1
|
Xiao Y, Jin W, Qian K, Ju L, Wang G, Wu K, Cao R, Chang L, Xu Z, Luo J, Shan L, Yu F, Chen X, Liu D, Cao H, Wang Y, Cao X, Zhou W, Cui D, Tian Y, Ji C, Luo Y, Hong X, Chen F, Peng M, Zhang Y, Wang X. Integrative Single Cell Atlas Revealed Intratumoral Heterogeneity Generation from an Adaptive Epigenetic Cell State in Human Bladder Urothelial Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308438. [PMID: 38582099 PMCID: PMC11200000 DOI: 10.1002/advs.202308438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Intratumor heterogeneity (ITH) of bladder cancer (BLCA) contributes to therapy resistance and immune evasion affecting clinical prognosis. The molecular and cellular mechanisms contributing to BLCA ITH generation remain elusive. It is found that a TM4SF1-positive cancer subpopulation (TPCS) can generate ITH in BLCA, evidenced by integrative single cell atlas analysis. Extensive profiling of the epigenome and transcriptome of all stages of BLCA revealed their evolutionary trajectories. Distinct ancestor cells gave rise to low-grade noninvasive and high-grade invasive BLCA. Epigenome reprograming led to transcriptional heterogeneity in BLCA. During early oncogenesis, epithelial-to-mesenchymal transition generated TPCS. TPCS has stem-cell-like properties and exhibited transcriptional plasticity, priming the development of transcriptionally heterogeneous descendent cell lineages. Moreover, TPCS prevalence in tumor is associated with advanced stage cancer and poor prognosis. The results of this study suggested that bladder cancer interacts with its environment by acquiring a stem cell-like epigenomic landscape, which might generate ITH without additional genetic diversification.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wan Jin
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Euler TechnologyBeijing102206China
| | - Kaiyu Qian
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Kai Wu
- Euler TechnologyBeijing102206China
| | - Rui Cao
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | | | - Zilin Xu
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jun Luo
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | | | - Fang Yu
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | | | | | - Hong Cao
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yejinpeng Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xinyue Cao
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Trial CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wei Zhou
- Hubei Key Laboratory of Medical Technology on TransplantationInstitute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan UniversityWuhan430071China
| | - Diansheng Cui
- Department of UrologyHubei Cancer HospitalWuhan430079China
| | - Ye Tian
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Chundong Ji
- Department of UrologyThe Affiliated Hospital of Panzhihua UniversityPanzhihua617099China
| | - Yongwen Luo
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xin Hong
- Department of UrologyPeking University International HospitalBeijing102206China
| | - Fangjin Chen
- Center for Quantitative BiologySchool of Life SciencesPeking UniversityBeijing100091China
| | - Minsheng Peng
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
- Kunming College of Life ScienceUniversity of Academy of SciencesKunming650201China
| | - Yi Zhang
- Euler TechnologyBeijing102206China
| | - Xinghuan Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Medical Research InstituteWuhan UniversityWuhan430071China
| |
Collapse
|
2
|
Liang T, Tao T, Wu K, Liu L, Xu W, Zhou D, Fang H, Ding Q, Huang G, Wu S. Cancer-Associated Fibroblast-Induced Remodeling of Tumor Microenvironment in Recurrent Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303230. [PMID: 37743226 PMCID: PMC10625065 DOI: 10.1002/advs.202303230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/24/2023] [Indexed: 09/26/2023]
Abstract
Bladder carcinoma (BC) recurrence is a major clinical challenge, and targeting the tumor microenvironment (TME) is a promising therapy. However, the relationship between individual TME components, particularly cancer-associated fibroblasts (CAFs), and tumor recurrence is unclear. Here, TME heterogeneity in primary and recurrent BC is investigated using single-cell RNA sequence profiling of 62 460 cells. Two cancer stem cell (CSC) subtypes are identified in recurrent BC. An inflammatory CAF subtype, ICAM1+ iCAFs, specifically associated with BC recurrence is also identified. iCAFs are found to secrete FGF2, which acts on the CD44 receptor of rCSC-M, thereby maintaining tumor stemness and epithelial-mesenchymal transition. Additionally, THBS1+ monocytes, a group of myeloid-derived suppressor cells (MDSCs), are enriched in recurrent BC and interacted with CAFs. ICAM1+ iCAFs are found to secrete CCL2, which binds to CCR2 in MDSCs. Moreover, elevated STAT3, NFKB2, VEGFA, and CTGF levels in iCAFs reshape the TME in recurrent tumors. CCL2 inhibition in an in situ BC mouse model suppressed tumor growth, decreased MDSCs and Tregs, and fostered tumor immune suppression. The study results highlight the role of iCAFs in TME cell-cell crosstalk during recurrent BC. The identification of pivotal signaling factors driving BC relapse is promising for the development of novel therapies.
Collapse
Affiliation(s)
- Ting Liang
- Institute of UrologyThe Third Affiliated Hospital of Shenzhen UniversityShenzhen518116China
- Shenzhen Following Precision Medical Research InstituteLuohu Hospital GroupShenzhen518000China
| | - Tao Tao
- Institute of UrologyThe Third Affiliated Hospital of Shenzhen UniversityShenzhen518116China
- Shenzhen Following Precision Medical Research InstituteLuohu Hospital GroupShenzhen518000China
| | - Kai Wu
- Institute of UrologyThe Third Affiliated Hospital of Shenzhen UniversityShenzhen518116China
- Shenzhen Following Precision Medical Research InstituteLuohu Hospital GroupShenzhen518000China
| | - Lisha Liu
- Institute of UrologyThe Third Affiliated Hospital of Shenzhen UniversityShenzhen518116China
- Shenzhen Following Precision Medical Research InstituteLuohu Hospital GroupShenzhen518000China
| | - Wuwu Xu
- Institute of UrologyThe Third Affiliated Hospital of Shenzhen UniversityShenzhen518116China
- Shenzhen Following Precision Medical Research InstituteLuohu Hospital GroupShenzhen518000China
| | - Dewang Zhou
- Institute of UrologyThe Third Affiliated Hospital of Shenzhen UniversityShenzhen518116China
- Shenzhen Following Precision Medical Research InstituteLuohu Hospital GroupShenzhen518000China
| | - Hu Fang
- Department of UrologySouth China Hospital of Shenzhen UniversityShenzhen518000China
| | - Qiuxia Ding
- Institute of UrologyThe Third Affiliated Hospital of Shenzhen UniversityShenzhen518116China
- Shenzhen Following Precision Medical Research InstituteLuohu Hospital GroupShenzhen518000China
| | - Guixiao Huang
- Institute of UrologyThe Third Affiliated Hospital of Shenzhen UniversityShenzhen518116China
| | - Song Wu
- Institute of UrologyThe Third Affiliated Hospital of Shenzhen UniversityShenzhen518116China
- Shenzhen Following Precision Medical Research InstituteLuohu Hospital GroupShenzhen518000China
- Department of UrologySouth China Hospital of Shenzhen UniversityShenzhen518000China
| |
Collapse
|
3
|
Zuo M, Chen H, Liao Y, He P, Xu T, Tang J, Zhang N. Sulforaphane and bladder cancer: a potential novel antitumor compound. Front Pharmacol 2023; 14:1254236. [PMID: 37781700 PMCID: PMC10540234 DOI: 10.3389/fphar.2023.1254236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Bladder cancer (BC) is a common form of urinary tract tumor, and its incidence is increasing annually. Unfortunately, an increasing number of newly diagnosed BC patients are found to have advanced or metastatic BC. Although current treatment options for BC are diverse and standardized, it is still challenging to achieve ideal curative results. However, Sulforaphane, an isothiocyanate present in cruciferous plants, has emerged as a promising anticancer agent that has shown significant efficacy against various cancers, including bladder cancer. Recent studies have demonstrated that Sulforaphane not only induces apoptosis and cell cycle arrest in BC cells, but also inhibits the growth, invasion, and metastasis of BC cells. Additionally, it can inhibit BC gluconeogenesis and demonstrate definite effects when combined with chemotherapeutic drugs/carcinogens. Sulforaphane has also been found to exert anticancer activity and inhibit bladder cancer stem cells by mediating multiple pathways in BC, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-B (NF-κB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), zonula occludens-1 (ZO-1)/beta-catenin (β-Catenin), miR-124/cytokines interleukin-6 receptor (IL-6R)/transcription 3 (STAT3). This article provides a comprehensive review of the current evidence and molecular mechanisms of Sulforaphane against BC. Furthermore, we explore the effects of Sulforaphane on potential risk factors for BC, such as bladder outlet obstruction, and investigate the possible targets of Sulforaphane against BC using network pharmacological analysis. This review is expected to provide a new theoretical basis for future research and the development of new drugs to treat BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Wu Y, Xu M, Feng Z, Wu H, Wu J, Ha X, Wu Y, Chen S, Xu F, Wen H, Li S, Wu X. AUF1-induced circular RNA hsa_circ_0010467 promotes platinum resistance of ovarian cancer through miR-637/LIF/STAT3 axis. Cell Mol Life Sci 2023; 80:256. [PMID: 37589744 PMCID: PMC11072515 DOI: 10.1007/s00018-023-04906-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Increasing evidences has indicated that primary and acquired resistance of ovarian cancer (OC) to platinum is mediated by multiple molecular and cellular factors. Understanding these mechanisms could promote the therapeutic efficiency for patients with OC. METHODS Here, we screened the expression pattern of circRNAs in samples derived from platinum-resistant and platinum-sensitive OC patients using RNA-sequencing (RNA-seq). The expression of hsa_circ_0010467 was validated by Sanger sequencing, RT-qPCR, and fluorescence in situ hybridization (FISH) assays. Overexpression and knockdown experiments were performed to explore the function of hsa_circ_0010467. The effects of hsa_circ_0010467 on enhancing platinum treatment were validated in OC cells, mouse model and patient-derived organoid (PDO). RNA pull-down, RNA immunoprecipitation (RIP), and dual-luciferase reporter assays were performed to investigate the interaction between hsa_circ_0010467 and proteins. RESULTS Increased expression of hsa_circ_0010467 is observed in platinum-resistant OC cells, tissues and serum exosomes, which is positively correlated with advanced tumor stage and poor prognosis of OC patients. Hsa_circ_0010467 is found to maintain the platinum resistance via inducing tumor cell stemness, and silencing hsa_circ_0010467 substantially increases the efficacy of platinum treatment on inhibiting OC cell proliferation. Further investigation reveals that hsa_circ_0010467 acts as a miR-637 sponge to mediate the repressive effect of miR-637 on leukemia inhibitory factor (LIF) and activates the LIF/STAT3 signaling pathway. We further discover that AUF1 could promote the biogenesis of hsa_circ_0010467 in OC. CONCLUSION Our study uncovers the mechanism that hsa_circ_0010467 mediates the platinum resistance of OC through AUF1/hsa_circ_0010467/miR-637/LIF/STAT3 axis, and provides potential targets for the treatment of platinum-resistant OC patients.
Collapse
Affiliation(s)
- Yangjun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miao Xu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Feng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Wu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jingni Wu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xinyu Ha
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siyu Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Wen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Yang C, Ou Y, Zhou Q, Liang Y, Li W, Chen Y, Chen W, Wu S, Chen Y, Dai X, Chen X, Chen T, Jin S, Liu Y, Zhang L, Liu S, Hu Y, Zou L, Mao S, Jiang H. Methionine orchestrates the metabolism vulnerability in cisplatin resistant bladder cancer microenvironment. Cell Death Dis 2023; 14:525. [PMID: 37582769 PMCID: PMC10427658 DOI: 10.1038/s41419-023-06050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Metabolism vulnerability of cisplatin resistance in BCa cells remains to be discovered, which we applied integrated multi-omics analysis to elucidate the metabolism related regulation mechanism in bladder cancer (BCa) microenvironment. Integrated multi-omics analysis of metabolomics and proteomics revealed that MAT2A regulated methionine metabolism contributes to cisplatin resistance in BCa cells. We further validated MAT2A and cancer stem cell markers were up-regulated and circARHGAP10 was down-regulated through the regulation of MAT2A protein stability in cisplatin resistant BCa cells. circARHGAP10 formed a complex with MAT2A and TRIM25 to accelerate the degradation of MAT2A through ubiquitin-proteasome pathway. Knockdown of MAT2A through overexpression of circARHGAP10 and restriction of methionine up-take was sufficient to overcome cisplatin resistance in vivo in immuno-deficiency model but not in immuno-competent model. Tumor-infiltrating CD8+ T cells characterized an exhausted phenotype in tumors with low methionine. High expression of SLC7A6 in BCa negatively correlated with expression of CD8. Synergistic inhibition of MAT2A and SLC7A6 could overcome cisplatin resistance in immuno-competent model in vivo. Cisplatin resistant BCa cells rely on methionine for survival and stem cell renewal. circARHGAP10/TRIM25/MAT2A regulation pathway plays an important role in cisplatin resistant BCa cells while circARHGAP10 and SLC7A6 should be evaluated as one of the therapeutic target of cisplatin resistant BCa.
Collapse
Affiliation(s)
- Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Wensun Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Tian Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Limin Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Chin FW, Chan SC, Veerakumarasivam A. Homeobox Gene Expression Dysregulation as Potential Diagnostic and Prognostic Biomarkers in Bladder Cancer. Diagnostics (Basel) 2023; 13:2641. [PMID: 37627900 PMCID: PMC10453580 DOI: 10.3390/diagnostics13162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
Homeobox genes serve as master regulatory transcription factors that regulate gene expression during embryogenesis. A homeobox gene may have either tumor-promoting or tumor-suppressive properties depending on the specific organ or cell lineage where it is expressed. The dysregulation of homeobox genes has been reported in various human cancers, including bladder cancer. The dysregulated expression of homeobox genes has been associated with bladder cancer clinical outcomes. Although bladder cancer has high risk of tumor recurrence and progression, it is highly challenging for clinicians to accurately predict the risk of tumor recurrence and progression at the initial point of diagnosis. Cystoscopy is the routine surveillance method used to detect tumor recurrence. However, the procedure causes significant discomfort and pain that results in poor surveillance follow-up amongst patients. Therefore, the development of reliable non-invasive biomarkers for the early detection and monitoring of bladder cancer is crucial. This review provides a comprehensive overview of the diagnostic and prognostic potential of homeobox gene expression dysregulation in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Soon-Choy Chan
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
7
|
Mehus AA, Jones M, Trahan M, Kinnunen K, Berwald K, Lindner B, Al-Marsoummi S, Zhou XD, Garrett SH, Sens DA, Sens MA, Somji S. Pevonedistat Inhibits SOX2 Expression and Sphere Formation but Also Drives the Induction of Terminal Differentiation Markers and Apoptosis within Arsenite-Transformed Urothelial Cells. Int J Mol Sci 2023; 24:9149. [PMID: 37298099 PMCID: PMC10252886 DOI: 10.3390/ijms24119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Urothelial cancer (UC) is a common malignancy and its development is associated with arsenic exposure. Around 25% of diagnosed UC cases are muscle invasive (MIUC) and are frequently associated with squamous differentiation. These patients commonly develop cisplatin (CIS) resistance and have poor prognosis. SOX2 expression is correlated to reduced overall and disease-free survival in UC. SOX2 drives malignant stemness and proliferation in UC cells and is associated with development of CIS resistance. Using quantitative proteomics, we identified that SOX2 was overexpressed in three arsenite (As3+)-transformed UROtsa cell lines. We hypothesized that inhibition of SOX2 would reduce stemness and increase sensitivity to CIS in the As3+-transformed cells. Pevonedistat (PVD) is a neddylation inhibitor and is a potent inhibitor of SOX2. We treated non-transformed parent and As3+-transformed cells with PVD, CIS, or in combination and monitored cell growth, sphere forming abilities, apoptosis, and gene/protein expression. PVD treatment alone caused morphological changes, reduced cell growth, attenuated sphere formation, induced apoptosis, and elevated the expression of terminal differentiation markers. However, the combined treatment of PVD with CIS significantly elevated the expression of terminal differentiation markers and eventually led to more cell death than either solo treatment. Aside from a reduced proliferation rate, these effects were not seen in the parent. Further research is needed to explore the potential use of PVD with CIS as a differentiation therapy or alternative treatment for MIUC tumors that may have become resistant to CIS.
Collapse
Affiliation(s)
- Aaron A. Mehus
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (M.J.); (M.T.); (K.K.); (K.B.); (B.L.); (S.A.-M.); (X.D.Z.); (S.H.G.); (D.A.S.); (M.A.S.); (S.S.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wei Y, Amend B, Todenhöfer T, Lipke N, Aicher WK, Fend F, Stenzl A, Harland N. Urinary Tract Tumor Organoids Reveal Eminent Differences in Drug Sensitivities When Compared to 2-Dimensional Culture Systems. Int J Mol Sci 2022; 23:ijms23116305. [PMID: 35682984 PMCID: PMC9181330 DOI: 10.3390/ijms23116305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/31/2022] Open
Abstract
Generation of organoids from urinary tract tumor samples was pioneered a few years ago. We generated organoids from two upper tract urothelial carcinomas and from one bladder cancer sample, and confirmed the expression of cytokeratins as urothelial antigens, vimentin as a mesenchymal marker, and fibroblast growth factor receptor 3 by immunohistochemistry. We investigated the dose response curves of two novel components, venetoclax versus S63845, in comparison to the clinical standard cisplatin in organoids in comparison to the corresponding two-dimensional cultures. Normal urothelial cells and tumor lines RT4 and HT1197 served as controls. We report that upper tract urothelial carcinoma cells and bladder cancer cells in two-dimensional cultures yielded clearly different sensitivities towards venetoclax, S63845, and cisplatin. Two-dimensional cultures were more sensitive at low drug concentrations, while organoids yielded higher drug efficacies at higher doses. In some two-dimensional cell viability experiments, colorimetric assays yielded different IC50 toxicity levels when compared to chemiluminescence assays. Organoids exhibited distinct sensitivities towards cisplatin and to a somewhat lesser extent towards venetoclax or S63845, respectively, and significantly different sensitivities towards the three drugs investigated when compared to the corresponding two-dimensional cultures. We conclude that organoids maintained inter-individual sensitivities towards venetoclax, S63845, and cisplatin. The preclinical models and test systems employed may bias the results of cytotoxicity studies.
Collapse
Affiliation(s)
- Yi Wei
- Center for Medicine Research, Eberhard Karls University, 72072 Tuebingen, Germany; (Y.W.); (N.L.); (W.K.A.)
| | - Bastian Amend
- Department of Urology, University Hospital, 72076 Tuebingen, Germany; (B.A.); (T.T.); (A.S.)
| | - Tilman Todenhöfer
- Department of Urology, University Hospital, 72076 Tuebingen, Germany; (B.A.); (T.T.); (A.S.)
| | - Nizar Lipke
- Center for Medicine Research, Eberhard Karls University, 72072 Tuebingen, Germany; (Y.W.); (N.L.); (W.K.A.)
| | - Wilhelm K. Aicher
- Center for Medicine Research, Eberhard Karls University, 72072 Tuebingen, Germany; (Y.W.); (N.L.); (W.K.A.)
| | - Falko Fend
- Institute for Pathology, Eberhard Karls University, 72076 Tuebingen, Germany;
| | - Arnulf Stenzl
- Department of Urology, University Hospital, 72076 Tuebingen, Germany; (B.A.); (T.T.); (A.S.)
| | - Niklas Harland
- Department of Urology, University Hospital, 72076 Tuebingen, Germany; (B.A.); (T.T.); (A.S.)
- Correspondence: ; Tel.: +49-7071-298-6613
| |
Collapse
|
9
|
Geng R, Harland N, Montes-Mojarro IA, Fend F, Aicher WK, Stenzl A, Amend B. CD24: A Marker for an Extended Expansion Potential of Urothelial Cancer Cell Organoids In Vitro? Int J Mol Sci 2022; 23:5453. [PMID: 35628262 PMCID: PMC9141653 DOI: 10.3390/ijms23105453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Bladder cancer is the most cost-intensive cancer due to high recurrence rates and long follow-up times. Bladder cancer organoids were considered interesting tools for investigating better methods for the detection and treatment of this cancer. METHODS Organoids were generated from urothelial carcinoma tissue samples, then expanded and characterized; the expression of immune modulatory antigens and tumor stem cells markers CD24 and CD44 was explored in early (P ≤ 3) and later (P ≥ 5) passages (P) by immunofluorescence and by quantitative PCR of cDNA. The expression of these factors was investigated in the corresponding cancer tissue samples by immunohistochemistry. RESULTS The expression of the PD-L1 was detected on some but not all organoids. CD276 and CD47 were observed on organoids in all passages investigated. Organoids growing beyond passage 8 expressed both CD24 and CD44 at elevated levels in early and late cultures. Organoids proliferating to the eighth passage initially expressed both CD24 and CD44, but lost CD24 expression over time, while CD44 remained. Organoids growing only up to the 6th passage failed to express CD24 but expressed CD44. CONCLUSIONS The data indicate that the expression of CD24 in urothelial cancer cell organoids may serve as an indicator for the prolonged proliferation potential of the cells.
Collapse
Affiliation(s)
- Ruizhi Geng
- Center for Medical Research, University Hospital, Eberhard Karls University, 72074 72072 Tuebingen, Germany; (R.G.); (W.K.A.)
| | - Niklas Harland
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (A.S.)
| | - Ivonne A. Montes-Mojarro
- Institute for Pathology, Eberhard Karls University, 72074 Tuebingen, Germany; (I.A.M.-M.); (F.F.)
| | - Falko Fend
- Institute for Pathology, Eberhard Karls University, 72074 Tuebingen, Germany; (I.A.M.-M.); (F.F.)
| | - Wilhelm K. Aicher
- Center for Medical Research, University Hospital, Eberhard Karls University, 72074 72072 Tuebingen, Germany; (R.G.); (W.K.A.)
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (A.S.)
| | - Bastian Amend
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (N.H.); (A.S.)
| |
Collapse
|
10
|
Zhao Y, Che J, Tian A, Zhang G, Xu Y, Li S, Liu S, Wan Y. PBX1 Participates in Estrogen-mediated Bladder Cancer Progression and Chemo-resistance Affecting Estrogen Receptors. Curr Cancer Drug Targets 2022; 22:757-770. [PMID: 35422219 DOI: 10.2174/1568009622666220413084456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is a common cancer associated with high morbidity and mortality worldwide. Pre-B-cell leukemia transcription factor 1 (PBX1) has been reported to be involved in tumor progression. OBJECTIVE The aim of the study was to explore the specific role of PBX1 in BCa and its underlying mechanisms. METHODS The relative expressions of PBX1 in muscle-invasive BCa tissues and cell lines were analyzed through RT-qPCR and western blotting. Kaplan-Meier analysis was used to analyze the relationship between PBX1 levels and survival status. Co-immunoprecipitation (CO-IP) and chromatin immunoprecipitation (ChIP)-qPCR assays were adopted to verify the interaction between PBX1 and Estrogen receptors (ERs) and explore the estrogen receptors (ERs)-dependent genes transcription. RESULTS PBX1 was upregulated in invasive BCa patients and BCa cells, positively associated with tumor size, lymph node metastasis, distant metastasis and poorer survival status. The overexpression of PBX1 promoted cell growth, invasion, epithelial-mesenchymal transition (EMT) process and cisplatin resistance in BCa cells, while the silence of PBX1 showed opposite effects. Furthermore, PBX1 interacted with ERs and was required for ER function. PBX1 overexpression aggravated the tumorpromoting effect of estrogen on BCa cells, while it partially suppressed the inhibitory effects of ER antagonist AZD9496 on BCa cells. CONCLUSION This study revealed that PBX1 participated in estrogen mediated BCa progression and chemo-resistance through binding and activating estrogen receptors. Hence, PBX1 may serve as a potential prognostic and therapeutic target for BCa treatment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Jizhong Che
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Gang Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Shuhang Li
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Songlin Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Yinxu Wan
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| |
Collapse
|
11
|
Wang H, Mei Y, Luo C, Huang Q, Wang Z, Lu GM, Qin L, Sun Z, Huang CW, Yang ZW, Chen J, Yin W, Qian CN, Zeng J, Chen L, Leng Q, Guo Y, Jia G. Single-Cell Analyses Reveal Mechanisms of Cancer Stem Cell Maintenance and Epithelial-Mesenchymal Transition in Recurrent Bladder Cancer. Clin Cancer Res 2021; 27:6265-6278. [PMID: 34526362 DOI: 10.1158/1078-0432.ccr-20-4796] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/21/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Bladder cancer treatment remains a major clinical challenge due to therapy resistance and a high recurrence rate. Profiling intratumor heterogeneity can reveal the molecular mechanism of bladder cancer recurrence. EXPERIMENTAL DESIGN Here, we performed single-cell RNA sequencing and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) on tumors from 13 patients with low recurrence risk, high recurrence risk, and recurrent bladder cancer. RESULTS Our study generated a comprehensive cancer-cell atlas consisting of 54,971 single cells and identified distinct cell subpopulations. We found that the cancer stem-cell subpopulation is enriched during bladder cancer recurrence with elevated expression of EZH2. We further defined a subpopulation-specific molecular mechanism whereby EZH2 maintains H3K27me3-mediated repression of the NCAM1 gene, thereby inactivating the cell invasive and stemness transcriptional program. Furthermore, taking advantage of this large single-cell dataset, we elucidated the spectrum of epithelial-mesenchymal transition (EMT) in clinical samples and revealed distinct EMT features associated with bladder cancer subtypes. We identified that TCF7 promotes EMT in corroboration with single-cell ATAC with high-throughput sequencing (scATAC-seq) analysis. Additionally, we constructed regulatory networks specific to recurrent bladder cancer. CONCLUSIONS Our study and analytic approaches herein provide a rich resource for the further study of cancer stem cells and EMT in the bladder cancer research field.
Collapse
Affiliation(s)
- Huanjun Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Mei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cheng Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qun Huang
- Department of Urology, Youjiang Medical University for Nationalities Affiliated Hospital, Baise, China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guan-Ming Lu
- Department of Breast and Thyroid Surgery, Youjiang Medical University for Nationalities Affiliated Hospital, Baise, China
| | - Lili Qin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Zhun Sun
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Chao-Wen Huang
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhi-Wen Yang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Junxing Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiguo Yin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jianming Zeng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Lingwu Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China. .,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Yan Guo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Guangshuai Jia
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China. .,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| |
Collapse
|
12
|
Co-Expression of CD34, CD90, OV-6 and Cell-Surface Vimentin Defines Cancer Stem Cells of Hepatoblastoma, Which Are Affected by Hsp90 Inhibitor 17-AAG. Cells 2021; 10:cells10102598. [PMID: 34685577 PMCID: PMC8533921 DOI: 10.3390/cells10102598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer stem cells (CSCs) are nowadays one of the major focuses in tumor research since this subpopulation was revealed to be a great obstacle for successful treatment. The identification of CSCs in pediatric solid tumors harbors major challenges because of the immature character of these tumors. Here, we present CD34, CD90, OV-6 and cell-surface vimentin (csVimentin) as reliable markers to identify CSCs in hepatoblastoma cell lines. We were able to identify CSC characteristics for the subset of CD34+CD90+OV-6+csVimentin+-co-expressing cells, such as pluripotency, self-renewal, increased expression of EMT markers and migration. Treatment with Cisplatin as the standard chemotherapeutic drug in hepatoblastoma therapy further revealed the chemo-resistance of this subset, which is a main characteristic of CSCs. When we treated the cells with the Hsp90 inhibitor 17-AAG, we observed a significant reduction in the CSC subset. With our study, we identified CSCs of hepatoblastoma using CD34, CD90, OV-6 and csVimentin. This set of markers could be helpful to estimate the success of novel therapeutic approaches, as resistant CSCs are responsible for tumor relapses.
Collapse
|
13
|
Prognostic and predictive value of ALDH1, SOX2 and SSEA-4 in bladder cancer. Sci Rep 2021; 11:13684. [PMID: 34211078 PMCID: PMC8249395 DOI: 10.1038/s41598-021-93245-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Transurethral resection of bladder tumor (TUR-BT) and radical cystectomy (RC) are standard treatment options for bladder cancer (BC). Neoadjuvant chemotherapy (NAC) prior to RC improves outcome of some patients but currently there are no valid biomarkers to identify patients who benefit from NAC. Presence of cancer stem cells (CSC) has been associated with poor outcome and resistance to chemotherapy in various cancers. Here we studied the expression of stem cell markers ALDH1, SOX2 and SSEA-4 with immunohistochemistry in tissue microarray material consisting of 195 BC patients treated with RC and 74 patients treated with TUR-BT followed by NAC and RC. Post-operative follow-up data of up to 22 years was used. Negative to weak cytoplasmic SOX2 staining was associated with lymphovascular invasion and non-organ confined disease. It was also associated with shortened cancer-specific survival, but the finding was not statistically significant. Contrary to previous reports, none of the other tested biomarkers were associated with cancer-specific mortality or clinicopathological characteristics. Neither were they associated with response to NAC. Despite the promising results of previously published studies, our results suggest that CSC markers ALDH1, SOX2 and SSEA-4 have little if any prognostic or predictive value in BC treated with RC.
Collapse
|
14
|
Hao W, Wu L, Cao L, Yu J, Ning L, Wang J, Lin X, Chen Y. Radioresistant Nasopharyngeal Carcinoma Cells Exhibited Decreased Cisplatin Sensitivity by Inducing SLC1A6 Expression. Front Pharmacol 2021; 12:629264. [PMID: 33927617 PMCID: PMC8077170 DOI: 10.3389/fphar.2021.629264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/02/2021] [Indexed: 12/29/2022] Open
Abstract
Cisplatin-based regimens are commonly used for the treatment of nasopharyngeal carcinoma (NPC) in patients who receive concurrent chemoradiotherapy. The sensitivity of NPC cells to cisplatin is closely associated with the efficacy of radiation therapy. In this study, we established two radioresistant NPC cell lines, HONE1-IR and CNE2-IR, and found that both cell lines showed reduced sensitivity to cisplatin. RNA-sequence analysis showed that SLC1A6 was upregulated in both HONE1-IR and CNE2-IR cell lines. Downregulation of SLC1A6 enhanced cisplatin sensitivity in these two radioresistant NPC cell lines. It was also found that the expression of SLC1A6 was induced during radiation treatment and correlated with poor prognosis of NPC patients. Notably, we observed that upregulation of SLC1A6 led to elevating level of glutamate and the expression of drug-resistant genes, resulted in reduced cisplatin sensitivity. Our findings provide a rationale for developing a novel therapeutic target for NPC patients with cisplatin resistance.
Collapse
Affiliation(s)
- Wenwen Hao
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lisha Wu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linhui Cao
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinxiu Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Ning
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingshu Wang
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Lin
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanfeng Chen
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
15
|
Disulfiram Acts as a Potent Radio-Chemo Sensitizer in Head and Neck Squamous Cell Carcinoma Cell Lines and Transplanted Xenografts. Cells 2021; 10:cells10030517. [PMID: 33671083 PMCID: PMC7999545 DOI: 10.3390/cells10030517] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023] Open
Abstract
The poor prognosis of locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC) is primarily mediated by the functional properties of cancer stem cells (CSCs) and resistance to chemoradiotherapy. We investigated whether the aldehyde dehydrogenase (ALDH) inhibitor disulfiram (DSF) can enhance the sensitivity of therapy. Cell viability was assessed by the 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) and apoptosis assays, and the cell cycle and reactive oxygen species (ROS) levels were evaluated by fluorescence-activated cell sorting (FACS). The radio-sensitizing effect was measured by a colony formation assay. The synergistic effects were calculated by combination index (CI) analyses. The DSF and DSF/Cu2+ inhibited the cell proliferation (inhibitory concentration 50 (IC50) of DSF and DSF/Cu2+ were 13.96 μM and 0.24 μM). DSF and cisplatin displayed a synergistic effect (CI values were <1). DSF or DSF/Cu2+ abolished the cisplatin-induced G2/M arrest (from 52.9% to 40.7% and 41.1%), and combining irradiation (IR) with DSF or DSF/Cu2+ reduced the colony formation and attenuated the G2/M arrest (from 53.6% to 40.2% and 41.9%). The combination of cisplatin, DSF or DSF/Cu2+, and IR enhanced the radio-chemo sensitivity by inducing apoptosis (42.04% and 32.21%) and ROS activity (46.3% and 37.4%). DSF and DSF/Cu2+ enhanced the sensitivity of HNSCC to cisplatin and IR. Confirming the initial data from patient-derived tumor xenograft (PDX) supported a strong rationale to repurpose DSF as a radio-chemosensitizer and to assess its therapeutic potential in a clinical setting.
Collapse
|
16
|
Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, Jiang K, Lu H, Xia D, Peng E, Chen Z, Tang K, Ye Z. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer 2021; 20:4. [PMID: 33397425 PMCID: PMC7780637 DOI: 10.1186/s12943-020-01300-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), which are single-stranded closed-loop RNA molecules lacking terminal 5′ caps and 3′ poly(A) tails, are attracting increasing scientific attention for their crucial regulatory roles in the occurrence and development of various diseases. With the rapid development of high-throughput sequencing technologies, increasing numbers of differentially expressed circRNAs have been identified in bladder cancer (BCa) via exploration of the expression profiles of BCa and normal tissues and cell lines. CircRNAs are critically involved in BCa biological behaviours, including cell proliferation, tumour growth suppression, cell cycle arrest, apoptosis, invasion, migration, metastasis, angiogenesis, and cisplatin chemoresistance. Most of the studied circRNAs in BCa regulate cancer biological behaviours via miRNA sponging regulatory mechanisms. CircRNAs have been reported to be significantly associated with many clinicopathologic characteristics of BCa, including tumour size, grade, differentiation, and stage; lymph node metastasis; tumour numbers; distant metastasis; invasion; and recurrence. Moreover, circRNA expression levels can be used to predict BCa patients’ survival parameters, such as overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS). The abundance, conservation, stability, specificity and detectability of circRNAs render them potential diagnostic and prognostic biomarkers for BCa. Additionally, circRNAs play crucial regulatory roles upstream of various signalling pathways related to BCa carcinogenesis and progression, reflecting their potential as therapeutic targets for BCa. Herein, we briefly summarize the expression profiles, biological functions and mechanisms of circRNAs and the potential clinical applications of these molecules for BCa diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongyan Lu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Zhang C, Zhao Y, Yang Y, Zhong C, Ji T, Duan J, Wang Y. RNAi mediated silencing of Nanog expression suppresses the growth of human colorectal cancer stem cells. Biochem Biophys Res Commun 2021; 534:254-260. [PMID: 33288197 DOI: 10.1016/j.bbrc.2020.11.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world known for its poor recurrence-free prognosis. Previous studies have shown that it is closely linked with cancer stem cells (CSCs), which have self-renewal potential and the capacity to differentiate into diverse populations. Nanog is an important transcription factor that functions to maintain the self-renewal and proliferation of embryonic stem cells; however, many recent studies have shown that Nanog is also highly expressed in many cancer stem cells. To investigate whether Nanog plays a crucial role in maintaining the stemness of colorectal CSCs, RNA interference was used to downregulate Nanog expression in the CRC stem cell line, EpCAM+CD44+HCT-116 cells (CCSCs). We examined the anti-tumor function of Nanog in vitro and in vivo, using small interfering RNA. Our results revealed that the Nanog mRNA expression level in CCSCs was higher than that in HCT-116 cells. We found that the depletion of Nanog inhibited proliferation and promoted apoptosis in CCSCs. In addition, the invasive ability of CCSCs was markedly restricted when Nanog was silenced by small interfering RNA. Furthermore, we found that the silencing of Nanog decreased tumor size and weight and improved the survival rate of tumor-bearing mice. In conclusion, these findings collectively demonstrate that Nanog, which is highly expressed in CRC stem cells, is a key factor in the development of tumor growth, and it may serve as a potential marker of prognosis and a novel and effective therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yuanyuan Zhao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Yongjing Yang
- Department of Radiation Oncology, Cancer Hospital of Jilin Province, Changchun, 130012, China
| | - Chunlian Zhong
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Tianju Ji
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Jinyue Duan
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
18
|
Belgorosky D, Girouard J, Langle YV, Hamelin-Morrissete J, Marino L, Agüero EI, Malagrino H, Reyes-Moreno C, Eiján AM. Relevance of iNOS expression in tumor growth and maintenance of cancer stem cells in a bladder cancer model. J Mol Med (Berl) 2020; 98:1615-1627. [PMID: 32955679 DOI: 10.1007/s00109-020-01973-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
The expression of inducible nitric oxide (NO) synthase (iNOS) in human bladder cancer (BC) is a poor prognostic factor associated with invasion and tumor recurrence. Here, we evaluated the relevance of iNOS expression in BC progression and in cancer stem cell (CSC) maintenance in a murine BC model. Also, iNOS expression and CSC markers were analyzed in human BC samples. iNOS inhibitors (L-NAME or 1400W) or shRNA were used on murine BC model with different iNOS expressions and invasiveness grades: MB49 (iNOS+, non-muscle invasive (NMI)) and MB49-I (iNOS++, muscle invasive (MI)), in order to analyzed cell proliferation, tumor growth, angiogenesis, number of CSC, and pluripotential marker expression. iNOS, SOX2, Oct4, and Nanog expressions were also analyzed in human BC samples by qPCR and immunohistochemistry. iNOS inhibtion reduced parameters associated with tumor progression and reduced the number of CSC, wich resulted higher in MB49-I than in MB49, in concordance with the higher expression of SOX2, Oct4, and Nanog. The expression of SOX2 was notoriously diminished, when iNOS was inhibited only in the MI cell line. Similar results were observed in human samples, where MI tumors expressed higher levels of iNOS and pluripotential genes, in comparison to NMI tumors with a positive correlation between those and iNOS, suggesting that iNOS expression is associated with CSC. iNOS plays an important role in BC progression and CSC maintenance. Its inhibition could be a potential therapeutic target to eradicate CSC, responsible for tumor recurrences. KEY MESSAGES: • iNOS expression is involved in bladder tumor development, growth, and angiogenesis. • iNOS expression is involved in bladder cancer stem cell generation and maintenance, playing an important role regulating their self-renewal capacity, especially in muscle invasive murine bladder cancer cells. • iNOS expression is higher in human muscle invasive tumors, in association with a high expression of pluripotential genes, especially of SOX2.
Collapse
Affiliation(s)
- Denise Belgorosky
- Research Area, Instituto de Oncología Ángel H. Roffo (IOAHR), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julie Girouard
- Medical Biology Department, Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Quebec a Trois-Rivières, Trois-Rivières, QC, Canada
| | - Yanina Veronica Langle
- Research Area, Instituto de Oncología Ángel H. Roffo (IOAHR), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jovane Hamelin-Morrissete
- Medical Biology Department, Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Quebec a Trois-Rivières, Trois-Rivières, QC, Canada
| | - Lina Marino
- Pathology Department, IOAHR, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Imanol Agüero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Héctor Malagrino
- Urology Department, IOAHR, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Reyes-Moreno
- Medical Biology Department, Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Quebec a Trois-Rivières, Trois-Rivières, QC, Canada
| | - Ana María Eiján
- Research Area, Instituto de Oncología Ángel H. Roffo (IOAHR), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Área Investigaciones, Instituto de Oncología "Ángel H. Roffo", Av. San Martín 5481, CP1417DTB, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Schmidtova S, Dorssers LCJ, Kalavska K, Gillis AJM, Oosterhuis JW, Stoop H, Miklikova S, Kozovska Z, Burikova M, Gercakova K, Durinikova E, Chovanec M, Mego M, Kucerova L, Looijenga LHJ. Napabucasin overcomes cisplatin resistance in ovarian germ cell tumor-derived cell line by inhibiting cancer stemness. Cancer Cell Int 2020; 20:364. [PMID: 32774158 PMCID: PMC7397611 DOI: 10.1186/s12935-020-01458-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cisplatin resistance of ovarian yolk sac tumors (oYST) is a clinical challenge due to dismal patient prognosis, even though the disease is extremely rare. We investigated potential association between cisplatin resistance and cancer stem cell (CSC) markers in chemoresistant oYST cells and targeting strategies to overcome resistance in oYST. Methods Chemoresistant cells were derived from chemosensitive human oYST cells by cultivation in cisplatin in vitro. Derivative cells were characterized by chemoresistance, functional assays, flow cytometry, gene expression and protein arrays focused on CSC markers. RNAseq, methylation and microRNA profiling were performed. Quail chorioallantoic membranes (CAM) with implanted oYST cells were used to analyze the micro-tumor extent and interconnection with the CAM. Tumorigenicity in vivo was determined on immunodeficient mouse model. Chemoresistant cells were treated by inhibitors intefering with the CSC properties to examine the chemosensitization to cisplatin. Results Long-term cisplatin exposure resulted in seven-fold higher IC50 value in resistant cells, cross-resistance to oxaliplatin and carboplatin, and increased migratory capacity, invasiveness and tumorigenicity, associated with hypomethylation of differentially methylated genes/promotors. Resistant cells exhibited increased expression of prominin-1 (CD133), ATP binding cassette subfamily G member 2 (ABCG2), aldehyde dehydrogenase 3 isoform A1 (ALDH3A1), correlating with reduced gene and promoter methylation, as well as increased expression of ALDH1A3 and higher overall ALDH enzymatic activity, rendering them cross-resistant to DEAB, disulfiram and napabucasin. Salinomycin and tunicamycin were significantly more toxic to resistant cells. Pretreatment with napabucasin resensitized the cells to cisplatin and reduced their tumorigenicity in vivo. Conclusions The novel chemoresistant cells represent unique model of refractory oYST. CSC markers are associated with cisplatin resistance being possible targets in chemorefractory oYST.
Collapse
Affiliation(s)
- Silvia Schmidtova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.,Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia
| | - Lambert C J Dorssers
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Katarina Kalavska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.,Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Ad J M Gillis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - J Wolter Oosterhuis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Hans Stoop
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Svetlana Miklikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Kozovska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Monika Burikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Katarina Gercakova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Erika Durinikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Michal Chovanec
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Lucia Kucerova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Leendert H J Looijenga
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
20
|
Yeh BW, Yu LE, Li CC, Yang JC, Li WM, Wu YC, Wei YC, Lee HT, Kung ML, Wu WJ. The protoapigenone analog WYC0209 targets CD133+ cells: A potential adjuvant agent against cancer stem cells in urothelial cancer therapy. Toxicol Appl Pharmacol 2020; 402:115129. [PMID: 32673656 DOI: 10.1016/j.taap.2020.115129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023]
Abstract
Urothelial carcinoma (UC) is one of the highest incidence cancers that rank the fourth commonly diagnosed tumors worldwide. The unresectable lesions that are resistant to therapeutic interventions is the major cause leading to death. Previous studies had shown that the resistance and metastatic consequence may arise from cancer stem-like cells population. The phytochemical flavonoids have promised bioactivity and potent anti-carcinogenic effects, and trap great attentions for cancer chemoprevention and/or adjuvant chemotherapy. However, the mechanisms of flavonoids on cancer stemness is still obscured. In this study, we analyzed the biofunctional effects of as-prepared flavonoid derivative-WYC0209 on T24, BFTC905 and BFTC909 human UC cell lines. Our results demonstrated that WYC0209 significantly induced anti-cell viability on UC cells through decreased Akt/NFkB signaling. Moreover, WYC0209 enhanced the cell apoptosis through activated the caspase-3 activity and inactivated Bcl-xL expression. Interestingly, WYC0209 dramatically inhibited the cancer stem cells (CSCs) traits, including attenuation of side population and tumorsphere formation in which were through declined EMT-CSCs markers including MDR1, ABCG2 and BMI-1. We further validated the effects of WYC0209 on several CSC surface markers including CD133, CD44, SOX-2 and Nanog. Our results showed that WYC0209 markedly inhibited CD133 expressions in both transcriptional and translational levels. High expression levels of CD133 was also demonstrated in human upper tract UC specimens. In summary, our study showed that WYC0209 may potentially as an adjuvant agent to against CD133-driven UC CSCs and provide a beneficial strategy to against UC cancer therapeutics resistant.
Collapse
Affiliation(s)
- Bi-Wen Yeh
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-En Yu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Juan-Cheng Yang
- Graduate institute of natural products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Yang-Chang Wu
- Graduate institute of natural products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ching Wei
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Wen-Jeng Wu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Yang Z, Wang H, Zhang N, Xing T, Zhang W, Wang G, Li C, Yu C. Chaetocin Abrogates the Self-Renewal of Bladder Cancer Stem Cells via the Suppression of the KMT1A-GATA3-STAT3 Circuit. Front Cell Dev Biol 2020; 8:424. [PMID: 32626701 PMCID: PMC7311639 DOI: 10.3389/fcell.2020.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer stem cells (BCSCs) have the abilities of self-renewal, differentiation, and metastasis; confer drug resistance; and exhibit high tumorigenicity. We previously identified that the KMT1A–GATA3–STAT3 axis drives the self-renewal of BCSCs. However, the therapeutic effect of targeting KMT1A in BCSCs remains unknown. In this study, we confirmed that the expression of KMT1A was remarkably higher in BCSCs (3–5-fold) than those in bladder cancer non-stem cells or normal bladder epithelial cells. Among the six KMT1A inhibitors, chaetocin significantly suppressed the cell propagation (inhibition ratio: 65%–88%, IC50 = 24.4–32.5 nM), induced apoptosis (2–5-fold), and caused G1 phase cell cycle arrest (68.9 vs 55.5%) of bladder cancer (BC) cells, without influencing normal bladder epithelial cells. More importantly, chaetocin abrogated the self-renewal of BCSCs (inhibition ratio: 80.1%) via the suppression of the KMT1A–GATA3–STAT3 circuit and other stemness-related pathways. Finally, intravesical instillation of chaetocin remarkably inhibited the growth of xenograft tumors (inhibition ratio: 71–82%) and prolonged the survival of tumor-bearing mice (70 vs 53 days). In sum, chaetocin abrogated the stemness maintenance and tumor growth of BCSCs via the suppression of the KMT1A–GATA3–STAT3 circuit. Chaetocin is an effective inhibitor targeting KMT1A in BCSCs and could be a promising therapeutic strategy for BC.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Haifeng Wang
- Department of Urology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Nan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tianying Xing
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, China
| | - Guoqing Wang
- Department of Pathogenobiology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
22
|
Penas C, Apraiz A, Muñoa I, Arroyo-Berdugo Y, Rasero J, Ezkurra PA, Velasco V, Subiran N, Bosserhoff AK, Alonso S, Asumendi A, Boyano MD. RKIP Regulates Differentiation-Related Features in Melanocytic Cells. Cancers (Basel) 2020; 12:cancers12061451. [PMID: 32503139 PMCID: PMC7352799 DOI: 10.3390/cancers12061451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022] Open
Abstract
Raf Kinase Inhibitor Protein (RKIP) has been extensively reported as an inhibitor of key signaling pathways involved in the aggressive tumor phenotype and shows decreased expression in several types of cancers. However, little is known about RKIP in melanoma or regarding its function in normal cells. We examined the role of RKIP in both primary melanocytes and malignant melanoma cells and evaluated its diagnostic and prognostic value. IHC analysis revealed a significantly higher expression of RKIP in nevi compared with early-stage (stage I–II, AJCC 8th) melanoma biopsies. Proliferation, wound healing, and collagen-coated transwell assays uncovered the implication of RKIP on the motility but not on the proliferative capacity of melanoma cells as RKIP protein levels were inversely correlated with the migration capacity of both primary and metastatic melanoma cells but did not alter other parameters. As shown by RNA sequencing, endogenous RKIP knockdown in primary melanocytes triggered the deregulation of cellular differentiation-related processes, including genes (i.e., ZEB1, THY-1) closely related to the EMT. Interestingly, NANOG was identified as a putative transcriptional regulator of many of the deregulated genes, and RKIP was able to decrease the activation of the NANOG promoter. As a whole, our data support the utility of RKIP as a diagnostic marker for early-stage melanomas. In addition, these findings indicate its participation in the maintenance of a differentiated state of melanocytic cells by modulating genes intimately linked to the cellular motility and explain the progressive decrease of RKIP often described in tumors.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Iraia Muñoa
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Javier Rasero
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA 15213, USA
| | - Pilar A. Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Veronica Velasco
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain;
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Maria D. Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Correspondence: ; Tel.: +34-946015689
| |
Collapse
|
23
|
Abugomaa A, Elbadawy M. Patient-derived organoid analysis of drug resistance in precision medicine: is there a value? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1715794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
24
|
Abugomaa A, Elbadawy M, Yamawaki H, Usui T, Sasaki K. Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cells 2020; 9:E235. [PMID: 31963556 PMCID: PMC7016964 DOI: 10.3390/cells9010235] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer (BC) is a complex and highly heterogeneous stem cell disease associated with high morbidity and mortality rates if it is not treated properly. Early diagnosis with personalized therapy and regular follow-up are the keys to a successful outcome. Cancer stem cells (CSCs) are the leading power behind tumor growth, with the ability of self-renewal, metastasis, and resistance to conventional chemotherapy. The fast-developing CSC field with robust genome-wide screening methods has found a platform for establishing more reliable therapies to target tumor-initiating cell populations. However, the high heterogeneity of the CSCs in BC disease remains a large issue. Therefore, in the present review, we discuss the various types of bladder CSC heterogeneity, important regulatory pathways, roles in tumor progression and tumorigenesis, and the experimental culture models. Finally, we describe the current stem cell-based therapies for BC disease.
Collapse
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan;
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| |
Collapse
|
25
|
Harris K, Gelberg HB, Kiupel M, Helfand SC. Immunohistochemical Features of Epithelial-Mesenchymal Transition in Feline Oral Squamous Cell Carcinoma. Vet Pathol 2019; 56:826-839. [PMID: 31331247 DOI: 10.1177/0300985819859873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Feline oral squamous cell carcinoma (FOSCC) is an aggressive malignancy with invasive and metastatic behavior. It is poorly responsive to chemotherapy and radiation. Neoplastic epithelial-mesenchymal transition (EMT) portends highly malignant behavior and enhances resistance to therapy. In transitioning to a more malignant phenotype, carcinoma stem cells undergo transformation mediated by expression of proteins, endowing them with mesenchymal properties advantageous to cell survival. The goal of the current study was to identify proteins associated with EMT in FOSCC. This study documents protein expression patterns in 10 FOSCC biopsies and 3 FOSCC cell lines (SCCF1, SCCF2, SCCF3), compatible with an EMT phenotype. As markers of EMT, P-cadherin, N-cadherin, vimentin, nuclear transcription factors Twist and Snail, hypoxia inducible factor 1α (HIF-1α), programmed death ligand 1, and vascular endothelial growth factor D, as well as E-cadherin, were examined using immunohistochemistry, Western blot, and enzyme-linked immunosorbent assay. P-cadherin, Twist, HIF-1α, and programmed death ligand 1 were commonly expressed in biopsies and cell lines. N-cadherin, classically associated with EMT, was not highly expressed, and E-cadherin was coexpressed along with proteins characteristic of EMT in all specimens. Production of vascular endothelial growth factor A by cell lines, a process regulated by HIF-1α expression, was suppressed by the small-molecule inhibitor dasatinib. These data are consistent with EMT in FOSCC and shed light on cellular changes that could contribute to the aggressive behavior of FOSCC.
Collapse
Affiliation(s)
- Krystal Harris
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Howard B Gelberg
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Matti Kiupel
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Stuart C Helfand
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
26
|
Feng X, Bai X, Ni J, Wasinger VC, Beretov J, Zhu Y, Graham P, Li Y. CHTOP in Chemoresistant Epithelial Ovarian Cancer: A Novel and Potential Therapeutic Target. Front Oncol 2019; 9:557. [PMID: 31380263 PMCID: PMC6660285 DOI: 10.3389/fonc.2019.00557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/07/2019] [Indexed: 01/14/2023] Open
Abstract
Objective: Chemoresistance is a major challenge in epithelial ovarian cancer (EOC) treatment. Chromatin target of protein arginine methyltransferase (CHTOP) was identified as a potential biomarker in chemoresistant EOC cell lines using label-free LC-MS/MS quantitative proteomics. Thus, the aim of this study is to investigate the role of CHTOP in chemoresistant EOC and the underlying mechanism. Methods: The expression of CHTOP in human ovarian cancer cells and tissues was detected using immunofluorescence (IF), western blot (WB), and immunohistochemistry (IHC), respectively. Flow cytometry and TUNEL assay were employed to detect the effect of CHTOP knockdown (KD) in chemoresistant EOC cell apoptosis, while colony and sphere formation assays were used to evaluate its effect on cell stemness. The association of CHTOP with cell metastasis was determined using Matrigel invasion and wound-healing assays. Results: The higher level expression of CHTOP protein was found in chemoresistant EOC cells as compared to their sensitive parental cells or normal epithelial ovarian cells. Results from IHC and bioinformatic analysis showed CHTOP was highly expressed in human ovarian cancer tissues and associated with a poor progression-free survival in patients. In addition, CHTOP KD significantly enhanced cisplatin-induced apoptosis, reduced the stemness of chemoresistant EOC cells, and decreased their metastatic potential. Conclusion: Our findings suggest that CHTOP is associated with apoptosis, stemness, and metastasis in chemoresistant EOC cells and might be a promising target to overcome chemoresistance in EOC treatment.
Collapse
Affiliation(s)
- Xiaojie Feng
- Department of Gynaecological Oncology, Henan Cancer Hospital, Zhengzhou, China.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Xupeng Bai
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Jie Ni
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, NSW, Australia.,School of Medical Science, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Julia Beretov
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia.,Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, Australia
| | - Ying Zhu
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Huang G, Zhang J, Wang X, Chen Y, Liu D, Guo S. Clinicopathological and prognostic significance of Nanog expression in non-small cell lung cancer: a meta-analysis. Onco Targets Ther 2019; 12:3609-3617. [PMID: 31190863 PMCID: PMC6526194 DOI: 10.2147/ott.s202081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Nanog has been found to be overexpressed in various cancers. However, the association between Nanog expression and prognosis or clinicopathological features is still controversial. Therefore, this meta-analysis was conducted to identify whether Nanog expression was associated with prognosis or clinicopathological characteristics in non-small cell lung cancer (NSCLC). Methods: We searched Embase, PubMed, Web of Science, the Cochrane Library, the Chinese National Knowledge Infrastructure database (CNKI), and the Wanfang database for articles. Pooled hazard ratios (HR), odds ratios (OR), and corresponding 95% confidence intervals (CI) were utilized to evaluate the relationship between Nanog expression and prognosis or clinicopathological characteristics in NSCLC. Results: The results showed that high expression of Nanog was significantly associated with poor overall survival (OS) (HR=1.95, 95% CI: 1.38-2.75, P=0.000). Additionally, high Nanog expression was significantly correlated with tumor differentiation (OR=3.18, 95% CI: 1.69-5.98, P=0.000) and TNM stage (OR=1.78, 95% CI: 1.28-2.47, P=0.001). However, no significant relationship was observed between Nanog expression and other clinicopathological features, including gender (OR=0.95, 95% CI: 0.69-1.33, P=0.783), age (OR=0.78, 95% CI: 0.57-1.07, P=0.119), tumor size (OR=0.87, 95% CI: 0.26-2.95, P=0.824), and lymph node metastasis (OR=1.29, 95% CI: 0.94-1.77, P=0.121). Conclusion: High Nanog expression was associated with poor prognosis in patients with NSCLC, and Nanog may serve as a prognostic predictor in NSCLC.
Collapse
Affiliation(s)
- Guichuan Huang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Daishun Liu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
28
|
Su Y, Yang W, Jiang N, Shi J, Chen L, Zhong G, Bi J, Dong W, Wang Q, Wang C, Lin T. Hypoxia-elevated circELP3 contributes to bladder cancer progression and cisplatin resistance. Int J Biol Sci 2019; 15:441-452. [PMID: 30745833 PMCID: PMC6367558 DOI: 10.7150/ijbs.26826] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/18/2018] [Indexed: 12/22/2022] Open
Abstract
Hypoxia plays a critical role in cancer biology. It induces genomic instability, which in turn helps cancer cells respond adaptively to meet the needs of carcinogenesis, cancer progression and relapse. Circular RNA has not been reported among the variety of downstream factors in this adaptive response. Although a few studies have demonstrated the important role of circular RNAs in driving human bladder cancer progression, their carcinogenic roles are still under investigated. Here, we identified a hypoxia-elevated circular RNA, circELP3, that contributes to bladder cancer progression and cisplatin resistance. Decreasing the level of circELP3 via siRNA clearly reduced the in vitro proliferation and cisplatin resistance of bladder cancer cells and promoted apoptosis. Interfering with circELP3 suppressed tumor xenograft growth in nude mice in vivo. In addition, lower circELP3-expressing bladder cancer cells displayed poorer self-renewal capacity, as demonstrated by lower levels of sphere formation and stem cell marker expression. Furthermore, in human bladder cancer patients, strong correlations between a high circELP3 level and advanced tumor grade and lymph node metastasis were observed. In summary, we provide the first direct evidence that circular RNA participates in the adaptive response to hypoxia and may play a role in the progression and drug resistance of bladder cancer.
Collapse
Affiliation(s)
- Yinjie Su
- The Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiping Yang
- The Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,The Department of Urology, Yan'an Hospital Affiliated with Kunming Medical University, Kunming, China
| | - Ning Jiang
- The Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,The Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Juanyi Shi
- The Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Luping Chen
- The Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guangzheng Zhong
- The Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junming Bi
- The Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei Dong
- The Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiong Wang
- The Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunhui Wang
- The Department of Urology, Yan'an Hospital Affiliated with Kunming Medical University, Kunming, China
| | - Tianxin Lin
- The Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Ooki A, VandenBussche CJ, Kates M, Hahn NM, Matoso A, McConkey DJ, Bivalacqua TJ, Hoque MO. CD24 regulates cancer stem cell (CSC)-like traits and a panel of CSC-related molecules serves as a non-invasive urinary biomarker for the detection of bladder cancer. Br J Cancer 2018; 119:961-970. [PMID: 30327565 PMCID: PMC6203855 DOI: 10.1038/s41416-018-0291-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND CD24 is a cornerstone of tumour progression in urothelial carcinoma of the bladder (UCB). However, its contribution to cancer stem cell (CSC)-like traits and the clinical utility of CD24 as a urinary biomarker for cancer detection have not been determined. METHODS The functional relevance of CD24 was evaluated using in vitro and in vivo approaches. The clinical utility of CSC-related molecules was assessed in urine samples by quantitative RT-PCR. RESULTS The knockdown of CD24 attenuated cancer stemness properties. The high-CD24-expressing cells, isolated from patient-derived UCB xenograft tumours, exhibited their enhanced stemness properties. CD24 was overexpressed not only in primary tumours but also in urine from UCB subjects. By assessment of 15 candidate CSC-related molecules in urine samples of a training cohort, a panel of three molecules (CD24, CD49f, and NANOG) was selected. The combination of these three molecules yielded a sensitivity and specificity of 81.7% and 74.3%, respectively, in an independent cohort. A combined set of 84 cases and 207 controls provided a sensitivity and specificity of 82% and 76%, respectively. CONCLUSION CD24 has a crucial role in maintaining the urothelial cancer stem-like traits and a panel of CSC-related molecules has potential as a urinary biomarker for non-invasive UCB detection.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | | | - Max Kates
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Noah M Hahn
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Andres Matoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231-2410, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - David J McConkey
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Trinity J Bivalacqua
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mohammad Obaidul Hoque
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
30
|
Enrichment of cancer stem cells by agarose multi-well dishes and 3D spheroid culture. Cell Tissue Res 2018; 375:397-408. [PMID: 30244317 DOI: 10.1007/s00441-018-2920-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 09/05/2018] [Indexed: 01/03/2023]
Abstract
As the theory of cancer stem cells (CSCs) is maturing, CSC-targeted therapy is emerging as an important therapeutic strategy and seeking the ideal method for rapid enrichment and purification of CSCs has become crucial. So far, based on the known CSC phenotypes and biological characteristics, the methods for enrichment CSCs mainly include low adhesion culture, low oxygen culture, chemotherapy drug stimulation and side population (SP) sorting but these methods cannot realize quick enrichment of the desired CSCs. Herein, we adopt a novel method that efficiently enriches a certain amount of CSCs through agarose multi-well dishes using rubber micro-molds to make cancer cells into cell spheroids (3D). These 3D cancer cell spheroids in the proportions of expression of CSC biomarkers (single stain of CD44, CD44v6 and CD133 or double stain of both CD44 and CD133) were significantly higher than those of the conventional adherent culture (2D) using flow cytometry analysis. In addition, the expression levels of stemness transcription factors such as OCT4, NANOG and SOX2 in 3D were also significantly higher than that in 2D through Western blot (WB) and quantitative polymerase chain reaction (qPCR) assays. In addition, the CSCs in 3D could form colonies with different sizes in soft agar. In conclusion, we developed a new method to enrich some kinds of CSCs, which might be a benefit for future CSC-targeted therapy studies and anti-CSC drug screening applications.
Collapse
|
31
|
Bellmunt J. Stem-Like Signature Predicting Disease Progression in Early Stage Bladder Cancer. The Role of E2F3 and SOX4. Biomedicines 2018; 6:biomedicines6030085. [PMID: 30072631 PMCID: PMC6164884 DOI: 10.3390/biomedicines6030085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
The rapid development of the cancer stem cells (CSC) field, together with powerful genome-wide screening techniques, have provided the basis for the development of future alternative and reliable therapies aimed at targeting tumor-initiating cell populations. Urothelial bladder cancer stem cells (BCSCs) that were identified for the first time in 2009 are heterogenous and originate from multiple cell types; including urothelial stem cells and differentiated cell types—basal, intermediate stratum and umbrella cells Some studies hypothesize that BCSCs do not necessarily arise from normal stem cells but might derive from differentiated progenies following mutational insults and acquisition of tumorigenic properties. Conversely, there is data that normal bladder tissues can generate CSCs through mutations. Prognostic risk stratification by identification of predictive markers is of major importance in the management of urothelial cell carcinoma (UCC) patients. Several stem cell markers have been linked to recurrence or progression. The CD44v8-10 to standard CD44-ratio (total ratio of all CD44 alternative splicing isoforms) in urothelial cancer has been shown to be closely associated with tumor progression and aggressiveness. ALDH1, has also been reported to be associated with BCSCs and a worse prognosis in a large number of studies. UCC include low-grade and high-grade non-muscle invasive bladder cancer (NMIBC) and high-grade muscle invasive bladder cancer (MIBC). Important genetic defects characterize the distinct pathways in each one of the stages and probably grades. As an example, amplification of chromosome 6p22 is one of the most frequent changes seen in MIBC and might act as an early event in tumor progression. Interestingly, among NMIBC there is a much higher rate of amplification in high-grade NMIBC compared to low grade NMIBC. CDKAL1, E2F3 and SOX4 are highly expressed in patients with the chromosomal 6p22 amplification aside from other six well known genes (ID4, MBOAT1, LINC00340, PRL, and HDGFL1). Based on that, SOX4, E2F3 or 6q22.3 amplifications might represent potential targets in this tumor type. Focusing more in SOX4, it seems to exert its critical regulatory functions upstream of the Snail, Zeb, and Twist family of transcriptional inducers of EMT (epithelial–mesenchymal transition), but without directly affecting their expression as seen in several cell lines of the Cancer Cell Line Encyclopedia (CCLE) project. SOX4 gene expression correlates with advanced cancer stages and poor survival rate in bladder cancer, supporting a potential role as a regulator of the bladder CSC properties. SOX4 might serve as a biomarker of the aggressive phenotype, also underlying progression from NMIBC to MIBC. The amplicon in chromosome 6 contains SOX4 and E2F3 and is frequently found amplified in bladder cancer. These genes/amplicons might be a potential target for therapy. As an existing hypothesis is that chromatin deregulation through enhancers or super-enhancers might be the underlying mechanism responsible of this deregulation, a potential way to target these transcription factors could be through epigenetic modifiers.
Collapse
Affiliation(s)
- Joaquim Bellmunt
- Department of Medical Oncology, Hospital del Mar, IMIM (PSMAR-Hospital del Mar Research Institute), 08003 Barcelona, Spain.
- Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Li C, Wang Z, Feng N, Dong J, Deng X, Yue Y, Guo Y, Hou J. Human HLA‑F adjacent transcript 10 promotes the formation of cancer initiating cells and cisplatin resistance in bladder cancer. Mol Med Rep 2018; 18:308-314. [PMID: 29749526 PMCID: PMC6059684 DOI: 10.3892/mmr.2018.9005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) serves important roles in tumor invasion, metastasis, formation of cancer initiating cells (CICs) and drug resistance. HLA‑F adjacent transcript 10 (FAT10) has been proposed as an oncogene in bladder cancer. However, the functional contribution of FAT10 to EMT and the formation of CICs remains unclear in bladder cancer. The present study reports that FAT10 protein expression is upregulated in bladder cancer cell lines, and the overexpression of FAT10 promotes EMT and the formation of CICs in bladder cancer UMUC‑3 cells. In addition, increased expression of FAT10 in tumor tissue was associated with shorter overall survival and progression free survival in Chinese patients with bladder cancer. Overexpression of FAT10 promotes cisplatin‑resistant bladder cancer formation. These results indicated FAT10 may be a novel target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Chen Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Zhenfan Wang
- Department of Urology, The First Hospital of Wujiang, Suzhou, Jiangsu 215200, P.R. China
| | - Ninghan Feng
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Jian Dong
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Xiaoyan Deng
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Yin Yue
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Yuehong Guo
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
33
|
Seabra AB, Durán N. Nitric oxide donors for prostate and bladder cancers: Current state and challenges. Eur J Pharmacol 2018; 826:158-168. [PMID: 29501865 DOI: 10.1016/j.ejphar.2018.02.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) is an endogenous molecule that plays pivotal physiological and pathophysiological roles, particularly in cancer biology. Generally, low concentrations of NO (pico- to nanomolar range) lead to tumor promotion. In contrast, high NO concentrations (micromolar range) have pro-apoptotic functions, leading to tumor suppression, and in this case, NO is involved in immune surveillance. Under oxidative stress, inducible NO synthase (iNOS) produces high NO concentrations for antineoplastic activities. Prostate and bladder cancers are the most commonly detected cancers in men, and are related to cancer death in males. This review summarizes the state of the art of NO/NO donors in combating prostate and bladder cancers, highlighting the importance of NO donors in cancer treatment, and the limitations and challenges to be overcome. In addition, the combination of NO donors with classical therapies (radio- or chemotherapy) in the treatment of prostate and bladder cancers is also presented and discussed. The combination of NO donors with conventional anticancer drugs is reported to inhibit tumor growth, since NO is able to sensitize tumor cells, enhancing the efficacy of the traditional drugs. Although important progress has been made, more studies are still necessary to definitely translate the administration of NO donors to clinical sets. The purpose of this review is to inspire new avenues in this topic.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil; NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Santo André, SP, Brazil.
| | - Nelson Durán
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil; NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Santo André, SP, Brazil; Chemistry Institute, Biol. Chem. Lab., Universidade Estadual de Campinas, CP 6154, CEP 13083-970, Campinas, SP, Brazil
| |
Collapse
|
34
|
Xin Z, Yang Z, Xu J, Li C, Shao T, Wang G, Li C. Gene expression profiling and construction of a putative gene regulatory network of bladder cancer tumor-initiating cells. Oncotarget 2017; 8:111271-111280. [PMID: 29340052 PMCID: PMC5762320 DOI: 10.18632/oncotarget.22771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
Human bladder cancer tumors have been shown to contain a subpopulation of cells with stem-like characteristics that may trigger tumor growth, recurrence, and metastasis. These cells, known as tumor-initiating cells (TICs), would be effective diagnostic tools and valuable therapeutic targets. Here, we report the isolation of TICs from seven bladder cancer cell lines and show that TICs from different sources vary on their ability to form tumorspheres in vitro and generate xenografts in vivo, which suggest they are remarkably heterogeneous. We used the Affymetrix PrimeView™ Human Gene Expression Array to analyze gene expression profiles of bladder TICs, which may help understand their tumorigenic capacities and develop novel treatments specifically targeted toward these cells. We then constructed a transcription factor-gene regulatory network that includes three key transcription factors that are involved in cell survival, differentiation, proliferation, and apoptosis. We validated our findings by analyzing mRNA expression of the key genes in this network in 24 clinical tissues. Our results suggest that this transcription factor-gene regulatory network could be useful in the development of clinical diagnostic tools and therapy approaches for bladder cancer.
Collapse
Affiliation(s)
- Zhuoyuan Xin
- Cancer Centre, First Hospital of Jilin University, Changchun, China
- Department of Pathogenobiology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Zhao Yang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianting Xu
- Cancer Centre, First Hospital of Jilin University, Changchun, China
| | - Chaoying Li
- Department of Pathogenobiology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Tong Shao
- Department of Pathogenobiology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Guoqing Wang
- Department of Pathogenobiology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing Jianlan Institute of Medicine, Beijing, China
| |
Collapse
|
35
|
Decitabine, a DNA-demethylating agent, promotes differentiation via NOTCH1 signaling and alters immune-related pathways in muscle-invasive bladder cancer. Cell Death Dis 2017; 8:3217. [PMID: 29242529 PMCID: PMC5870579 DOI: 10.1038/s41419-017-0024-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation observed in cancer can provide survival benefits to cells by silencing genes essential for anti-tumor activity. DNA-demethylating agents such as Decitabine (DAC)/Azacitidine (AZA) activate otherwise silenced tumor suppressor genes, alter immune response and epigenetically reprogram tumor cells. In this study, we show that non-cytotoxic nanomolar DAC concentrations modify the bladder cancer transcriptome to activate NOTCH1 at the mRNA and protein level, increase double-stranded RNA sensors and CK5-dependent differentiation. Importantly, DAC treatment increases ICN1 expression (the active intracellular domain of NOTCH1) significantly inhibiting cell proliferation and causing changes in cell size inducing morphological alterations reminiscent of senescence. These changes were not associated with β-galactosidase activity or increased p16 levels, but instead were associated with substantial IL-6 release. Increased IL-6 release was observed in both DAC-treated and ICN1 overexpressing cells as compared to control cells. Exogenous IL-6 expression was associated with a similar enlarged cell morphology that was rescued by the addition of a monoclonal antibody against IL-6. Treatment with DAC, overexpression with ICN1 or addition of exogenous IL-6 showed CK5 reduction, a surrogate marker of differentiation. Overall this study suggests that in MIBC cells, DNA hypomethylation increases NOTCH1 expression and IL-6 release to induce CK5-related differentiation.
Collapse
|
36
|
Islam SS, Al-Sharif I, Sultan A, Al-Mazrou A, Remmal A, Aboussekhra A. Eugenol potentiates cisplatin anti-cancer activity through inhibition of ALDH-positive breast cancer stem cells and the NF-κB signaling pathway. Mol Carcinog 2017; 57:333-346. [PMID: 29073729 DOI: 10.1002/mc.22758] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/17/2017] [Accepted: 10/23/2017] [Indexed: 01/16/2023]
Abstract
Triple-negative breast tumors are very aggressive and contain relatively high proportion of cancer stem cells, and are resistant to chemotherapeutic drugs including cisplatin. To overcome these limitations, we combined eugenol, a natural polyphenolic molecule, with cisplatin to normalize cisplatin mediated toxicity and potential drug resistance. Interestingly, the combination treatment provided significantly greater cytotoxic and pro-apoptotic effects as compared to treatment with eugenol or cisplatin alone on several triple-negative breast cancer cells both in vitro and in vivo. Furthermore, adding eugenol to cisplatin potentiated the inhibition of breast cancer stem cells by inhibiting ALDH enzyme activity and ALDH-positive tumor initiating cells. We provide also clear evidence that eugenol potentiates cisplatin inhibition of the NF-κB signaling pathway. Indeed, the binding of NF-κB to its cognate binding sites present in the promoters of IL-6 and IL-8 was dramatically reduced, which led to potent down-regulation of the IL-6 and IL-8 cytokines upon combination treatment relative to the single agents. Similar effects were observed on proliferation, inhibition of epithelial-to-mesenchymal transition and stemness markers in tumor xenografts. These results provide strong preclinical justification for combining cisplatin with eugenol as therapeutic approach for triple-negative breast cancers through targeting the resistant ALDH-positive cells and inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Syed S Islam
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ibtehaj Al-Sharif
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahlam Sultan
- Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Amer Al-Mazrou
- Stem Cell Therapy Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Adnane Remmal
- Faculté des Sciences Fès, Laboratoire de Biotechnologie Atlas, Fès, Morocco
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Xie SL, Fan S, Zhang SY, Chen WX, Li QX, Pan GK, Zhang HQ, Wang WW, Weng B, Zhang Z, Li JS, Lin ZY. SOX8 regulates cancer stem-like properties and cisplatin-induced EMT in tongue squamous cell carcinoma by acting on the Wnt/β-catenin pathway. Int J Cancer 2017; 142:1252-1265. [PMID: 29071717 DOI: 10.1002/ijc.31134] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/25/2017] [Accepted: 10/13/2017] [Indexed: 02/05/2023]
Abstract
A sub-population of chemoresistant cells exhibits biological properties similar to cancer stem cells (CSCs), and these cells are believed to be a main cause for tumor relapse and metastasis. In our study, we explored the role of SOX8 and its molecular mechanism in the regulation of the stemness properties and the epithelial mesenchymal transition (EMT) of cisplatin-resistant tongue squamous cell carcinoma (TSCC) cells. We found that SOX8 was upregulated in cisplatin-resistant TSCC cells, which displayed CSC-like properties and exhibited EMT. SOX8 was also overexpressed in chemoresistant patients with TSCC and was associated with higher lymph node metastasis, advanced tumor stage and shorter overall survival. Stable knockdown of SOX8 in cisplatin-resistant TSCC cells inhibited chemoresistance, tumorsphere formation, and EMT. The Wnt/β-catenin pathway mediated the cancer stem-like properties in cisplatin-resistant TSCC cells. Further studies showed that the transfection of active β-catenin in SOX8 stable-knockdown cells partly rescued the SOX8 silencing-induced repression of stem-like features and chemoresistance. Through chromatin immunoprecipitation and luciferase assays, we observed that SOX8 bound to the promoter region of Frizzled-7 (FZD7) and induced the FZD7-mediated activation of the Wnt/β-catenin pathway. In summary, SOX8 confers chemoresistance and stemness properties and mediates EMT processes in chemoresistant TSCC via the FZD7-mediated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- S-L Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - S Fan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - S-Y Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - W-X Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Q-X Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - G-K Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - H-Q Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - W-W Wang
- Department of Stomatology, Zibo Center Hospital, Zibo, China
| | - B Weng
- Department of Pathology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Z Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - J-S Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Z-Y Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Powan P, Luanpitpong S, He X, Rojanasakul Y, Chanvorachote P. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells. Am J Physiol Cell Physiol 2017; 313:C556-C566. [PMID: 28931539 DOI: 10.1152/ajpcell.00096.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers.
Collapse
Affiliation(s)
- Phattrakorn Powan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Cell-Based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia; and
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xiaoqing He
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia; and
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia; and.,Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; .,Cell-Based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
39
|
Fang D, Kitamura H. Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int J Urol 2017; 25:7-17. [PMID: 28697535 DOI: 10.1111/iju.13404] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
There is growing evidence of the presence of cancer stem cells in urothelial carcinoma. Cancer stem cells have the ability to self-renew and to differentiate into all cell types of the original heterogeneous tumor. A panel of diverse cancer stem cell markers might be suitable for simulation studies of urothelial cancer stem cells and for the development of optimized treatment protocols. The present review focuses on the advances in recognizing the markers of urothelial cancer stem cells and possible therapeutic targets. The commonly reported markers and pathways that were evaluated include CD44, CD133, ALDH1, SOX2 & SOX4, BMI1, EZH1, PD-L1, MAGE-A3, COX2/PGE2/STAT3, AR, and autophagy. Studies on the epithelial-mesenchymal transition-related pathways (Shh, Wnt/β-catenin, Notch, PI3K/Akt, TGF-β, miRNA) are also reviewed. Most of these markers were recognized through the expression patterns of cancer stem cell-rich side populations. Their regulative role in the development and differentiation of urothelial cancer stem cells was confirmed in vitro by functional analyses (e.g. cell migration, colony formation, sphere formation), and in vivo in xenograft experiments. Although a small number of these pathways are targeted by currently available drugs or drugs that are the currently being tested in clinical trials, a clear treatment approach has not been developed for most pathways. A greater understanding of the mechanisms that control the proliferation and differentiation of cancer stem cells is expected to lead to improvements in targeted therapy.
Collapse
Affiliation(s)
- Dong Fang
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan.,Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Hiroshi Kitamura
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| |
Collapse
|
40
|
李 磊, 周 云. 食管鳞癌干细胞及其耐药机制的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1461-1468. [DOI: 10.11569/wcjd.v25.i16.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
食管癌(esophageal carcinoma, EC)的全球发病率在恶性肿瘤中位居第8位, 死亡率居第6位, 化疗是EC主要的治疗方法之一, 但化疗药物耐药严重影响了化疗效果, 甚至引起化疗失败, 导致肿瘤复发或远处转移. 肿瘤干细胞(cancer stem cells, CSCs)学说提出CSCs是引起肿瘤对化疗药物耐药的重要原因之一. 本文就食管鳞癌干细胞的生物学特性、分选及化疗耐药的相关机制作一综述.
Collapse
|
41
|
Epithelial-mesenchymal transition promotes SOX2 and NANOG expression in bladder cancer. J Transl Med 2017; 97:567-576. [PMID: 28240746 DOI: 10.1038/labinvest.2017.17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/26/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urothelium and is classified into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Stemness markers such as SOX2 and NANOG are frequently overexpressed in various aggressive cancers, including MIBC; epithelial-mesenchymal transition (EMT) has been proposed as a potential trigger of stemness in cancers. To determine whether cancer stemness is acquired via EMT in bladder cancer, we studied the effect of EMT on the expression of SOX2 and NANOG in bladder cancer cell lines. We also analyzed their expression in clinical tissue samples. Our results revealed that a potent EMT inducer (transforming growth factor β1) reduced the expression of the epithelial marker E-cadherin and increased expression of both SOX2 and NANOG in epithelial-type bladder cancer cells. As for clinical bladder cancer samples, in NMIBC, E-cadherin expression was slightly diminished, and the expression of both SOX2 and NANOG was negligible. In contrast, in MIBC, E-cadherin expression was highly and heterogeneously diminished, while the expression of both SOX2 and NANOG was increased. We also noticed that either E-cadherin or SOX2 (or NANOG) was expressed (ie, in a manner exclusive of each other). In addition, the concentration of E-cadherin showed a significant negative correlation with tumor grade and stage, while expression of SOX2 and NANOG positively correlated with those clinicopathological parameters. These findings suggest that EMT promotes stemness of bladder cancer cells, contributing to tumor aggressiveness. This EMT-cancer stemness axis may also play an important role in the pathogenesis of NMIBC and MIBC.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.17.
Collapse
|
42
|
Inoue R, Hirohashi Y, Kitamura H, Nishida S, Murai A, Takaya A, Yamamoto E, Matsuki M, Tanaka T, Kubo T, Nakatsugawa M, Kanaseki T, Tsukahara T, Sato N, Masumori N, Torigoe T. GRIK2 has a role in the maintenance of urothelial carcinoma stem-like cells, and its expression is associated with poorer prognosis. Oncotarget 2017; 8:28826-28839. [PMID: 28418868 PMCID: PMC5438695 DOI: 10.18632/oncotarget.16259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/20/2017] [Indexed: 01/16/2023] Open
Abstract
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are small sub-population of cancer cells that are endowed with higher tumor-initiating ability, self-renewal ability and differentiation ability. CSCs/CICs could be isolated as high aldehyde dehydrogenase 1 activity cells (ALDH1high) from various cancer samples. In this study, we isolated urothelial carcinoma CSCs/CICs as ALDHhigh cells and investigated the molecular aspects. ALDH1high cells showed greater sphere-forming ability and higher tumor-initiating ability in immune-deficient mice than those of ALDH1low cells, indicating that CSCs/CICs were enriched in ALDH1high cells. cDNA microarray analysis revealed that an ionotropic glutamate receptor glutamate receptor, ionotropic, kainate 2 (GRIK2) was expressed in ALDH1high cells at a higher level than that in ALDH1low cells. GRIK2 gene knockdown by siRNAs decreased the sphere-forming ability and invasion ability, whereas GRIK2 overexpression increased the sphere-forming ability, invasion ability and tumorigenicity, indicating that GRIK2 has a role in the maintenance of CSCs/CICs. Immunohistochemical staining revealed that higher levels of GRIK2 and ALDH1 expression were related to poorer prognosis in urinary tract carcinoma cases. The findings indicate that GRIK2 has a role in the maintenance of urothelial CSCs/CICs and that GRIK2 and ALDH1 can be prognosis prediction markers for urinary tract carcinomas.
Collapse
Affiliation(s)
- Ryuta Inoue
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
- Department of Urology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Hiroshi Kitamura
- Department of Urology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama-Shi 930-0194, Japan
| | - Sachiyo Nishida
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
- Department of Urology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Akari Takaya
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Eri Yamamoto
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Masahiro Matsuki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
- Department of Urology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Toshiaki Tanaka
- Department of Urology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Munehide Nakatsugawa
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| |
Collapse
|
43
|
Abstract
The significant parallels between cell plasticity during embryonic development and carcinoma progression have helped us understand the importance of the epithelial-mesenchymal transition (EMT) in human disease. Our expanding knowledge of EMT has led to a clarification of the EMT program as a set of multiple and dynamic transitional states between the epithelial and mesenchymal phenotypes, as opposed to a process involving a single binary decision. EMT and its intermediate states have recently been identified as crucial drivers of organ fibrosis and tumor progression, although there is some need for caution when interpreting its contribution to metastatic colonization. Here, we discuss the current state-of-the-art and latest findings regarding the concept of cellular plasticity and heterogeneity in EMT. We raise some of the questions pending and identify the challenges faced in this fast-moving field.
Collapse
|
44
|
Gawlik-Rzemieniewska N, Bednarek I. The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells. Cancer Biol Ther 2016; 17:1-10. [PMID: 26618281 DOI: 10.1080/15384047.2015.1121348] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
NANOG is a transcription factor that is involved in the self-renewal of embryonic stem cells (ES) and is a critical factor for the maintenance of the undifferentiated state of pluripotent cells. Extensive data in the literature show that the NANOG gene is aberrantly expressed during the development of malignancy in cancer cells. ES and cancer stem cells (CSCs), a subpopulation of cancer cells within the tumor, are thought to share common phenotypic properties. This review describes the role of NANOG in cancer cell proliferation, epithelial-mesenchymal transition (EMT), apoptosis and metastasis. In addition, this paper illustrates a correlation between NANOG and signal transducer and activator of transcription 3 (STAT3) in the maintenance of cancer stem cell properties and multidrug resistance. Together, the available data demonstrate that NANOG is strictly involved in the process of carcinogenesis and is a potential prognostic marker of malignant tumors.
Collapse
Affiliation(s)
- Natalia Gawlik-Rzemieniewska
- a School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biotechnology and Genetic Engineering, Medical University of Silesia , Katowice , Poland
| | - Ilona Bednarek
- a School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biotechnology and Genetic Engineering, Medical University of Silesia , Katowice , Poland
| |
Collapse
|
45
|
Ferreira-Teixeira M, Paiva-Oliveira D, Parada B, Alves V, Sousa V, Chijioke O, Münz C, Reis F, Rodrigues-Santos P, Gomes C. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Med 2016; 14:163. [PMID: 27769244 PMCID: PMC5075212 DOI: 10.1186/s12916-016-0715-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/06/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. METHODS Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. RESULTS NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete remission. CONCLUSION Although pre-clinical, our results strongly suggest that an immunotherapeutic strategy using allogeneic activated NK cells from healthy donors is effective and should be exploited as a complementary therapeutic strategy in high-risk NMIBC patients to prevent tumor recurrence and progression.
Collapse
Affiliation(s)
- Margarida Ferreira-Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Daniela Paiva-Oliveira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Belmiro Parada
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Vera Alves
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vitor Sousa
- Service of Anatomical Pathology, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal.,Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, Coimbra, Portugal. .,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
46
|
Garg M. Epithelial plasticity in urothelial carcinoma: Current advancements and future challenges. World J Stem Cells 2016. [PMID: 27621760 DOI: 10.4252/wjsc.v8.i8.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Urothelial carcinoma (UC) of the bladder is characterized by high recurrence rate where a subset of these cells undergoes transition to deadly muscle invasive disease and later metastasizes. Urothelial cancer stem cells (UroCSCs), a tumor subpopulation derived from transformation of urothelial stem cells, are responsible for heterogeneous tumor formation and resistance to systemic treatment in UC of the bladder. Although the precise reason for pathophysiologic spread of tumor is not clear, transcriptome analysis of microdissected cancer cells expressing multiple progenitor/stem cell markers validates the upregulation of genes that derive epithelial-to-mesenchymal transition. Experimental studies on human bladder cancer xenografts describe the mechanistic functions and regulation of epithelial plasticity for its cancer-restraining effects. It has been further examined to be associated with the recruitment of a pool of UroCSCs into cell division in response to damages induced by adjuvant therapies. This paper also discusses the various probable therapeutic approaches to attenuate the progressive manifestation of chemoresistance by co-administration of inhibitors of epithelial plasticity and chemotherapeutic drugs by abrogating the early tumor repopulation as well as killing differentiated cancer cells.
Collapse
Affiliation(s)
- Minal Garg
- Minal Garg, Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
47
|
Garg M. Epithelial plasticity in urothelial carcinoma: Current advancements and future challenges. World J Stem Cells 2016; 8:260-267. [PMID: 27621760 PMCID: PMC4999653 DOI: 10.4252/wjsc.v8.i8.260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/25/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
Urothelial carcinoma (UC) of the bladder is characterized by high recurrence rate where a subset of these cells undergoes transition to deadly muscle invasive disease and later metastasizes. Urothelial cancer stem cells (UroCSCs), a tumor subpopulation derived from transformation of urothelial stem cells, are responsible for heterogeneous tumor formation and resistance to systemic treatment in UC of the bladder. Although the precise reason for pathophysiologic spread of tumor is not clear, transcriptome analysis of microdissected cancer cells expressing multiple progenitor/stem cell markers validates the upregulation of genes that derive epithelial-to-mesenchymal transition. Experimental studies on human bladder cancer xenografts describe the mechanistic functions and regulation of epithelial plasticity for its cancer-restraining effects. It has been further examined to be associated with the recruitment of a pool of UroCSCs into cell division in response to damages induced by adjuvant therapies. This paper also discusses the various probable therapeutic approaches to attenuate the progressive manifestation of chemoresistance by co-administration of inhibitors of epithelial plasticity and chemotherapeutic drugs by abrogating the early tumor repopulation as well as killing differentiated cancer cells.
Collapse
|
48
|
Gawlik-Rzemieniewska N, Galilejczyk A, Krawczyk M, Bednarek I. Silencing expression of the NANOG gene and changes in migration and metastasis of urinary bladder cancer cells. Arch Med Sci 2016; 12:889-97. [PMID: 27478472 PMCID: PMC4947613 DOI: 10.5114/aoms.2015.55368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/01/2015] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION It has been proved that expression of the NANOG gene is observed not only in embryonic-derived malignancies, but also in breast cancer, ovarian cancer, cervix cancer and bladder cancer. NANOG overexpression is correlated with high activity of MMP-2 and MMP-9. The aim of the study was to evaluate the changes in the malignant phenotype of T24 bladder cancer cells with modulated expression of the NANOG gene. MATERIAL AND METHODS Human urinary bladder cancer cells T24 (HTB-4) were cultivated under standard conditions. Transfection of the cells with silencing constructions was performed with the application of Lipofectamine 2000 (Invitrogen) reagent. Evaluation of changes in the expression level of individual genes was performed using qRTPCR. Changes in the protein level were evaluated using the Human ELISA Kit (Abcam). The invasion capability of transfected cells was tested using Matrigel Invasion Chambers (BD Biosciences). The changes in cell migration were assessed with a wound-healing assay. RESULTS The qRTPCR evaluation showed that silencing the NANOG gene in T24 cells led to the decrease of mRNA for the MMP-2 gene to the level of 62.4% and the MMP-9 gene to the level of 76%. The cells with modulated expression of the NANOG gene migrated slower in the Matrigel invasion assay and in the wound-healing assay. The immunoenzymatic test showed a decrease in the protein level of MMP-9. CONCLUSIONS The transcriptional activity of the NANOG gene might be connected with some aspects of bladder cancer cell metastasis in vitro and has an influence on MMP-2 and MMP-9 expression levels.
Collapse
Affiliation(s)
- Natalia Gawlik-Rzemieniewska
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biotechnology and Genetic Engineering, Medical University of Silesia, Katowice, Poland
| | - Anna Galilejczyk
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biotechnology and Genetic Engineering, Medical University of Silesia, Katowice, Poland
| | - Michał Krawczyk
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biotechnology and Genetic Engineering, Medical University of Silesia, Katowice, Poland
| | - Ilona Bednarek
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biotechnology and Genetic Engineering, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
49
|
Effects of surgery on the cancer stem cell niche. Eur J Surg Oncol 2016; 42:319-25. [DOI: 10.1016/j.ejso.2015.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 01/12/2023] Open
|
50
|
Ojha R, Jha V, Singh SK. Gemcitabine and mitomycin induced autophagy regulates cancer stem cell pool in urothelial carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:347-59. [PMID: 26658162 DOI: 10.1016/j.bbamcr.2015.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022]
Abstract
Urothelial carcinoma (UC) is characterized by therapeutic resistance and frequent tumor relapse. It has been suggested that UC are driven by a rare subset of cancer stem cells (CSCs). In order to understand UC recurrence post therapy, we investigated the behavior of urothelial CSCs after exposure to commonly used chemotherapeutic agents, gemcitabine (GC) and mitomycin (MM). Although, the role of autophagy in CSC maintenance is well documented, the relationship of autophagy and CSCs with respect to drug resistance remains elusive. In the present study, we found that both GC and MM increased the percentage of CSCs in primary cultured urothelial carcinoma cells (UCC). These CSCs exhibited higher autophagy flux and higher expression of glycolytic genes. Inhibition of autophagy led to decrease in the expression of glycolysis genes. Inhibition of autophagy and glycolysis caused decrease in expression of stemness genes (Oct-4, Nanog), drug resistance genes (ABCG2, MDR1) and sensitized CSCs to GC and MM induced apoptosis. This finding suggests that autophagy and glycolysis may play a central role in drug resistance. Altogether, we conclude that autophagy may support cell survival by buffering bioenergetic demands for maintenance of high glycolytic flux in CSCs. Therefore, autophagy-based, "customized" combinatorial approaches may provide a new method to counter CSC-driven resistance and may prevent relapse in UC. The synergistic cytotoxic effect of GC/ MM with autophagy inhibitor (chloroquine) or with glycolytic inhibitor (2-deoxyglucose) may be of help in improving the outcome in patients with urothelial carcinoma of urinary bladder.
Collapse
Affiliation(s)
- Rani Ojha
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - V Jha
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - S K Singh
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|