Rehabilitation Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Li Zhang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Duo Li
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Qianqian Shen
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Chun Wang
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Yating Chen
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Fanglan Gao
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Jing Wei
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Guilan Huang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Hao Liu
- School of Rehabilitation Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
- *Correspondence: Lin Wang Hao Liu
| | - Lin Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lin Wang Hao Liu
| |
Collapse
|
28
|
Passera B, Chauvin A, Raffin E, Bougerol T, David O, Harquel S. Exploring the spatial resolution of TMS-EEG coupling on the sensorimotor region. Neuroimage 2022; 259:119419. [PMID: 35777633 DOI: 10.1016/j.neuroimage.2022.119419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The use of TMS-EEG coupling as a neuroimaging tool for the functional exploration of the human brain recently gained strong interest. If this tool directly inherits the fine temporal resolution from EEG, its spatial counterpart remains unknown. In this study, we explored the spatial resolution of TMS-EEG coupling by evaluating the minimal distance between two stimulated cortical sites that would significantly evoke different response dynamics. TMS evoked responses were mapped on the sensorimotor region in twenty participants. The stimulation grid was composed of nine targets separated between 10 and 15 mm on average. The dynamical signatures of TMS evoked activity were extracted and compared between sites using both local and remote linear regression scores and spatial generalized mixed models. We found a significant effect of the distance between stimulated sites on their dynamical signatures, neighboring sites showing differentiable response dynamics. Besides, common dynamical signatures were also found between sites up to 25-30 mm from each other. This overlap in dynamical properties decreased with distance and was stronger between sites within the same Brodmann area. Our results suggest that the spatial resolution of TMS-EEG coupling might be at least as high as 10 mm. Furthermore, our results reveal an anisotropic spatial resolution that was higher across than within the same Brodmann areas, in accordance with the TMS induced E-field modeling. Common cytoarchitectonic leading to shared dynamical properties within the same Brodmann area could also explain this anisotropy. Overall, these findings suggest that TMS-EEG benefits from the spatial resolution of TMS, which makes it an accurate technique for meso-scale brain mapping.
Collapse
Affiliation(s)
- Brice Passera
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; Univ. Grenoble Alpes, CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France; Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alan Chauvin
- Univ. Grenoble Alpes, CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France
| | - Estelle Raffin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Thierry Bougerol
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; Centre Hospitalier Univ. Grenoble Alpes, Service de Psychiatrie, F-38000 Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Sylvain Harquel
- Univ. Grenoble Alpes, CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland.
| |
Collapse
|
29
|
Forearm and Hand Muscles Exhibit High Coactivation and Overlapping of Cortical Motor Representations. Brain Topogr 2022; 35:322-336. [PMID: 35262840 PMCID: PMC9098558 DOI: 10.1007/s10548-022-00893-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
Most of the motor mapping procedures using navigated transcranial magnetic stimulation (nTMS) follow the conventional somatotopic organization of the primary motor cortex (M1) by assessing the representation of a particular target muscle, disregarding the possible coactivation of synergistic muscles. In turn, multiple reports describe a functional organization of the M1 with an overlapping among motor representations acting together to execute movements. In this context, the overlap degree among cortical representations of synergistic hand and forearm muscles remains an open question. This study aimed to evaluate the muscle coactivation and representation overlapping common to the grasping movement and its dependence on the stimulation parameters. The nTMS motor maps were obtained from one carpal muscle and two intrinsic hand muscles during rest. We quantified the overlapping motor maps in size (area and volume overlap degree) and topography (similarity and centroid Euclidean distance) parameters. We demonstrated that these muscle representations are highly overlapped and similar in shape. The overlap degrees involving the forearm muscle were significantly higher than only among the intrinsic hand muscles. Moreover, the stimulation intensity had a stronger effect on the size compared to the topography parameters. Our study contributes to a more detailed cortical motor representation towards a synergistic, functional arrangement of M1. Understanding the muscle group coactivation may provide more accurate motor maps when delineating the eloquent brain tissue during pre-surgical planning.
Collapse
|
30
|
Tazoe T, Perez MA. Abnormal changes in motor cortical maps in humans with spinal cord injury. J Physiol 2021; 599:5031-5045. [PMID: 34192806 PMCID: PMC9109877 DOI: 10.1113/jp281430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The functional role of motor cortical reorganization following spinal cord injury (SCI) remains largely unknown. Here, we tested motor maps in a hand muscle at rest and during voluntary contraction of the hand with and without voluntary contraction of a proximal arm muscle. Motor map area in participants with SCI decreased during hand voluntary contraction and further decreased during additional contraction of a proximal arm muscle compared with rest. In contrast, motor map area in controls increased during the same motor tasks. Participants with SCI with more severe sensory deficits in the hand showed larger decreases in motor map area. Ten minutes of hand muscle-tendon vibration increased the motor map area during voluntary contraction in SCI participants. These novel findings suggest that abnormal changes in motor cortical maps during voluntary contraction after SCI can be reshaped by sensory input, knowledge that can have implications for rehabilitation. ABSTRACT Motor cortical representations reorganize following cervical spinal cord injury (SCI). The functional role of this reorganization remains largely unknown. Using neuronavigated transcranial magnetic stimulation, we examined motor cortical maps during voluntary contraction in humans with chronic cervical SCI and age-matched controls. We constructed motor maps in the first dorsal interosseous (FDI) muscle at rest and during voluntary contraction of the FDI with and without voluntary contraction of the biceps brachi (BB). The role of sensory input into this reorganization was examined by muscle-tendon vibration. We found that, at rest, motor maps were larger in SCI (22.3 cm2 ) compared with control (12.6 cm2 , P < 0.001) participants. Motor map area increased during voluntary contraction of the FDI (120.7%) and further increased during contraction of the BB (143.9%) compared with rest in control subjects; however, motor map area decreased during voluntary contraction of the FDI (69.5%) and further decreased during contraction of the BB (55.5%) in individuals with SCI. SCI participants with larger decreases in map area during voluntary contraction of the FDI were those with larger sensory deficits in the hand and 10 min of hand muscle-tendon vibration increased motor map area. These results provide the first evidence of abnormal changes in motor cortical maps in humans with chronic SCI during voluntary contraction, suggesting that sensory input can help to reshape this reorganization.
Collapse
Affiliation(s)
- Toshiki Tazoe
- Arms + Hands Lab, Shirley Ryan AbilityLab, Northwestern
University, Chicago, IL 60611 and Hines Veterans Affairs Medical Center, Chicago, IL
60141, USA
- Neural Prosthesis Project, Department of Brain and
Neurosciences, Tokyo Metropolitan Institute of Medial Science, Tokyo 156-8506,
Japan
| | - Monica A. Perez
- Arms + Hands Lab, Shirley Ryan AbilityLab, Northwestern
University, Chicago, IL 60611 and Hines Veterans Affairs Medical Center, Chicago, IL
60141, USA
- The Miami Project to Cure Paralysis, Department of
Neurological Surgery, University of Miami, Miami FL 33136 and Bruce W. Carter
Department of Veterans Affairs Medical Center, Miami, FL 33125, USA
| |
Collapse
|
31
|
Giuffre A, Zewdie E, Wrightson JG, Cole L, Carlson HL, Kuo HC, Babwani A, Kirton A. Effects of Transcranial Direct Current Stimulation and High-Definition Transcranial Direct Current Stimulation Enhanced Motor Learning on Robotic Transcranial Magnetic Stimulation Motor Maps in Children. Front Hum Neurosci 2021; 15:747840. [PMID: 34690726 PMCID: PMC8526891 DOI: 10.3389/fnhum.2021.747840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Conventional transcranial direct current stimulation (tDCS) and high-definition tDCS (HD-tDCS) may improve motor learning in children. Mechanisms are not understood. Neuronavigated robotic transcranial magnetic stimulation (TMS) can produce individualised maps of primary motor cortex (M1) topography. We aimed to determine the effects of tDCS- and HD-tDCS-enhanced motor learning on motor maps. Methods: Typically developing children aged 12-18 years were randomised to right M1 anodal tDCS, HD-tDCS, or Sham during training of their left-hand on the Purdue Pegboard Task (PPT) over 5 days. Bilateral motor mapping was performed at baseline (pre), day 5 (post), and 6-weeks retention time (RT). Primary muscle was the first dorsal interosseous (FDI) with secondary muscles of abductor pollicis brevis (APB) and adductor digiti minimi (ADM). Primary mapping outcomes were volume (mm2/mV) and area (mm2). Secondary outcomes were centre of gravity (COG, mm) and hotspot magnitude (mV). Linear mixed-effects modelling was employed to investigate effects of time and stimulation type (tDCS, HD-tDCS, Sham) on motor map characteristics. Results: Twenty-four right-handed participants (median age 15.5 years, 52% female) completed the study with no serious adverse events or dropouts. Quality maps could not be obtained in two participants. No effect of time or group were observed on map area or volume. LFDI COG (mm) differed in the medial-lateral plane (x-axis) between tDCS and Sham (p = 0.038) from pre-to-post mapping sessions. Shifts in map COG were also observed for secondary left-hand muscles. Map metrics did not correlate with behavioural changes. Conclusion: Robotic TMS mapping can safely assess motor cortex neurophysiology in children undergoing motor learning and neuromodulation interventions. Large effects on map area and volume were not observed while changes in COG may occur. Larger controlled studies are required to understand the role of motor maps in interventional neuroplasticity in children.
Collapse
Affiliation(s)
- Adrianna Giuffre
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ephrem Zewdie
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - James G Wrightson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lauran Cole
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hsing-Ching Kuo
- Department of Physical Medicine & Rehabilitation, University of California, Davis, Sacramento, CA, United States
| | - Ali Babwani
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Numssen O, Zier AL, Thielscher A, Hartwigsen G, Knösche TR, Weise K. Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. Neuroimage 2021; 245:118654. [PMID: 34653612 DOI: 10.1016/j.neuroimage.2021.118654] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to investigate causal structure-function relationships in the human brain. However, a precise delineation of the effectively stimulated neuronal populations is notoriously impeded by the widespread and complex distribution of the induced electric field. Here, we propose a method that allows rapid and feasible cortical localization at the individual subject level. The functional relationship between electric field and behavioral effect is quantified by combining experimental data with numerically modeled fields to identify the cortical origin of the modulated effect. Motor evoked potentials (MEPs) from three finger muscles were recorded for a set of random stimulations around the primary motor area. All induced electric fields were nonlinearly regressed against the elicited MEPs to identify their cortical origin. We could distinguish cortical muscle representation with high spatial resolution and localized them primarily on the crowns and rims of the precentral gyrus. A post-hoc analysis revealed exponential convergence of the method with the number of stimulations, yielding a minimum of about 180 random stimulations to obtain stable results. Establishing a functional link between the modulated effect and the underlying mode of action, the induced electric field, is a fundamental step to fully exploit the potential of TMS. In contrast to previous approaches, the presented protocol is particularly easy to implement, fast to apply, and very robust due to the random coil positioning and therefore is suitable for practical and clinical applications.
Collapse
Affiliation(s)
- Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Anna-Leah Zier
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Technical University of Denmark, Center for Magnetic Resonance, Department of Health Technology, Kongens Lyngby, Denmark
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Thomas R Knösche
- Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Institute of Biomedical Engineering and Informatics, Gustav-Kirchhoff-Straße 2, 98693 Ilmenau, Germany
| | - Konstantin Weise
- Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Advanced Electromagnetics Group, Helmholtzplatz 2, 98693 Ilmenau, Germany
| |
Collapse
|
33
|
Milosevic M, Nakanishi T, Sasaki A, Yamaguchi A, Nomura T, Popovic MR, Nakazawa K. Cortical Re-organization After Traumatic Brain Injury Elicited Using Functional Electrical Stimulation Therapy: A Case Report. Front Neurosci 2021; 15:693861. [PMID: 34489624 PMCID: PMC8417438 DOI: 10.3389/fnins.2021.693861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023] Open
Abstract
Functional electrical stimulation therapy (FEST) can improve motor function after neurological injuries. However, little is known about cortical changes after FEST and weather it can improve motor function after traumatic brain injury (TBI). Our study examined cortical changes and motor improvements in one male participant with chronic TBI suffering from mild motor impairment affecting the right upper-limb during 3-months of FEST and during 3-months follow-up. In total, 36 sessions of FEST were applied to enable upper-limb grasping and reaching movements. Short-term assessments carried out using transcranial magnetic stimulation (TMS) showed reduced cortical silent period (CSP), indicating cortical and/or subcortical inhibition after each intervention. At the same time, no changes in motor evoked potentials (MEPs) were observed. Long-term assessments showed increased MEP corticospinal excitability after 12-weeks of FEST, which seemed to remain during both follow-ups, while no changes in CSP were observed. Similarly, long-term assessments using TMS mapping showed larger hand MEP area in the primary motor cortex (M1) after 12-weeks of FEST as well as during both follow-ups. Corroborating TMS results, functional magnetic resonance imaging (fMRI) data showed M1 activations increased during hand grip and finger pinch tasks after 12-weeks of FEST, while gradual reduction of activity compared to after the intervention was seen during follow-ups. Widespread changes were seen not only in the M1, but also sensory, parietal rostroventral, supplementary motor, and premotor areas in both contralateral and ipsilateral hemispheres, especially during the finger pinch task. Drawing test performance showed improvements after the intervention and during follow-ups. Our findings suggest that task-specific and repetitive FEST can effectively increase cortical activations by integrating voluntary motor commands and sensorimotor network through functional electrical stimulation (FES). Overall, our results demonstrated cortical re-organization in an individual with chronic TBI after FEST.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Tomoya Nakanishi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akiko Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,CRANIA, University Health Network, Toronto, ON, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Jenkins LC, Chang WJ, Buscemi V, Liston M, Skippen P, Cashin AG, McAuley JH, Schabrun SM. Low Somatosensory Cortex Excitability in the Acute Stage of Low Back Pain Causes Chronic Pain. THE JOURNAL OF PAIN 2021; 23:289-304. [PMID: 34492395 DOI: 10.1016/j.jpain.2021.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
Determining the mechanistic causes of complex biopsychosocial health conditions such as low back pain (LBP) is challenging, and research is scarce. Cross-sectional studies demonstrate altered excitability and organization of the somatosensory and motor cortex in people with acute and chronic LBP, however, no study has explored these mechanisms longitudinally or attempted to draw causal inferences. Using sensory evoked potential area measurements and transcranial magnetic stimulation derived map volume we analyzed somatosensory and motor cortex excitability in 120 adults experiencing acute LBP. Following multivariable regression modelling with adjustment for confounding, we identified lower primary (OR = 2.08, 95% CI = 1.22-3.57) and secondary (OR = 2.56, 95% CI = 1.37-4.76) somatosensory cortex excitability significantly increased the odds of developing chronic pain at 6-month follow-up. Corticomotor excitability in the acute stage of LBP was associated with higher pain intensity at 6-month follow-up (B = -0.15, 95% CI: -0.28 to -0.02) but this association did not remain after confounder adjustment. These data provide evidence that low somatosensory cortex excitability in the acute stage of LBP is a cause of chronic pain. PERSPECTIVE: This prospective longitudinal cohort study design identified low sensorimotor cortex excitability during the acute stage of LBP in people who developed chronic pain. Interventions that target this proposed mechanism may be relevant to the prevention of chronic pain.
Collapse
Affiliation(s)
- Luke C Jenkins
- School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia; Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Valentina Buscemi
- INPUT Pain Management Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Matthew Liston
- School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia; Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Centre for Human and Applied Physiological Sciences, Faculty of Life Science and Medicine, Kings College, London
| | - Patrick Skippen
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Aidan G Cashin
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Siobhan M Schabrun
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia.
| |
Collapse
|
35
|
Faghihpirayesh R, Yarossi M, Imbiriba T, Brooks DH, Tunik E, Erdogmus D. Efficient TMS-Based Motor Cortex Mapping Using Gaussian Process Active Learning. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1679-1689. [PMID: 34406942 PMCID: PMC8452135 DOI: 10.1109/tnsre.2021.3105644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcranial Magnetic Stimulation (TMS) can be used to map cortical motor topography by spatially sampling the sensorimotor cortex while recording Motor Evoked Potentials (MEP) with surface electromyography (EMG). Traditional sampling strategies are time-consuming and inefficient, as they ignore the fact that responsive sites are typically sparse and highly spatially correlated. An alternative approach, commonly employed when TMS mapping is used for presurgical planning, is to leverage the expertise of the coil operator to use MEPs elicited by previous stimuli as feedback to decide which loci to stimulate next. In this paper, we propose to automatically infer optimal future stimulus loci using active learning Gaussian Process-based sampling in place of user expertise. We first compare the user-guided (USRG) method to the traditional grid selection method and randomized sampling to verify that the USRG approach has superior performance. We then compare several novel active Gaussian Process (GP) strategies with the USRG approach. Experimental results using real data show that, as expected, the USRG method is superior to the grid and random approach in both time efficiency and MEP map accuracy. We also found that an active warped GP entropy and a GP random-based strategy performed equally as well as, or even better than, the USRG method. These methods were completely automatic, and succeeded in efficiently sampling the regions in which the MEP response variations are largely confined. This work provides the foundation for highly efficient, fully automatized TMS mapping, especially when considered in the context of advances in robotic coil operation.
Collapse
|
36
|
Savoury R, Kibele A, Behm DG. Methodological Issues with Transcranial Direct Current Stimulation for Enhancing Muscle Strength and Endurance: A Narrative Review. JOURNAL OF COGNITIVE ENHANCEMENT 2021. [DOI: 10.1007/s41465-021-00222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Sondergaard RE, Martino D, Kiss ZHT, Condliffe EG. TMS Motor Mapping Methodology and Reliability: A Structured Review. Front Neurosci 2021; 15:709368. [PMID: 34489629 PMCID: PMC8417420 DOI: 10.3389/fnins.2021.709368] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Motor cortical representation can be probed non-invasively using a transcranial magnetic stimulation (TMS) technique known as motor mapping. The mapping technique can influence features of the maps because of several controllable elements. Here we review the literature on six key motor mapping parameters, as well as their influence on outcome measures and discuss factors impacting their selection. 132 of 1,587 distinct records were examined in detail and synthesized to form the basis of our review. A summary of mapping parameters, their impact on outcome measures and feasibility considerations are reported to support the design and interpretation of TMS mapping studies.
Collapse
Affiliation(s)
- Rachel E. Sondergaard
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zelma H. T. Kiss
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Elizabeth G. Condliffe
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Cavaleri R, Chipchase LS, Summers SJ, Chalmers J, Schabrun SM. The Relationship Between Corticomotor Reorganization and Acute Pain Severity: A Randomized, Controlled Study Using Rapid Transcranial Magnetic Stimulation Mapping. PAIN MEDICINE 2021; 22:1312-1323. [PMID: 33367763 DOI: 10.1093/pm/pnaa425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Although acute pain has been shown to reduce corticomotor excitability, it remains unknown whether this response resolves over time or is related to symptom severity. Furthermore, acute pain research has relied upon data acquired from the cranial "hotspot," which do not provide valuable information regarding reorganization, such as changes to the distribution of a painful muscle's representation within M1. Using a novel, rapid transcranial magnetic stimulation (TMS) mapping method, this study aimed to 1) explore the temporal profile and variability of corticomotor reorganization in response to acute pain and 2) determine whether individual patterns of corticomotor reorganization are associated with differences in pain, sensitivity, and somatosensory organization. METHODS Corticomotor (TMS maps), pain processing (pain intensity, pressure pain thresholds), and somatosensory (two-point discrimination, two-point estimation) outcomes were taken at baseline, immediately after injection (hypertonic [n = 20] or isotonic saline [n = 20]), and at pain resolution. Follow-up measures were recorded every 15 minutes until 90 minutes after injection. RESULTS Corticomotor reorganization persisted at least 90 minutes after pain resolution. Corticomotor depression was associated with lower pain intensity than was corticomotor facilitation (r = 0.47 [P = 0.04]). These effects were not related to somatosensory reorganization or peripheral sensitization mechanisms. CONCLUSIONS Individual patterns of corticomotor reorganization during acute pain appear to be related to symptom severity, with early corticomotor depression possibly reflecting a protective response. These findings hold important implications for the management and potential prevention of pain chronicity. However, further research is required to determine whether these adaptations relate to long-term outcomes in clinical populations.
Collapse
Affiliation(s)
- Rocco Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Lucy S Chipchase
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Simon J Summers
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Jane Chalmers
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,IIMPACT in Health, University of South Australia, Adelaide, South Australia, Australia
| | | |
Collapse
|
39
|
Nazarova M, Novikov P, Ivanina E, Kozlova K, Dobrynina L, Nikulin VV. Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test-retest reliability. Hum Brain Mapp 2021; 42:2508-2528. [PMID: 33682975 PMCID: PMC8090785 DOI: 10.1002/hbm.25383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.
Collapse
Affiliation(s)
- Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Federal State Budgetary Institution «Federal center of brain research and neurotechnologies» of the Federal Medical Biological AgencyMoscowRussian Federation
| | - Pavel Novikov
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ekaterina Ivanina
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ksenia Kozlova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | | | - Vadim V. Nikulin
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
40
|
Shen X, Song Z, Xu E, Zhou J, Yan F. Sensitization of nerve cells to ultrasound stimulation through Piezo1-targeted microbubbles. ULTRASONICS SONOCHEMISTRY 2021; 73:105494. [PMID: 33640571 PMCID: PMC7921623 DOI: 10.1016/j.ultsonch.2021.105494] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Neuromodulation by ultrasound (US) has recently drawn considerable attention due to its great advantages in noninvasiveness, high penetrability across the skull and highly focusable acoustic energy. However, the mechanisms and safety from US irradiation still remain less understood. Recently, documents revealed Piezo1, a mechanosensitive cation channel, plays key role in converting mechanical stimuli from US through its trimeric propeller-like structure. Here, we developed a Piezo1-targeted microbubble (PTMB) which can bind to the extracellular domains of Piezo1 channel. Due to the higher responsiveness of bubbles to mechanical stimuli from US, significantly lower US energy for these PTMB-binding cells may be needed to open these mechanosensitive channels. Our results showed US energy at 0.03 MPa of peak negative pressure can achieve an equivalent level of cytoplasmic Ca2+ transients which generally needs 0.17 MPa US intensity for the control cells. Cytoplasmic Ca2+ elevations were greatly reduced by chelating extracellular calcium ions or using the cationic ion channel inhibitors, confirming that US-mediated calcium influx are dependent on the Piezo1 channels. No bubble destruction and obvious temperature increase were observed during the US exposure, indicating cavitation and heating effects hardly participate in the process of Ca2+ transients. In conclusion, our study provides a novel strategy to sensitize the response of nerve cells to US stimulation, which makes it safer application for US-mediated neuromodulation in the future.
Collapse
Affiliation(s)
- Xuelian Shen
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China; Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University, Yi Chang, Hubei 443000, China
| | - Zhuqing Song
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Erjiao Xu
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Jun Zhou
- Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University, Yi Chang, Hubei 443000, China.
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
41
|
Cortical Representation and Excitability Increases for a Thenar Muscle Mediate Improvement in Short-Term Cellular Phone Text Messaging Ability. Brain Sci 2021; 11:brainsci11030406. [PMID: 33806742 PMCID: PMC8004932 DOI: 10.3390/brainsci11030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022] Open
Abstract
Cortical representations expand during skilled motor learning. We studied a unique model of motor learning with cellular phone texting, where the thumbs are used exclusively to interact with the device and the prominence of use can be seen where 3200 text messages are exchanged a month in the 18-24 age demographic. The purpose of the present study was to examine the motor cortex representation and input-output (IO) recruitment curves of the abductor pollicis brevis (APB) muscle of the thumb and the ADM muscle with transcranial magnetic stimulation (TMS), relative to individuals' texting abilities and short-term texting practice. Eighteen individuals performed a functional texting task (FTT) where we scored their texting speed and accuracy. TMS was then used to examine the cortical volumes and areas of activity in the two muscles and IO curves were constructed to measure excitability. Subjects also performed a 10-min practice texting task, after which we repeated the cortical measures. There were no associations between the cortical measures and the FTT scores before practice. However, after practice the APB cortical map expanded and excitability increased, whereas the ADM map constricted. The increase in the active cortical areas in APB correlated with the improvement in the FTT score. Based on the homogenous group of subjects that were already good at texting, we conclude that the cortical representations and excitability for the thumb muscle were already enlarged and more receptive to changes with short-term practice, as noted by the increase in FTT performance after 10-min of practice.
Collapse
|
42
|
Duncan C, Shipman B, Salvacion C, Jenkins V, Richards S. Transcranial magnetic stimulation and depression. Nurse Pract 2021; 46:13-15. [PMID: 33475324 DOI: 10.1097/01.npr.0000724492.63143.cc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Dharia AK, Gardi A, Vogel AK, Dutt-Mazumder A, Krishnan C. Evaluation of motor cortical excitability using evoked torque responses: A new tool with high reliability. J Neurosci Methods 2020; 348:108998. [PMID: 33189794 DOI: 10.1016/j.jneumeth.2020.108998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/10/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) are typically recorded via surface electromyography (EMG). However, another suitable alternative may be recording torque output associated with MEPs, especially when studying multiheaded muscles (e.g. quadriceps) for which EMG may not be ideal. METHODS We recorded the motor evoked torque elicited by TMS along with conventional EMG-based MEPs (MEPEMG) over a range of TMS intensities (100-140 % of active motor threshold [AMT]) from twenty healthy young adults on two different days. MEPs were normalized using different normalization procedures (raw, normalized to maximum voluntary isometric contraction [MVIC], and peak MEP). Additionally, motor evoked torque was normalized to TMS-evoked peripheral resting twitch torque. Intraclass correlation coefficients (ICCs) were determined for each of these variables to compute reliability. RESULTS Motor evoked torque showed good to excellent reliability (ICC: 0.65-0.90) at TMS intensities ≥ 110 % AMT, except when normalized by peak MEP. The reliability of raw MEPEMG and MVIC normalized MEPEMG was fair to excellent only at ≥ 130 % AMT (ICC: 0.42-0.82) and at ≥ 120 % AMT (ICC: 0.41-0.83), respectively. The reliability of both MEPEMG and motor evoked torque generally increased with increasing TMS intensities, with motor evoked torque normalized to the resting twitch torque yielding the best ICC scores. COMPARISON WITH EXISTING METHODS When compared with conventional MEPEMG, motor evoked torque offers superior and reliable estimates of corticospinal excitability, particularly when normalized to resting twitch torque. CONCLUSIONS TMS-induced motor evoked torque can reliably be used to measure corticospinal excitability in the quadriceps muscles.
Collapse
Affiliation(s)
- Aastha K Dharia
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Adam Gardi
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Amanda K Vogel
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Aviroop Dutt-Mazumder
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Chandramouli Krishnan
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA; Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA; School of Kinesiology, University of Michigan, Ann Arbor, MI, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Tervo AE, Metsomaa J, Nieminen JO, Sarvas J, Ilmoniemi RJ. Automated search of stimulation targets with closed-loop transcranial magnetic stimulation. Neuroimage 2020; 220:117082. [PMID: 32593801 DOI: 10.1016/j.neuroimage.2020.117082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) protocols often include a manual search of an optimal location and orientation of the coil or peak stimulating electric field to elicit motor responses in a target muscle. This target search is laborious, and the result is user-dependent. Here, we present a closed-loop search method that utilizes automatic electronic adjustment of the stimulation based on the previous responses. The electronic adjustment is achieved by multi-locus TMS, and the adaptive guiding of the stimulation is based on the principles of Bayesian optimization to minimize the number of stimuli (and time) needed in the search. We compared our target-search method with other methods, such as systematic sampling in a predefined cortical grid. Validation experiments on five healthy volunteers and further offline simulations showed that our adaptively guided search method needs only a relatively small number of stimuli to provide outcomes with good accuracy and precision. The automated method enables fast and user-independent optimization of stimulation parameters in research and clinical applications of TMS.
Collapse
Affiliation(s)
- Aino E Tervo
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Neurology & Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jaakko O Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Jukka Sarvas
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
45
|
Reijonen J, Pitkänen M, Kallioniemi E, Mohammadi A, Ilmoniemi RJ, Julkunen P. Spatial extent of cortical motor hotspot in navigated transcranial magnetic stimulation. J Neurosci Methods 2020; 346:108893. [PMID: 32791087 DOI: 10.1016/j.jneumeth.2020.108893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/05/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Motor mapping with navigated transcranial magnetic stimulation (nTMS) requires defining a "hotspot", a stimulation site consistently producing the highest-amplitude motor-evoked potentials (MEPs). The exact location of the hotspot is difficult to determine, and the spatial extent of high-amplitude MEPs usually remains undefined due to MEP variability and the spread of the TMS-induced electric field (E-field). Therefore, here we aim to define the hotspot as a sub-region of a motor map. NEW METHOD We analyzed MEP amplitude distributions in motor mappings of 30 healthy subjects in two orthogonal directions on the motor cortex. Based on the widths of these distributions, the hotspot extent was estimated as an elliptic area. In addition, E-field distributions induced by motor map edge stimulations were simulated for ten subjects, and the E-field attenuation was analyzed to obtain another estimate for hotspot extent. RESULTS The median MEP-based hotspot area was 13 mm2 (95% confidence interval (CI) = [10, 18] mm2). The mean E-field-based hotspot area was 26 mm2 (95% CI = [13, 38] mm2). COMPARISON WITH EXISTING METHODS In contrast to the conventional hotspot, the new definition considers its spatial extent, indicating the most easily excited area where subsequent nTMS stimuli should be targeted for maximal response. The E-field-based hotspot provides an estimate for the extent of cortical structures where the E-field is close to its maximum. CONCLUSIONS The nTMS hotspot should be considered as an area rather than a single qualitatively defined spot due to MEP variability and E-field spread.
Collapse
Affiliation(s)
- Jusa Reijonen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Minna Pitkänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Elisa Kallioniemi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
46
|
Sigurdsson HP, Jackson SR, Kim S, Dyke K, Jackson GM. A feasibility study for somatomotor cortical mapping in Tourette syndrome using neuronavigated transcranial magnetic stimulation. Cortex 2020; 129:175-187. [DOI: 10.1016/j.cortex.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 04/21/2020] [Indexed: 01/20/2023]
|
47
|
Cavaleri R, Chipchase LS, Massé-Alarie H, Schabrun SM, Shraim MA, Hodges PW. Corticomotor reorganization during short-term visuomotor training in the lower back: A randomized controlled study. Brain Behav 2020; 10:e01702. [PMID: 32633899 PMCID: PMC7428511 DOI: 10.1002/brb3.1702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Accumulating evidence suggests that motor skill training is associated with structural and functional reorganization of the primary motor cortex. However, previous studies have focussed primarily upon the upper limb, and it is unclear whether comparable reorganization occurs following training of other regions, such as the lower back. Although this holds important implications for rehabilitation, no studies have examined corticomotor adaptations following short-term motor training in the lower back. METHOD The aims of this study were to (a) determine whether a short-term lumbopelvic tilt visuomotor task induced reorganization of the corticomotor representations of lower back muscles, (b) quantify the variability of corticomotor responses to motor training, and (c) determine whether any improvements in task performance were correlated with corticomotor reorganization. Participants were allocated randomly to perform a lumbopelvic tilt motor training task (n = 15) or a finger abduction control task involving no lumbopelvic movement (n = 15). Transcranial magnetic stimulation was used to map corticomotor representations of the lumbar erector spinae before, during, and after repeated performance of the allocated task. RESULTS No relationship between corticomotor reorganization and improved task performance was identified. Substantial variability was observed in terms of corticomotor responses to motor training, with approximately 50% of participants showing no corticomotor reorganization despite significant improvements in task performance. CONCLUSION These findings suggest that short-term improvements in lower back visuomotor task performance may be driven by changes in remote subcortical and/or spinal networks rather than adaptations in corticomotor pathways. However, further research using tasks of varying complexities and durations is required to confirm this hypothesis.
Collapse
Affiliation(s)
- Rocco Cavaleri
- School of Health Sciences, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Lucy S Chipchase
- School of Health Sciences, Western Sydney University, Campbelltown, New South Wales, Australia.,College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Hugo Massé-Alarie
- CIRRIS Research Centre, Department of Rehabilitation, Laval University, Quebec, Canada.,Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Muath A Shraim
- Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul W Hodges
- Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
48
|
A novel cortical biomarker signature for predicting pain sensitivity: protocol for the PREDICT longitudinal analytical validation study. Pain Rep 2020; 5:e833. [PMID: 32766469 PMCID: PMC7390594 DOI: 10.1097/pr9.0000000000000833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022] Open
Abstract
PREDICT will undertake analytical validation of a peak alpha frequency and corticomotor excitability biomarker, determining the sensitivity, specificity, and accuracy at predicting pain sensitivity. Introduction: Temporomandibular disorder is a common musculoskeletal pain condition with development of chronic symptoms in 49% of patients. Although a number of biological factors have shown an association with chronic temporomandibular disorder in cross-sectional and case control studies, there are currently no biomarkers that can predict the development of chronic symptoms. The PREDICT study aims to undertake analytical validation of a novel peak alpha frequency (PAF) and corticomotor excitability (CME) biomarker signature using a human model of the transition to sustained myofascial temporomandibular pain (masseter intramuscular injection of nerve growth factor [NGF]). This article describes, a priori, the methods and analysis plan. Methods: This study uses a multisite longitudinal, experimental study to follow individuals for a period of 30 days as they progressively develop and experience complete resolution of NGF-induced muscle pain. One hundred fifty healthy participants will be recruited. Participants will complete twice daily electronic pain diaries from day 0 to day 30 and undergo assessment of pressure pain thresholds, and recording of PAF and CME on days 0, 2, and 5. Intramuscular injection of NGF will be given into the right masseter muscle on days 0 and 2. The primary outcome is pain sensitivity. Perspective: PREDICT is the first study to undertake analytical validation of a PAF and CME biomarker signature. The study will determine the sensitivity, specificity, and accuracy of the biomarker signature to predict an individual's sensitivity to pain. Registration details: ClinicalTrials.gov: NCT04241562 (prospective).
Collapse
|
49
|
Fear of movement is associated with corticomotor depression in response to acute experimental muscle pain. Exp Brain Res 2020; 238:1945-1955. [DOI: 10.1007/s00221-020-05854-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
|
50
|
Kosugi A, Castagnola E, Carli S, Ricci D, Fadiga L, Taoka M, Iriki A, Ushiba J. Fast Electrophysiological Mapping of Rat Cortical Motor Representation on a Time Scale of Minutes during Skin Stimulation. Neuroscience 2019; 414:245-254. [PMID: 31301365 DOI: 10.1016/j.neuroscience.2019.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
The topographic map of motor cortical representation, called the motor map, is not invariant, but can be altered by motor learning, neurological injury, and functional recovery from injury. Although much attention has been paid to short-term changes of the motor map, robust measures have not been established. The existing mapping methods are time-consuming, and the obtained maps are confounded by time preference. The purpose of this study was to examine the dynamics of the motor map on a timescale of minutes during transient somatosensory input by a fast motor mapping technique. We applied 32-channel micro-electrocorticographic electrode arrays to the rat sensorimotor cortex for cortical stimulation, and the topographic profile of motor thresholds in forelimb muscle was identified by fast motor mapping. Sequential motor maps were obtained every few minutes before, during, and just after skin stimulation to the dorsal forearm using a wool buff. During skin stimulation, the motor map expanded and the center of gravity of the map was shifted caudally. The expansion of the map persisted for at least a few minutes after the end of skin stimulation. Although the motor threshold of the hotspot was not changed, the area in which it was decreased appeared caudally to the hotspot, which may be in the somatosensory cortex. The present study demonstrated rapid enlargement of the forelimb motor map in the order of a few minutes induced by skin stimulation. This helps to understand the spatial dynamism of motor cortical representation that is modulated rapidly by somatosensory input.
Collapse
Affiliation(s)
- Akito Kosugi
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Center for Sensorimotor Neural Engineering, San Diego State University, San Diego, CA, United States
| | - Stefano Carli
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Miki Taoka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Junichi Ushiba
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan; Keio Institute of Pure and Applied Sciences, Keio University, Kanagawa, Japan.
| |
Collapse
|