1
|
Jovanovic MZ, Stanojevic J, Stevanovic I, Ninkovic M, Ilic TV, Nedeljkovic N, Dragic M. Prolonged intermittent theta burst stimulation restores the balance between A2AR- and A1R-mediated adenosine signaling in the 6-hydroxidopamine model of Parkinson's disease. Neural Regen Res 2025; 20:2053-2067. [PMID: 39254566 PMCID: PMC11691459 DOI: 10.4103/nrr.nrr-d-23-01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00027/figure1/v/2024-09-09T124005Z/r/image-tiff An imbalance in adenosine-mediated signaling, particularly the increased A2AR-mediated signaling, plays a role in the pathogenesis of Parkinson's disease. Existing therapeutic approaches fail to alter disease progression, demonstrating the need for novel approaches in PD. Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease. However, the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown. The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling. Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test. Immunoblot, quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen. Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals. A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen. Treatment with intermittent theta burst stimulation began 7 days after the lesion, coinciding with the onset of motor symptoms. After treatment with prolonged intermittent theta burst stimulation, complete motor recovery was observed. This improvement was accompanied by downregulation of the eN/CD73-A2AR pathway and a return to physiological levels of A1R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation. Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A1R and elevated the expression of A2AR. Intermittent theta burst stimulation reversed these effects by restoring the abundances of A1R and A2AR to control levels. The shift in ARs expression likely restored the balance between dopamine-adenosine signaling, ultimately leading to the recovery of motor control.
Collapse
Affiliation(s)
- Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Milica Ninkovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Goldman JG, Jagota P, Matar E. Managing cognitive impairment in Parkinson's disease: an update of the literature. Expert Rev Neurother 2025:1-21. [PMID: 39773313 DOI: 10.1080/14737175.2025.2450668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Cognitive impairment in Parkinson's disease (PD) substantially affects patient outcomes, function, and quality of life. PD-related cognitive dysfunction is often heterogeneous in clinical presentation and rates of progression. As cognitive changes occur in many people with PD, it is essential to evaluate cognition, provide education, and implement management strategies for cognitive symptoms. AREAS COVERED This article describes the symptomatology, epidemiology, risk factors, and pathobiology of cognitive impairment in PD. Additionally, the article provides an overview of evidence-based management and other therapeutic and coping strategies for cognitive impairment and dementia in PD. Comment is offered on challenges and opportunities for trials and emerging therapeutics targeting cognitive symptoms or decline. EXPERT OPINION While our understanding of cognitive dysfunction in PD has grown, effective and safe therapeutics are still needed to not only treat cognitive impairment and dementia symptomatically but also slow down or prevent cognitive decline. Further research is needed to elucidate the pathobiology of PD cognitive impairment, develop validated biomarkers reflecting cognitive change, and ultimately, integrate clinical and biological frameworks. Consensus regarding cognitive evaluations, definitions, and criteria of cognitive impairment, evaluating functional abilities in the context of cognitive impairment, and determining optimal outcome measures for clinical trials remain unmet needs.
Collapse
Affiliation(s)
- Jennifer G Goldman
- Medical Division, JPG Enterprises LLC, Chicago, IL, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
3
|
Carrette S, Vonck K, Klooster D, Raedt R, Carrette E, Delbeke J, Wadman W, Casarotto S, Massimini M, Boon P. Exploration of Theta Burst-Induced Modulation of Transcranial Magnetic Stimulation-Evoked Potentials Over the Motor Cortex. Neuromodulation 2025; 28:123-135. [PMID: 38842956 DOI: 10.1016/j.neurom.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVES This study investigates the way theta burst stimulation (TBS) applied to the motor cortex (M1) affects TMS-evoked potentials (TEPs). There have been few direct comparisons of continuous TBS (cTBS) and intermittent TBS (iTBS), and there is a lack of consensus from existing literature on the induced effects. We performed an exploratory trial to assess the effect of M1-cTBS and M1-iTBS on TEP components. MATERIALS AND METHODS In a cross-over design, 15 participants each completed three experimental sessions with ≥one week in between sessions. The effect of a single TBS train administered over M1 was investigated using TEPs recorded at the same location, 20 to 30 minutes before and in the first 10 minutes after the intervention. In each session, a different type of TBS (cTBS, iTBS, or active control cTBS) was administered in a single-blinded randomized order. For six different TEP components (N15, P30, N45, P60, N100, and P180), amplitude was compared before and after the intervention using cluster-based permutation (CBP) analysis. RESULTS We were unable to identify a significant modulation of any of the six predefined M1 TEP components after a single train of TBS. When waiving statistical correction for multiple testing in view of the exploratory nature of the study, the CBP analysis supports a reduction of the P180 amplitude after iTBS (p = 0.015), whereas no effect was observed after cTBS or in the active control condition. The reduction occurred in ten of 15 subjects, showing intersubject variability. CONCLUSIONS The observed decrease in the P180 amplitude after iTBS may suggest a neuromodulatory effect of iTBS. Despite methodologic issues related to our study and the potential sensory contamination within this latency range of the TEP, we believe that our finding deserves further investigation in hypothesis-driven trials of adequate power and proper design, focusing on disentanglement between TEPs and peripherally evoked potentials, in addition to indicating reproducibility across sessions and subjects. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT05206162.
Collapse
Affiliation(s)
- Sofie Carrette
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | - Kristl Vonck
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Debby Klooster
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Robrecht Raedt
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Evelien Carrette
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jean Delbeke
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Wytse Wadman
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Organizzazione Non Lucrativa di Utilità Sociale (ONLUS), Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Organizzazione Non Lucrativa di Utilità Sociale (ONLUS), Milan, Italy
| | - Paul Boon
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Proulx-Bégin L, Jodoin M, Brazeau D, Herrero Babiloni A, Provost C, Rouleau DM, Arbour C, De Beaumont L. Does a Prolonged Sham Theta Burst Stimulation Intervention Regimen Outperform Standard Care in Terms of Functional Recovery and Pain Relief After an Upper Limb Fracture? Psychosom Med 2025; 87:84-92. [PMID: 39701573 DOI: 10.1097/psy.0000000000001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE In a recent sham-controlled 13-session prolonged continuous theta burst stimulation intervention protocol, recovery from upper limb fracture at both 1 and 3 months was better than anticipated in patients assigned to the sham intervention group. To determine whether potential placebo effect and close patient monitoring affected recovery, the current study aimed to compare clinical outcomes between sham-treated participants who also received standard care with similarly injured patients who only received standard care. METHODS Twenty participants with isolated upper limb fractures from the sham group were seen 13 times post-fracture (1 baseline session, 10 treatments, and 2 follow-ups [1 and 3 months]) over 3 months. They completed the self-reported Disabilities of Arm, Shoulder, and Hand (DASH) questionnaire and the Numerical Rating Scale for pain assessment at 1 and 3 months post-fracture. Two control groups were recruited: 43 participants at 1 month post-fracture and another 40 participants at 3 months post-fracture. These control groups completed the same questionnaires online, without any lab visits. RESULTS At 1 month, patients from the sham group reported significantly less functional impairments on the DASH (p = .010). At 3 months, significantly more patients from the control group reported functional limitations (72.5% versus sham's 40%, p = .015). CONCLUSIONS Although preliminary, these findings suggest clinically significant beneficial effects of the sham intervention over the standard care groups. This positive sham intervention effect may be attributed to a placebo response that includes the placebo effect associated with sham rTMS, but also the impact of various factors such as the close monitoring of the injury.
Collapse
Affiliation(s)
- Léa Proulx-Bégin
- From the Department of Psychology, Université de Montréal (Proulx-Bégin, Brazeau); Hôpital du Sacré-Cœur de Montréal (CIUSSS du Nord de-l'Île-de-Montréal) (Proulx-Bégin, Jodoin, Brazeau, Babiloni, Provost, Rouleau, Arbour, De Beaumont); Division of Experimental Medicine, McGill University (Herrero Babiloni); Faculty of Nursing, Université de Montréal (Arbour); and Department of Surgery, Université de Montréal (Rouleau, De Beaumont), Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Li Y, Gu J, Li R, Yi H, He J, Gao J. Sensory and motor cortices parcellations estimated via distance-weighted sparse representation with application to autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111125. [PMID: 39173993 DOI: 10.1016/j.pnpbp.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Motor impairments and sensory processing abnormalities are prevalent in autism spectrum disorder (ASD), closely related to the core functions of the primary motor cortex (M1) and the primary somatosensory cortex (S1). Currently, there is limited knowledge about potential therapeutic targets in the subregions of M1 and S1 in ASD patients. This study aims to map clinically significant functional subregions of M1 and S1. METHODS Resting-state functional magnetic resonance imaging data (NTD = 266) from Autism Brain Imaging Data Exchange (ABIDE) were used for subregion modeling. We proposed a distance-weighted sparse representation algorithm to construct brain functional networks. Functional subregions of M1 and S1 were identified through consensus clustering at the group level. Differences in the characteristics of functional subregions were analyzed, along with their correlation with clinical scores. RESULTS We observed symmetrical and continuous subregion organization from dorsal to ventral aspects in M1 and S1, with M1 subregions conforming to the functional pattern of the motor homunculus. Significant intergroup differences and clinical correlations were found in the dorsal and ventral aspects of M1 (p < 0.05/3, Bonferroni correction) and the ventromedial BA3 of S1 (p < 0.05/5). These functional characteristics were positively correlated with autism severity. All subregions showed significant results in the ROI-to-ROI intergroup differential analysis (p < 0.05/80). LIMITATIONS The generalizability of the segmentation model requires further evaluation. CONCLUSIONS This study highlights the significance of M1 and S1 in ASD treatment and may provide new insights into brain parcellation and the identification of therapeutic targets for ASD.
Collapse
Affiliation(s)
- Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Jiahe Gu
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Rui Li
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Hongtao Yi
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Junbiao He
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, High-tech Zone (West Zone), Sichuan Province, Chengdu 611731, China.
| |
Collapse
|
6
|
Trapp NT, Purgianto A, Taylor JJ, Singh MK, Oberman LM, Mickey BJ, Youssef NA, Solzbacher D, Zebley B, Cabrera LY, Conroy S, Cristancho M, Richards JR, Flood MJ, Barbour T, Blumberger DM, Taylor SF, Feifel D, Reti IM, McClintock SM, Lisanby SH, Husain MM. Consensus review and considerations on TMS to treat depression: A comprehensive update endorsed by the National Network of Depression Centers, the Clinical TMS Society, and the International Federation of Clinical Neurophysiology. Clin Neurophysiol 2024; 170:206-233. [PMID: 39756350 DOI: 10.1016/j.clinph.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
This article updates the prior 2018 consensus statement by the National Network of Depression Centers (NNDC) on the use of transcranial magnetic stimulation (TMS) in the treatment of depression, incorporating recent research and clinical developments. Publications on TMS and depression between September 2016 and April 2024 were identified using methods informed by PRISMA guidelines. The NNDC Neuromodulation Work Group met monthly between October 2022 and April 2024 to define important clinical topics and review pertinent literature. A modified Delphi method was used to achieve consensus. 2,396 abstracts and manuscripts met inclusion criteria for review. The work group generated consensus statements which include an updated narrative review of TMS safety, efficacy, and clinical features of use for depression. Considerations related to training, roles/responsibilities of providers, and documentation are also discussed. TMS continues to demonstrate broad evidence for safety and efficacy in treating depression. Newer forms of TMS are faster and potentially more effective than conventional repetitive TMS. Further exploration of targeting methods, use in special populations, and accelerated protocols is encouraged. This article provides an updated overview of topics relevant to the administration of TMS for depression and summarizes expert, consensus opinion on the practice of TMS in the United States.
Collapse
Affiliation(s)
- Nicholas T Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| | - Anthony Purgianto
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph J Taylor
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Brian J Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Nagy A Youssef
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Daniela Solzbacher
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Laura Y Cabrera
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Susan Conroy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mario Cristancho
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson R Richards
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Tracy Barbour
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel M Blumberger
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Feifel
- Kadima Neuropsychiatry Institute, La Jolla, CA, USA; University of California-San Diego, San Diego, CA, USA
| | - Irving M Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Shawn M McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA; Division of Translational Research, National Institute of Mental Health, Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
7
|
Salfenmoser L, Obermayer K. A framework for optimal control of oscillations and synchrony applied to non-linear models of neural population dynamics. Front Comput Neurosci 2024; 18:1483100. [PMID: 39712002 PMCID: PMC11658993 DOI: 10.3389/fncom.2024.1483100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
We adapt non-linear optimal control theory (OCT) to control oscillations and network synchrony and apply it to models of neural population dynamics. OCT is a mathematical framework to compute an efficient stimulation for dynamical systems. In its standard formulation, it requires a well-defined reference trajectory as target state. This requirement, however, may be overly restrictive for oscillatory targets, where the exact trajectory shape might not be relevant. To overcome this limitation, we introduce three alternative cost functionals to target oscillations and synchrony without specification of a reference trajectory. We successfully apply these cost functionals to single-node and network models of neural populations, in which each node is described by either the Wilson-Cowan model or a biophysically realistic high-dimensional mean-field model of exponential integrate-and-fire neurons. We compute efficient control strategies for four different control tasks. First, we drive oscillations from a stable stationary state at a particular frequency. Second, we switch between stationary and oscillatory stable states and find a translational invariance of the state-switching control signals. Third, we switch between in-phase and out-of-phase oscillations in a two-node network, where all cost functionals lead to identical OC signals in the minimum-energy limit. Finally, we (de-) synchronize an (a-) synchronously oscillating six-node network. In this setup, for the desynchronization task, we find very different control strategies for the three cost functionals. The suggested methods represent a toolbox that enables to include oscillatory phenomena into the framework of non-linear OCT without specification of an exact reference trajectory. However, task-specific adjustments of the optimization parameters have to be performed to obtain informative results.
Collapse
Affiliation(s)
- Lena Salfenmoser
- Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin, Berlin, Germany
| | - Klaus Obermayer
- Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
8
|
Zhu X, Tabarak S, Que J, Yan W, Lin X, Liu X, Chen W, Shi J, Deng J, Lu L. Efficiency and safety of continuous theta burst stimulation for primary insomnia: A randomized clinical trial. Sleep Med 2024; 124:77-83. [PMID: 39276701 DOI: 10.1016/j.sleep.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/03/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVES Primary insomnia is a substantial public health burden, but current treatments for this disorder have limited effectiveness and adherence. Herein, we aimed to investigate the efficacy and safety of continuous theta burst stimulation (cTBS) for the treatment of primary insomnia. METHODS This two-armed, randomized, sham-controlled trial was conducted at Peking University Sixth Hospital and local community clinics. A total of 46 patients with primary insomnia were recruited and randomly allocated to either the cTBS group or sham group. Forty-one patients completed 10 sessions of cTBS or sham intervention and follow-up assessments. RESULTS After the intervention, the severity of insomnia was significantly lower in the cTBS group than in the sham group, with a large effect size (Cohen's d = -1.938). Additionally, 52.4 % of patients in the cTBS group achieved a response (Insomnia Severity Index score reduction ≥8), whereas only 4 % of patients in the sham group achieved a response. The duration of objective total sleep time and slow-wave sleep were higher in the cTBS group than in the sham group. The degree of anxiety was lower in the cTBS group than in the sham group. There were no significant differences in depression, sleepiness, or cognitive function between the cTBS and sham groups. During follow-up, the sleep quality of the cTBS group significantly improved and remained stable at the 6-month follow-up. CONCLUSION In this randomized clinical trial, cTBS improved insomnia symptoms and was generally well tolerated, thus supporting the further development of cTBS for the treatment of primary insomnia.
Collapse
Affiliation(s)
- Ximei Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Serik Tabarak
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Jianyu Que
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, 36100, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Wenhao Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China; The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
9
|
Ross JM, Forman L, Gogulski J, Hassan U, Cline CC, Parmigiani S, Truong J, Hartford JW, Chen NF, Fujioka T, Makeig S, Pascual-Leone A, Keller CJ. Sensory Entrained TMS (seTMS) enhances motor cortex excitability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625537. [PMID: 39651225 PMCID: PMC11623581 DOI: 10.1101/2024.11.26.625537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Transcranial magnetic stimulation (TMS) applied to the motor cortex has revolutionized the study of motor physiology in humans. Despite this, TMS-evoked electrophysiological responses show significant variability, due in part to inconsistencies between TMS pulse timing and ongoing brain oscillations. Variable responses to TMS limit mechanistic insights and clinical efficacy, necessitating the development of methods to precisely coordinate the timing of TMS pulses to the phase of relevant oscillatory activity. We introduce Sensory Entrained TMS (seTMS), a novel approach that uses musical rhythms to synchronize brain oscillations and time TMS pulses to enhance cortical excitability. Focusing on the sensorimotor alpha rhythm, a neural oscillation associated with motor cortical inhibition, we examine whether rhythm-evoked sensorimotor alpha phase alignment affects primary motor cortical (M1) excitability in healthy young adults (n=33). We first confirmed using electroencephalography (EEG) that passive listening to musical rhythms desynchronizes inhibitory sensorimotor brain rhythms (mu oscillations) around 200 ms before auditory rhythmic events (27 participants). We then targeted this optimal time window by delivering single TMS pulses over M1 200 ms before rhythmic auditory events while recording motor-evoked potentials (MEPs; 19 participants), which resulted in significantly larger MEPs compared to standard single pulse TMS and an auditory control condition. Neither EEG measures during passive listening nor seTMS-induced MEP enhancement showed dependence on musical experience or training. These findings demonstrate that seTMS effectively enhances corticomotor excitability and establishes a practical, cost-effective method for optimizing non-invasive brain stimulation outcomes.
Collapse
Affiliation(s)
- Jessica M. Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Lily Forman
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029 HUS, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2, 02150, Espoo, Finland
| | - Umair Hassan
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Christopher C. Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - James W. Hartford
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Nai-Feng Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Takako Fujioka
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Center for Computer Research in Music and Acoustics (CCRMA), Department of Music, Stanford University, Stanford, CA, USA
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, CA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Corey J. Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
10
|
He Q, Yang Y, Ge P, Li S, Chai X, Luo Z, Zhao J. The brain nebula: minimally invasive brain-computer interface by endovascular neural recording and stimulation. J Neurointerv Surg 2024; 16:1237-1243. [PMID: 38388478 PMCID: PMC11671944 DOI: 10.1136/jnis-2023-021296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
A brain-computer interface (BCI) serves as a direct communication channel between brain activity and external devices, typically a computer or robotic limb. Advances in technology have led to the increasing use of intracranial electrical recording or stimulation in the treatment of conditions such as epilepsy, depression, and movement disorders. This indicates that BCIs can offer clinical neurological rehabilitation for patients with disabilities and functional impairments. They also provide a means to restore consciousness and functionality for patients with sequelae from major brain diseases. Whether invasive or non-invasive, the collected cortical or deep signals can be decoded and translated for communication. This review aims to provide an overview of the advantages of endovascular BCIs compared with conventional BCIs, along with insights into the specific anatomical regions under study. Given the rapid progress, we also provide updates on ongoing clinical trials and the prospects for current research involving endovascular electrodes.
Collapse
Affiliation(s)
- Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Research Center for Rehabilitation Technical Aids, Beijing, China
- Chinese Institute for Brain Research, Beijing, People's Republic of China
- Beijing Institute of Brain Disorders, Beijing, People's Republic of China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sining Li
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Xiaoke Chai
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongqiu Luo
- Department of Neurosurgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
11
|
Zareen N, Yung H, Kaczetow W, Glattstein A, Mazalkova E, Alexander H, Chen L, Parra LC, Martin JH. Molecular signaling predicts corticospinal axon growth state and muscle response plasticity induced by neuromodulation. Proc Natl Acad Sci U S A 2024; 121:e2408508121. [PMID: 39536089 PMCID: PMC11588127 DOI: 10.1073/pnas.2408508121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Electrical motor cortex stimulation can produce corticospinal system plasticity and enhance motor function after injury. We investigate molecular mechanisms of structural and physiological plasticity following electrical neuromodulation, focusing on identifying molecular predictors, or biomarkers, for durable plasticity. We used two neuromodulation protocols, repetitive multipulse stimulation (rMPS) and patterned intermittent theta burst stimulation (iTBS), incorporating different stimulation durations and follow-up periods. We compared neuromodulation efficacy in promoting corticospinal tract (CST) sprouting, motor cortex muscle evoked potential (MEP) LTP-like plasticity, and their associated molecular underpinnings. Only iTBS produced CST sprouting after short-term neuromodulation (1 d of stimulation; 9-d survival for sprouting expression); both iTBS and rMPS produced sprouting with long-term (10-d) neuromodulation. Significant mTOR signaling activation and phosphatase and tensin homolog (PTEN) protein deactivation predicted axon growth across all neuromodulation conditions that produced significant sprouting. Both neuromodulation protocols, regardless of duration, were effective in producing MEP enhancement. However, persistent LTP-like enhancement of MEPs at 30 d was only produced by long-term iTBS. Statistical modeling suggests that Stat3 signaling is the key mediator of MEP enhancement. Cervical spinal cord injury (SCI) alone did not affect baseline molecular signaling. Whereas iTBS and rMPS after SCI produced strong mTOR activation and PTEN deactivation, only iTBS produced Stat3 activation. Our findings support differential molecular biomarkers for neuromodulation-dependent structural and physiological plasticity and show that motor cortex epidural neuromodulation produces molecular changes in neurons that support axonal growth after SCI. iTBS may be more suitable for repair after SCI because it promotes molecular signaling for both CST growth and MEP plasticity.
Collapse
Affiliation(s)
- Neela Zareen
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Halley Yung
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Walter Kaczetow
- Department of Educational Psychology, Graduate Center of the City University of New York, New York, NY10016
| | - Aliya Glattstein
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Ekaterina Mazalkova
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Heather Alexander
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Liang Chen
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Lucas C. Parra
- Department of Biomedical Engineering, Grove School of Engineering, The City College of New York, New York, NY10031
| | - John H. Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
- Neuroscience Program, Graduate Center of the City University of New York, New York, NY10016
| |
Collapse
|
12
|
Campbell JM, Cowan RL, Wahlstrom KL, Hollearn MK, Jensen D, Davis T, Rahimpour S, Shofty B, Arain A, Rolston JD, Hamann S, Wang S, Eisenman LN, Swift J, Xie T, Brunner P, Manns JR, Inman CS, Smith EH, Willie JT. Human single-neuron activity is modulated by intracranial theta burst stimulation of the basolateral amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622161. [PMID: 39605345 PMCID: PMC11601271 DOI: 10.1101/2024.11.11.622161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The amygdala is a highly connected cluster of nuclei with input from multiple sensory modalities, particularly the ventral visual stream, and vast projections to distributed cortical and subcortical regions involved in autonomic regulation and cognition.1-4 Numerous studies have described the amygdala's capacity to facilitate the encoding of long-lasting emotional memories.5-15 Recently, direct electrical stimulation of the basolateral complex of the amygdala (BLA) in humans revealed a more generalized ability to enhance declarative memory irrespective of the emotional valence16, likely by promoting synaptic plasticity-related processes underlying memory consolidation in the hippocampus and medial temporal lobe.17-20 These effects were achieved with rhythmic theta-burst stimulation (TBS), which is known to induce long-term potentiation (LTP), a key mechanism in memory formation.21 Emerging evidence suggests that intracranial TBS may also enhance memory specificity22, evoke theta-frequency oscillations23, and facilitate short-term plasticity in local field potential recordings.24,25 However, how amygdalar TBS modulates activity at the single-cell level and to what extent this modulation is associated with memory performance remain poorly understood. Here, we address this knowledge gap by conducting simultaneous microelectrode recordings from prefrontal and medial temporal structures during a memory task in which intracranial TBS was applied to the BLA. We observed a subset of neurons whose firing rate was modulated by TBS and exhibited highly heterogeneous responses with respect to onset latency, duration, and direction of effect. Notably, location and baseline activity predicted which neurons were most susceptible to modulation. These findings provide direct empirical support for stimulation-evoked modulation of single-neuron activity in humans, which has implications for the development and refinement of neuromodulatory therapies.
Collapse
Affiliation(s)
- Justin M. Campbell
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Lead contact
| | - Rhiannon L. Cowan
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | | | | | - Dylan Jensen
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Tyler Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Ben Shofty
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Amir Arain
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - John D. Rolston
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Stephan Hamann
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Shuo Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence N. Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - James Swift
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
| | - Tao Xie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
| | - Peter Brunner
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
| | - Joseph R. Manns
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Cory S. Inman
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
- Senior author
| | - Elliot H. Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
- Senior author
| | - Jon T. Willie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
- Senior author
| |
Collapse
|
13
|
Zheng W, Shi X, Chen Y, Hou X, Yang Z, Yao W, Lv T, Bai F. Comparative efficacy of intermittent theta burst stimulation and high-frequency repetitive transcranial magnetic stimulation in amnestic mild cognitive impairment patients. Cereb Cortex 2024; 34:bhae460. [PMID: 39604076 DOI: 10.1093/cercor/bhae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Intermittent theta burst stimulation, a derivative of repetitive transcranial magnetic stimulation, has been applied to improve cognitive deficits. However, its efficacy and mechanisms in enhancing cognitive function in patients with amnestic mild cognitive impairment compared with traditional repetitive transcranial magnetic stimulation paradigms remain unclear. This study recruited 48 amnestic mild cognitive impairment patients, assigning them to intermittent theta burst stimulation, repetitive transcranial magnetic stimulation, and sham groups (5 times/wk for 4 wk). Neuropsychological assessments and functional magnetic resonance imaging data were collected pre- and post-treatment. Regarding efficacy, both angular gyrus intermittent theta burst stimulation and repetitive transcranial magnetic stimulation significantly improved general cognitive function and memory compared to the sham group, with no significant difference between the 2 treatment groups. Mechanistically, significant changes in brain activity within the temporoparietal network were observed in both the intermittent theta burst stimulation and repetitive transcranial magnetic stimulation groups, and these changes correlated with improvements in general cognitive and memory functions. Additionally, intermittent theta burst stimulation showed stronger modulation of functional connectivity between the hippocampus, parahippocampal gyrus, and temporal regions compared to repetitive transcranial magnetic stimulation. The intermittent theta burst stimulation and repetitive transcranial magnetic stimulation can improve cognitive function in amnestic mild cognitive impairment patients, but intermittent theta burst stimulation may offer higher efficiency. Intermittent theta burst stimulation and repetitive transcranial magnetic stimulation likely enhance cognitive function, especially memory function, by modulating the temporoparietal network.
Collapse
Affiliation(s)
- Wenao Zheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xian Shi
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Weina Yao
- Department of Neurology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Tingyu Lv
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
- Institute of Geriatric Medicine, Medical School of Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
| |
Collapse
|
14
|
Beanato E, Moon HJ, Windel F, Vassiliadis P, Wessel MJ, Popa T, Pauline M, Neufeld E, De Falco E, Gauthier B, Steiner M, Blanke O, Hummel FC. Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. SCIENCE ADVANCES 2024; 10:eado4103. [PMID: 39475597 PMCID: PMC11524170 DOI: 10.1126/sciadv.ado4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Because of the depth of the hippocampal-entorhinal complex (HC-EC) in the brain, understanding of its role in spatial navigation via neuromodulation was limited in humans. Here, we aimed to better elucidate this relationship in healthy volunteers, using transcranial temporal interference electric stimulation (tTIS), a noninvasive technique allowing to selectively neuromodulate deep brain structures. We applied tTIS to the right HC-EC in either continuous or intermittent theta-burst stimulation patterns (cTBS or iTBS), compared to a control condition, during a virtual reality-based spatial navigation task and concomitant functional magnetic resonance imaging. iTBS improved spatial navigation performance, correlated with hippocampal activity modulation, and decreased grid cell-like activity in EC. Collectively, these data provide the evidence that human HC-EC activity can be directly and noninvasively modulated leading to changes of spatial navigation behavior. These findings suggest promising perspectives for patients suffering from cognitive impairment such as following traumatic brain injury or dementia.
Collapse
Affiliation(s)
- Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Hyuk-June Moon
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Maximillian J. Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Menoud Pauline
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
- ZMT Zurich MedTech AG, Zurich, Switzerland
| | - Emanuela De Falco
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Baptiste Gauthier
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
15
|
Chen K, Sun M, Zhuang H. Effect of theta burst stimulation on lower extremity motor function improvement and balance recovery in patients with stroke: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e40098. [PMID: 39495989 PMCID: PMC11537599 DOI: 10.1097/md.0000000000040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/26/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND To investigate the therapeutic benefits of theta burst stimulation on lower-limb motor dysfunction and balance recovery in patients with stroke. METHODS A literature search was performed across CNKI, CBM, WanFang, VIP, PubMed, Embase, Cochrane Library, and Web of Science until November 2023. The Methodological quality of included studies was assessed by using the Cochrane risk-of-bias tool and the PEDro scale, and the meta-analysis was performed by using RevMan 5.3 software. Two independent researchers screened the literature and extracted basic information on participants, interventions, comparisons, outcomes, and studies. RESULTS Eight studies, including cTBS and iTBS, with 290 participants meeting the inclusion criteria for this systematic review, and 7 studies including only iTBS with 230 participants were included in this meta-analysis. The methodological quality of the studies included ranged from moderate to high. The results showed iTBS had significantly higher scores on the Berg Balance Scale (BBS) than the control group. (MD = 4.57, 95% CI: 1.76 to 7.38, Z = 3.19, P = .001). Subgroup analysis showed CRB-iTBS markedly improved BBS scores (MD = 4.52, 95% CI: 1.78 to 7.27, Z = 3.23, P = .001), whereas LE M1-iTBS did not exhibit a significant enhancement in BBS scores (MD = 6.10, 95% CI: -7.34 to 19.53, Z = 0.89, P = .37); iTBS showed no significant increase in lower-limb motor function (FMA-LE) (MD = 1.80, 95% CI: -1.10 to 4.69, Z = 1.22, P = .22). Subgroup analysis revealed both CRB-iTBS and LE M1-iTBS interventions were not effective in improving FMA-LE (MD = 3.15, 95% CI: -4.70 to 11.00, Z = .79, P = .43; MD = 1.05, 95% CI: -2.20 to 4.30, Z = .63, P = .53); iTBS significantly reduced the MEP latency (P = .004), but did not show a significant improvement in walking performance (10 MWT), mobility (TUG), or activities of daily living [M(BI)] (P > .05). CONCLUSION Based the current study, iTBS can increase patients' balance function. The CRB-iTBS protocol is more effective than the LE M1-iTBS protocol. Additionally, iTBS may be a promising therapy tending to enhance lower-limb motor function, walking performance, mobility, and activities of daily living.
Collapse
Affiliation(s)
- Kang Chen
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Meixia Sun
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - He Zhuang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
16
|
Jodoin M, Herrero Babiloni A, Provost C, Blais H, Bellemare A, Desjardins M, Rouleau DM, De Beaumont L. 10-Day Theta Burst Stimulation Intervention Facilitates the Clinical Rehabilitation of Patients After an Isolated Limb Fracture: A Longitudinal SHAM-Controlled Pilot Study. Am J Phys Med Rehabil 2024; 103:e152-e161. [PMID: 38709663 DOI: 10.1097/phm.0000000000002543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
OBJECTIVE We investigated if theta burst stimulation could enhance recovery by reducing key symptoms when implemented acutely postfracture in participants with an isolated upper limb fracture. METHODS/DESIGN This was a pilot study with a randomized matched pair, sham-controlled, participant-blind design of a 10-day prolonged continuous theta burst stimulation protocol. Two main groups were included: I) participants with isolated upper limb fracture receiving active theta burst stimulation and II) patients with isolated upper limb fracture receiving SHAM/placebo. Another group (III) of healthy individuals was the reference group. Disability and pain intensity were collected through questionnaires (disabilities of the Arm, Shoulder, and Hand as well as numerical rating scale (NRA)) at three time points (baseline; 72 hrs after intervention, 3 mos after injury). Group III completed the baseline assessment. RESULTS Seventy-nine participants were enrolled. Individuals in the ACTIVE and SHAM groups had similar baseline measures. For disability, the interaction between intervention and time approached significance (F = 2.33; P = 0.11), whereas it was significant for pain (F = 3.42; P = 0.04). At 3 mos after injury, the ACTIVE group reported reduced disability (F = 4.71; P = 0.04) and pain (F = 5.84; P = 0.02) at 3 mos after injury compared to the SHAM group, with clinical measures from ACTIVE group being like controls. CONCLUSIONS In isolated upper limb fracture patients, a 10-day theta burst stimulation intervention implemented acutely posttrauma had beneficial effects on symptoms of functional recovery and pain at 3 mos after trauma.
Collapse
Affiliation(s)
- Marianne Jodoin
- From the Sacre-Coeur Hospital, University of Montreal, Montreal, Quebec, Canada (MJ, AHB, CP, HB, AB, MD, DMR, LDB); Department of Psychology, University of Montreal, Montreal, Quebec, Canada (MJ, MD); Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada (AHB); and Department of Surgery, University of Montreal, Montreal, Quebec, Canada (DMR, LDB)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Li X, Xiang Q, Cen H, Zhai Z, Gao T, Lu C, Dong Y, Ye Y, Zhang C, Zhuo K, Wang Y, Liu D. Efficacy of Cortical-Hippocampal Target Intermittent Theta Burst Stimulation (iTBS) on Associative Memory of Schizophrenia: A Double-Blind, Randomized Sham-Controlled Trial. Neuropsychiatr Dis Treat 2024; 20:1941-1955. [PMID: 39411184 PMCID: PMC11473991 DOI: 10.2147/ndt.s468219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Objective The objective of our study was to evaluate whether intermittent theta burst stimulation(iTBS) applied to the regions with the strongest cortico-hippocampal connectivity within the lateral parietal cortical (LPC) or dorsolateral prefrontal cortical (DLPFC) areas in individuals with schizophrenia could enhance associative memory. Methods We randomized 96 participants with schizophrenia to receive either active iTBS applied to the right DLPFC, left LPC or sham iTBS for 20 days. Clinical and cognitive assessments were performed at baseline and at the end of treatment. The primary outcome was change in associative memory. The secondary outcome was change in other cognitive functions and psychiatric symptoms. Results In comparison to the sham group, iTBS targeting the right DLPFC or left LPC in schizophrenia did not yield significant improvements in auditory-auditory associative memory (F=1.27, p=0.294), auditory-visual associative memory (F=0.49, p=0.617), or visual-visual associative memory (F=1.094, p=0.347). Furthermore, after adjusting for variables such as education, disease duration, and negative symptoms, no significant changes were observed in any of these three memory domains. Conclusion Although our study suggests that iTBS applied to the cortical-hippocampal did not lead to a significant change in associative memory. However, further investigation combining hippocampal-targeted iTBS with functional magnetic resonance imaging (fMRI) is warranted to elucidate the regulatory effects of iTBS on hippocampal function. Trial Registration clinicaltrials.gov NCT03608462.
Collapse
Affiliation(s)
- Xuan Li
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
| | - Qiong Xiang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
| | - Haixin Cen
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
| | - Zhaolin Zhai
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Tianhao Gao
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chang Lu
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yuke Dong
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yujian Ye
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
| | - Chenxi Zhang
- Department of Psychiatry, Feng Xian Mental Health Center, Shanghai, People’s Republic of China
| | - Kaiming Zhuo
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
| | - Yan Wang
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, People’s Republic of China
| | - Dengtang Liu
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Mental Health, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
18
|
Kolbaşı EN, Huseyinsinoglu BE, Ozdemir Z, Bayraktaroglu Z, Soysal A. Effectiveness of Intermittent Theta Burst Stimulation to Enhance Upper Extremity Recovery After Stroke: A Pilot Study. Arch Phys Med Rehabil 2024; 105:1880-1889. [PMID: 38862033 DOI: 10.1016/j.apmr.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES To first investigate the effectiveness of modified constraint-ınduced movement therapy (mCIMT) in low-functioning patients with stroke (PwS). Second, we aimed to investigate the efficiency of intermittent theta-burst stimulation (iTBS), applied on intermittent days, in addition to the mCIMT in PwS. DESIGN A randomized, sham-controlled, single-blinded study. SETTING Outpatient clinic. PARTICIPANTS Fifteen PwS (age [mean±SD]: 66.3±9.2 years; 53% female) who were in the first 1 to 12 months after the incident were included in the study. INTERVENTIONS PwS were divided into 3 groups: (1) mCIMT alone; (2) mCIMT + sham iTBS; (3) mCIMT + iTBS. Each group received 15 sessions of mCIMT (1 hour/session, 3 sessions/week). iTBS was applied with 600 pulses on impaired M1 before mCIMT. MAIN OUTCOME MEASURES Upper extremity (UE) impairment was assessed with the Fugl-Meyer Test (FMT-UE), whereas the motor function was evaluated with the Wolf-Motor Function Test (WMFT). Motor Activity Log-28 (MAL-28) was used to evaluate the amount of use and how well (How Well Scale) the impaired UE movements. RESULTS With-in-group analysis revealed that all groups had statistically significant improvements based on the FMT-UE and MAL-28 (p<.05). However, the performance time and arm strength variables of WMFT were only increased in the mCIMT + iTBS group (p<.05). The only between-group difference was observed in the intracortical facilitation in favor of the mCIMT + iTBS group (p<.05). The effect size of iTBS was f=0.18. CONCLUSIONS Our findings suggest that mCIMT with and without the application of iTBS has increased the UE motor function in low-functioning PwS. iTBS applied on intermittent days may have additional benefits as an adjunct therapy for facilitating cortical excitability, increasing the speed and strength of the impaired UE as well as decreasing disability.
Collapse
Affiliation(s)
- Esma Nur Kolbaşı
- Department of Physiotherapy and Rehabilitation, Istanbul Medeniyet University, Istanbul; Physiotherapy and Rehabilitation Department, Institute of Graduate Studies, Istanbul University-Cerrahpaşa, Istanbul
| | - Burcu Ersoz Huseyinsinoglu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Marmara University, Istanbul.
| | - Zeynep Ozdemir
- Department of Neurology, Bakırkoy Prof Dr Mazhar Osman Training and Research Hospital for Psychiatric, Neurologic and Neurosurgical Diseases, Istanbul Health Sciences University, Istanbul
| | - Zubeyir Bayraktaroglu
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Aysun Soysal
- Department of Neurology, Bakırkoy Prof Dr Mazhar Osman Training and Research Hospital for Psychiatric, Neurologic and Neurosurgical Diseases, Istanbul Health Sciences University, Istanbul
| |
Collapse
|
19
|
Deng L, Song N, Wang J, Wang X, Chen Y, Wu S. Effect of Intermittent Theta Burst Stimulation Dual-Target Stimulation on Lower Limb Function in Patients with Incomplete Spinal Cord Injury: A Randomized, Single-Blind, Sham-Controlled Study. World Neurosurg 2024; 190:e46-e59. [PMID: 38960308 DOI: 10.1016/j.wneu.2024.06.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE To explore the influence of intermittent theta burst stimulation (iTBS) dual-target stimulation on lower limb function in patients with incomplete spinal cord injury (iSCI). METHODS A randomized, single -blind, sham-controlled trial was used in this study. Thirty iSCI patients with lower limb dysfunction meeting the inclusion criteria were randomly divided into a sham group and an iTBS group, with 15 cases in each group. The iTBS group received conventional rehabilitation therapy combined with iTBS dual-target stimulation on the central cerebral sulcus and the nerve root of the spinal cord injury segment. The sham group was treated with conventional rehabilitation therapy combined with iTBS dual-target sham stimulation therapy. Comprehensive functional assessment was performed on all patients before treatment, on the day 3 and day 21 of treatment. The main evaluation indicators were as follows: amplitude and latency of motor-evoked potential (MEP) in the anterior tibial muscles of both lower limbs, latency of sensory-evoked potential (SEP) of both lower limbs, knee flexor strength and knee extensor strength, lower extremity motor score (LEMS), lower extremity sensory score, spinal cord independence measure (SCIM) score, and gait parameters (stride speed, stride frequency, stride length, and ground reaction force). RESULTS On day 21 of treatment, in the iTBS group, the MEP amplitude of the anterior tibial muscles increased, the latency of MEP shortened, knee flexor strength and knee extensor strength increased, and the LEMS and SCIM score of both lower limbs increased. In addition, there were statistically significant differences in the muscle strength of the knee flexion muscle, knee extensor muscle, MEP amplitude, LEMS, and SCIM between the 2 groups (P < 0.05). Among the 10 patients who could walk with an assisted walker, the step length and step frequency of the iTBS group were increased compared with the sham group after treatment (P < 0.01), and the ground reaction force was increased (P < 0.05). There was no significant difference in the lower extremity sensory score of the lower limbs between the 2 groups (P > 0.05). CONCLUSIONS ITBS dual-target stimulation can significantly improve the motor function of both lower limbs in patients with iSCI but does not significantly improve the sensory function of both lower limbs. Therefore, this treatment mode may participate in the reconstruction and repair of some nerve circuits in patients with iSCI. In addition, iTBS dual-target stimulation can improve the ability of iSCI patients to perform daily living.
Collapse
Affiliation(s)
- Luoyi Deng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Ning Song
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China;; School of Clinical Medicine, Guizhou Medical University, Guiyang, PR China
| | - Jia Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Xianbin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Yan Chen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Shuang Wu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China;.
| |
Collapse
|
20
|
Tang VM, Blumberger DM. Transcranial magnetic stimulation for the rehabilitation of patients with addiction: current status and future prospects. Expert Rev Med Devices 2024; 21:943-954. [PMID: 39323104 DOI: 10.1080/17434440.2024.2404962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Substance use disorders (SUDs) are severe conditions that remain extremely challenging to treat in clinical practice. With high rates of non-response to current treatment options and several SUDs with no approved interventions, novel therapies are needed. Repetitive transcranial magnetic stimulation (rTMS) can non-invasively modulate the neurocircuitry of brain-based disorders, and investigation into its therapeutic potential for SUDs is growing rapidly. AREAS COVERED In this review, we summarize the clinical research to date evaluating its safety and efficacy for various SUDs. We highlight the investigations comparing different stimulation parameters to present our current understanding on optimal stimulation parameters. Additionally, we cover key research avenues in the use of neuroimaging to guide treatment, cue-induction paradigms, and adjunctive or combination treatments that may optimize outcomes. EXPERT OPINION Evidence of rTMS as an effective treatment for certain SUDs has emerged and is preliminary for others. There are a growing number of studies showing benefit and meta-analyses suggesting that rTMS can significantly reduce substance craving and consumption. However, the optimal approach has not been determined, and there is a great deal of heterogeneity in rTMS protocols and mixed outcomes. Further research into strategies for enhancing precision will be crucial in moving the field forward.
Collapse
Affiliation(s)
- Victor M Tang
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
21
|
Wu J, Ji Y, Qu H, Zuo S, Liang J, Su J, Wang Q, Yan G, Ding G. Transcranial magnetic stimulation of the right inferior frontal gyrus impairs bilinguals' performance in language-switching tasks. Cognition 2024; 254:105963. [PMID: 39340870 DOI: 10.1016/j.cognition.2024.105963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/23/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
It is widely accepted that bilinguals activate both languages simultaneously, even when intending to speak only one. A prevailing theory proposes that bilinguals inhibit the nontarget language to produce the target language, thought to be supported by evidence that the right inferior frontal gyrus (rIFG), a region typically associated with inhibition, is activated during language-switching tasks. However, it remains unclear whether the rIFG plays a causal or epiphenomenal role in this process. To explore the role of the rIFG, the present study employed transcranial magnetic stimulation (TMS) to modulate its neural activity and evaluate subsequent behavior in bilinguals. Specifically, twenty-nine Chinese-English bilinguals participated in the study and performed picture-naming tasks in single- and dual-language contexts after receiving sham stimulation (Sham), continuous theta burst stimulation (cTBS), or intermittent theta burst stimulation (iTBS) over the rIFG in three separate visits. Sham served as a control, with cTBS and iTBS intended to decrease and increase cortical excitability, respectively. We found that, compared to Sham, cTBS led to larger asymmetric switching costs and smaller asymmetric mixing costs, whereas iTBS resulted only in smaller asymmetric mixing costs. These findings suggest that cTBS targeting the rIFG likely impairs both local and global control. However, iTBS applied to the rIFG alone may not necessarily enhance language control mechanisms and could even hinder global control. Moreover, exploratory analyses found pronounced TMS-induced impairments in less balanced bilinguals, implying their potentially greater reliance on bilingual language control. Overall, this study is the first to suggest a causal role of the rIFG in language switching.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China
| | - Yannan Ji
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Clinical College, Chengde Medical University, Chengde 067000, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Hongfu Qu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Shuyue Zuo
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Jinsong Liang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Juan Su
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China
| | - Qiping Wang
- School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Guoli Yan
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China.
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
22
|
Alonge P, Gadaleta G, Urbano G, Lupica A, Di Stefano V, Brighina F, Torrente A. The Role of Brain Plasticity in Neuromuscular Disorders: Current Knowledge and Future Prospects. Brain Sci 2024; 14:971. [PMID: 39451985 PMCID: PMC11506792 DOI: 10.3390/brainsci14100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Increasing evidence shows an involvement of brain plasticity mechanisms in both motor and central manifestations of neuromuscular disorders (NMDs). These mechanisms could be specifically addressed with neuromodulation or rehabilitation protocols. The aim of this scoping review is to summarise the evidence on plasticity mechanisms' involvement in NMDs to encourage future research. Methods: A scoping review was conducted searching the PubMed and Scopus electronic databases. We selected papers addressing brain plasticity and central nervous system (CNS) studies through non-invasive brain stimulation techniques in myopathies, muscular dystrophies, myositis and spinal muscular atrophy. Results: A total of 49 papers were selected for full-text examination. Regardless of the variety of pathogenetic and clinical characteristics of NMDs, studies show widespread changes in intracortical inhibition mechanisms, as well as disruptions in glutamatergic and GABAergic transmission, resulting in altered brain plasticity. Therapeutic interventions with neurostimulation techniques, despite being conducted only anecdotally or on small samples, show promising results; Conclusions: despite challenges posed by the rarity and heterogeneity of NMDs, recent evidence suggests that synaptic plasticity may play a role in the pathogenesis of various muscular diseases, affecting not only central symptoms but also strength and fatigue. Key questions remain unanswered about the role of plasticity and its potential as a therapeutic target. As disease-modifying therapies advance, understanding CNS involvement in NMDs could lead to more tailored treatments.
Collapse
Affiliation(s)
- Paolo Alonge
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (P.A.); (A.L.); (V.D.S.); (A.T.)
| | - Giulio Gadaleta
- Neuromuscular Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.G.); (G.U.)
| | - Guido Urbano
- Neuromuscular Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.G.); (G.U.)
| | - Antonino Lupica
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (P.A.); (A.L.); (V.D.S.); (A.T.)
- U.O.C. Neurologia, Azienda Ospedaliera Papardo, 98121 Messina, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (P.A.); (A.L.); (V.D.S.); (A.T.)
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (P.A.); (A.L.); (V.D.S.); (A.T.)
| | - Angelo Torrente
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (P.A.); (A.L.); (V.D.S.); (A.T.)
| |
Collapse
|
23
|
Kujovic M, Bahr C, Riesbeck M, Benz D, Wingerter L, Deiß M, Margittai Z, Reinermann D, Plewnia C, Meisenzahl E. Effects of intermittent theta burst stimulation add-on to dialectical behavioral therapy in borderline personality disorder: results of a randomized, sham-controlled pilot trial. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01901-0. [PMID: 39297977 DOI: 10.1007/s00406-024-01901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
Dialectical behavioral therapy (DBT) and repetitive transcranial magnetic stimulation (rTMS) are both effective in borderline personality disorder (BPD). We hypothesized that intermittent theta burst stimulation (iTBS), a modified rTMS protocol that provides unilateral stimulation to the left dorsolateral prefrontal cortex, would enhance the effects of DBT and reduce BPD-specific symptoms more than sham stimulation. We performed a single-blind, randomized, sham-controlled pilot study to evaluate iTBS as an add-on to 8-week DBT for BPD in routine inpatient treatment. A total of 53 BPD patients were randomly assigned to either iTBS (n = 25) or sham stimulation (n = 28) in weeks 4-8 of DBT; 40 patients were eligible for inclusion in the analyses according to pre-specified criteria (≥ 16 of 20 iTBS sessions). The primary endpoint was change on the 23-item Borderline Symptom List; secondary endpoints were changes in depressive symptoms and general level of functioning. A mixed model repeated measures analysis with a 2 × 2 factorial between-subjects design showed no significant effect of add-on iTBS treatment, but a distinct trend was observed in favor of iTBS (Cohen's d = 0.23 for group difference). We found a main effect of DBT with and without iTBS over time, indicating efficacy of 8 weeks' DBT (d = 0.89-1.12). iTBS may be beneficial as an add-on to DBT in the long term and warrants further evaluation in larger studies. Trial registration Registered at drks.de (no. DRKS00020413) on January 13, 2020.
Collapse
Affiliation(s)
- Milenko Kujovic
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Christian Bahr
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mathias Riesbeck
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Daniel Benz
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lena Wingerter
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martina Deiß
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Zsofia Margittai
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dirk Reinermann
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Liao WY, Opie GM, Ziemann U, Semmler JG. Modulation of dorsal premotor cortex differentially influences visuomotor adaptation in young and older adults. Neurobiol Aging 2024; 141:34-45. [PMID: 38815412 DOI: 10.1016/j.neurobiolaging.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
The communication between dorsal premotor cortex (PMd) and primary motor cortex (M1) is important for visuomotor adaptation, but it is unclear how this relationship changes with advancing age. The present study recruited 21 young and 23 older participants for two experimental sessions during which intermittent theta burst stimulation (iTBS) or sham was applied over PMd. We assessed the effects of PMd iTBS on M1 excitability using motor evoked potentials (MEP) recorded from right first dorsal interosseous when single-pulse transcranial magnetic stimulation (TMS) was applied with posterior-anterior (PA) or anterior-posterior (AP) currents; and adaptation by quantifying error recorded during a visuomotor adaptation task (VAT). PMd iTBS potentiated PA (P < 0.0001) and AP (P < 0.0001) MEP amplitude in both young and older adults. PMd iTBS increased error in young adults during adaptation (P = 0.026), but had no effect in older adults (P = 0.388). Although PMd iTBS potentiated M1 excitability in both young and older adults, the intervention attenuated visuomotor adaptation specifically in young adults.
Collapse
Affiliation(s)
- Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
25
|
Davani AJ, Richardson AJ, Vodovozov W, Sanghani SN. Neuromodulation in Psychiatry. ADVANCES IN PSYCHIATRY AND BEHAVIORAL HEALTH 2024; 4:177-198. [DOI: 10.1016/j.ypsc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Balderston NL, Duprat RJ, Long H, Scully M, Deluisi JA, Figueroa-Gonzalez A, Teferi M, Sheline YI, Oathes DJ. Neuromodulatory transcranial magnetic stimulation (TMS) changes functional connectivity proportional to the electric-field induced by the TMS pulse. Clin Neurophysiol 2024; 165:16-25. [PMID: 38945031 PMCID: PMC11323191 DOI: 10.1016/j.clinph.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/15/2024] [Accepted: 06/09/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) can efficiently and robustly modulate synaptic plasticity, but little is known about how TMS affects functional connectivity (rs-fMRI). Accordingly, this project characterized TMS-induced rsFC changes in depressed patients who received 3 days of left prefrontal intermittent theta burst stimulation (iTBS). METHODS rs-fMRI was collected from 16 subjects before and after iTBS. Correlation matrices were constructed from the cleaned rs-fMRI data. Electric-field models were conducted and used to predict pre-post changes in rs-fMRI. Site by orientation heatmaps were created for vectors centered on the stimulation site and a control site (contralateral motor cortex). RESULTS For the stimulation site, there was a clear relationship between both site and coil orientation, and connectivity changes. As distance from the stimulation site increased, prediction accuracy decreased. Similarly, as eccentricity from the optimal orientation increased, prediction accuracy decreased. The systematic effects described above were not apparent in the heatmap centered on the control site. CONCLUSIONS These results suggest that rs-fMRI following iTBS changes systematically as a function of the distribution of electrical energy delivered from the TMS pulse, as represented by the e-field model. SIGNIFICANCE This finding lays the groundwork for future studies to individualize TMS targeting based on how predicted rs-fMRI changes might impact psychiatric symptoms.
Collapse
Affiliation(s)
- Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA.
| | - Romain J Duprat
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah Long
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Morgan Scully
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Deluisi
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Almaris Figueroa-Gonzalez
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Teferi
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Teferi M, Gura H, Patel M, Casalvera A, Lynch KG, Makhoul W, Deng ZD, Oathes DJ, Sheline YI, Balderston NL. Intermittent theta-burst stimulation to the right dorsolateral prefrontal cortex may increase potentiated startle in healthy individuals. Neuropsychopharmacology 2024; 49:1619-1629. [PMID: 38740902 PMCID: PMC11319663 DOI: 10.1038/s41386-024-01871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) treatment protocols targeting the right dlPFC have been effective in reducing anxiety symptoms comorbid with depression. However, the mechanism behind these effects is unclear. Further, it is unclear whether these results generalize to non-depressed individuals. We conducted a series of studies aimed at understanding the link between anxiety potentiated startle and the right dlPFC, following a previous study suggesting that continuous theta burst stimulation (cTBS) to the right dlPFC can make people more anxious. Based on these results we hypothesized that intermittent TBS (iTBS), which is thought to have opposing effects on plasticity, may reduce anxiety when targeted at the same right dlPFC region. In this double-blinded, cross-over design, 28 healthy subjects underwent 12 study visits over a 4-week period. During each of their 2 stimulation weeks, they received four 600 pulse iTBS sessions (2/day), with a post-stimulation testing session occurring 24 h following the final iTBS session. One week they received active stimulation, one week they received sham. Stimulation weeks were separated by a 1-week washout period and the order of active/sham delivery was counterbalanced across subjects. During the testing session, we induced anxiety using the threat of unpredictable shock and measured anxiety potentiated startle. Contrary to our initial hypothesis, subjects showed increased startle reactivity following active compared to sham stimulation. These results replicate work from our two previous trials suggesting that TMS to the right dlPFC increases anxiety potentiated startle, independent of both the pattern of stimulation and the timing of the post stimulation measure. Although these results confirm a mechanistic link between right dlPFC excitability and startle, capitalizing upon this link for the benefit of patients will require future exploration.
Collapse
Affiliation(s)
- Marta Teferi
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah Gura
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Milan Patel
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail Casalvera
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin G Lynch
- Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Walid Makhoul
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit Experimental Therapeutics and Pathophysiology Branch National Institute of Mental Health National Institutes of Health Bethesda, Bethesda, MD, USA
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
- Center for Brain Imaging and Stimulation Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
- Penn Brain Science, Translation, Innovation, and Modulation Center University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA.
- Center for Brain Imaging and Stimulation Department of Psychiatry University of Pennsylvania, Philadelphia, PA, USA.
- Penn Brain Science, Translation, Innovation, and Modulation Center University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Wu CW, Lin BS, Zhang Z, Hsieh TH, Liou JC, Lo WL, Li YT, Chiu SC, Peng CW. Pilot study of using transcranial temporal interfering theta-burst stimulation for modulating motor excitability in rat. J Neuroeng Rehabil 2024; 21:147. [PMID: 39215318 PMCID: PMC11365202 DOI: 10.1186/s12984-024-01451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Transcranial temporal interference stimulation (tTIS) is a promising brain stimulation method that can target deep brain regions by delivering an interfering current from surface electrodes. Most instances of tTIS stimulate the brain with a single-frequency sinusoidal waveform generated by wave interference. Theta burst stimulation is an effective stimulation scheme that can modulate neuroplasticity by generating long-term potentiation- or depression-like effects. To broaden tTIS application, we developed a theta burst protocol using tTIS technique to modulate neuroplasticity in rats. Two cannula electrodes were unilaterally implanted into the intact skull over the primary motor cortex. Electrical field of temporal interference envelopes generated by tTIS through cannula electrodes were recorded from primary motor cortex. Theta burst schemes were characterized, and motor activation induced by the stimulation was also evaluated simultaneously by observing electromyographic signals from the corresponding brachioradialis muscle. After validating the stimulation scheme, we further tested the modulatory effects of theta burst stimulation delivered by tTIS and by conventional transcranial electrical stimulation on primary motor cortex excitability. Changes in the amplitude of motor evoked potentials, elicited when the primary motor cortex was activated by electrical pulses, were measured before and after theta burst stimulation by both techniques. Significant potentiation and suppression were found at 15 to 30 min after the intermittent and continuous theta burst stimulation delivered using tTIS, respectively. However, comparing to theta burst stimulations delivered using conventional form of transcranial electrical stimulation, using tTIS expressed no significant difference in modulating motor evoked potential amplitudes. Sham treatment from both methods had no effect on changing the motor evoked potential amplitude. The present study demonstrated the feasibility of using tTIS to achieve a theta burst stimulation scheme for motor cortical neuromodulation. These findings also indicated the future potential of using tTIS to carry out theta burst stimulation protocols in deep-brain networks for modulating neuroplasticity.
Collapse
Affiliation(s)
- Chun-Wei Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237303, Taiwan
| | - Zhao Zhang
- School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan City, Fujian Province, China
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wei-Lun Lo
- Department of Surgery, Division of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Li
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Shao-Chu Chiu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
29
|
Chang KY, Tik M, Mizutani-Tiebel Y, Taylor P, van Hattem T, Falkai P, Padberg F, Bulubas L, Keeser D. Dose-Dependent Target Engagement of a Clinical Intermittent Theta Burst Stimulation Protocol: An Interleaved Transcranial Magnetic Stimulation-Functional Magnetic Resonance Imaging Study in Healthy People. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00244-1. [PMID: 39182723 DOI: 10.1016/j.bpsc.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) of the dorsolateral prefrontal cortex (DLPFC) is widely applied as a therapeutic intervention in mental health; however, the understanding of its mechanisms is still incomplete. Prior magnetic resonance imaging (MRI) studies have mainly used offline iTBS or short sequences in concurrent transcranial magnetic stimulation (TMS)-functional MRI (fMRI). This study investigated a full 600-stimuli iTBS protocol using interleaved TMS-fMRI in comparison with 2 control conditions in healthy subjects. METHODS In a crossover design, 18 participants underwent 3 sessions of interleaved iTBS-fMRI: 1) the left DLPFC at 40% resting motor threshold (rMT) intensity, 2) the left DLPFC at 80% rMT intensity, and 3) the left primary motor cortex (M1) at 80% rMT intensity. We compared immediate blood oxygen level-dependent (BOLD) responses during interleaved iTBS-fMRI across these conditions including correlations between individual fMRI BOLD activation and iTBS-induced electric field strength at the target sites. RESULTS Whole-brain analysis showed increased activation in several regions following iTBS. Specifically, the left DLPFC, as well as the bilateral M1, anterior cingulate cortex, and insula, showed increased activation during 80% rMT left DLPFC stimulation. Increased BOLD activity in the left DLPFC was observed with neither 40% rMT left DLPFC stimulation nor left M1 80% rMT iTBS, whereas activation in other regions was found to overlap between conditions. Of note, BOLD activation and electric field intensities were only correlated for M1 stimulation and not for the DLPFC conditions. CONCLUSIONS This interleaved TMS-fMRI study showed dosage- and target-specific BOLD activation during a 600-stimuli iTBS protocol in healthy individuals. Future studies may use our approach for investigating target engagement in clinical samples.
Collapse
Affiliation(s)
- Kai-Yen Chang
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Mental Health, Partner Site Munich-Augsburg, Germany
| | - Martin Tik
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Mental Health, Partner Site Munich-Augsburg, Germany
| | - Paul Taylor
- Department of Psychology, LMU Munich, Munich, Germany
| | - Timo van Hattem
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Mental Health, Partner Site Munich-Augsburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Mental Health, Partner Site Munich-Augsburg, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Mental Health, Partner Site Munich-Augsburg, Germany.
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Mental Health, Partner Site Munich-Augsburg, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Mental Health, Partner Site Munich-Augsburg, Germany
| |
Collapse
|
30
|
Gouriou E, Schneider C. Brain and muscles magnetic stimulation in a drug-free case of Parkinson's disease: Motor improvements concomitant to neuroplasticty. Heliyon 2024; 10:e35563. [PMID: 39170374 PMCID: PMC11336729 DOI: 10.1016/j.heliyon.2024.e35563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Noninvasive stimulation of the nervous system is of growing interest in Parkinson's disease (PD) to slow-down motor decline and decrease medication and its side-effects. Repetitive transcranial magnetic stimulation (rTMS) used in PD to modulate the excitability of the primary motor cortex (M1) provided controversial results, in part because of interactions with medication. This warrants to administer rTMS in drug-free patients. Repetitive peripheral magnetic stimulation (rPMS of muscles) has not yet been tested in PD. Its influence on M1 plasticity (as tested by TMS, transcranial magnetic stimulation) and sensorimotor disorders in other health conditions makes it worth be explored in PD. Thus, rTMS and rPMS were tested in a drug-free woman (52 years old, PD-diagnosed 10 years ago) in four different rTMS + rPMS combinations (one week apart): sham-sham, real-real, real-sham, sham-real. rTMS was applied over M1 contralateral to the most impaired bodyside, and rPMS on muscles of the legs, trunk, and arms, bilaterally. M1 plasticity (TMS measures) and motor symptoms and function (clinical outcomes) were measured at different timepoints. The real-real session induced the largest motor improvements, with possible summation of effects between sessions, and maintenance at follow-up (80 days later). This was paralleled by changes of M1 facilitation and inhibition. This sheds a new light on the link between TMS measures of M1 plasticity and motor changes in PD and informs on the remaining potential for neuroplasticity and functional improvement after 10 years of PD with no antiparkinsonian drug. De novo patients with PD (drug-free) should be motivated to participate in future randomized clinical trials to further test the slow-down or delay of motor decline under noninvasive neurostimulation regimens, whatever the stage of the disease.
Collapse
Affiliation(s)
- Estelle Gouriou
- Noninvasive neurostimulation laboratory, Research center of CHU de Québec–Université Laval, Neuroscience Division, Quebec, Canada
- Faculty of Medicine, Université Laval, Quebec, Canada
| | - Cyril Schneider
- Noninvasive neurostimulation laboratory, Research center of CHU de Québec–Université Laval, Neuroscience Division, Quebec, Canada
- Faculty of Medicine, Université Laval, Quebec, Canada
- School of Rehabilitation Sciences, Faculty of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
31
|
Brown R, Cherian K, Jones K, Wickham R, Gomez R, Sahlem G. Repetitive transcranial magnetic stimulation for post-traumatic stress disorder in adults. Cochrane Database Syst Rev 2024; 8:CD015040. [PMID: 39092744 PMCID: PMC11295260 DOI: 10.1002/14651858.cd015040.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND The estimated lifetime prevalence of post-traumatic stress disorder (PTSD) in adults worldwide has been estimated at 3.9%. PTSD appears to contribute to alterations in neuronal network connectivity patterns. Current pharmacological and psychotherapeutic treatments for PTSD are associated with inadequate symptom improvement and high dropout rates. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive therapy involving induction of electrical currents in cortical brain tissue, may be an important treatment option for PTSD to improve remission rates and for people who cannot tolerate existing treatments. OBJECTIVES To assess the effects of repetitive transcranial magnetic stimulation (rTMS) on post-traumatic stress disorder (PTSD) in adults. SEARCH METHODS We searched the Cochrane Common Mental Disorders Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and two clinical trials registers. We checked reference lists of relevant articles. The most recent search was January 2023. SELECTION CRITERIA We included randomized controlled trials (RCTs) assessing the efficacy and safety of rTMS versus sham rTMS for PTSD in adults from any treatment setting, including veterans. Eligible trials employed at least five rTMS treatment sessions with both active and sham conditions. We included trials with combination interventions, where a pharmacological agent or psychotherapy was combined with rTMS for both intervention and control groups. We included studies meeting the above criteria regardless of whether they reported any of our outcomes of interest. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risk of bias in accordance with Cochrane standards. Primary outcomes were PTSD severity immediately after treatment and serious adverse events during active treatment. Secondary outcomes were PTSD remission, PTSD response, PTSD severity at two follow-up time points after treatment, dropouts, and depression and anxiety severity immediately after treatment. MAIN RESULTS We included 13 RCTs in the review (12 published; 1 unpublished dissertation), with 577 participants. Eight studies included stand-alone rTMS treatment, four combined rTMS with an evidence-based psychotherapeutic treatment, and one investigated rTMS as an adjunctive to treatment-as-usual. Five studies were conducted in the USA, and some predominantly included white, male veterans. Active rTMS probably makes little to no difference to PTSD severity immediately following treatment (standardized mean difference (SMD) -0.14, 95% confidence interval (CI) -0.54 to 0.27; 3 studies, 99 participants; moderate-certainty evidence). We downgraded the certainty of evidence by one level for imprecision (sample size insufficient to detect a difference of medium effect size). We deemed one study as having a low risk of bias and the remaining two as having 'some concerns' for risk of bias. A sensitivity analysis of change-from-baseline scores enabled inclusion of a greater number of studies (6 studies, 252 participants). This analysis yielded a similar outcome to our main analysis but also indicated significant heterogeneity in efficacy across studies, including two studies with a high risk of bias. Reported rates of serious adverse events were low, with seven reported (active rTMS: 6; sham rTMS: 1). The evidence is very uncertain about the effect of active rTMS on serious adverse events (odds ratio (OR) 5.26, 95% CI 0.26 to 107.81; 5 studies, 251 participants; very low-certainty evidence [Active rTMS: 23/1000, sham rTMS: 4/1000]). We downgraded the evidence by one level for risk of bias and two levels for imprecision. We rated four of five studies as having a high risk of bias, and the fifth as 'some concerns' for bias. We were unable to assess PTSD remission immediately after treatment as none of the included studies reported this outcome. AUTHORS' CONCLUSIONS Based on moderate-certainty evidence, our review suggests that active rTMS probably makes little to no difference to PTSD severity immediately following treatment compared to sham stimulation. However, significant heterogeneity in efficacy was detected when we included a larger number of studies in sensitivity analysis. We observed considerable variety in participant and protocol characteristics across studies included in this review. For example, studies tended to be weighted towards inclusion of either male veterans or female civilians. Studies varied greatly in terms of the proportion of the sample with comorbid depression. Study protocols differed in treatment design and stimulation parameters (e.g. session number/duration, treatment course length, stimulation intensity/frequency, location of stimulation). These differences may affect efficacy, particularly when considering interactions with participant factors. Reported rates of serious adverse events were very low (< 1%) across active and sham conditions. It is uncertain whether rTMS increases the risk of serious adverse event occurrence, as our certainty of evidence was very low. Studies frequently lacked clear definitions for serious adverse events, as well as detail on tracking/assessment of data and information on the safety population. Increased reporting on these elements would likely aid the advancement of both research and clinical recommendations of rTMS for PTSD. Currently, there is insufficient evidence to meta-analyze PTSD remission, PTSD treatment response, and PTSD severity at different periods post-treatment. Further research into these outcomes could inform the clinical use of rTMS. Additionally, the relatively large contribution of data from trials that focused on white male veterans may limit the generalizability of our conclusions. This could be addressed by prioritizing recruitment of more diverse participant samples.
Collapse
Affiliation(s)
- Randi Brown
- Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
| | - Kirsten Cherian
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Jones
- Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Robert Wickham
- Department of Psychological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Rowena Gomez
- Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory Sahlem
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
32
|
Hall JD, Green JM, Chen YCA, Liu Y, Zhang H, Sundman MH, Chou YH. Exploring the potential of combining transcranial magnetic stimulation and electroencephalography to investigate mild cognitive impairment and Alzheimer's disease: a systematic review. GeroScience 2024; 46:3659-3693. [PMID: 38356029 PMCID: PMC11226590 DOI: 10.1007/s11357-024-01075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) and electroencephalography (EEG) are non-invasive techniques used for neuromodulation and recording brain electrical activity, respectively. The integration of TMS-EEG has emerged as a valuable tool for investigating the complex mechanisms involved in age-related disorders, such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). By systematically synthesizing TMS-EEG studies, this review aims to shed light on the neurophysiological mechanisms underlying MCI and AD, while also exploring the practical applications of TMS-EEG in clinical settings. PubMed, ScienceDirect, and PsychInfo were selected as the databases for this review. The 22 eligible studies included a total of 592 individuals with MCI or AD as well as 301 cognitively normal adults. TMS-EEG assessments unveiled specific patterns of corticospinal excitability, plasticity, and brain connectivity that distinguished individuals on the AD spectrum from cognitively normal older adults. Moreover, the TMS-induced EEG features were observed to be correlated with cognitive performance and the presence of AD pathological biomarkers. The comprehensive examination of the existing studies demonstrates that the combination of TMS and EEG has yielded valuable insights into the neurophysiology of MCI and AD. This integration shows great potential for early detection, monitoring disease progression, and anticipating response to treatment. Future research is of paramount importance to delve into the potential utilization of TMS-EEG for treatment optimization in individuals with MCI and AD.
Collapse
Affiliation(s)
- J D Hall
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Jacob M Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Yu-Chin A Chen
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Yilin Liu
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Hangbin Zhang
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Mark H Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA.
- Evelyn F McKnight Brain Institute, Arizona Center On Aging, and BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
33
|
Li LL, Wu JJ, Li KP, Jin J, Xiang YT, Hua XY, Zheng MX, Xu JG. Comparative efficacy of different noninvasive brain stimulation protocols on upper-extremity motor function and activities of daily living after stroke: a systematic review and network meta-analysis. Neurol Sci 2024; 45:3641-3681. [PMID: 38520639 DOI: 10.1007/s10072-024-07437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
The objectives of the study were to systematically evaluate the rehabilitation effect of noninvasive brain stimulation (NIBS) on upper extremity motor function and activities of daily living in stroke patients and to prioritize various stimulation protocols for reliable evidence-based medical recommendations in patients with upper extremity motor dysfunction after stroke. Web of Science, PubMed, Embase, Cochrane Library, CNKI, Wanfang, VIP, and CBM were searched to collect all randomized controlled trials (RCTs) of NIBS to improve upper extremity motor function in stroke patients. The retrieval time was from the establishment of all databases to May 2023. According to the Cochrane system evaluation manual, the quality of the included studies was evaluated, and the data were extracted. Statistical analysis was carried out by using RevMan 5.3, R 4.3.0, and Stata 17.0 software. Finally, 94 RCTs were included, with a total of 5546 patients. Meta-analysis showed that NIBS improved the Fugl-Meyer assessment (FMA) score (mean difference (MD) = 6.51, 95% CI 6.20 ~ 6.82, P < 0.05), MBI score (MD = 7.69, 95% CI 6.57 ~ 8.81, P < 0.05), ARAT score (MD = 5.06, 95% CI 3.85 ~ 6.27, P < 0.05), and motor evoked potential (MEP) amplitude. The modified Ashworth scale score (MD = - 0.37, 95% CI - 0.60 to - 0.14, P < 0.05), National Institutes of Health Stroke Scale score (MD = - 2.17, 95% CI - 3.32 to - 1.11, P < 0.05), incubation period of MEP (MD = - 0.72, 95% CI - 1.06 to - 0.38, P < 0.05), and central motor conduction time (MD = - 0.90, 95% CI - 1.29 to - 0.50, P < 0.05) were decreased in stroke patients. Network meta-analysis showed that the order of interventions in improving FMA scores from high to low was anodal-transcranial direct current stimulation (tDCS) (surface under the cumulative ranking curve (SUCRA) = 83.7%) > cathodal-tDCS (SUCRA = 80.2%) > high-frequency (HF)-repetitive transcranial magnetic stimulation (rTMS) (SUCRA = 68.5%) > low-frequency (LF)-rTMS (SUCRA = 66.5%) > continuous theta burst stimulation (cTBS) (SUCRA = 54.2%) > bilateral-tDCS (SUCRA = 45.2%) > intermittent theta burst stimulation (iTBS) (SUCRA = 34.1%) > sham-NIBS (SUCRA = 16.0%) > CR (SUCRA = 1.6%). In terms of improving MBI scores, the order from high to low was anodal-tDCS (SUCRA = 88.7%) > cathodal-tDCS (SUCRA = 85.4%) > HF-rTMS (SUCRA = 63.4%) > bilateral-tDCS (SUCRA = 56.0%) > LF-rTMS (SUCRA = 54.2%) > iTBS (SUCRA = 32.4%) > sham-NIBS (SUCRA = 13.8%) > CR (SUCRA = 6.1%). NIBS can effectively improve upper extremity motor function and activities of daily living after stroke. Among the various NIBS protocols, anodal-tDCS demonstrated the most significant intervention effect, followed by cathodal-tDCS and HF-rTMS.
Collapse
Affiliation(s)
- Ling-Ling Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Jia Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Kun-Peng Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Jin
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun-Ting Xiang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xu-Yun Hua
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Mou-Xiong Zheng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jian-Guang Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
34
|
Han D, Cheng J, Chen Y, Du H, Lin Z, Zhong R, Liu Z. Evidence for Intermittent Theta Burst Transcranial Magnetic Stimulation for Dysphagia after Stroke: A Systematic Review and Meta-analysis. Dysphagia 2024:10.1007/s00455-024-10729-8. [PMID: 39008039 DOI: 10.1007/s00455-024-10729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Dysphagia is the most common serious complication after stroke, with an incidence of about 37-78%, which seriously affects the independence of patients in daily life and clinical recovery. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neuromodulation technique, is an emerging option for post-stroke dysphagia. Theta burst stimulation (TBS) is a new mode of transcranial magnetic stimulation that simulates the frequency of pulses released in the hippocampus.Intermittent theta burst stimulation (iTBS) has been shown to increase cortical excitability and improve swallowing function in patients. Our study sought to summarize existing clinical randomized controlled trials to provide evidence-based medical evidence for the clinical use of iTBS. A computer search was conducted on 4 Chinese (Chinese Biomedical Literature Database, VIP Information Resource System, CNKI, and Wanfang Medical Science) and 4 English (including Cochrane Library, Embase, PubMed, Web of Science) databases to retrieve all randomized controlled trials in Chinese and English that explored the effects of Intermittent Theta Burst Stimulation for post-stroke dysphagia. The retrieval years are from database construction to 23 November 2023. The primary outcome measure was a change in Penetration/Aspiration Scale (PAS), Standardized Swallowing Assessment (SSA) and Functional Oral Intake Scale (FOIS), Secondary outcomes included Fiberoptic Endoscopic Dysphagia Severity Scale (FEDSS), water-swallowing test (WST) etc. A meta-analysis by Standardized Mean Difference (SMD) and 95% confidence interval (CI) was performed with RevMan 5.3. we appraise risk of bias(RoB) of each study with the Cochrane RoB tool. Detailed instructions for using the Cochrane RoB tool are provided in the Cochrane Handbook for Systematic Reviews of Interventions (The Cochrane Handbook). Nine studies were obtained from eight databases after screening by inclusion and exclusion criteria, 567 patients from 9 studies were included in the meta-analysis, and one study was included in the qualitative analysis due to different control groups. Two of the nine studies had an unclear risk of bias, and four studies were at low risk. The results showed that iTBS significantly improved SSA, PAS, FOIS, and PAS scores in stroke patients compared to the control group(P < 0.05), and promoted swallowing function recovery. Our systematic review provides the first evidence of the efficacy of iTBS in improving dysphagia in stroke patients. However, the number of available studies limits the persuasiveness of the evidence and further validation by additional randomized controlled trials is needed.
Collapse
Affiliation(s)
- Dongmiao Han
- Department of Rehabilitation Therapy Teaching and Research, Gannan Healthcare Vocational College, Ganzhou, Jiangxi Province, 341000, China
| | - Jinling Cheng
- Department of Rehabilitation Medicine, Shaoguan First People's Hospital, Shaoguan, Guangdong Province, 512000, China
| | - Yanfeng Chen
- Rehabilitation School of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Hui Du
- Rehabilitation School of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Zhanxiang Lin
- Rehabilitation School of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Renlong Zhong
- Department of Rehabilitation Therapy Teaching and Research, Gannan Healthcare Vocational College, Ganzhou, Jiangxi Province, 341000, China.
| | - Zicai Liu
- Department of Rehabilitation Medicine, Shaoguan First People's Hospital, Shaoguan, Guangdong Province, 512000, China.
| |
Collapse
|
35
|
Hodkinson DJ, Drabek MM, Jung J, Lankappa ST, Auer DP. Theta Burst Stimulation of the Human Motor Cortex Modulates Secondary Hyperalgesia to Punctate Mechanical Stimuli. Neuromodulation 2024; 27:812-823. [PMID: 37952136 DOI: 10.1016/j.neurom.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Many chronic pain conditions show evidence of dysregulated synaptic plasticity, including the development and maintenance of central sensitization. This provides a strong rationale for neuromodulation therapies for the relief of chronic pain. However, variability in responses and low fidelity across studies remain an issue for both clinical trials and pain management, demonstrating insufficient mechanistic understanding of effective treatment protocols. MATERIALS AND METHODS In a randomized counterbalanced crossover designed study, we evaluated two forms of patterned repetitive transcranial magnetic stimulation, known as continuous theta burst stimulation (TBS) and intermittent TBS, during normal and central sensitization states. Secondary hyperalgesia (a form of use-dependent central sensitization) was induced using a well-established injury-free pain model and assessed by standardized quantitative sensory testing involving light touch and pinprick pain thresholds in addition to stimulus-response functions. RESULTS We found that continuous TBS of the human motor cortex has a facilitatory (pronociceptive) effect on the magnitude of perceived pain to secondary hyperalgesia, which may rely on induction and expression of neural plasticity through heterosynaptic long-term potentiation-like mechanisms. CONCLUSIONS By defining the underlying mechanisms of TBS-driven synaptic plasticity in the nociceptive system, we offer new insight into disease mechanisms and provide targets for promoting functional recovery and repair in chronic pain. For clinical applications, this knowledge is critical for development of more efficacious and mechanisms-based neuromodulation protocols, which are urgently needed to address the chronic pain and opioid epidemics.
Collapse
Affiliation(s)
- Duncan J Hodkinson
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK.
| | - Marianne M Drabek
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Sudheer T Lankappa
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, UK
| | - Dorothee P Auer
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK
| |
Collapse
|
36
|
Duval F, Mokrani MC, Danila V, Weiss T, Lopera FG, Tomsa M. Hypothalamic-pituitary-adrenal axis hyperactivity is normalized after successful intermittent theta-burst stimulation in resistant depressed patients. Psychoneuroendocrinology 2024; 165:107037. [PMID: 38613946 DOI: 10.1016/j.psyneuen.2024.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
The present pilot study assessed the effects of multi-session intermittent theta-burst stimulation (iTBS) applied to the left dorsolateral prefrontal cortex in 17 treatment resistant depressed inpatients (TRDs) showing cortisol non-suppression to the overnight dexamethasone suppression test (DST) at baseline (i.e., maximum post-DST cortisol [CORmax] level > 130 nmol/L). After 20 iTBS sessions, the DST was repeated in all TRDs. At baseline, post-DST CORmax levels were higher in TRDs compared to healthy control subjects (HCs; n = 17) (p < 0.0001). After 20 iTBS sessions, post-DST CORmax levels decreased from baseline (p < 0.03) and were comparable to HCs. Decreases in post-DST CORmax levels were related to decreases in 17-item Hamilton Depression Rating Scale (HAMD-17) scores (ρ = 0.53; p < 0.03). At endpoint, 10 TRDs showed DST normalization (among them 7 were responders [i.e., HAMD-17 total score > 50% decrease from baseline]), and 7 did not normalize their DST (among them 6 were non-responders) (p < 0.05). Our results suggest that successful iTBS treatment may restore normal glucocorticoid receptor feedback inhibition at the pituitary level.
Collapse
Affiliation(s)
- Fabrice Duval
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France.
| | | | - Vlad Danila
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France
| | - Thomas Weiss
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France
| | | | - Mihaela Tomsa
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France
| |
Collapse
|
37
|
Kolbaşı EN, Huseyinsinoglu BE, Ozdemir Z, Bayraktaroglu Z, Soysal A. Priming constraint-induced movement therapy with intermittent theta burst stimulation to enhance upper extremity recovery in patients with stroke: protocol for a randomized controlled study. Acta Neurol Belg 2024; 124:887-893. [PMID: 38329642 DOI: 10.1007/s13760-024-02472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND The treatments based on motor control and motor learning principles have gained popularity in the last 20 years, as well as non-invasive brain stimulations that enhance neuroplastic changes after stroke. However, the effect of intermittent theta burst stimulation (iTBS) in addition to evidence-based, intensive neurorehabilitation approaches such as modified constraint-induced movement therapy (mCIMT) is yet to be investigated. AIM We aim to establish a protocol for a randomized controlled study investigating the efficiency of mCIMT primed with iTBS after stroke. METHODS In this randomized controlled, single-blind study, patients with stroke (N = 17) will be divided into 3 groups: (a) mCIMT + real iTBS, (b) mCIMT + sham iTBS, and (c) mCIMT alone. 600-pulse iTBS will be delivered to the primary motor cortex on the ipsilesional hemisphere, and then, patients will receive mCIMT for 1 h/session, 3 sessions/week for 5 weeks. Upper extremity recovery will be assessed with Fugl-Meyer Test-Upper Extremity and Wolf Motor Function Test. Electrophysiological assessments, such as Motor-Evoked Potentials, Resting Motor Threshold, Short-Intracortical Inhibition, and Intracortical Facilitation, will also be included. CONCLUSIONS In this study, a protocol of an ongoing intervention study investigating the effectiveness of iTBS on ipsilesional M1 prior to the mCIMT in patients with stroke is proposed. This will be the first study to research priming mCIMT with iTBS and it may have the potential to reveal the true effect of the iTBS when it is added to the high-quality neurorehabilitation approaches. TRIAL REGISTRATION Trial registration number: NCT05308667.
Collapse
Affiliation(s)
- Esma Nur Kolbaşı
- Department of Physiotherapy and Rehabilitation, Istanbul Medeniyet University, Istanbul, Turkey
- Institute of Graduate Studies, Physiotherapy and Rehabilitation Department, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Burcu Ersoz Huseyinsinoglu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Marmara University, Istanbul, Turkey.
| | - Zeynep Ozdemir
- Department of Neurology, Bakırkoy Prof. Dr. Mazhar Osman Training and Research Hospital for Psychiatric, Neurologic and Neurosurgical Diseases, University of Health Sciences, Istanbul, Turkey
| | - Zubeyir Bayraktaroglu
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Aysun Soysal
- Department of Neurology, Bakırkoy Prof. Dr. Mazhar Osman Training and Research Hospital for Psychiatric, Neurologic and Neurosurgical Diseases, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
38
|
De Smet S, Int-Veen I, Vanhollebeke G, Pulopulos MM, Barth B, Pasche S, Baeken C, Nuerk HC, Plewnia C, Nieratschker V, Jochen Fallgatter A, Ehlis AC, Vanderhasselt MA, Rosenbaum D. Trait-dependent effects of theta burst stimulation after psychosocial stress: a sham-controlled study in healthy individuals. Clin Neurophysiol 2024; 162:235-247. [PMID: 38556367 DOI: 10.1016/j.clinph.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/11/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Previous studies suggest that theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation (rTMS), applied to the left dorsolateral prefrontal cortex (DLPFC) might be a promising approach to modulate stress-reactive rumination and the associated psychophysiological stress response. Crucially, individuals showing higher levels of trait rumination might benefit more from prefrontal stimulation. METHODS In this sham-controlled study, 127 healthy individuals, with varying ruminative tendencies, received a single-session of intermittent TBS (iTBS), continuous TBS (cTBS) or sham TBS (sTBS) over the left DLPFC before being confronted with a Trier Social Stress Test. RESULTS Results showed significant TBS effects on salivary cortisol as a function of trait rumination. cTBS, as compared to sTBS and iTBS, resulted in an attenuated stress-induced cortisol response in high compared to low trait ruminators. Although independent of trait rumination levels, cTBS showed positive effects on stress-related changes in mood and, both cTBS and iTBS (versus sham) presented an enhanced heart rate recovery following the stressor. We found no evidence for (trait rumination-dependent) TBS effects on stress-reactive rumination, negative affect, subjective stress or heart rate variability. CONCLUSIONS cTBS shows beneficial effects on certain measures of stress, especially in high trait ruminators. SIGNIFICANCE These findings highlight the importance of accounting for individual differences when examining TBS effects.
Collapse
Affiliation(s)
- Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Brain Stimulation and Cognition (BSC) Lab, Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Isabell Int-Veen
- Tübingen Center for Mental Health (TüCMH), Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
| | - Gert Vanhollebeke
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Electronics and Information Systems, Ghent University, Belgium; Medical Imaging and Signal Processing (MEDISIP) Group, Ghent, Belgium
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Beatrix Barth
- Tübingen Center for Mental Health (TüCMH), Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany; German Center for Mental Health (DZPG), Germany
| | - Sarah Pasche
- Tübingen Center for Mental Health (TüCMH), Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany; German Center for Mental Health (DZPG), Germany
| | - Chris Baeken
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| | | | - Christian Plewnia
- Tübingen Center for Mental Health (TüCMH), Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany; German Center for Mental Health (DZPG), Germany
| | - Vanessa Nieratschker
- Tübingen Center for Mental Health (TüCMH), Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany; German Center for Mental Health (DZPG), Germany
| | - Andreas Jochen Fallgatter
- Tübingen Center for Mental Health (TüCMH), Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany; German Center for Mental Health (DZPG), Germany
| | - Ann-Christine Ehlis
- Tübingen Center for Mental Health (TüCMH), Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany; German Center for Mental Health (DZPG), Germany
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - David Rosenbaum
- Tübingen Center for Mental Health (TüCMH), Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
39
|
Xia AWL, Jin M, Qin PPI, Kan RLD, Zhang BBB, Giron CG, Lin TTZ, Li ASM, Kranz GS. Instantaneous effects of prefrontal transcranial magnetic stimulation on brain oxygenation: A systematic review. Neuroimage 2024; 293:120618. [PMID: 38636640 DOI: 10.1016/j.neuroimage.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024] Open
Abstract
This systematic review investigates how prefrontal transcranial magnetic stimulation (TMS) immediately influences neuronal excitability based on oxygenation changes measured by functional magnetic resonance imaging (fMRI) or functional near-infrared spectroscopy (fNIRS). A thorough understanding of TMS-induced excitability changes may enable clinicians to adjust TMS parameters and optimize treatment plans proactively. Five databases were searched for human studies evaluating brain excitability using concurrent TMS/fMRI or TMS/fNIRS. Thirty-seven studies (13 concurrent TMS/fNIRS studies, 24 concurrent TMS/fMRI studies) were included in a qualitative synthesis. Despite methodological inconsistencies, a distinct pattern of activated nodes in the frontoparietal central executive network, the cingulo-opercular salience network, and the default-mode network emerged. The activated nodes included the prefrontal cortex (particularly dorsolateral prefrontal cortex), insula cortex, striatal regions (especially caudate, putamen), anterior cingulate cortex, and thalamus. High-frequency repetitive TMS most consistently induced expected facilitatory effects in these brain regions. However, varied stimulation parameters (e.g., intensity, coil orientation, target sites) and the inter- and intra-individual variability of brain state contribute to the observed heterogeneity of target excitability and co-activated regions. Given the considerable methodological and individual variability across the limited evidence, conclusions should be drawn with caution.
Collapse
Affiliation(s)
- Adam W L Xia
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Minxia Jin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Penny P I Qin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rebecca L D Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bella B B Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Cristian G Giron
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tim T Z Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ami S M Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Rong P, Heidrick L, Pattee GL. A multimodal approach to automated hierarchical assessment of bulbar involvement in amyotrophic lateral sclerosis. Front Neurol 2024; 15:1396002. [PMID: 38836001 PMCID: PMC11148322 DOI: 10.3389/fneur.2024.1396002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement leads to progressive declines of speech and swallowing functions, significantly impacting social, emotional, and physical health, and quality of life. Standard clinical tools for bulbar assessment focus primarily on clinical symptoms and functional outcomes. However, ALS is known to have a long, clinically silent prodromal stage characterized by complex subclinical changes at various levels of the bulbar motor system. These changes accumulate over time and eventually culminate in clinical symptoms and functional declines. Detection of these subclinical changes is critical, both for mechanistic understanding of bulbar neuromuscular pathology and for optimal clinical management of bulbar dysfunction in ALS. To this end, we developed a novel multimodal measurement tool based on two clinically readily available, noninvasive instruments-facial surface electromyography (sEMG) and acoustic techniques-to hierarchically assess seven constructs of bulbar/speech motor control at the neuromuscular and acoustic levels. These constructs, including prosody, pause, functional connectivity, amplitude, rhythm, complexity, and regularity, are both mechanically and clinically relevant to bulbar involvement. Methods Using a custom-developed, fully automated data analytic algorithm, a variety of features were extracted from the sEMG and acoustic recordings of a speech task performed by 13 individuals with ALS and 10 neurologically healthy controls. These features were then factorized into 10 composite outcome measures using confirmatory factor analysis. Statistical and machine learning techniques were applied to these composite outcome measures to evaluate their reliability (internal consistency), validity (concurrent and construct), and efficacy for early detection and progress monitoring of bulbar involvement in ALS. Results The composite outcome measures were demonstrated to (1) be internally consistent and structurally valid in measuring the targeted constructs; (2) hold concurrent validity with the existing clinical and functional criteria for bulbar assessment; and (3) outperform the outcome measures obtained from each constituent modality in differentiating individuals with ALS from healthy controls. Moreover, the composite outcome measures combined demonstrated high efficacy for detecting subclinical changes in the targeted constructs, both during the prodromal stage and during the transition from prodromal to symptomatic stages. Discussion The findings provided compelling initial evidence for the utility of the multimodal measurement tool for improving early detection and progress monitoring of bulbar involvement in ALS, which have important implications in facilitating timely access to and delivery of optimal clinical care of bulbar dysfunction.
Collapse
Affiliation(s)
- Panying Rong
- Department of Speech-Language-Hearing: Sciences and Disorders, University of Kansas, Lawrence, KS, United States
| | - Lindsey Heidrick
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gary L Pattee
- Neurology Associate P.C., Lincoln, NE, United States
| |
Collapse
|
41
|
Huang J, Ren J, Xie W, Pan R, Xu N, Liu H. Personalised functional imaging-guided multitarget continuous theta burst stimulation for post-stroke aphasia: study protocol for a randomised controlled trial. BMJ Open 2024; 14:e081847. [PMID: 38754874 PMCID: PMC11097845 DOI: 10.1136/bmjopen-2023-081847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION Continuous theta burst stimulation (cTBS), a form of repetitive transcranial magnetic stimulation (rTMS), targeting the language network in the right hemisphere of post-stroke aphasia (PSA) patients shows promising results in clinical trials. However, existing PSA studies have focused on single-target rTMS, leaving unexplored the potential benefits of multitarget brain stimulation. Consequently, there is a need for a randomised clinical trial aimed to evaluate the efficacy and safety of cTBS targeting on multiple critical nodes in the language network for PSA. METHODS AND ANALYSIS This is a prospective, multicentre, double-blind, two-arm parallel-group, sham-controlled randomised trial. The study will include a total of 60 participants who will be randomly assigned in a 1:1 ratio to either the active cTBS group or the sham cTBS group. Using precision resting-state functional MRI for each participant, we will map personalised language networks and design personalised targets in the inferior frontal gyrus, superior temporal gyrus and superior frontal gyrus. Participants will undergo a 3-week cTBS intervention targeting the three personalised targets, coupled with speech and language therapy. The primary outcome is the change in the Western Aphasia Battery-Revised aphasia quotient score among participants after a 3-week treatment. Secondary outcomes include Boston Diagnostic Aphasia Examination severity ratings, Token Test and the Chinese-version of the Stroke and Aphasia Quality of Life Scale 39-generic version. ETHICS AND DISSEMINATION The study has been approved by the ethics committees of Affiliated Hospital of Hebei University, Hebei General Hospital and Affiliated Hospital of Chengde Medical University. The findings of this study will be reported in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER The study has been registered on ClinicalTrials.gov (NCT05957445).
Collapse
Affiliation(s)
- Jianting Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Jianxun Ren
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, China
| | | | - Na Xu
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Hesheng Liu
- Division of Brain Sciences, Changping Laboratory, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| |
Collapse
|
42
|
Daoud A, Elsayed M, Alnajjar AZ, Krayim A, AbdelMeseh M, Alsalloum T, Nabil Y, Faisal R. Efficacy of intermittent theta burst stimulation (iTBS) on post-stroke cognitive impairment (PSCI): a systematic review and meta-analysis. Neurol Sci 2024; 45:2107-2118. [PMID: 38150130 DOI: 10.1007/s10072-023-07267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Stroke is a significant global cause of mortality and morbidity, and post-stroke cognitive impairment (PSCI) affects up to half of stroke patients. Despite the availability of pharmacological and non-pharmacological interventions, there is a lack of definitive effective treatments for PSCI. Non-invasive brain stimulation, particularly intermittent theta burst stimulation (iTBS), has emerged as a promising therapy for the treatment of PSCI. OBJECTIVE This systematic review and meta-analysis aimed to evaluate the efficacy and safety of iTBS in enhancing cognitive function among patients with PSCI. METHODS A comprehensive search was conducted across multiple databases, including PubMed, Web of Science, Scopus, Cochrane Library, and CNKI, to identify relevant randomized controlled trials published before April 2023. The primary outcome measured changes in global cognitive scales, while the secondary outcomes focused on improvements in attention, orientation, visual-spatial perception, and activities of daily living. RESULTS The meta-analysis encompassed six studies involving 325 patients. The results demonstrated that iTBS led to a significant improvement in global cognitive scales (SMD = 1.12, 95% CI = [0.59 to 1.65], P < 0.0001), attention (SMD = 0.48, 95% CI [0.13 to 0.82], P = 0.007), visual perception (SMD = 0.99, 95% CI [0.13 to 1.86], P = 0.02), and activities of daily living (SMD = 0.82, 95% CI [0.55 to 1.08], P < 0.00001). However, there was no significant effect on orientation (SMD = 0.36, 95% CI [- 0.04 to 0.76], P = 0.07). Subgroup analysis based on the number of sessions was conducted, revealing a significant improvement in global cognition among patients with PSCI across the three categories (10 sessions, 20 sessions, and 30 sessions) with no between-group difference (P = 0.28). None of the included studies reported any serious adverse effects. CONCLUSION In conclusion, iTBS appears to be a safe and effective non-invasive treatment that can enhance the cognitive abilities and daily living skills of patients with post-stroke cognitive impairment. However, our conclusion is constrained by the limited number of studies. Further high-quality, large-sample RCTs with extended follow-up periods are necessary to validate these findings. Integrating iTBS with brain imaging techniques, such as functional near-infrared spectroscopy and functional magnetic resonance, could aid in understanding the mechanism of iTBS action.
Collapse
Affiliation(s)
- Asma Daoud
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Ferhat Abbas University, Setif, Algeria
| | - Moaz Elsayed
- Medical Research Group of Egypt (MRGE), Cairo, Egypt.
- Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Asmaa Zakria Alnajjar
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Al- Al-Azhar University, Gaza, Palestine
| | - Abdulrahman Krayim
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Maickel AbdelMeseh
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Taleb Alsalloum
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, University of Hama, Hama, Syria
| | - Yehia Nabil
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Roaa Faisal
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
- School of Medicine, Ahfad University for Women, Omdurman, Sudan
| |
Collapse
|
43
|
Robin A, Thomas-Ollivier V, Sauvaget A, Pere M, Bulteau S. Psychomotor retardation: What about the partial responders to magnetic transcranial stimulation in treatment resistant depression ? J Psychiatr Res 2024; 173:309-316. [PMID: 38569451 DOI: 10.1016/j.jpsychires.2024.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE Psychomotor retardation is a core clinical component of Major Depressive Disorder responsible for disability and is known as a treatment response marker of biological treatments for depression. Our objective was to describe cognitive and motoric measures changes during a treatment by repetitive Transcranial Magnetic Stimulation (rTMS) within the THETAD-DEP trial for treatment-resistant depression (TRD), and compare those performances at the end of treatment and one month after between responders (>50% improvement on MADRS score), partial responders (25-50%) and non-reponders (no clinically relevant improvement). Our secondary aim was to investigate baseline psychomotor performances associated with non-response and response even partial. METHODS Fifty-four patients with treatment-resistant unipolar depression and treated by either high frequency 10 Hz rTMS or iTBS for 4 weeks (20 sessions) underwent assessment including French Retardation Rating Scale for Depression (ERD), Verbal Fluency test, and Trail Making Test A. before, just after treatment and one month later. RESULTS 20 patients were responders (R, 21 partial responders (PR) and 13 non-responders (NR). rTMS treatment improved psychomotor performances in the R and PR groups unlike NR patients whose psychomotor performance was not enhanced by treatment. At baseline, participants, later identified as partial responders, showed significantly higher performances than non-responders. CONCLUSION Higher cognitivo-motor performances at baseline may be associated with clinical improvement after rTMS treatment. This work highlights the value of objective psychomotor testing for the identification of rTMS responders and partial responders, and thus may be useful for patient selection and protocol individualization such as treatment continuation for early partial responders.
Collapse
Affiliation(s)
- Alison Robin
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000, Nantes, France.
| | | | - Anne Sauvaget
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000, Nantes, France
| | - Morgane Pere
- Nantes University, CHU Nantes, Direction de la Recherche et de l'Innovation, F-44000, Nantes, France
| | - Samuel Bulteau
- Nantes University, CHU Nantes, INSERM, MethodS in Patient-centered outcomes and HEalth Research, SPHERE, F-44000, Nantes, France
| |
Collapse
|
44
|
Chang KY, Tik M, Mizutani-Tiebel Y, Schuler AL, Taylor P, Campana M, Vogelmann U, Huber B, Dechantsreiter E, Thielscher A, Bulubas L, Padberg F, Keeser D. Neural response during prefrontal theta burst stimulation: Interleaved TMS-fMRI of full iTBS protocols. Neuroimage 2024; 291:120596. [PMID: 38554783 DOI: 10.1016/j.neuroimage.2024.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Left prefrontal intermittent theta-burst stimulation (iTBS) has emerged as a safe and effective transcranial magnetic stimulation (TMS) treatment protocol in depression. Though network effects after iTBS have been widely studied, the deeper mechanistic understanding of target engagement is still at its beginning. Here, we investigate the feasibility of a novel integrated TMS-fMRI setup and accelerated echo planar imaging protocol to directly observe the immediate effects of full iTBS treatment sessions. OBJECTIVE/HYPOTHESIS In our effort to explore interleaved iTBS-fMRI feasibility, we hypothesize that TMS will induce acute BOLD signal changes in both the stimulated area and interconnected neural regions. METHODS Concurrent TMS-fMRI with full sessions of neuronavigated iTBS (i.e. 600 pulses) of the left dorsolateral prefrontal cortex (DLPFC) was investigated in 18 healthy participants. In addition, we conducted four TMS-fMRI sessions in a single patient on long-term maintenance iTBS for bipolar depression to test the transfer to clinical cases. RESULTS Concurrent TMS-fMRI was feasible for iTBS sequences with 600 pulses. During interleaved iTBS-fMRI, an increase of the BOLD signal was observed in a network including bilateral DLPFC regions. In the clinical case, a reduced BOLD response was found in the left DLPFC and the subgenual anterior cingulate cortex, with high variability across individual sessions. CONCLUSIONS Full iTBS sessions as applied for the treatment of depressive disorders can be established in the interleaved iTBS-fMRI paradigm. In the future, this experimental approach could be valuable in clinical samples, for demonstrating target engagement by iTBS protocols and investigating their mechanisms of therapeutic action.
Collapse
Affiliation(s)
- Kai-Yen Chang
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich - NICUM, University Hospital, LMU Munich, Munich, Germany
| | - Martin Tik
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, USA.
| | - Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich - NICUM, University Hospital, LMU Munich, Munich, Germany
| | - Anna-Lisa Schuler
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paul Taylor
- Department of Psychology, LMU Munich, Munich, Germany
| | - Mattia Campana
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich - NICUM, University Hospital, LMU Munich, Munich, Germany
| | - Ulrike Vogelmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Barbara Huber
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Axel Thielscher
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich - NICUM, University Hospital, LMU Munich, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich - NICUM, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Neuroimaging Core Unit Munich - NICUM, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
45
|
Addicott MA, Kinney KR, Saldana S, Ip EHS, DeMaioNewton H, Bickel WK, Hanlon CA. A randomized controlled trial of intermittent theta burst stimulation to the medial prefrontal cortex for tobacco use disorder: Clinical efficacy and safety. Drug Alcohol Depend 2024; 258:111278. [PMID: 38579605 PMCID: PMC11088513 DOI: 10.1016/j.drugalcdep.2024.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE This study aimed to evaluate the clinical efficacy and safety of administering intermittent theta burst stimulation (iTBS) to the medial prefrontal cortex for tobacco use disorder. METHODS A randomized sham-controlled trial was conducted, with 38 participants receiving 28 sessions of active (n=25) or sham (n=13) iTBS (2 sessions/day, 600 pulses/session, 110% resting motor threshold, AFz target) along with smoking cessation education (Forever Free © booklets) over 14 visits. Primary outcomes included self-reported cigarette consumption and abstinence, verified by urinary cotinine tests. Secondary outcomes included symptoms of tobacco use disorder, negative mood, and safety/tolerability. RESULTS Both active and sham groups reported reduced cigarette consumption (β = -0.12, p = 0.015), cigarette craving (β = -0.16, p = 0.002), and tobacco withdrawal symptoms (β = -0.05, p < 0.001). However, there were no significant time x group interaction effects for any measure. Similarly, the two groups had no significant differences in urinary cotinine-verified abstinence. Adverse events occurred with similar frequency in both groups. CONCLUSION There were no differences in cigarette consumption between the active and sham iTBS groups, both groups decreased cigarette consumption similarly. Further research is needed to compare iTBS to standard high-frequency rTMS and explore the potential differences in efficacy. Despite limitations, this study contributes to experimental design considerations for TMS as a novel intervention for tobacco and other substance use disorders, emphasizing the need for a more comprehensive understanding of the stimulation parameters and target sites.
Collapse
Affiliation(s)
- Merideth A Addicott
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| | - Kaitlin R Kinney
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Santiago Saldana
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Edward Hak-Sing Ip
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Hannah DeMaioNewton
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Warren K Bickel
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; BrainsWay, Burlington, MA 01803, USA
| |
Collapse
|
46
|
Liu Y, Zhao J, Tang Z, Hsien Y, Han K, Shan L, Zhang X, Zhang H. Prolonged intermittent theta burst stimulation for post-stroke aphasia: protocol of a randomized, double-blinded, sham-controlled trial. Front Neurol 2024; 15:1348862. [PMID: 38725649 PMCID: PMC11079432 DOI: 10.3389/fneur.2024.1348862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Background Post-stroke aphasia (PSA) is one of the most devastating symptoms after stroke, yet limited treatment options are available. Prolonged intermittent theta burst stimulation (piTBS) is a promising therapy for PSA. However, its efficacy remains unclear. Therefore, we aim to investigate the efficacy of piTBS over the left supplementary motor area (SMA) in improving language function for PSA patients and further explore the mechanism of language recovery. Methods This is a randomized, double-blinded, sham-controlled trial. A total of 30 PSA patients will be randomly allocated to receive either piTBS stimulation or sham stimulation for 15 sessions over a period of 3 weeks. The primary outcome is the Western Aphasia Battery Revised (WAB-R) changes after treatment. The secondary outcomes include The Stroke and Aphasia Quality of Life Scale (SAQOL-39 g), resting-state electroencephalogram (resting-state EEG), Event-related potentials (ERP), brain derived neurotrophic factor (BDNF). These outcome measures are assessed before treatment, after treatment, and at 4-weeks follow up. This study was registered in Chinese Clinical Trial Registry (No. ChiCTR23000203238). Discussion This study protocol is promising for improving language in PSA patients. Resting-state EEG, ERP, and blood examination can be used to explore the neural mechanisms of PSA treatment with piTBS. Clinical trial registration https://www.chictr.org.cn/index.html, ChiCTR2300074533.
Collapse
Affiliation(s)
- Ying Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Jingdu Zhao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yikuang Hsien
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Lei Shan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Xiaonian Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Life and Health Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
47
|
Huang Y, Xia X, Meng X, Bai Y, Feng Z. Single session of intermittent theta burst stimulation alters brain activity of patients in vegetative state. Aging (Albany NY) 2024; 16:7119-7130. [PMID: 38643463 PMCID: PMC11087117 DOI: 10.18632/aging.205746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Non-invasive brain stimulation is considered as a promising technology for treating patients with disorders of consciousness (DOC). Various approaches and protocols have been proposed; however, few of them have shown potential effects on patients with vegetative state (VS). This study aimed to explore the neuro-modulation effects of intermittent theta burst stimulation (iTBS) on the brains of patients with VS and to provide a pilot investigation into its possible role in treating such patients. METHODS We conducted a sham-controlled crossover study, a real and a sham session of iTBS were delivered over the left dorsolateral prefrontal cortex of such patients. A measurement of an electroencephalography (EEG) and a behavioral assessment of the Coma Recovery Scale-Revised (CRS-R) were applied to evaluate the modulation effects of iTBS before and after stimulation. RESULTS No meaningful changes of CRS-R were found. The iTBS altered the spectrum, complexity and functional connectivity of the patients. The real stimulation induced a trend of decreasing of delta power at T1 and T2 in the frontal region, significant increasing of permutation entropy at the T2 in the left frontal region. In addition, brain functional connectivity, particularly inter-hemispheric connectivity, was strengthened between the electrodes of the frontal region. The sham stimulation, however, did not induce any significant changes of the brain activity. CONCLUSIONS One session of iTBS significantly altered the oscillation power, complexity and functional connectivity of brain activity of VS patients. It may be a valuable tool on modulating the brain activities of patients with VS.
Collapse
Affiliation(s)
- Ying Huang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang 330003, Jiangxi, China
| | - Xiaoyu Xia
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Xiangqiang Meng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang 330003, Jiangxi, China
| | - Yang Bai
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang 330003, Jiangxi, China
| | - Zhen Feng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang 330003, Jiangxi, China
| |
Collapse
|
48
|
Chang CS, Chen CL, Chen RS, Chen HC, Chen CY, Chung CY, Wu KPH, Wu CY, Lin KC. Synergistic efficacy of repetitive peripheral magnetic stimulation on central intermittent theta burst stimulation for upper limb function in patients with stroke: a double-blinded, randomized controlled trial. J Neuroeng Rehabil 2024; 21:49. [PMID: 38589875 PMCID: PMC11000298 DOI: 10.1186/s12984-024-01341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Non-invasive techniques such as central intermittent theta burst stimulation (iTBS) and repetitive peripheral magnetic stimulation (rPMS) have shown promise in improving motor function for patients with stroke. However, the combined efficacy of rPMS and central iTBS has not been extensively studied. This randomized controlled trial aimed to investigate the synergistic effects of rPMS and central iTBS in patients with stroke. METHOD In this study, 28 stroke patients were randomly allocated to receive either 1200 pulses of real or sham rPMS on the radial nerve of the affected limb, followed by 1200 pulses of central iTBS on the ipsilesional hemisphere. The patients received the intervention for 10 sessions over two weeks. The primary outcome measures were the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and the Action Research Arm Test (ARAT). Secondary outcomes for activities and participation included the Functional Independence Measure-Selfcare (FIM-Selfcare) and the Stroke Impact Scale (SIS). The outcome measures were assessed before and after the intervention. RESULTS Both groups showed significant improvement in FMA-UE and FIM-Selfcare after the intervention (p < 0.05). Only the rPMS + iTBS group had significant improvement in ARAT-Grasp and SIS-Strength and activity of daily living (p < 0.05). However, the change scores in all outcome measures did not differ between two groups. CONCLUSIONS Overall, the study's findings suggest that rPMS may have a synergistic effect on central iTBS to improve grasp function and participation. In conclusion, these findings highlight the potential of rPMS as an adjuvant therapy for central iTBS in stroke rehabilitation. Further large-scale studies are needed to fully explore the synergistic effects of rPMS on central iTBS. TRIAL REGISTRATION This trial was registered under ClinicalTrials.gov ID No.NCT04265365, retrospectively registered, on February 11, 2020.
Collapse
Affiliation(s)
- Chi-Shou Chang
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan.
- Graduate Institute of Early Intervention, Chang Gung University, Taoyuan City, Taiwan.
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Xiamen, China.
| | - Rou-Shayn Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Hsieh-Ching Chen
- Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Chung-Yao Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chia-Ying Chung
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Early Intervention, Chang Gung University, Taoyuan City, Taiwan
| | - Katie Pei-Hsuan Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Yi Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, 17, F4, Xu-Zhou Road, Taipei, Taiwan
| |
Collapse
|
49
|
Galanis C, Neuhaus L, Hananeia N, Turi Z, Jedlicka P, Vlachos A. Axon morphology and intrinsic cellular properties determine repetitive transcranial magnetic stimulation threshold for plasticity. Front Cell Neurosci 2024; 18:1374555. [PMID: 38638302 PMCID: PMC11025360 DOI: 10.3389/fncel.2024.1374555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitates the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge. Methods This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions. Results We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. Although morphologies of mouse and rat CA1 neurons showed no significant differences, simulations confirmed that axon morphologies significantly influence individual cell activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10% higher intensity required for the induction of synaptic plasticity in the rat tissue cultures. Conclusion These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.
Collapse
Affiliation(s)
- Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena Neuhaus
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicholas Hananeia
- 3R-Zentrum Gießen, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- 3R-Zentrum Gießen, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Ramasubbu R, Brown EC, Selby B, McGirr A, Cole J, Hassan H, McAusland L. Accelerated sequential bilateral theta-burst stimulation in major depression: an open trial. Eur Arch Psychiatry Clin Neurosci 2024; 274:697-707. [PMID: 37470840 DOI: 10.1007/s00406-023-01648-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Theta burst stimulation (TBS) is approved and widely used in the treatment of treatment resistant-major depression. More recently, accelerated protocols delivering multiple treatments per day have been shown to be efficacious and potentially enhance outcomes compared to once daily protocols. Meanwhile, bilateral treatment protocols have also been increasingly tested to enhance outcomes. Here, we examined the efficacy and safety of accelerated bilateral TBS in major depressive disorder (MDD). In this open label pilot study, 25 patients with MDD (60%: women; mean age (SD): 45.24 (12.22)) resistant to at least one antidepressant, received bilateral TBS, consisting of 5 sequential bilateral intermittent TBS (iTBS) (600 pulses) and continuous TBS (cTBS) (600 pulses) treatments delivered to the left and right dorsolateral prefrontal cortex (DLPFC), respectively, daily for 5 days at 120% resting motor threshold. Outcome measures were post-treat treatment changes at day 5 and 2-weeks in Hamilton Depression Rating Scale (HDRS-17) scores and response (≥ 50% reduction from the baseline scores) and remission (≤ 7) rates. There was a significant reduction in HDRS scores at day 5 (p < 0.001) and 2-weeks post treatment (p < 0.001). The response rates increased from 20% at day 5 to 32% at 2-weeks post treatment suggesting delayed clinical effects. However, reduction in symptom scores between two post treatment endpoints was non-significant. 60% of patients could not tolerate the high intensity stimulation. No major adverse events occurred. Open label uncontrolled study with small sample size. These preliminary findings suggest that accelerated bilateral TBS may be clinically effective and safe for treatment resistant depression. Randomized sham-controlled trials are needed to establish the therapeutic role of accelerated bilateral TBS in depression.Trial registration: ClinicalTrials.gov, NCT10001858.
Collapse
Affiliation(s)
- Rajamannar Ramasubbu
- Department of Psychiatry/Clinical Neurosciences Cumming School of Medicine, Mathison Centre for Mental Health Research and Education, Non-Invasive Neurostimulation Network, Hotchkiss Brain Institute, University of Calgary, TRW Building, Room 4D64, 3280 Hospital Drive NW, Calgary, AB, T2N4Z6, Canada.
| | - Elliot C Brown
- School of Health and Care Management, Faculty of Business, Arden University, Berlin, Germany
| | - Ben Selby
- Non-Invasive Neurostimulation Network, University of Calgary, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry/Clinical Neurosciences Cumming School of Medicine, Mathison Centre for Mental Health Research and Education, Non-Invasive Neurostimulation Network, Hotchkiss Brain Institute, University of Calgary, TRW Building, Room 4D64, 3280 Hospital Drive NW, Calgary, AB, T2N4Z6, Canada
| | - Jaeden Cole
- Mathison Centre for Mental Health Research & Education, Non-Invasive Neurostimulation Network, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Hadi Hassan
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Laina McAusland
- Mathison Centre for Mental Health Research & Education Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|