1
|
Levin M. The Multiscale Wisdom of the Body: Collective Intelligence as a Tractable Interface for Next-Generation Biomedicine. Bioessays 2025; 47:e202400196. [PMID: 39623868 DOI: 10.1002/bies.202400196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 02/25/2025]
Abstract
The dominant paradigm in biomedicine focuses on genetically-specified components of cells and their biochemical dynamics, emphasizing bottom-up emergence of complexity. Here, I explore the biomedical implications of a complementary emerging field: diverse intelligence. Using tools from behavioral science and multiscale neuroscience, we can study development, regenerative repair, and cancer suppression as behaviors of a collective intelligence of cells navigating the spaces of possible morphologies and transcriptional and physiological states. A focus on the competencies of living material-from molecular to organismal scales-reveals a new landscape for interventions. Such top-down approaches take advantage of the memories and homeodynamic goal-seeking behavior of cells and tissues, offering the same massive advantages in biomedicine and bioengineering that reprogrammable hardware has provided information technologies. The bioelectric networks that bind individual cells toward large-scale anatomical goals are an especially tractable interface to organ-level plasticity, and tools to modulate them already exist. This suggests a research program to understand and tame the software of life for therapeutic gain by understanding the many examples of basal cognition that operate throughout living bodies.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Djamgoz MBA. Electrical excitability of cancer cells-CELEX model updated. Cancer Metastasis Rev 2024; 43:1579-1591. [PMID: 38976181 PMCID: PMC11554705 DOI: 10.1007/s10555-024-10195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
The normal functioning of every cell in the body depends on its bioelectric properties and many diseases are caused by genetic and/or epigenetic dysregulation of the underlying ion channels. Metastasis, the main cause of death from cancer, is a complex multi-stage process in which cells break away from a primary tumour, invade the surrounding tissues, enter the circulation by encountering a blood vessel and spread around the body, ultimately lodging in distant organs and reproliferating to form secondary tumours leading to devastating organ failure. Such cellular behaviours are well known to involve ion channels. The CELEX model offers a novel insight to metastasis where it is the electrical excitation of the cancer cells that is responsible for their aggressive and invasive behaviour. In turn, the hyperexcitability is underpinned by concomitant upregulation of functional voltage-gated sodium channels and downregulation of voltage-gated potassium channels. Here, we update the in vitro and in vivo evidence in favour of the CELEX model for carcinomas. The results are unequivocal for the sodium channel. The potassium channel arm is also broadly supported by existing evidence although these data are complicated by the impact of the channels on the membrane potential and consequent secondary effects. Finally, consistent with the CELEX model, we show (i) that carcinomas are indeed electrically excitable and capable of generating action potentials and (ii) that combination of a sodium channel inhibitor and a potassium channel opener can produce a strong, additive anti-invasive effect. We discuss the possible clinical implications of the CELEX model in managing cancer.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Giammello F, Biella C, Priori EC, Filippo MADS, Leone R, D'Ambrosio F, Paterno' M, Cassioli G, Minetti A, Macchi F, Spalletti C, Morella I, Ruberti C, Tremonti B, Barbieri F, Lombardi G, Brambilla R, Florio T, Galli R, Rossi P, Brandalise F. Modulating voltage-gated sodium channels to enhance differentiation and sensitize glioblastoma cells to chemotherapy. Cell Commun Signal 2024; 22:434. [PMID: 39251990 PMCID: PMC11382371 DOI: 10.1186/s12964-024-01819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) stands as the most prevalent and aggressive form of adult gliomas. Despite the implementation of intensive therapeutic approaches involving surgery, radiation, and chemotherapy, Glioblastoma Stem Cells contribute to tumor recurrence and poor prognosis. The induction of Glioblastoma Stem Cells differentiation by manipulating the transcriptional machinery has emerged as a promising strategy for GBM treatment. Here, we explored an innovative approach by investigating the role of the depolarized resting membrane potential (RMP) observed in patient-derived GBM sphereforming cell (GSCs), which allows them to maintain a stemness profile when they reside in the G0 phase of the cell cycle. METHODS We conducted molecular biology and electrophysiological experiments, both in vitro and in vivo, to examine the functional expression of the voltage-gated sodium channel (Nav) in GSCs, particularly focusing on its cell cycle-dependent functional expression. Nav activity was pharmacologically manipulated, and its effects on GSCs behavior were assessed by live imaging cell cycle analysis, self-renewal assays, and chemosensitivity assays. Mechanistic insights into the role of Nav in regulating GBM stemness were investigated through pathway analysis in vitro and through tumor proliferation assay in vivo. RESULTS We demonstrated that Nav is functionally expressed by GSCs mainly during the G0 phase of the cell cycle, suggesting its pivotal role in modulating the RMP. The pharmacological blockade of Nav made GBM cells more susceptible to temozolomide (TMZ), a standard drug for this type of tumor, by inducing cell cycle re-entry from G0 phase to G1/S transition. Additionally, inhibition of Nav substantially influenced the self-renewal and multipotency features of GSCs, concomitantly enhancing their degree of differentiation. Finally, our data suggested that Nav positively regulates GBM stemness by depolarizing the RMP and suppressing the ERK signaling pathway. Of note, in vivo proliferation assessment confirmed the increased susceptibility to TMZ following pharmacological blockade of Nav. CONCLUSIONS This insight positions Nav as a promising prognostic biomarker and therapeutic target for GBM patients, particularly in conjunction with temozolomide treatment.
Collapse
Affiliation(s)
- Francesca Giammello
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
- PhD Program in Genetics, Molecular and Cellular Biology, University of Pavia, Pavia, Italy
| | - Chiara Biella
- IRCCS San Raffaele Hospital, Via Olgettina 58, Milan, 20132, Italy
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
| | | | - Roberta Leone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
| | | | - Martina Paterno'
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Giulia Cassioli
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Antea Minetti
- CNR Neuroscience Institute of Pisa, Via Giuseppe Moruzzi, 1, Pisa (PI), 56124, Italy
| | - Francesca Macchi
- CNR Neuroscience Institute of Pisa, Via Giuseppe Moruzzi, 1, Pisa (PI), 56124, Italy
| | - Cristina Spalletti
- CNR Neuroscience Institute of Pisa, Via Giuseppe Moruzzi, 1, Pisa (PI), 56124, Italy
| | - Ilaria Morella
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
| | - Cristina Ruberti
- Advanced Technology Platform, Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Beatrice Tremonti
- Pharmacology Unit, Department of Internal Medicine, University of Genova, Genova, 16132, Italy
| | - Federica Barbieri
- Pharmacology Unit, Department of Internal Medicine, University of Genova, Genova, 16132, Italy
| | - Giuseppe Lombardi
- Department of Oncology 1, Oncology, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, Padua, 35128, Italy
| | - Riccardo Brambilla
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
| | - Tullio Florio
- Pharmacology Unit, Department of Internal Medicine, University of Genova, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, 16132, Italy
| | - Rossella Galli
- IRCCS San Raffaele Hospital, Via Olgettina 58, Milan, 20132, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, 27100, Italy
| | | |
Collapse
|
4
|
Mi W, Liu S. Tetrodotoxin and the state-of-the-art progress of its associated analytical methods. Front Microbiol 2024; 15:1413741. [PMID: 39290516 PMCID: PMC11407752 DOI: 10.3389/fmicb.2024.1413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Tetrodotoxin (TTX), which is found in various marine organisms, including pufferfish, shellfish, shrimp, crab, marine gastropods, and gobies, is an effective marine toxin and the cause of many seafood poisoning incidents. Owing to its toxicity and threat to public health, the development of simple, rapid, and efficient analytical methods to detect TTX in various food matrices has garnered increasing interest worldwide. Herein, we reviewed the structure and properties, origin and sources, toxicity and poisoning, and relevant legislative measures of TTX. Additionally, we have mainly reviewed the state-of-the-art progress of analytical methods for TTX detection in the past five years, such as bioassays, immunoassays, instrumental analysis, and biosensors, and summarized their advantages and limitations. Furthermore, this review provides an in-depth discussion of the most advanced biosensors, including cell-based biosensors, immunosensors, and aptasensors. Overall, this study provides useful insights into the future development and wide application of biosensors for TTX detection.
Collapse
Affiliation(s)
- Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
6
|
Pukkanasut P, Jaskula-Sztul R, Gomora JC, Velu SE. Therapeutic targeting of voltage-gated sodium channel Na V1.7 for cancer metastasis. Front Pharmacol 2024; 15:1416705. [PMID: 39045054 PMCID: PMC11263763 DOI: 10.3389/fphar.2024.1416705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
This review focuses on the expression and function of voltage-gated sodium channel subtype NaV1.7 in various cancers and explores its impact on the metastasis driving cell functions such as proliferation, migration, and invasiveness. An overview of its structural characteristics, drug binding sites, inhibitors and their likely mechanisms of action are presented. Despite the lack of clarity on the precise mechanism by which NaV1.7 contributes to cancer progression and metastasis; many studies have suggested a connection between NaV1.7 and proteins involved in multiple signaling pathways such as PKA and EGF/EGFR-ERK1/2. Moreover, the functional activity of NaV1.7 appears to elevate the expression levels of MACC1 and NHE-1, which are controlled by p38 MAPK activity, HGF/c-MET signaling and c-Jun activity. This cascade potentially enhances the secretion of extracellular matrix proteases, such as MMPs which play critical roles in cell migration and invasion activities. Furthermore, the NaV1.7 activity may indirectly upregulate Rho GTPases Rac activity, which is critical for cytoskeleton reorganization, cell adhesion, and actin polymerization. The relationship between NaV1.7 and cancer progression has prompted researchers to investigate the therapeutic potential of targeting NaV1.7 using inhibitors. The positive outcome of such studies resulted in the discovery of several inhibitors with the ability to reduce cancer cell migration, invasion, and tumor growth underscoring the significance of NaV1.7 as a promising pharmacological target for attenuating cancer cell proliferation and metastasis. The research findings summarized in this review suggest that the regulation of NaV1.7 expression and function by small molecules and/or by genetic engineering is a viable approach to discover novel therapeutics for the prevention and treatment of metastasis of cancers with elevated NaV1.7 expression.
Collapse
Affiliation(s)
- Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Renata Jaskula-Sztul
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Djamgoz MBA. Ranolazine: a potential anti-metastatic drug targeting voltage-gated sodium channels. Br J Cancer 2024; 130:1415-1419. [PMID: 38424164 PMCID: PMC11058819 DOI: 10.1038/s41416-024-02622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Multi-faceted evidence from a range of cancers suggests strongly that de novo expression of voltage-gated sodium channels (VGSCs) plays a significant role in driving cancer cell invasiveness. Under hypoxic conditions, common to growing tumours, VGSCs develop a persistent current (INaP) which can be blocked selectively by ranolazine. METHODS Several different carcinomas were examined. We used data from a range of experimental approaches relating to cellular invasiveness and metastasis. These were supplemented by survival data mined from cancer patients. RESULTS In vitro, ranolazine inhibited invasiveness of cancer cells especially under hypoxia. In vivo, ranolazine suppressed the metastatic abilities of breast and prostate cancers and melanoma. These data were supported by a major retrospective epidemiological study on breast, colon and prostate cancer patients. This showed that risk of dying from cancer was reduced by ca.60% among those taking ranolazine, even if this started 4 years after the diagnosis. Ranolazine was also shown to reduce the adverse effects of chemotherapy on heart and brain. Furthermore, its anti-cancer effectiveness could be boosted by co-administration with other drugs. CONCLUSIONS Ranolazine, alone or in combination with appropriate therapies, could be reformulated as a safe anti-metastatic drug offering many potential advantages over current systemic treatment modalities.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin, 10, Türkiye.
| |
Collapse
|
8
|
Peng X, Zheng Y, Xue Y, Liang X, He P, Chen H, He P, Peng Y, Zhao Z, Chen Y, Gui X, Yang L, Xiong Y, Lin J, Shi Y, Chu C, Zhang Y, Liu G. Super‐Stable Homogeneously Sustained‐Release System Mediates Transcatheter Arterial Ionic‐Embolization Strategy for Hepatocellular Carcinoma Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202311505] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 01/04/2025]
Abstract
AbstractThe clinical effectiveness of locoregional therapies in treating hepatocellular carcinoma (HCC) is frequently constrained by multi‐drug resistance and/or tumor metastasis. To surmount these challenges, a promising approach, transcatheter arterial ionic‐embolization (TAIE) is proposed, which can specifically and continuously disrupt the intracellular ionic balance to significantly inhibit tumor activity and invasion. The hydrophilic micro‐nanoscale sodium chloride particles (SCPs) are ingeniously intermixed with hydrophobic lipiodol to create a super‐stable homogeneous embolic formulation (lipiodol‐sodium chloride, LSC). After interventional administration, the LSC selectively deposits in HCC lesions, where lipiodol stably delivers SCPs to disrupt the cell's ionic balance, causing cell death without drug resistance. Notably, it is demonstrated that LSC can significantly hinder tumor cell migration and invasion. The mechanism is through SCP disruption of the ionic balance, which induces cell swelling and subsequent vimentin hydrolysis‐mediated cytoskeletal remodeling. In addition, it is found that LSC treatment notably downregulates the expression of MYLK, TLN, and THBS2 genes in the focal adhesion (FA) signaling pathway of HepG2 cells. LSC formulation integrated tumor‐specific deposition, intratumoral sustained release, efficient tumoricidal activity, significant metastasis inhibition, and excellent biological safety, thereby demonstrating superior in vivo tumor therapeutic effects via TAIE strategy, and showing a promising cancer therapeutic approach for clinical application.
Collapse
Affiliation(s)
- Xuqi Peng
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Yi Xue
- Department of Burns and Plastic & Wound Repair Surgery Xiang'an Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361102 China
| | - Xiaoliu Liang
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Pan He
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
- Department of Hepatobiliary Surgery Academician (Expert) Workstation Affiliated Hospital of North Sichuan Medical College Nanchong 637600 China
| | - Hu Chen
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Peng He
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Yisheng Peng
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Zhenwen Zhao
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Yulun Chen
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Xiran Gui
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Lei Yang
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery Academician (Expert) Workstation Affiliated Hospital of North Sichuan Medical College Nanchong 637600 China
| | - Juan Lin
- Research Unit of Cellular Stress of Chinese Academy of Medical Sciences Cancer Research Center of Xiamen University School of Medicine Xiamen University Xiamen 361102 China
| | - Yesi Shi
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| | - Chengchao Chu
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
- Eye Institute of Xiamen University Fujian Provincial Key Laboratory of Ophthalmology and Visual Science School of Medicine Xiamen University Xiamen 361102 China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
- Shen Zhen Research Institute of Xiamen University Shenzhen 518057 China
- Center for Nanomedicine and Department of Anesthesiology Perioperative and Pain Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research School of Public Health Xiamen University Xiamen 361002 China
| |
Collapse
|
9
|
Keleş D, Sipahi M, İnanç-Sürer Ş, Djamgoz MB, Oktay G. Tetracaine downregulates matrix metalloproteinase activity and inhibits invasiveness of strongly metastatic MDA-MB-231 human breast cancer cells. Chem Biol Interact 2023; 385:110730. [PMID: 37806380 DOI: 10.1016/j.cbi.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Tetracaine, a long-acting amino ester-type local anesthetic, prevents the initiation and propagation of action potentials by reversibly blocking voltage-gated sodium channels (VGSCs). These channels, which are highly expressed in several carcinomas (e.g. breast, prostate, colon and lung cancers) have been implicated in promoting metastatic behaviours. Recent evidence suggests that local anesthetics can suppress cancer progression. In this paper, we aimed to explore whether tetracaine would reduce the invasive characteristics of breast cancer cells. In a comparative approach, we used two cell lines of contracting metastatic potential: MDA-MB-231 (strongly metastatic) and MCF-7 (weakly metastatic). Tetracaine (50 μM and 75 μM) did not affect the proliferation of both MDA-MB-231 and MCF-7 cells. Importantly, tetracaine suppressed the migratory, invasive, and adhesive capacities of MDA-MB-231 cells; there was no effect on the motility of MCF-7 cells. Tetracaine treatment also significantly decreased the expression and activity levels of MMP-2 and MMP-9, whilst increasing TIMP-2 expression in MDA-MB-231 cells. On the other hand, VGSC α/Nav1.5 and VGSC-β1 mRNA and protein expression levels were not affected. We conclude that tetracaine has anti-invasive effects on breast cancer cells and may be exploited clinically, for example, in surgery and/or in combination therapies.
Collapse
Affiliation(s)
- Didem Keleş
- Izmir University of Economics, Vocational School of Health Services, Medical Laboratory Techniques, 35330, Balcova, Izmir, Turkey; Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Murat Sipahi
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Şeniz İnanç-Sürer
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Mustafa Ba Djamgoz
- Imperial College London, Department of Life Sciences, South Kensington Campus, SW7 2AZ, London, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Gülgün Oktay
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey.
| |
Collapse
|
10
|
Yildirim-Kahriman S. Effect of Voltage-Gated Sodium Channel Inhibitors on the Metastatic Behavior of Prostate Cancer Cells: A Meta-Analysis. Pak J Biol Sci 2023; 26:419-426. [PMID: 37937335 DOI: 10.3923/pjbs.2023.419.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
<b>Background and Objective:</b> Functional Voltage-Gated Sodium Channels (VGSCs) are expressed in metastatic prostate cancer (PCa) cells. A number of <i>in vitro</i> studies have evaluated the effect of functional VGSC expression on the metastatic cell behavior of PCa cells. This study aimed to evaluate the effect of VGSC inhibition on metastatic cell behavior in PCa cells by meta-analysis. <b>Materials and Methods:</b> Meta-analysis was performed on data taken from 13 publications that examined the effect of VGSC inhibitors on the metastatic cell behavior of metastatic PCa cells expressing functional VGSCs. The measure of effect was calculated according to the random effects model using mean differences and presented with a forest plot graph. Heterogeneity was checked using the Cochran's Q Test (Chi-square statistic) and the I<sup>2</sup> test statistic. In order to evaluate the objectivity, the funnels-plot graph was used. <b>Results:</b> The g value showing the effect size was calculated as 4.49 (95% CI = 5.35-3.62) in the experiments where Tetrodotoxin (TTX) was used, which has a very high specificity for VGSCs but is not licensed for clinical use. In experiments using licensed inhibitors Lamotrigine, Oxcarbazepine, Phenytoin, Ranolazine, Riluzole and Lidocaine, the g value was 1.37 (95 % CI = 2.02-0.71). Suppression of metastatic cell behavior in both subgroups is statistically significant (p<0.00001). <b>Conclusion:</b> Meta-analysis confirmed that VGSCs are an enhancing factor in the metastasis of PCa cells. The VGSCs appear to be an important target in the diagnosis and development of new treatment options in PCa.
Collapse
|
11
|
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol 2023; 14:1206136. [PMID: 37456756 PMCID: PMC10348687 DOI: 10.3389/fphar.2023.1206136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors. Recent work has elicited essential information about the signalling pathways modulated by these channels: coupling membrane activity to transcriptional regulation pathways, intracellular and extracellular pH regulation, invadopodia maturation, and proteolytic activity. In a promising scenario, the inhibition of VGSCs with FDA-approved drugs as well as with new synthetic compounds, reduces cancer cell invasion in vitro and cancer progression in vivo. The purpose of this review is to present an update regarding recent advances and ongoing efforts to have a better understanding of molecular and cellular mechanisms on the involvement of both pore-forming α and auxiliary β subunits of VGSCs in the metastatic processes, with the aim at proposing VGSCs as new oncological markers and targets for anticancer treatments.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Medicina Genómica, Hospital General de México “Dr Eduardo Liceaga”, Mexico City, Mexico
| | - Everardo Hernández-Plata
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Sakellakis M, Chalkias A. The Role οf Ion Channels in the Development and Progression of Prostate Cancer. Mol Diagn Ther 2023; 27:227-242. [PMID: 36600143 DOI: 10.1007/s40291-022-00636-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
Ion channels have major regulatory functions in living cells. Apart from their role in ion transport, they are responsible for cellular electrogenesis and excitability, and may also regulate tissue homeostasis. Although cancer is not officially classified as a channelopathy, it has been increasingly recognized that ion channel aberrations play an important role in virtually all cancer types. Ion channels can exert pro-tumorigenic activities due to genetic or epigenetic alterations, or as a response to molecular signals, such as growth factors, hormones, etc. Increasing evidence suggests that ion channels and pumps play a critical role in the regulation of prostate cancer cell proliferation, apoptosis evasion, migration, epithelial-to-mesenchymal transition, and angiogenesis. There is also evidence suggesting that ion channels might play a role in treatment failure in patients with prostate cancer. Hence, they represent promising targets for diagnosis, staging, and treatment, and their effects may be of particular significance for specific patient populations, including those undergoing anesthesia and surgery. In this article, the role of major types of ion channels involved in the development and progression of prostate cancer are reviewed. Identifying the underlying molecular mechanisms of the pro-tumorigenic effects of ion channels may potentially inform the development of novel therapeutic strategies to counter this malignancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Hellenic GU Cancer Group, Athens, Greece. .,Department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou, 18547, Athens, Greece.
| | - Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
13
|
Pellegrino M, Ricci E, Ceraldi R, Nigro A, Bonofiglio D, Lanzino M, Morelli C. From HDAC to Voltage-Gated Ion Channels: What's Next? The Long Road of Antiepileptic Drugs Repositioning in Cancer. Cancers (Basel) 2022; 14:cancers14184401. [PMID: 36139561 PMCID: PMC9497059 DOI: 10.3390/cancers14184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although in the last decades the clinical outcome of cancer patients considerably improved, the major drawbacks still associated with chemotherapy are the unwanted side effects and the development of drug resistance. Therefore, a continuous effort in trying to discover new tumor markers, possibly of diagnostic, prognostic and therapeutic value, is being made. This review is aimed at highlighting the anti-tumor activity that several antiepileptic drugs (AEDs) exert in breast, prostate and other types of cancers, mainly focusing on their ability to block the voltage-gated Na+ and Ca++ channels, as well as to inhibit the activity of histone deacetylases (HDACs), all well-documented tumor markers and/or molecular targets. The existence of additional AEDs molecular targets is highly suspected. Therefore, the repurposing of already available drugs as adjuvants in cancer treatment would have several advantages, such as reductions in dose-related toxicity CVs will be sent in a separate mail to the indicated address of combined treatments, lower production costs, and faster approval for clinical use. Abstract Cancer is a major health burden worldwide. Although the plethora of molecular targets identified in the last decades and the deriving developed treatments, which significantly improved patients’ outcome, the occurrence of resistance to therapies remains the major cause of relapse and mortality. Thus, efforts in identifying new markers to be exploited as molecular targets in cancer therapy are needed. This review will first give a glance on the diagnostic and therapeutic significance of histone deacetylase (HDAC) and voltage gated ion channels (VGICs) in cancer. Nevertheless, HDAC and VGICs have also been reported as molecular targets through which antiepileptic drugs (AEDs) seem to exert their anticancer activity. This should be claimed as a great advantage. Indeed, due to the slowness of drug approval procedures, the attempt to turn to off-label use of already approved medicines would be highly preferable. Therefore, an updated and accurate overview of both preclinical and clinical data of commonly prescribed AEDs (mainly valproic acid, lamotrigine, carbamazepine, phenytoin and gabapentin) in breast, prostate, brain and other cancers will follow. Finally, a glance at the emerging attempt to administer AEDs by means of opportunely designed drug delivery systems (DDSs), so to limit toxicity and improve bioavailability, is also given.
Collapse
Affiliation(s)
| | | | | | | | | | - Marilena Lanzino
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| | - Catia Morelli
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| |
Collapse
|
14
|
Yerlikaya S, Djamgoz MB. Oleamide, a Sleep-Inducing Compound: Effects on Ion Channels and Cancer. Bioelectricity 2022. [DOI: 10.1089/bioe.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Serife Yerlikaya
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Biotechnology Research Center, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
15
|
Ahmed S, Alam W, Jeandet P, Aschner M, Alsharif KF, Saso L, Khan H. Therapeutic Potential of Marine Peptides in Prostate Cancer: Mechanistic Insights. Mar Drugs 2022; 20:md20080466. [PMID: 35892934 PMCID: PMC9330892 DOI: 10.3390/md20080466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the leading cause of cancer death in men, and its treatment is commonly associated with severe adverse effects. Thus, new treatment modalities are required. In this context, natural compounds have been widely explored for their anti-PCa properties. Aquatic organisms contain numerous potential medications. Anticancer peptides are less toxic to normal cells and provide an efficacious treatment approach via multiple mechanisms, including altered cell viability, apoptosis, cell migration/invasion, suppression of angiogenesis and microtubule balance disturbances. This review sheds light on marine peptides as efficacious and safe therapeutic agents for PCa.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Philippe Jeandet
- Research Unit “Induced Resistance and Plant Bioprotection”, Department of Biology and Biochemistry, Faculty of Sciences, University of Reims, EA 4707-USC INRAe 1488, SFR Condorcet FR CNRS 3417, P.O. Box 1039, CEDEX 02, 51687 Reims, France;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Luciano Saso
- Department of Physiology and Pharmacology, “Vittorio Erspamer” Sapienza University, 00185 Rome, Italy;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
- Correspondence:
| |
Collapse
|
16
|
Djamgoz MBA. Ion Transporting Proteins and Cancer: Progress and Perspectives. Rev Physiol Biochem Pharmacol 2022; 183:251-277. [PMID: 35018530 DOI: 10.1007/112_2021_66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion transporting proteins (ITPs) comprise a wide range of ion channels, exchangers, pumps and ionotropic receptors many of which are expressed in tumours and contribute dynamically to the different components and stages of the complex cancer process, from initiation to metastasis. In this promising major field of biomedical research, several candidate ITPs have emerged as clinically viable. Here, we consider a series of general issues concerning the oncological potential of ITPs focusing on voltage-gated sodium channels as a 'case study'. First, we outline some key properties of 'cancer' as a whole. These include epigenetics, stemness, metastasis, heterogeneity, neuronal characteristics and bioelectricity. Cancer specificity of ITP expression is evaluated in relation to tissue restriction, splice variance, functional specificity and macro-molecular complexing. As regards clinical potential, diagnostics is covered with emphasis on enabling early detection. For therapeutics, we deal with molecular approaches, drug repurposing and combinations. Importantly, we emphasise the need for carefully designed clinical trials. We highlight also the area of 'social responsibility' and the need to involve the public (cancer patients and healthy individuals) in the work of cancer research professionals as well as clinicians. In advising patients how best to manage cancer, and live with it, we offer the following four principles: Awareness and prevention, early detection, specialist, integrated care, and psychological support. Finally, we highlight four key prerequisites for commercialisation of ITP-based technologies against cancer. We conclude that ITPs offer significant potential as regards both understanding the intricacies of the complex process of cancer and for developing much needed novel therapies.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK. .,Biotechnology Research Centre, Cyprus International University, Nicosia, Mersin, Turkey.
| |
Collapse
|
17
|
Ozel AB, Dagsuyu E, Aydın PK, Bugan I, Bulan OK, Yanardag R, Yarat A. Brain Boron Level, DNA Content, and Myeloperoxidase Activity of Metformin-Treated Rats in Diabetes and Prostate Cancer Model. Biol Trace Elem Res 2022; 200:1164-1170. [PMID: 33860456 DOI: 10.1007/s12011-021-02708-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
In this study, the effect of metformin on boron levels and oxidative brain damage in rats due to diabetes and prostate cancer was investigated for the first time. Myeloperoxidase (MPO) activity and the amount of DNA were investigated as tissue oxidative and toxic damage parameters. In Copenhagen rats, Dunning prostate cancer was induced using high metastatic MAT-Lylu cells and diabetes was induced by single dose of streptozotocin (STZ) injection. Metformin was administered for 14 days after diabetes and prostate cancer induced. The rats were divided into six groups as follows: control group, diabetic group (D), cancer group (C), diabetic + cancer (DC) group, cancer + metformin (CM) group, diabetic + cancer + metformin (DCM) group. At the end of the experiment, brains were removed. Significant decrease of brain boron levels and significant elevation of MPO activity and DNA levels were observed in D, C, and DC groups as compared to control group. The effect of diabetes induction on the brain boron levels was much more than prostate cancer induction. The administration of metformin with CM and DCM obviously declined MPO activity and increased brain boron levels almost near to control group level. In conclusion, this study shows that the protective effect of metformin against brain damage in STZ-induced diabetic rats with Dunning prostate cancer may also be related to increased boron levels. The boron levels may be a novel indicator of reduced toxic and oxidative stress. Furthermore, the distribution and mechanism of action of boron should be clarified.
Collapse
Affiliation(s)
- Armagan Begum Ozel
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Basibuyuk Road 9/3 34854 Basibuyuk, Maltepe, Istanbul, Turkey
| | - Eda Dagsuyu
- Department of Chemistry, Faculty of Engineering, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Pınar Koroglu Aydın
- Department of Histology and Embryology, Faculty of Medicine, Halic University, Istanbul, Turkey
| | - Ilknur Bugan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Omur Karabulut Bulan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Basibuyuk Road 9/3 34854 Basibuyuk, Maltepe, Istanbul, Turkey.
| |
Collapse
|
18
|
Fnu G, Weber GF. Alterations of Ion Homeostasis in Cancer Metastasis: Implications for Treatment. Front Oncol 2022; 11:765329. [PMID: 34988012 PMCID: PMC8721045 DOI: 10.3389/fonc.2021.765329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that metastases from all malignancies are characterized by a core program of gene expression that suppresses extracellular matrix interactions, induces vascularization/tissue remodeling, activates the oxidative metabolism, and alters ion homeostasis. Among these features, the least elucidated component is ion homeostasis. Here we review the literature with the goal to infer a better mechanistic understanding of the progression-associated ionic alterations and identify the most promising drugs for treatment. Cancer metastasis is accompanied by skewing in calcium, zinc, copper, potassium, sodium and chloride homeostasis. Membrane potential changes and water uptake through Aquaporins may also play roles. Drug candidates to reverse these alterations are at various stages of testing, with some having entered clinical trials. Challenges to their utilization comprise differences among tumor types and the involvement of multiple ions in each case. Further, adverse effects may become a concern, as channel blockers, chelators, or supplemented ions will affect healthy and transformed cells alike.
Collapse
Affiliation(s)
- Gulimirerouzi Fnu
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| | - Georg F Weber
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| |
Collapse
|
19
|
Djamgoz MBA. Comments on: Antiepileptic drugs and prostate cancer risk in the Finnish Randomized Study of Screening for Prostate Cancer. Int J Cancer 2021; 150:1212-1213. [PMID: 34854490 DOI: 10.1002/ijc.33890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK.,Biotechnology Research Centre, Cyprus International University, Mersin, Turkey
| |
Collapse
|
20
|
Fraser SP, Tesi A, Bonito B, Ka Ming Hui M, Arcangeli A, Djamgoz MB. Potassium Channel Blockage and Invasiveness of Strongly Metastatic Prostate and Breast Cancer Cells. Bioelectricity 2021. [DOI: 10.1089/bioe.2020.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Scott P. Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
| | - Alessandra Tesi
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Benedetta Bonito
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marcus Ka Ming Hui
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, North Cyprus, Turkey
| |
Collapse
|
21
|
Lastraioli E, Fraser SP, Guzel RM, Iorio J, Bencini L, Scarpi E, Messerini L, Villanacci V, Cerino G, Ghezzi N, Perrone G, Djamgoz MBA, Arcangeli A. Neonatal Nav1.5 Protein Expression in Human Colorectal Cancer: Immunohistochemical Characterization and Clinical Evaluation. Cancers (Basel) 2021; 13:3832. [PMID: 34359733 PMCID: PMC8345135 DOI: 10.3390/cancers13153832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
Voltage-gated Na+ channels (VGSCs) are expressed widely in human carcinomas and play a significant role in promoting cellular invasiveness and metastasis. However, human tissue-based studies and clinical characterization are lacking. In several carcinomas, including colorectal cancer (CRCa), the predominant VGSC is the neonatal splice variant of Nav1.5 (nNav1.5). The present study was designed to determine the expression patterns and clinical relevance of nNav1.5 protein in human CRCa tissues from patients with available clinicopathological history. The immunohistochemistry was made possible by the use of a polyclonal antibody (NESOpAb) specific for nNav1.5. The analysis showed that, compared with normal mucosa, nNav1.5 expression occurred in CRCa samples (i) at levels that were significantly higher and (ii) with a pattern that was more delineated (i.e., apical/basal or mixed). A surprisingly high level of nNav1.5 protein expression also occurred in adenomas, but this was mainly intracellular and diffuse. nNav1.5 showed a statistically significant association with TNM stage, highest expression being associated with TNM IV and metastatic status. Interestingly, nNav1.5 expression co-occurred with other biomarkers associated with metastasis, including hERG1, KCa3.1, VEGF-A, Glut1, and EGFR. Finally, univariate analysis showed that nNav1.5 expression had an impact on progression-free survival. We conclude (i) that nNav1.5 could represent a novel clinical biomarker ('companion diagnostic') useful to better stratify CRCa patients and (ii) that since nNav1.5 expression is functional, it could form the basis of anti-metastatic therapies including in combination with standard treatments.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, viale GB Morgagni 50, 50134 Florence, Italy; (E.L.); (J.I.); (L.M.); (A.A.)
| | - Scott P. Fraser
- Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (S.P.F.); (R.M.G.)
| | - R. Mine Guzel
- Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (S.P.F.); (R.M.G.)
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, viale GB Morgagni 50, 50134 Florence, Italy; (E.L.); (J.I.); (L.M.); (A.A.)
| | - Lapo Bencini
- Department of Oncology, Division of Oncologic Surgery and Robotics, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.B.); (G.C.); (N.G.)
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P Maroncelli 40, 47014 Meldola, Italy;
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, viale GB Morgagni 50, 50134 Florence, Italy; (E.L.); (J.I.); (L.M.); (A.A.)
| | - Vincenzo Villanacci
- Institute of Pathology, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy;
| | - Giulia Cerino
- Department of Oncology, Division of Oncologic Surgery and Robotics, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.B.); (G.C.); (N.G.)
| | - Niccolo’ Ghezzi
- Department of Oncology, Division of Oncologic Surgery and Robotics, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.B.); (G.C.); (N.G.)
| | - Giuseppe Perrone
- Pathology Unit, Campus Bio-Medico University, via A del Portillo 200, 00128 Rome, Italy;
| | - Mustafa B. A. Djamgoz
- Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (S.P.F.); (R.M.G.)
- Cyprus International University, Biotechnology Research Centre, Haspolat, Mersin 10, Cyprus
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, viale GB Morgagni 50, 50134 Florence, Italy; (E.L.); (J.I.); (L.M.); (A.A.)
| |
Collapse
|
22
|
Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. iScience 2021; 24:102270. [PMID: 33817575 PMCID: PMC8010468 DOI: 10.1016/j.isci.2021.102270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - William J. Brackenbury
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Tim G. Hales
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, the University of Dundee, DD1 9SY, Dundee, UK
| | - Pierre Besson
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Juan Carlos Gomora
- Instituto de Fisiología Celular, Circuito Exterior s/n Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City, 04510 México
| | - Sébastien Roger
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
23
|
Pethő Z, Najder K, Carvalho T, McMorrow R, Todesca LM, Rugi M, Bulk E, Chan A, Löwik CWGM, Reshkin SJ, Schwab A. pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers (Basel) 2020; 12:E2484. [PMID: 32887220 PMCID: PMC7565548 DOI: 10.3390/cancers12092484] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Karolina Najder
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Tiago Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Micol Rugi
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Etmar Bulk
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Clemens W. G. M. Löwik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
- Department of Oncology CHUV, UNIL and Ludwig Cancer Center, 1011 Lausanne, Switzerland
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| |
Collapse
|
24
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
25
|
Ribeiro M, Elghajiji A, Fraser SP, Burke ZD, Tosh D, Djamgoz MBA, Rocha PRF. Human Breast Cancer Cells Demonstrate Electrical Excitability. Front Neurosci 2020; 14:404. [PMID: 32425751 PMCID: PMC7204841 DOI: 10.3389/fnins.2020.00404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is one of the most prevalent types of cancers worldwide and yet, its pathophysiology is poorly understood. Single-cell electrophysiological studies have provided evidence that membrane depolarization is implicated in the proliferation and metastasis of breast cancer. However, metastatic breast cancer cells are highly dynamic microscopic systems with complexities beyond a single-cell level. There is an urgent need for electrophysiological studies and technologies capable of decoding the intercellular signaling pathways and networks that control proliferation and metastasis, particularly at a population level. Hence, we present for the first time non-invasive in vitro electrical recordings of strongly metastatic MDA-MB-231 and weakly/non-metastatic MCF-7 breast cancer cell lines. To accomplish this, we fabricated an ultra-low noise sensor that exploits large-area electrodes, of 2 mm2, which maximizes the double-layer capacitance and concomitant detection sensitivity. We show that the current recorded after adherence of the cells is dominated by the opening of voltage-gated sodium channels (VGSCs), confirmed by application of the highly specific inhibitor, tetrodotoxin (TTX). The electrical activity of MDA-MB-231 cells surpasses that of the MCF-7 cells, suggesting a link between the cells’ bioelectricity and invasiveness. We also recorded an activity pattern with characteristics similar to that of Random Telegraph Signal (RTS) noise. RTS patterns were less frequent than the asynchronous VGSC signals. The RTS noise power spectral density showed a Lorentzian shape, which revealed the presence of a low-frequency signal across MDA-MB-231 cell populations with propagation speeds of the same order as those reported for intercellular Ca2+ waves. Our recording platform paves the way for real-time investigations of the bioelectricity of cancer cells, their ionic/pharmacological properties and relationship to metastatic potential.
Collapse
Affiliation(s)
- Mafalda Ribeiro
- Department of Electronic and Electrical Engineering, Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, United Kingdom
| | - Aya Elghajiji
- Department of Electronic and Electrical Engineering, Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, United Kingdom.,Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Scott P Fraser
- Neuroscience Solutions to Cancer Research Group, Department of Life Sciences, Imperial College of London, London, United Kingdom
| | - Zoë D Burke
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - David Tosh
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Mustafa B A Djamgoz
- Neuroscience Solutions to Cancer Research Group, Department of Life Sciences, Imperial College of London, London, United Kingdom
| | - Paulo R F Rocha
- Department of Electronic and Electrical Engineering, Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, United Kingdom
| |
Collapse
|
26
|
Rizaner N, Uzun S, Fraser SP, Djamgoz MBA, Altun S. Riluzole: Anti-invasive effects on rat prostate cancer cells under normoxic and hypoxic conditions. Basic Clin Pharmacol Toxicol 2020; 127:254-264. [PMID: 32304618 DOI: 10.1111/bcpt.13417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 11/30/2022]
Abstract
Anti-invasive effects of riluzole and ranolazine, a neuro-protectant and an anti-anginal drug, respectively, on Mat-LyLu rat prostate cancer (PCa) cells were tested in vitro (a) at non-toxic doses and (b) under both normoxic and hypoxic conditions, the latter common to growing tumours. Tetrodotoxin (TTX) was used as a positive control. Hypoxia had no effect on cell viability but reduced growth at 48 hours. Riluzole (5 μmol/L) or ranolazine (20 μmol/L) had no effect on cell viability or growth under normoxia or hypoxia over 24 hours. Matrigel invasion was not affected by hypoxia but inhibited by TTX, ranolazine and riluzole under a range of conditions. The expression of Nav1.7 mRNA, the prevailing, pro-invasive voltage-gated sodium channel α-subunit (VGSCα), was up-regulated by hypoxia. Riluzole had no effect on Nav1.7 mRNA expression in normoxia but significantly reduced it in hypoxia. VGSCα protein expression in plasma membrane was reduced in hypoxia; riluzole increased it but only under hypoxia. It was concluded (a) that riluzole and ranolazine have anti-invasive effects on rat PCa cells and (b) that Nav1.7 mRNA and protein expression can be modulated by riluzole under hypoxia. Overall, therefore, riluzole and ranolazine may ultimately be "repurposed" as anti-metastatic drugs against PCa.
Collapse
Affiliation(s)
- Nahit Rizaner
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Turkey
| | - Sercan Uzun
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Scott P Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Turkey
| | - Seyhan Altun
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Kultur University, Istanbul, Turkey
| |
Collapse
|
27
|
Yang M, James AD, Suman R, Kasprowicz R, Nelson M, O'Toole PJ, Brackenbury WJ. Voltage-dependent activation of Rac1 by Na v 1.5 channels promotes cell migration. J Cell Physiol 2020; 235:3950-3972. [PMID: 31612502 PMCID: PMC6973152 DOI: 10.1002/jcp.29290] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
Ion channels can regulate the plasma membrane potential (Vm ) and cell migration as a result of altered ion flux. However, the mechanism by which Vm regulates motility remains unclear. Here, we show that the Nav 1.5 sodium channel carries persistent inward Na+ current which depolarizes the resting Vm at the timescale of minutes. This Nav 1.5-dependent Vm depolarization increases Rac1 colocalization with phosphatidylserine, to which it is anchored at the leading edge of migrating cells, promoting Rac1 activation. A genetically encoded FRET biosensor of Rac1 activation shows that depolarization-induced Rac1 activation results in acquisition of a motile phenotype. By identifying Nav 1.5-mediated Vm depolarization as a regulator of Rac1 activation, we link ionic and electrical signaling at the plasma membrane to small GTPase-dependent cytoskeletal reorganization and cellular migration. We uncover a novel and unexpected mechanism for Rac1 activation, which fine tunes cell migration in response to ionic and/or electric field changes in the local microenvironment.
Collapse
Affiliation(s)
- Ming Yang
- Department of BiologyUniversity of YorkYorkUK
| | - Andrew D. James
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Rakesh Suman
- Phase Focus Ltd, Electric WorksSheffield Digital CampusSheffieldUK
| | | | - Michaela Nelson
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Peter J. O'Toole
- Bioscience Technology Facility, Department of BiologyUniversity of YorkYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
28
|
|
29
|
Angus M, Ruben P. Voltage gated sodium channels in cancer and their potential mechanisms of action. Channels (Austin) 2019; 13:400-409. [PMID: 31510893 PMCID: PMC6768049 DOI: 10.1080/19336950.2019.1666455] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 01/22/2023] Open
Abstract
Voltage gated sodium channels (VGSC) are implicated in cancer cell invasion and metastasis. However, the mechanism by which VGSC increase cell invasiveness and probability of metastasis is still unknown. In this review we outline lesser known functions of VGSC outside of action potential propagation, and the current understanding of the effects of VGSC in cancer. Finally, we discuss possible downstream effects of VGSC activation in cancer cells. After extensive review of the literature, the most likely role of VGSC in cancer is in the invadopodia, the leading edge of metastatic cancer cells. Sodium gradients are used to drive many biological processes in the body, and invadopodia may be similar. The function of the sodium hydrogen exchanger (NHE) and sodium calcium exchanger (NCX) are driven by sodium gradients. Voltage gated calcium channels, activated by membrane depolarization, are also capable of becoming activated in response to VGSC activity. Changes to hydrogen ion exchange or calcium handling have functional consequences for invadopodia and would explain the relationship between VGSC expression and invasiveness of cancer cells.
Collapse
Affiliation(s)
- Madeline Angus
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
30
|
Sun H, Jiang J, Gong L, Li X, Yang Y, Luo Y, Guo Z, Lu R, Li H, Li J, Zhao J, Yang N, Li Y. Voltage-gated sodium channel inhibitor reduces atherosclerosis by modulating monocyte/macrophage subsets and suppressing macrophage proliferation. Biomed Pharmacother 2019; 120:109352. [DOI: 10.1016/j.biopha.2019.109352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
|
31
|
Djamgoz MBA, Fraser SP, Brackenbury WJ. In Vivo Evidence for Voltage-Gated Sodium Channel Expression in Carcinomas and Potentiation of Metastasis. Cancers (Basel) 2019; 11:E1675. [PMID: 31661908 PMCID: PMC6895836 DOI: 10.3390/cancers11111675] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
A wide body of evidence suggests that voltage-gated sodium channels (VGSCs) are expressed de novo in several human carcinomas where channel activity promotes a variety of cellular behaviours integral to the metastatic cascade. These include directional motility (including galvanotaxis), pH balance, extracellular proteolysis, and invasion. Contrary to the substantial in vitro data, however, evidence for VGSC involvement in the cancer process in vivo is limited. Here, we critically assess, for the first time, the available in vivo evidence, hierarchically from mRNA level to emerging clinical aspects, including protein-level studies, electrolyte content, animal tests, and clinical imaging. The evidence strongly suggests that different VGSC subtypes (mainly Nav1.5 and Nav1.7) are expressed de novo in human carcinoma tissues and generally parallel the situation in vitro. Consistent with this, tissue electrolyte (sodium) levels, quantified by clinical imaging, are significantly higher in cancer vs. matched non-cancer tissues. These are early events in the acquisition of metastatic potential by the cancer cells. Taken together, the multi-faceted evidence suggests that the VGSC expression has clinical (diagnostic and therapeutic) potential as a prognostic marker, as well as an anti-metastatic target. The distinct advantages offered by the VGSC include especially (1) its embryonic nature, demonstrated most clearly for the predominant neonatal Nav1.5 expression in breast and colon cancer, and (2) the specifically druggable persistent current that VGSCs develop under hypoxic conditions, as in growing tumours, which promotes invasiveness and metastasis.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Scott P Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - William J Brackenbury
- Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
32
|
Rocha PRF, Elghajiji A, Tosh D. Ultrasensitive System for Electrophysiology of Cancer Cell Populations: A Review. Bioelectricity 2019; 1:131-138. [PMID: 34471815 DOI: 10.1089/bioe.2019.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bioelectricity is the electrical activity produced by living organisms. Understanding the role of bioelectricity in a disease context is important as it contributes to both disease diagnosis and therapeutic intervention. Electrophysiology tools work well for neuronal cultures; however, they are limited in their ability to detect the electrical activity of non-neuronal cells, wherein the majority of cancers arise. Electronic structures capable of detecting and modulating signaling, in real-time, in electrically quiescent cells are urgently required. One of the limitations to understanding the role of bioelectricity in cancer is the inability to detect low-level signals. In this study, we review our latest advances in devising bidirectional transducers with large electrode areas and concomitant low impedances. The resulting high sensitivity is demonstrated by the extracellular detection of electrical activity in Rat-C6 glioma and prostate cancer (PC-3) cell populations. By using specific inhibitors, we further demonstrated that the large electrical activity in Rat-C6 glioma populations is acidosis driven. For PC-3 cells, the use of a calcium inhibitor together with the slowly varying nature of the signal suggests that Ca2+ channels are involved in the cohort electrogenicity.
Collapse
Affiliation(s)
- Paulo R F Rocha
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
| | - Aya Elghajiji
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom.,Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - David Tosh
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom.,Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
33
|
Elajnaf T, Baptista-Hon DT, Hales TG. Potent Inactivation-Dependent Inhibition of Adult and Neonatal NaV1.5 Channels by Lidocaine and Levobupivacaine. Anesth Analg 2019; 127:650-660. [PMID: 29958221 DOI: 10.1213/ane.0000000000003597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cardiotoxic effects of local anesthetics (LAs) involve inhibition of NaV1.5 voltage-gated Na channels. Metastatic breast and colon cancer cells also express NaV1.5, predominantly the neonatal splice variant (nNaV1.5) and their inhibition by LAs reduces invasion and migration. It may be advantageous to target cancer cells while sparing cardiac function through selective blockade of nNaV1.5 and/or by preferentially affecting inactivated NaV1.5, which predominate in cancer cells. We tested the hypotheses that lidocaine and levobupivacaine differentially affect (1) adult (aNaV1.5) and nNaV1.5 and (2) the resting and inactivated states of NaV1.5. METHODS The whole-cell voltage-clamp technique was used to evaluate the actions of lidocaine and levobupivacaine on recombinant NaV1.5 channels expressed in HEK-293 cells. Cells were transiently transfected with cDNAs encoding either aNaV1.5 or nNaV1.5. Voltage protocols were applied to determine depolarizing potentials that either activated or inactivated 50% of maximum conductance (V½ activation and V½ inactivation, respectively). RESULTS Lidocaine and levobupivacaine potently inhibited aNaV1.5 (IC50 mean [SD]: 20 [22] and 1 [0.6] μM, respectively) and nNaV1.5 (IC50 mean [SD]: 17 [10] and 3 [1.6] μM, respectively) at a holding potential of -80 mV. IC50s differed significantly between lidocaine and levobupivacaine with no influence of splice variant. Levobupivacaine induced a statistically significant depolarizing shift in the V½ activation for aNaV1.5 (mean [SD] from -32 [4.6] mV to -26 [8.1] mV) but had no effect on the voltage dependence of activation of nNaV1.5. Lidocaine had no effect on V½ activation of either variant but caused a significantly greater depression of maximum current mediated by nNaV1.5 compared to aNaV1.5. Similar statistically significant shifts in the V½ inactivation (approximately -10 mV) occurred for both LAs and NaV1.5 variants. Levobupivacaine (1 μM) caused a significantly greater slowing of recovery from inactivation of both variants than did lidocaine (10 μM). Both LAs caused approximately 50% tonic inhibition of aNaV1.5 or nNaV1.5 when holding at -80 mV. Neither LA caused tonic block at a holding potential of either -90 or -120 mV, voltages at which there was little steady-state inactivation. Higher concentrations of either lidocaine (300 μM) or levobupivacaine (100 μM) caused significantly more tonic block at -120 mV. CONCLUSIONS These data demonstrate that low concentrations of the LAs exhibit inactivation-dependent block of NaV1.5, which may provide a rationale for their use to safely inhibit migration and invasion by metastatic cancer cells without cardiotoxicity.
Collapse
Affiliation(s)
- Taha Elajnaf
- From The Institute of Academic Anaesthesia, Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | | | | |
Collapse
|
34
|
Nicolas S, Zoukimian C, Bosmans F, Montnach J, Diochot S, Cuypers E, De Waard S, Béroud R, Mebs D, Craik D, Boturyn D, Lazdunski M, Tytgat J, De Waard M. Chemical Synthesis, Proper Folding, Na v Channel Selectivity Profile and Analgesic Properties of the Spider Peptide Phlotoxin 1. Toxins (Basel) 2019; 11:toxins11060367. [PMID: 31234412 PMCID: PMC6628435 DOI: 10.3390/toxins11060367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/19/2022] Open
Abstract
Phlotoxin-1 (PhlTx1) is a peptide previously identified in tarantula venom (Phlogius species) that belongs to the inhibitory cysteine-knot (ICK) toxin family. Like many ICK-based spider toxins, the synthesis of PhlTx1 appears particularly challenging, mostly for obtaining appropriate folding and concomitant suitable disulfide bridge formation. Herein, we describe a procedure for the chemical synthesis and the directed sequential disulfide bridge formation of PhlTx1 that allows for a straightforward production of this challenging peptide. We also performed extensive functional testing of PhlTx1 on 31 ion channel types and identified the voltage-gated sodium (Nav) channel Nav1.7 as the main target of this toxin. Moreover, we compared PhlTx1 activity to 10 other spider toxin activities on an automated patch-clamp system with Chinese Hamster Ovary (CHO) cells expressing human Nav1.7. Performing these analyses in reproducible conditions allowed for classification according to the potency of the best natural Nav1.7 peptide blockers. Finally, subsequent in vivo testing revealed that intrathecal injection of PhlTx1 reduces the response of mice to formalin in both the acute pain and inflammation phase without signs of neurotoxicity. PhlTx1 is thus an interesting toxin to investigate Nav1.7 involvement in cellular excitability and pain.
Collapse
Affiliation(s)
- Sébastien Nicolas
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Claude Zoukimian
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France.
| | - Frank Bosmans
- Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences, 9000 Gent, Belgium.
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Jérôme Montnach
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Sylvie Diochot
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France.
| | - Eva Cuypers
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Stephan De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Rémy Béroud
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
| | - Dietrich Mebs
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, Frankfurt, Germany.
| | - David Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia.
| | - Didier Boturyn
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France.
| | - Michel Lazdunski
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Michel De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
| |
Collapse
|
35
|
Kao LT, Huang CC, Lin HC, Huang CY. Antiarrhythmic drug usage and prostate cancer: a population-based cohort study. Asian J Androl 2019; 20:37-42. [PMID: 28857052 PMCID: PMC5753552 DOI: 10.4103/aja.aja_26_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Even though the relationship between antiarrhythmic drug usage and subsequent prostate cancer (PCa) risk has recently been highlighted, relevant findings in the previous literature are still inconsistent. In addition, very few studies have attempted to investigate the association between sodium channel blockers or potassium channel blockers for arrhythmia and the subsequent PCa risk. Therefore, this cohort study aimed to find the relationship between antiarrhythmic drug usage and the subsequent PCa risk using a population-based dataset. The data used in this study were derived from the Longitudinal Health Insurance Database 2005, Taiwan, China. We respectively identified 9988 sodium channel blocker users, 3663 potassium channel blocker users, 65 966 beta-blocker users, 23 366 calcium channel blockers users, and 7031 digoxin users as the study cohorts. The matched comparison cohorts (one comparison subject for each antiarrhythmic drug user) were selected from the same dataset. Each patient was tracked for a 5-year period to define those who were subsequently diagnosed with PCa. After adjusting for sociodemographic characteristics, comorbidities, and age, Cox proportional hazard regressions found that the hazard ratio (HR) of subsequent PCa for sodium channel blocker users was 1.12 (95% confidence interval [CI]: 0.84–1.50), for potassium channel blocker users was 0.89 (95% CI: 0.59–1.34), for beta-blocker users was 1.08 (95% CI: 0.96–1.22), for calcium channel blocker users was 1.14 (95% CI: 0.95–1.36), and for digoxin users was 0.89 (95% CI: 0.67–1.18), compared to their matched nonusers. We concluded that there were no statistical associations between different types of antiarrhythmic drug usage and subsequent PCa risk.
Collapse
Affiliation(s)
- Li-Ting Kao
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 110, Taiwan, China.,Sleep Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan, China
| | - Chung-Chien Huang
- School of Health Care Administration, Taipei Medical University, Taipei 110, Taiwan, China
| | - Herng-Ching Lin
- Sleep Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan, China.,School of Health Care Administration, Taipei Medical University, Taipei 110, Taiwan, China
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 110, Taiwan, China.,Department of Urology, National Taiwan University Hospital, Hsin Chu Branch, Hsin Chu City 100, Taiwan, China.,School of Public Health, Taipei Medical University, Taipei 100, Taiwan, China
| |
Collapse
|
36
|
Anti-metastatic effect of ranolazine in an in vivo rat model of prostate cancer, and expression of voltage-gated sodium channel protein in human prostate. Prostate Cancer Prostatic Dis 2019; 22:569-579. [DOI: 10.1038/s41391-019-0128-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/27/2022]
|
37
|
Ion Channels: New Actors Playing in Chemotherapeutic Resistance. Cancers (Basel) 2019; 11:cancers11030376. [PMID: 30884858 PMCID: PMC6468599 DOI: 10.3390/cancers11030376] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023] Open
Abstract
In the battle against cancer cells, therapeutic modalities are drastically limited by intrinsic or acquired drug resistance. Resistance to therapy is not only common, but expected: if systemic agents used for cancer treatment are usually active at the beginning of therapy (i.e., 90% of primary breast cancers and 50% of metastases), about 30% of patients with early-stage breast cancer will have recurrent disease. Altered expression of ion channels is now considered as one of the hallmarks of cancer, and several ion channels have been linked to cancer cell resistance. While ion channels have been associated with cell death, apoptosis and even chemoresistance since the late 80s, the molecular mechanisms linking ion channel expression and/or function with chemotherapy have mostly emerged in the last ten years. In this review, we will highlight the relationships between ion channels and resistance to chemotherapy, with a special emphasis on the underlying molecular mechanisms.
Collapse
|
38
|
Mao W, Zhang J, Körner H, Jiang Y, Ying S. The Emerging Role of Voltage-Gated Sodium Channels in Tumor Biology. Front Oncol 2019; 9:124. [PMID: 30895169 PMCID: PMC6414428 DOI: 10.3389/fonc.2019.00124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/12/2019] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane proteins which function as gates that control the flux of ions across the cell membrane. They are key ion channels for action potentials in excitable tissues and have important physiological functions. Abnormal function of VGSCs will lead to dysfunction of the body and trigger a variety of diseases. Various studies have demonstrated the participation of VGSCs in the progression of different tumors, such as prostate cancer, cervical cancer, breast cancer, and others, linking VGSC to the invasive capacity of tumor cells. However, it is still unclear whether the VGSC regulate the malignant biological behavior of tumors. Therefore, this paper systematically addresses the latest research progress on VGSCs subunits and tumors and the underlying mechanisms, and it summarizes the potential of VGSCs subunits to serve as potential targets for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Weijia Mao
- Key Laboratory of Oral Disease Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.,Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Zhang
- Key Laboratory of Oral Disease Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.,Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Yong Jiang
- Key Laboratory of Oral Disease Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
39
|
Cabello M, Ge H, Aracil C, Moschou D, Estrela P, Manuel Quero J, I Pascu S, R F Rocha P. Extracellular Electrophysiology in the Prostate Cancer Cell Model PC-3. SENSORS (BASEL, SWITZERLAND) 2019; 19:E139. [PMID: 30609788 PMCID: PMC6339143 DOI: 10.3390/s19010139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Although prostate cancer is one of the most common cancers in the male population, its basic biological function at a cellular level remains to be fully understood. This lack of in depth understanding of its physiology significantly hinders the development of new, targeted and more effective treatment strategies. Whilst electrophysiological studies can provide in depth analysis, the possibility of recording electrical activity in large populations of non-neuronal cells remains a significant challenge, even harder to address in the picoAmpere-range, which is typical of cellular level electrical activities. In this paper, we present the measurement and characterization of electrical activity of populations of prostate cancer cells PC-3, demonstrating for the first time a meaningful electrical pattern. The low noise system used comprises a multi-electrode array (MEA) with circular gold electrodes on silicon oxide substrates. The extracellular capacitive currents present two standard patterns: an asynchronous sporadic pattern and a synchronous quasi-periodic biphasic spike pattern. An amplitude of ±150 pA, a width between 50⁻300 ms and an inter-spike interval around 0.5 Hz characterize the quasi-periodic spikes. Our experiments using treatment of cells with Gd³⁺, known as an inhibitor for the Ca²⁺ exchanges, suggest that the quasi-periodic signals originate from Ca²⁺ channels. After adding the Gd³⁺ to a population of living PC-3 cells, their electrical activity considerably decreased; once the culture was washed, thus eliminating the Gd³⁺ containing medium and addition of fresh cellular growth medium, the PC-3 cells recovered their normal electrical activity. Cellular viability plots have been carried out, demonstrating that the PC-3 cells remain viable after the use of Gd³⁺, on the timescale of this experiment. Hence, this experimental work suggests that Ca²⁺ is significantly affecting the electrophysiological communication pattern among PC-3 cell populations. Our measuring platform opens up new avenues for real time and highly sensitive investigations of prostate cancer signalling pathways.
Collapse
Affiliation(s)
- Miguel Cabello
- Department of Electronic Engineering, Escuela Superior de Ingenieros, University of Seville, 41004 Seville, Spain.
| | - Haobo Ge
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Carmen Aracil
- Department of Electronic Engineering, Escuela Superior de Ingenieros, University of Seville, 41004 Seville, Spain.
| | - Despina Moschou
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Jose Manuel Quero
- Department of Electronic Engineering, Escuela Superior de Ingenieros, University of Seville, 41004 Seville, Spain.
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Paulo R F Rocha
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
40
|
Wang J, Lu Z, Wu C, Li Y, Kong Y, Zhou R, Shi K, Guo J, Li N, Liu J, Song W, Wang H, Zhu M, Xu H. Evaluation of the anticancer and anti-metastasis effects of novel synthetic sodium channel blockers in prostate cancer cells in vitro and in vivo. Prostate 2019; 79:62-72. [PMID: 30242862 DOI: 10.1002/pros.23711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Voltage-gated sodium channels (VGSCs) are involved in several cellular processes related to cancer cell growth and metastasis, including adhesion, proliferation, apoptosis, migration, and invasion. We here in investigated the effects of S0154 and S0161, two novel synthetic sodium channel blockers (SCBs), on human prostate cancer cells (PC3, DU145, and LnCaP) and a prostate cancer xenograft model. METHODS The MTT assay was used to assess the anticancer effects of SCBs in PC3, DU145, and LnCaP cells. Sodium indicator and glucose uptake assays were used to determine the effects of S0154 and S0161 in PC3 cells. The impact of these SCBs on the proliferation, cell cycle, apoptosis, migration, and invasion of PC3 cells were determined using a CFDA-SE cell proliferation assay, cell cycle assay, annexin V-FITC apoptosis assay, transwell cell invasion assay, and wound-healing assay, respectively. The protein expression levels of Nav1.6, Nav1.7, CDK1, cyclin B1, MMP2, MMP9 in PC3 cells were analysis by Western blotting. The in vivo anticancer activity was evaluated using a PC3 xenograft model in nude mice. RESULTS S0154 and S0161 both showed anticancer and anti-metastatic effects against prostate cancer cells and significantly inhibited cell viability, with IC50 values in the range of 10.51-26.60 μmol/L (S0154) and 5.07-11.92 μmol/L (S0161). Both compounds also increased the intracellular level of sodium, inhibited the protein expression of two α subunits of VGSCs (Nav1.6 and Nav1.7), and caused G2/M phase cell cycle arrest, with no or minor effects on cell apoptosis. Concentrations of 5 and 10 μmol/L of S0154 and S0161 significantly decreased the glucose uptake of PC3 cells. The compounds also inhibited the proliferation of PC3 cells and decreased their invasion in transwell assays. Furthermore, S0161 exerted antitumor activity in an in vivo PC3 xenograft model in nude mice, inhibiting the growth of the tumors by about 51% compared to the control group. CONCLUSIONS These results suggest that S0154 and S0161 have anticancer and anti-metastasis effects in prostate cancer cells both in vitro and in vivo, supporting their further development as potential therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Zongliang Lu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Changpeng Wu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Yanwu Li
- Pharmacy College, Chongqing Medical University, Chongqing, China
| | - Ya Kong
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Rui Zhou
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Kun Shi
- Medical Service Office, Department of Logistic Support of Central Zone, Land force of Chinese People's Liberation Army, Shijiazhuang, China
| | - Jing Guo
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Na Li
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Jie Liu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Wei Song
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - He Wang
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Mingxing Zhu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Hongxia Xu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| |
Collapse
|
41
|
Guzel RM, Ogmen K, Ilieva KM, Fraser SP, Djamgoz MBA. Colorectal cancer invasiveness in vitro: Predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. J Cell Physiol 2018; 234:6582-6593. [PMID: 30341901 DOI: 10.1002/jcp.27399] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022]
Abstract
Functional expression of voltage-gated Na+ channels (VGSCs) occurs in human carcinomas and promotes invasiveness in vitro and metastasis in vivo. Both neonatal and adult forms of Nav1.5 (nNav1.5 and aNav1.5, respectively) have been reported to be expressed at messenger RNA (mRNA) level in colorectal cancer (CRCa) cells. Here, three CRCa cell lines (HT29, HCT116 and SW620) were studied and found to express nNav1.5 mRNA and protein. In SW620 cells, adopted as a model, effects of gene silencing (by several small interfering RNAs [siRNAs]) selectively targeting nNav1.5 or aNav1.5 were determined on (a) channel activity and (b) invasiveness in vitro. Silencing nNav1.5 made the currents more "adult-like" and suppressed invasion by up to 73%. Importantly, subsequent application of the highly specific, general VGSC blocker, tetrodotoxin (TTX), had no further effect. Conversely, silencing aNav1.5 made the currents more "neonatal-like" but suppressed invasion by only 17% and TTX still induced a significant effect. Hypoxia increased invasiveness and this was also blocked completely by siRNA targeting nNav1.5. The effect of hypoxia was suppressed dose dependently by ranolazine, but its effect was lost in cells pretreated with nNav1.5-siRNA. We conclude that (a) functional nNav1.5 expression is common to human CRCa cells, (b) hypoxia increases the invasiveness of SW620 cells, (c) the VGSC-dependent invasiveness is driven predominantly by nNav1.5 under both normoxic and hypoxic conditions and (d) the hypoxia-induced increase in invasiveness is likely to be mediated by the persistent current component of nNav1.5.
Collapse
Affiliation(s)
- R Mine Guzel
- Department of Life Sciences, Imperial College London, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, UK
| | - Kazim Ogmen
- Department of Life Sciences, Imperial College London, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, UK
| | - Kristina M Ilieva
- Department of Life Sciences, Imperial College London, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, UK
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin 10, North Cyprus
| |
Collapse
|
42
|
Gumushan Aktas H, Akgun T. Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels. Biomed Pharmacother 2018; 106:770-775. [DOI: 10.1016/j.biopha.2018.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/30/2018] [Accepted: 07/01/2018] [Indexed: 12/17/2022] Open
|
43
|
Lerner MI, Mikhaylov G, Tsukanov AA, Lozhkomoev AS, Gutmanas E, Gotman I, Bratovs A, Turk V, Turk B, Psakhye SG, Vasiljeva O. Crumpled Aluminum Hydroxide Nanostructures as a Microenvironment Dysregulation Agent for Cancer Treatment. NANO LETTERS 2018; 18:5401-5410. [PMID: 30070485 DOI: 10.1021/acs.nanolett.8b01592] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Owing to their unique physicochemical properties, nanomaterials have become a focus of multidisciplinary research efforts including investigations of their interactions with tumor cells and stromal compartment of tumor microenvironment (TME) toward the development of next-generation anticancer therapies. Here, we report that agglomerates of radially assembled Al hydroxide crumpled nanosheets exhibit anticancer activity due to their selective adsorption properties and positive charge. This effect was demonstrated in vitro by decreased proliferation and viability of tumor cells, and further confirmed in two murine cancer models. Moreover, Al hydroxide nanosheets almost completely inhibited the growth of murine melanoma in vivo in combination with a minimally effective dose of doxorubicin. Our direct molecular dynamics simulation demonstrated that Al hydroxide nanosheets can cause significant ion imbalance in the living cell perimembranous space through the selective adsorption of extracellular anionic species. This approach to TME dysregulation could lay the foundation for development of novel anticancer therapy strategies.
Collapse
Affiliation(s)
- Marat I Lerner
- Institute of Strength Physics and Materials Science , Tomsk 634055 , Russia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana SI-1000 , Slovenia
| | - Alexey A Tsukanov
- Institute of Strength Physics and Materials Science , Tomsk 634055 , Russia
| | | | - Elazar Gutmanas
- Technion-Israel Institute of Technology , Haifa 3200 , Israel
| | - Irena Gotman
- Department of Mechanical Engineering , ORT Braude College , Karmiel 2161002 , Israel
| | - Andreja Bratovs
- Department of Biochemistry and Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana SI-1000 , Slovenia
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana SI-1000 , Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana SI-1000 , Slovenia
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Ljubljana SI-1000 , Slovenia
- Center of Excellence for Integrated Approaches in Chemistry and Biology of Proteins , SI-1000 Ljubljana , Slovenia
| | - Sergey G Psakhye
- Institute of Strength Physics and Materials Science , Tomsk 634055 , Russia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana SI-1000 , Slovenia
| |
Collapse
|
44
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Yamaci RF, Fraser SP, Battaloglu E, Kaya H, Erguler K, Foster CS, Djamgoz MB. Neonatal Nav1.5 protein expression in normal adult human tissues and breast cancer. Pathol Res Pract 2017; 213:900-907. [DOI: 10.1016/j.prp.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 05/03/2017] [Accepted: 06/04/2017] [Indexed: 01/15/2023]
|
46
|
Oudin MJ, Weaver VM. Physical and Chemical Gradients in the Tumor Microenvironment Regulate Tumor Cell Invasion, Migration, and Metastasis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:189-205. [PMID: 28424337 DOI: 10.1101/sqb.2016.81.030817] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer metastasis requires the invasion of tumor cells into the stroma and the directed migration of tumor cells through the stroma toward the vasculature and lymphatics where they can disseminate and colonize secondary organs. Physical and biochemical gradients that form within the primary tumor tissue promote tumor cell invasion and drive persistent migration toward blood vessels and the lymphatics to facilitate tumor cell dissemination. These microenvironment cues include hypoxia and pH gradients, gradients of soluble cues that induce chemotaxis, and ions that facilitate galvanotaxis, as well as modifications to the concentration, organization, and stiffness of the extracellular matrix that produce haptotactic, alignotactic, and durotactic gradients. These gradients form through dynamic interactions between the tumor cells and the resident fibroblasts, adipocytes, nerves, endothelial cells, infiltrating immune cells, and mesenchymal stem cells. Malignant progression results from the integrated response of the tumor to these extrinsic physical and chemical cues. Here, we first describe how these physical and chemical gradients develop, and we discuss their role in tumor progression. We then review assays to study these gradients. We conclude with a discussion of clinical strategies used to detect and inhibit these gradients in tumors and of new intervention opportunities. Clarifying the role of these gradients in tumor evolution offers a unique approach to target metastasis.
Collapse
Affiliation(s)
- Madeleine J Oudin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, California 94143
- UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, California 94143
- Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, and Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
47
|
The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles. Sci Rep 2016; 6:35201. [PMID: 27731412 PMCID: PMC5059667 DOI: 10.1038/srep35201] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
The single cell-centred approach emphasises ion channels as specific proteins that determine individual properties, disregarding their contribution to multicellular outcomes. We simulate the interplay between genetic and bioelectrical signals in non-excitable cells from the local single-cell level to the long range multicellular ensemble. The single-cell genetic regulation is based on mean-field kinetic equations involving the mRNA and protein concentrations. The transcription rate factor is assumed to depend on the absolute value of the cell potential, which is dictated by the voltage-gated cell ion channels and the intercellular gap junctions. The interplay between genetic and electrical signals may allow translating single-cell states into multicellular states which provide spatio-temporal information. The model results have clear implications for biological processes: (i) bioelectric signals can override slightly different genetic pre-patterns; (ii) ensembles of cells initially at the same potential can undergo an electrical regionalisation because of persistent genetic differences between adjacent spatial regions; and (iii) shifts in the normal cell electrical balance could trigger significant changes in the genetic regulation.
Collapse
|
48
|
Rizaner N, Onkal R, Fraser SP, Pristerá A, Okuse K, Djamgoz MBA. Intracellular calcium oscillations in strongly metastatic human breast and prostate cancer cells: control by voltage-gated sodium channel activity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:735-748. [PMID: 27665102 DOI: 10.1007/s00249-016-1170-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/27/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
The possible association of intracellular Ca2+ with metastasis in human cancer cells is poorly understood. We have studied Ca2+ signaling in human prostate and breast cancer cell lines of strongly versus weakly metastatic potential in a comparative approach. Intracellular free Ca2+ was measured using a membrane-permeant fluorescent Ca2+-indicator dye (Fluo-4 AM) and confocal microscopy. Spontaneous Ca2+ oscillations were observed in a proportion of strongly metastatic human prostate and breast cancer cells (PC-3M and MDA-MB-231, respectively). In contrast, no such oscillations were observed in weakly/non metastatic LNCaP and MCF-7 cells, although a rise in the resting Ca2+ level could be induced by applying a high-K+ solution. Various parameters of the oscillations depended on extracellular Ca2+ and voltage-gated Na+ channel activity. Treatment with either tetrodotoxin (a general blocker of voltage-gated Na+ channels) or ranolazine (a blocker of the persistent component of the channel current) suppressed the Ca2+ oscillations. It is concluded that the functional voltage-gated Na+ channel expression in strongly metastatic cancer cells makes a significant contribution to generation of oscillatory intracellular Ca2+ activity. Possible mechanisms and consequences of the Ca2+ oscillations are discussed.
Collapse
Affiliation(s)
- Nahit Rizaner
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK. .,Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin, Turkey.
| | - Rustem Onkal
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin, Turkey
| | - Scott P Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Alessandro Pristerá
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Kenji Okuse
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin, Turkey
| |
Collapse
|
49
|
Nelson M, Yang M, Millican-Slater R, Brackenbury WJ. Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget 2016; 6:32914-29. [PMID: 26452220 PMCID: PMC4741739 DOI: 10.18632/oncotarget.5441] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/25/2015] [Indexed: 02/07/2023] Open
Abstract
Voltage-gated Na+ channels (VGSCs) mediate action potential firing and regulate adhesion and migration in excitable cells. VGSCs are also expressed in cancer cells. In metastatic breast cancer (BCa) cells, the Nav1.5 α subunit potentiates migration and invasion. In addition, the VGSC-inhibiting antiepileptic drug phenytoin inhibits tumor growth and metastasis. However, the functional activity of Nav1.5 and its specific contribution to tumor progression in vivo has not been delineated. Here, we found that Nav1.5 is up-regulated at the protein level in BCa compared with matched normal breast tissue. Na+ current, reversibly blocked by tetrodotoxin, was retained in cancer cells in tumor tissue slices, thus directly confirming functional VGSC activity in vivo. Stable down-regulation of Nav1.5 expression significantly reduced tumor growth, local invasion into surrounding tissue, and metastasis to liver, lungs and spleen in an orthotopic BCa model. Nav1.5 down-regulation had no effect on cell proliferation or angiogenesis within the in tumors, but increased apoptosis. In vitro, Nav1.5 down-regulation altered cell morphology and reduced CD44 expression, suggesting that VGSC activity may regulate cellular invasion via the CD44-src-cortactin signaling axis. We conclude that Nav1.5 is functionally active in cancer cells in breast tumors, enhancing growth and metastatic dissemination. These findings support the notion that compounds targeting Nav1.5 may be useful for reducing metastasis.
Collapse
Affiliation(s)
- Michaela Nelson
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Ming Yang
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | | | | |
Collapse
|
50
|
Ion Channels in Brain Metastasis. Int J Mol Sci 2016; 17:ijms17091513. [PMID: 27618016 PMCID: PMC5037790 DOI: 10.3390/ijms17091513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial-mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood-brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation.
Collapse
|