1
|
Bao S, Yi M, Xiang B, Chen P. Antitumor mechanisms and future clinical applications of the natural product triptolide. Cancer Cell Int 2024; 24:150. [PMID: 38678240 PMCID: PMC11055311 DOI: 10.1186/s12935-024-03336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Triptolide (TPL) is a compound sourced from Tripterygium wilfordii Hook. F., a traditional Chinese medicinal herb recognized for its impressive anti-inflammatory, anti-angiogenic, immunosuppressive, and antitumor qualities. Notwithstanding its favorable attributes, the precise mechanism through which TPL influences tumor cells remains enigmatic. Its toxicity and limited water solubility significantly impede the clinical application of TPL. We offer a comprehensive overview of recent research endeavors aimed at unraveling the antitumor mechanism of TPL in this review. Additionally, we briefly discuss current strategies to effectively manage the challenges associated with TPL in future clinical applications. By compiling this information, we aim to enhance the understanding of the underlying mechanisms involved in TPL and identify potential avenues for further advancement in antitumor therapy.
Collapse
Affiliation(s)
- Shiwei Bao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Kast RE. IPIAD- an augmentation regimen added to standard treatment of pancreatic ductal adenocarcinoma using already-marketed repurposed drugs irbesartan, pyrimethamine, itraconazole, azithromycin, and dapsone. Oncoscience 2024; 11:15-31. [PMID: 38524376 PMCID: PMC10959018 DOI: 10.18632/oncoscience.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/01/2024] [Indexed: 03/26/2024] Open
Abstract
This short note presents the data and rationale for adding five generic non-oncology drugs from general medical practice to gemcitabine, nab-paclitaxel, a current standard cytotoxic chemotherapy of pancreatic ductal adenocarcinoma. The regimen, called IPIAD, uses an angiotensin receptor blocker (ARB) irbesartan indicated for treating hypertension, an old antimicrobial drug pyrimethamine indicated for treating toxoplasmosis or malaria, an old antifungal drug itraconazole, an old broad spectrum antibiotic azithromycin and an old antibiotic dapsone. In reviewing selected growth driving systems active in pancreatic ductal adenocarcinoma then comparing these with detailed data on ancillary attributes of the IPIAD drugs, one can predict clinical benefit and slowing growth of pancreatic ductal adenocarcinoma by this augmentation regimen.
Collapse
|
3
|
Wang G, Guo H, Ren Y, Chen W, Wang Y, Li J, Liu H, Xing J, Zhang Y, Li N. Triptolide enhances carboplatin-induced apoptosis by inhibiting nucleotide excision repair (NER) activity in melanoma. Front Pharmacol 2023; 14:1157433. [PMID: 37324464 PMCID: PMC10267402 DOI: 10.3389/fphar.2023.1157433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Carboplatin (CBP) is a DNA damaging drug used to treat various cancers, including advanced melanoma. Yet we still face low response rates and short survival due to resistance. Triptolide (TPL) is considered to have multifunctional antitumor effects and has been confirmed to enhance the cytotoxic effects of chemotherapeutic drugs. Herein, we aimed to investigate the knowledge about the effects and mechanisms for the combined application of TPL and CBP against melanoma. Methods: Melanoma cell lines and xenograft mouse model were used to uncover the antitumor effects and the underlying molecular mechanisms of the alone or combined treatment of TPL and CBP in melanoma. Cell viability, migration, invasion, apoptosis, and DNA damage were detected by conventional methods. The rate-limiting proteins of the NER pathway were quantitated using PCR and Western blot. Fluorescent reporter plasmids were used to test the NER repair capacity. Results: Our results showed that the presence of TPL in CBP treatment could selectively inhibit NER pathway activity, and TPL exerts a synergistic effect with CBP to inhibit viability, migration, invasion, and induce apoptosis of A375 and B16 cells. Moreover, combined treatment with TPL and CBP significantly inhibited tumor progression in nude mice by suppressing cell proliferation and inducing apoptosis. Discussion: This study reveals the NER inhibitor TPL which has great potential in treating melanoma, either alone or in combination with CBP.
Collapse
Affiliation(s)
- Geng Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Hongmin Guo
- People’s Hospital of Changshou Chongqing, Chongqing, China
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China
| | - Weiyi Chen
- Health Science Center, Ningbo University, Ningbo, China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China
| | - Jingjun Xing
- Health Science Center, Ningbo University, Ningbo, China
| | - Yanru Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Triptolide-mediated downregulation of FLIP S in hepatoma cells occurs at the post-transcriptional level independently of proteasome-mediated pathways. Med Oncol 2023; 40:7. [PMID: 36308574 PMCID: PMC9617966 DOI: 10.1007/s12032-022-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023]
Abstract
Cellular c-FLIP prevents apoptosis mediated by death receptor through inhibiting activation of caspase-8. Therefore, when c-FLIP is downregulated or eliminated, caspase-8 activation is promoted, and death receptor ligand-induced apoptosis is activated. It was reported that triptolide (TPL) sensitized tumor cells to TNF-α-induced apoptosis by blocking TNF-α-induced activation of NF-κB and transcription of c-IAP1 and c-IAP2. However, the effect of TPL on basal c-FLIP expression was not understood. In this study, we found that the combination of TNF-α and TPL accelerated apoptosis in human hepatocellular carcinoma cells and TNF-α-induced elevated as well as basal level of FLIPS protein were downregulated by TPL. Additionally, we demonstrated that the basal level of FLIPS in Huh7 cells was continuously downregulated following the incubation of TPL and downregulated more when dosage of TPL for treatment was increased. Subsequently, we showed that TPL reduced FLIPS level in a transcription- and degradation-independent mechanism. Our findings suggest that TPL induces loss of FLIPS at the post-transcriptional level independently of proteasome-mediated pathway, an additional mechanism of TPL sensitizing cancer cells to TNF-α-induced apoptosis.
Collapse
|
5
|
Wen W, Guo P, Xue HY, Lun Wong H. Development of local injectable, bone-targeting nanocarriers of triptolide for treatment of bone-only metastasis. Int J Pharm 2022; 625:122092. [PMID: 35985525 DOI: 10.1016/j.ijpharm.2022.122092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Triptolide (TP) is known for its diverse pharmacological activities but also its delivery and toxicity issues. This study aimed at exploiting TP's anticancer effects at lower risk of systemic toxicity by developing local-injectable "bone-targeting TP nanoparticle" (TPN) for bone-only metastasis treatment. The lipid/oil-based TPNs decorated with alendronate (ALE) achieved size of 70.4-111.2 nm with good dispersion stability. The drug encapsulation efficiency reached 97 % and drug release profiles were in biphasic, controlled manner lasting for 5 days in medium with serum proteins and calcium. TPNs were more cytotoxic than free TP against MDA-MB-231 breast cancer cells (IC50: 16.40 ± 0.80 nM vs 25.45 ± 1.83 nM, P < 0.05) but less cytotoxic against MC3T3-E1 osteoblasts (P < 0.05). When combined with paclitaxel or docetaxel, low dose TPN (containing 10 nM) significantly increased the effectiveness of the two chemotherapy drugs against MDA-MB-231 (IC50 values decreased from 7.3 nM to 2.5 nM for docetaxel; from 4.6 nM to 1.1 nM), indicating potent chemosensitization effects. Retardation of in vitro cancer cell migration by TPN was also observed in the standard scratch assay. ALE decoration significantly enhanced the TPN affinity for both calcium hydroxyapatite and porcine bone chip models, which led to enhancement in TP retention in the bones up to 8.1-fold versus free drug. Overall, TPN demonstrated good potential as a local-injectable, bone-targeted nanotherapy tailored for eradication of bone-only metastasis at reduced risk of systemic toxicity.
Collapse
Affiliation(s)
- Wucheng Wen
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Pengbo Guo
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Ho Lun Wong
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
6
|
Cao Z, Liu B, Li L, Lu P, Yan L, Lu C. Detoxification strategies of triptolide based on drug combinations and targeted delivery methods. Toxicology 2022; 469:153134. [PMID: 35202762 DOI: 10.1016/j.tox.2022.153134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Tripterygium wilfordii Hook f. has a long history of use in Chinese medicine. Triptolide (TP), as its main pharmacological component, has been widely explored in various diseases, including systemic lupus erythematosus, rheumatoid arthritis and cancer. However, due to its poor water solubility, limited therapeutic range and multi-organ toxicity, TP's clinical application has been greatly hampered. To improve its clinical potential, many attenuated drug combinations have been developed based on its toxicity mechanism and targeted delivery systems aimed at its water-solubility and structure. This review, conducted a systematic review of TP detoxification strategies including drug combination detoxification strategies from metabolic and toxic mechanisms, as well as drug delivery detoxification strategies from the prodrug strategy and nanotechnology. Many detoxification strategies have demonstrated promising potential in vitro and in vivo due to previous extensive studies on TP. Therefore, summarizing and discussing TP detoxification strategies for clinical problems can serve as a reference for developing novel TP detoxification strategies, and provide opportunities for future clinical applications.
Collapse
Affiliation(s)
- Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Halaby R. Natural Products Induce Lysosomal Membrane Permeabilization as an Anticancer Strategy. MEDICINES 2021; 8:medicines8110069. [PMID: 34822366 PMCID: PMC8624533 DOI: 10.3390/medicines8110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Cancer is a global health and economic issue. The majority of anticancer therapies become ineffective due to frequent genomic turnover and chemoresistance. Furthermore, chemotherapy and radiation are non-specific, killing all rapidly dividing cells including healthy cells. In this review, we examine the ability of some natural products to induce lysosomal-mediated cell death in neoplastic cells as a way to kill them more specifically than conventional therapies. This list is by no means exhaustive. We postulate mechanisms to explain lysosomal membrane permeabilization and its role in triggering cell death in cancer cells.
Collapse
Affiliation(s)
- Reginald Halaby
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| |
Collapse
|
8
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
9
|
Ramakrishnan V, de Haydu C, Wilkinson P, Hooda U, Giri B, Oleas JM, Rive V, Roy S, Dudeja V, Slomovitch B, Saluja A, Ramakrishnan S. Minnelide, a prodrug, inhibits cervical cancer growth by blocking HPV-induced changes in p53 and pRb. Am J Cancer Res 2021; 11:2202-2214. [PMID: 34094678 PMCID: PMC8167699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/05/2020] [Indexed: 06/12/2023] Open
Abstract
HPV-induced cervical cancer is one of the prevalent gynecological cancers world-wide. In the present study, we determined the efficacy of Minnelide, a prodrug which is converted to its active form (Triptolide) in vivo against cervical cancer cells. Our studies show that Triptolide inhibited HPV-16 and HPV-18 positive cells at nanomolar concentrations. Tumor cells treated with Triptolide failed to grow in 3-D cultures in a concentration-dependent manner. Triptolide markedly reduced E6 and E7 transcript levels. Further studies revealed that exposure to Triptolide increased the levels of p53 and pRb. As a consequence, Caspase-3/7 activation and apoptosis was induced in cervical cancer cells by Triptolide. Subsequently, we evaluated the efficacy of Minnelide in xenotransplantation models of cervical cancer. Minnelide at very low doses effectively inhibited the growth of established cervical cancers in all the three animal models tested. Furthermore, Minnelide treatment was more effective when combined with platinum-based chemotherapy. These studies show that Minnelide can be used to inhibit the growth of cervical cancer.
Collapse
Affiliation(s)
- Vivek Ramakrishnan
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
| | - Christopher de Haydu
- Department of Obstetrics and Gynecology, Miller School of Medicine, University of MiamiFL, USA
| | - Peter Wilkinson
- School of Dentistry, University of MinnesotaMinneapolis, MN, USA
| | - Urvashi Hooda
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
| | - Bhuwan Giri
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
| | - Janneth M Oleas
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
| | - Veronica Rive
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
| | - Sabita Roy
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
- Department of Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of MiamiFL, USA
| | - Vikas Dudeja
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
- Department of Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of MiamiFL, USA
| | - Brian Slomovitch
- Department of Obstetrics and Gynecology, Miller School of Medicine, University of MiamiFL, USA
- Department of Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of MiamiFL, USA
| | - Ashok Saluja
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
- Department of Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of MiamiFL, USA
| | - Sundaram Ramakrishnan
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
- Department of Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of MiamiFL, USA
| |
Collapse
|
10
|
Sun B, Liu Y, He D, Li J, Wang J, Wen W, Hong M. Traditional Chinese medicines and their active ingredients sensitize cancer cells to TRAIL-induced apoptosis. J Zhejiang Univ Sci B 2021; 22:190-203. [PMID: 33719224 DOI: 10.1631/jzus.b2000497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rapidly developing resistance of cancers to chemotherapy agents and the severe cytotoxicity of such agents to normal cells are major stumbling blocks in current cancer treatments. Most current chemotherapy agents have significant cytotoxicity, which leads to devastating adverse effects and results in a substandard quality of life, including increased daily morbidity and premature mortality. The death receptor of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can sidestep p53-dependent pathways to induce tumor cell apoptosis without damaging most normal cells. However, various cancer cells can develop resistance to TRAIL-induced apoptosis via different pathways. Therefore, it is critical to find an efficient TRAIL sensitizer to reverse the resistance of tumor cells to TRAIL, and to reinforce TRAIL's ability to induce tumor cell apoptosis. In recent years, traditional Chinese medicines and their active ingredients have shown great potential to trigger apoptotic cell death in TRAIL-resistant cancer cell lines. This review aims to collate information about Chinese medicines that can effectively reverse the resistance of tumor cells to TRAIL and enhance TRAIL's ability to induce apoptosis. We explore the therapeutic potential of TRAIL and provide new ideas for the development of TRAIL therapy and the generation of new anti-cancer drugs for human cancer treatment. This study involved an extensive review of studies obtained from literature searches of electronic databases such as Google Scholar and PubMed. "TRAIL sensitize" and "Chinese medicine" were the search keywords. We then isolated newly published studies on the mechanisms of TRAIL-induced apoptosis. The name of each plant was validated using certified databases such as The Plant List. This study indicates that TRAIL can be combined with different Chinese medicine components through intrinsic or extrinsic pathways to promote cancer cell apoptosis. It also demonstrates that the active ingredients of traditional Chinese medicines enhance the sensitivity of cancer cells to TRAIL-mediated apoptosis. This provides useful information regarding traditional Chinese medicine treatment, the development of TRAIL-based therapies, and the treatment of cancer.
Collapse
Affiliation(s)
- Bingyu Sun
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yongqiang Liu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Danhua He
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Jinke Li
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS 66105, USA
| | - Jiawei Wang
- Zhongshan People's Hospital, Zhongshan 528400, China
| | - Wulin Wen
- ENT & HN Surgery Department, the Second Affiliated Hospital of Ningxia Medical University, Yinchuan 750000, China.
| | - Ming Hong
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People's Hospital, Guangzhou University & Zhongshan People's Hospital Joint Biomedical Institute, Zhongshan 528400, China. .,Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan 523000, China.
| |
Collapse
|
11
|
Tian Y, Li P, Xiao Z, Zhou J, Xue X, Jiang N, Peng C, Wu L, Tian H, Popper H, Poh ME, Marcucci F, Zhang C, Zhao X. Triptolide inhibits epithelial-mesenchymal transition phenotype through the p70S6k/GSK3/β-catenin signaling pathway in taxol-resistant human lung adenocarcinoma. Transl Lung Cancer Res 2021; 10:1007-1019. [PMID: 33718039 PMCID: PMC7947389 DOI: 10.21037/tlcr-21-145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Chemotherapy is one of the primary treatments for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), however, chemoresistance develops over time and is a bottleneck to effective chemotherapy worldwide. Therefore, the development of new potent therapeutic agents to overcome chemoresistance is of utmost importance. Triptolide is a natural component extracted from Tripterygium Wilfordii, a Chinese plant; our study aimed to evaluate its anti-tumor effects in taxol-resistant human lung adenocarcinoma and investigate its molecular mechanisms of chemoresistance. Methods Triptolide’s inhibition of cell viability was detected by sulforhodamine B (SRB) assay. Cell cycle was measured by flow cytometry and cell apoptosis was assessed by flow cytometry and western blot. Expression of β-catenin was analyzed by western blot and immunofluorescence (IF). The anti-tumor effects of triptolide were determined using a subcutaneous in-vivo model. Cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. The expression level of p-p70S6K and p-GSK-3α/β was evaluated by western blot and IHC. Results Triptolide inhibited cell proliferation, induced S-phase cell cycle arrest and apoptosis in taxol-resistant A549 (A549/TaxR) cells. Moreover, intraperitoneal injection of triptolide resulted in a significant delay of tumor growth without obvious systemic toxicity in mice. Additionally, triptolide reversed epithelial-mesenchymal transition (EMT) through repression of the p70S6K/GSK3/β-catenin signaling pathway. Conclusions Our study provides evidence that triptolide can reverse EMT in taxol-resistant lung adenocarcinoma cells and impairs tumor growth by inhibiting the p70S6K/GSK3/β-catenin pathway, indicating that triptolide has potential to be used as a new therapeutic agent for taxol-resistant lung adenocarcinoma.
Collapse
Affiliation(s)
- Yu Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peiwei Li
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaohua Xiao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Zhou
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ning Jiang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanliang Peng
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Licun Wu
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China.,Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Hui Tian
- Department of Thoracic Surgery, Cheeloo Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Helmut Popper
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Mau-Ern Poh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, Milan, Italy
| | - Chengke Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Ren Q, Li M, Deng Y, Lu A, Lu J. Triptolide delivery: Nanotechnology-based carrier systems to enhance efficacy and limit toxicity. Pharmacol Res 2021; 165:105377. [PMID: 33484817 DOI: 10.1016/j.phrs.2020.105377] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/14/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Triptolide (TP) possesses a wide range of biological and pharmacological activities involved in the treatment of various diseases. However, widespread usages of TP raise the urgent issues of the severe toxicity, which hugely limits its further clinical application. The novel functional nanostructured delivery system, which is of great significance in enhancing the efficacy, reducing side effects and improving bioavailability, could improve the enrichment, penetration and controlled release of drugs in the lesion location. Over the past decades, considerable efforts have been dedicated to designing and developing a variety of TP delivery systems with the intention of alleviating the adverse toxicity effects and enhancing the bioavailability. In this review, we briefly summarized and discussed the recent functionalized nano-TP delivery systems for the momentous purpose of guiding further development of novel TP delivery systems and providing perspectives for future clinical applications.
Collapse
Affiliation(s)
- Qing Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Integrated Bioinformedicine & Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, 518000, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Meimei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Aiping Lu
- Institute of Integrated Bioinformedicine & Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, 518000, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Integrated Bioinformedicine & Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, 518000, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| |
Collapse
|
13
|
Bi R, Deng Y, Tang C, Xuan L, Xu B, Du Y, Wang C, Wei W. Andrographolide sensitizes human renal carcinoma cells to TRAIL‑induced apoptosis through upregulation of death receptor 4. Oncol Rep 2020; 44:1939-1948. [PMID: 33000263 PMCID: PMC7551412 DOI: 10.3892/or.2020.7737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in cancer cells, with minimal toxicity to normal tissues. However, accumulating evidence suggests that certain cancer types are insensitive to TRAIL signaling. The aim of this study was to identify an effective combination regimen, which can overcome TRAIL resistance in renal cancer cell. Herein, we found that human renal carcinoma cells (RCCs) are widely resistant to TRAIL-mediated growth inhibition and subsequently identified that andrographolide (Andro), a major constituent of Andrographis paniculate, an annual herbaceous plant in the family Acanthaceae, counteracts TRAIL resistance in RCCs. Combined treatment with TRAIL and Andro suppressed cell viability as determined by MTS and proliferation as determined by EdU in a dose-dependent manner and inactivated the clonogenic and migration ability of RCCs. Andro significantly enhances TRAIL-mediated cell cycle arrest at the G2/M phase as determined by flow cytometry and senescence. Moreover, Andro restored TRAIL signaling, which in turns activated pro-apoptosis caspases as determined by immunoblot assay. The TRAIL receptor, death receptor (DR)4, but not DR5, was found to be significantly upregulated in Andro-treated RCC cells, which contributed to the role of Andro as a TRAIL sensitizer. The present study demonstrated that the combined treatment of Andro and TRAIL has potential therapeutic value against renal cancer.
Collapse
Affiliation(s)
- Ran Bi
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuyou Deng
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chao Tang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Xuan
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Xu
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yujun Du
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Wei
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
14
|
Dai H, Jiang Y, Luo Y, Bie P, Chen Z. Triptolide enhances TRAIL sensitivity of pancreatic cancer cells by activating autophagy via downregulation of PUM1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152953. [PMID: 31128486 DOI: 10.1016/j.phymed.2019.152953] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Triptolide (TPL) can enhance the sensitivity of pancreatic cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but available research is limited to whether TPL can affect the relevant downstream signaling pathways of TRAIL. Current knowledge is far from adequate to fully understand the mechanisms by which TPL increases TRAIL sensitivity of pancreatic cancer. PURPOSE We aimed to find TPL-regulated upstream components of the signaling pathways of TRAIL to further understand the regulatory mechanism by which TPL increases the sensitivity to TRAIL. METHODS Microarray analysis and the adherent cell cytometry system Celigo were used to identify the TRAIL-related genes. Western blot analysis, cell proliferation assays, tumorigenicity assays in nude mice, flow cytometry, and transmission electron microscopy were performed to analyze the function of Pumilio RNA-binding family member 1 (PUM1) in TPL-mediated enhancement of sensitivity to TRAIL. The effect of PUM1 silencing on the p27-CDK2 complex was examined by immunoprecipitation. RESULTS PUM1 expression was decreased by TPL and TPL + TRAIL but was not decreased by TRAIL alone. PUM1 silencing enhanced low-concentration-TRAIL-induced suppression of proliferation and promotion of apoptosis and increased p27 expression and the amount of the p27-CDK2 complex in pancreatic cancer cells. PUM1 overexpression attenuated the effects of TPL treatment (TRAIL-induced cell proliferation suppression and apoptosis promotion), while PUM1 silencing and TPL enhanced low-concentration-TRAIL-induced autophagy activation in pancreatic cancer cells. Moreover, PUM1 overexpression attenuated the effect of TPL treatment on TRAIL-induced autophagy activation in pancreatic cancer cells. CONCLUSION PUM1 silencing increased the sensitivity of pancreatic cancer cells to TRAIL in vivo and in vitro, indicating that PUM1 may be a new target for increasing the sensitivity of cancer cells to TRAIL. In addition, our results indicate that TPL enhances TRAIL sensitivity of pancreatic cancer cells by activating autophagy via downregulation of PUM1. This novel concept may have significant implications for the development of new strategies to enhance TRAIL sensitivity of tumors.
Collapse
Affiliation(s)
- Haisu Dai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yan Jiang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yuandeng Luo
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ping Bie
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Zhiyu Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
15
|
Zhang X, Xiao Z, Xu H. A review of the total syntheses of triptolide. Beilstein J Org Chem 2019; 15:1984-1995. [PMID: 31501665 PMCID: PMC6720243 DOI: 10.3762/bjoc.15.194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/03/2019] [Indexed: 12/12/2022] Open
Abstract
Triptolide is a complex triepoxide diterpene natural product that has attracted considerable interest in the organic chemistry and medicinal chemistry societies due to its intriguing structural features and multiple promising biological activities. In this review, progress in the total syntheses of triptolide are systematically summarized. We hope to gain a better understanding of the field and provide constructive suggestions for future studies of triptolide.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zaozao Xiao
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
16
|
Hou W, Liu B, Xu H. Triptolide: Medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem 2019; 176:378-392. [DOI: 10.1016/j.ejmech.2019.05.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
|
17
|
Song W, Liu M, Wu J, Zhai H, Chen Y, Peng Z. Preclinical Pharmacokinetics of Triptolide: A Potential Antitumor Drug. Curr Drug Metab 2019; 20:147-154. [DOI: 10.2174/1389200219666180816141506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023]
Abstract
Background:Triptolide, a bioactive component in Tripterygium wilfordii extracts, possess strong antiproliferative activity on all 60-National Cancer Institute (NCI) cancer cell lines. However, the widespread use of triptolide in the clinical practice is greatly limited for its multi-organ toxicity and narrow therapeutic window. All the toxic characteristics of triptolide are associated with the pharmacokinetics especially its distribution and accumulation in the target organ.Methods:The literature review was done using PubMed search, SciFinder and Google Scholar databases with specific keywords such as triptolide, pharmacokinetics, drug-drug interaction, transporters, metabolism, modification to collect the related full-length articles and abstracts from 2000 to 2018.Results:Oral triptolide is rapidly and highly absorbed. Grapefruit juice affects oral absorption, increasing the area under the concentration-time curve (AUC) by 153 % and the maximum concentration (Cmax) by 141 %. The AUC and the Cmax are not dose proportional. Triptolide distributes into the liver, heart, spleen, lung and kidney. Biotransformation of triptolide in rats includes hydroxylation, sulfate, glucuronide, N-acetylcysteine (NAC) and Glutathione (GSH) conjugation and combinations of these pathways. Less than 4 % of triptolide was recovered from the feces, bile and urine within 24 h. After repeating dosage, triptolide was eliminated quickly without accumulation in vivo. As a substrate of P-glycoprotein (P-gp) and CYP3A4, triptolide could have clinically significant pharmacokinetic interactions with those proteins substrates/inhibitors.Conclusion:The findings of this review confirm the importance of pharmacokinetic character for understanding the pharmacology and toxicology of triptolide.
Collapse
Affiliation(s)
- Wei Song
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Meilin Liu
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Junjun Wu
- Lab of Structure Biology and Medicinal Chemistry, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Hong Zhai
- Lab of Structure Biology and Medicinal Chemistry, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Yong Chen
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Zhihong Peng
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| |
Collapse
|
18
|
Hsp90 Inhibitor SNX-2112 Enhances TRAIL-Induced Apoptosis of Human Cervical Cancer Cells via the ROS-Mediated JNK-p53-Autophagy-DR5 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9675450. [PMID: 31019655 PMCID: PMC6452544 DOI: 10.1155/2019/9675450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell apoptosis-inducing factor that can induce apoptosis in a variety of cancer cells. However, resistance to TRAIL in cancer cells is a huge obstacle in creating effective TRAIL-targeted clinical therapies. Thus, agents that can either enhance the effect of TRAIL or overcome its resistance are needed. In this study, we combined TRAIL with SNX-2112, an Hsp90 inhibitor we previously developed, to explore the effect and mechanism that SNX-2112 enhanced TRAIL-induced apoptosis in cervical cancer cells. Our results showed that SNX-2112 markedly enhanced TRAIL-induced cytotoxicity in HeLa cells, and this combination was found to be synergistic. Additionally, we found that SNX-2112 sensitized TRAIL-mediated apoptosis caspase-dependently in TRAIL-resistant HeLa cells. Mechanismly, SNX-2112 downregulated antiapoptosis proteins, including Bcl-2, Bcl-XL, and FLIP, promoted the accumulation of reactive oxygen species (ROS), and increased the expression levels of p-JNK and p53. ROS scavenger NAC rescued SNX-2112/TRAIL-induced apoptosis and suppressed SNX-2112-induced p-JNK and p53. Moreover, SNX-2112 induced the upregulation of death-receptor DR5 in HeLa cells. The silencing of DR5 by siRNA significantly decreased cell apoptosis by the combined effect of SNX-2112 and TRAIL. In addition, SNX-2112 inhibited the Akt/mTOR signaling pathway and induced autophagy in HeLa cells. The blockage of autophagy by bafilomycin A1 or Atg7 siRNA abolished SNX-2112-induced upregulation of DR5. Meanwhile, ROS scavenger NAC, JNK inhibitor SP600125, and p53 inhibitor PFTα were used to verify that autophagy-mediated upregulation of DR5 was regulated by the SNX-2112-stimulated activation of the ROS-JNK-p53 signaling pathway. Thus, the combination of SNX-2112 and TRAIL may provide a novel strategy for the treatment of human cervical cancer by overcoming cellular mechanisms of apoptosis resistance.
Collapse
|
19
|
Spano C, Grisendi G, Golinelli G, Rossignoli F, Prapa M, Bestagno M, Candini O, Petrachi T, Recchia A, Miselli F, Rovesti G, Orsi G, Maiorana A, Manni P, Veronesi E, Piccinno MS, Murgia A, Pinelli M, Horwitz EM, Cascinu S, Conte P, Dominici M. Soluble TRAIL Armed Human MSC As Gene Therapy For Pancreatic Cancer. Sci Rep 2019; 9:1788. [PMID: 30742129 PMCID: PMC6370785 DOI: 10.1038/s41598-018-37433-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive adult cancers with an unacceptable prognosis. For this reason novel therapies accounting for PDAC peculiarities, such as the relevant stromal reaction, are urgently needed. Here adipose mesenchymal stromal/stem cells (AD-MSC) have been armed to constantly release a soluble trimeric and multimeric variant of the known anti-cancer TNF-related apoptosis-inducing ligand (sTRAIL). This cancer gene therapy strategy was in vitro challenged demonstrating that sTRAIL was thermally stable and able to induce apoptosis in the PDAC lines BxPC-3, MIA PaCa-2 and against primary PDAC cells. sTRAIL released by AD-MSC relocated into the tumor stroma was able to significantly counteract tumor growth in vivo with a significant reduction in tumor size, in cytokeratin-7+ cells and by an anti-angiogenic effect. In parallel, histology on PDAC specimens form patients (n = 19) was performed to investigate the levels of TRAIL DR4, DR5 and OPG receptors generating promising insights on the possible clinical translation of our approach. These results indicate that adipose MSC can very efficiently vehicle a novel TRAIL variant opening unexplored opportunities for PDAC treatment.
Collapse
Affiliation(s)
- Carlotta Spano
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Medolla, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Medolla, Modena, Italy
| | - Giulia Golinelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Rossignoli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Olivia Candini
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Medolla, Modena, Italy
| | | | - Alessandra Recchia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Miselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Rovesti
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orsi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Department of Diagnostic and Clinical Medicine and of Public Health, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Manni
- Department of Diagnostic and Clinical Medicine and of Public Health, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Veronesi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Technopole of Mirandola TPM, Mirandola, Modena, Italy
| | | | - Alba Murgia
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Edwin M Horwitz
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Stefano Cascinu
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Pierfranco Conte
- Department of Surgery, Oncology and Gastroenerology University of Padova, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy. .,Rigenerand srl, Medolla, Modena, Italy. .,Technopole of Mirandola TPM, Mirandola, Modena, Italy.
| |
Collapse
|
20
|
Triptolide-targeted delivery methods. Eur J Med Chem 2019; 164:342-351. [DOI: 10.1016/j.ejmech.2018.12.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/15/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022]
|
21
|
Deng Y, Bi R, Guo H, Yang J, Du Y, Wang C, Wei W. Andrographolide Enhances TRAIL-Induced Apoptosis via p53-Mediated Death Receptors Up-Regulation and Suppression of the NF-кB Pathway in Bladder Cancer Cells. Int J Biol Sci 2019; 15:688-700. [PMID: 30745855 PMCID: PMC6367587 DOI: 10.7150/ijbs.30847] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/20/2018] [Indexed: 01/22/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an effective chemotherapeutic agent that specifically impairs cancer cells while sparing normal cells; however, some cancer cells develop resistance to TRAIL. Here, we identified Andrographolide, a diterpenoid lactone derived from a traditional herbal medicine Andrographis paniculata, as an ideal sensitizer for TRAIL to overcome bladder cancer. Our results showed that combination treatment of Andro and TRAIL retarded growth, attenuated proliferation, decreased colony formation, inhibited migration and promoted caspases-mediated apoptosis in T24 cells. Additionally, the sensitization by Andro is achieved through up-regulation of death receptors (DR4 and DR5) of TRAIL in a p53-dependent manner. Crucially, Andro is also capable of inactivating NF-κB signaling pathway via transcriptional down-regulation p65/RelA, which is further contributed to enhancement of TRAIL-mediated cytotoxicity. These results indicated that non-toxic doses of Andrographolide sensitized bladder cancer cells to TRAIL-mediated apoptosis, suggesting it as an effective therapeutic agent for TRAIL resistant human bladder cancers.
Collapse
Affiliation(s)
- Yuyou Deng
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China.,Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Ran Bi
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China.,Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Yujun Du
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Wei Wei
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| |
Collapse
|
22
|
El-Zahaby SA, Elnaggar YSR, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J Control Release 2019; 293:21-35. [PMID: 30445002 DOI: 10.1016/j.jconrel.2018.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is nowadays the most life-threatening cancer type worldwide. The problem of poor diagnosis, anti-neoplastics resistance and biopharmaceutical drawbacks of effective anti-cancer drugs lead to worsen disease state. Nanotechnology-based carrier systems used in both imaging and treatment procedures had solved many of these problems. It is critical to develop advanced detection method to save patients from being too late diagnosed. Targeting the pancreatic cancer cells as well helped in decreasing the side effects associated with normal cells destruction. Drug resistance is another challenge in pancreatic cancer management that can be solved by thorough understanding of the microenvironment associated with the disease to design creative nanocarriers. This is the first article to review multifaceted approaches of nanomedicine in pancreatic cancer detection and management. Additionally, mortality rates in selected Arab and European countries were illustrated herein. An emphasis was given on therapeutic and diagnostic challenges and different nanotechnologies adopted to overcome. The four main approaches encompassed nanomedicine for herbal treatment, nanomedicine of synthetic anti-cancer drugs, metal nanoparticles as a distinct treatment policy and nanotechnology for cancer diagnosis. Future research perspectives have been finally proposed.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
El-Zahaby SA, Elnaggar YS, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J Control Release 2019. [DOI: https://doi.org/10.1016/j.jconrel.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Zhuo FF, Zhang C, Zhang H, Xia Y, Xue GM, Yang L, Kong LY. Chrysanthemulide A induces apoptosis through DR5 upregulation via JNK-mediated autophagosome accumulation in human osteosarcoma cells. J Cell Physiol 2018; 234:13191-13208. [PMID: 30556589 DOI: 10.1002/jcp.27991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022]
Abstract
Osteosarcoma is the most frequent malignant primary bone tumor, and it generally develops a multidrug resistance. Chrysanthemulide A (CA) is a sesquiterpenoid from the herb Chrysanthemum indicum that has demonstrated a great anti-osteosarcoma potential. In this study, CA-induced apoptotic cell death resulted in the activation of the caspase-8-mediated caspase cascade, as evidenced by the cleavage of the substrate protein Bid and the caspase-8 inhibitor Z-VAD-FMK. The CA treatment upregulated the expression of death receptor 5 (DR5) in both whole cells and the cell membrane. Blocking DR5 expression by the small interfering RNA (siRNA) treatment decreased the caspase-8-mediated caspase cascade and efficiently attenuated CA-induced apoptosis, suggesting the critical role of DR5 in CA-induced apoptotic cell death. CA-induced upregulation of the DR5 protein was accompanied by the accumulation of LC3B-II, indicating the formation of autophagosomes. Importantly, DR5 upregulation was mediated by transcriptionally controlled autophagosome accumulation, as blockade of autophagosomes by LC3B or ATG-5 siRNA substantially decreased DR5 upregulation. Furthermore, CA activated the c-Jun N-terminal kinase (JNK) signaling pathway, and treatment with JNK siRNAs or inhibitor SP600125 significantly attenuated CA-mediated autophagosome accumulation and DR5-mediated cell apoptosis. Finally, CA sensitized the osteosarcoma cells to the DR5 ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic cell death. Above all, these results suggest that CA induces apoptosis through upregulating DR5 via JNK-mediated autophagosome accumulation and that combined treatment with CA and TRAIL might be a promising therapy for osteosarcoma.
Collapse
Affiliation(s)
- Fang-Fang Zhuo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Gui-Min Xue
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Liu M, Song W, Du X, Su J, Dong K, Chen Y, Peng Z. NQO1-Selective Activated Prodrug of Triptolide: Synthesis and Antihepatocellular Carcinoma Activity Evaluation. ACS Med Chem Lett 2018; 9:1253-1257. [PMID: 30613335 DOI: 10.1021/acsmedchemlett.8b00404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of death in patients with cirrhosis. Due to its poor response to conventional chemotherapy drugs, the prognosis for its survival is the worst. NAD(P)H:quinone oxidoreductase 1 (NQO1) is an attractive anticancer target due to its overexpression in HCC. Although triptolide (TP) possesses potent antitumor activity, its clinical practice is greatly limited due to its general toxicities and narrow therapeutic window. Herein, we develop an NQO1-selective activated TP analog, named CX-23, which exhibited antiproliferation of HepG2 over normal hepatocytes in vitro. In vivo study shows that CX-23 can not only prevent the hepatocellular carcinoma progression but also migrate the liver and kidney toxicity. These findings indicate that NQO1 may serve as a targeted delivery system to release an antitumor reagent and that CX-23 may be a promising lead for developing targeted antihepatocellular carcinoma drugs.
Collapse
Affiliation(s)
- Meilin Liu
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Wei Song
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Xi Du
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Jingtian Su
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Kang Dong
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Yong Chen
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Zhihong Peng
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| |
Collapse
|
26
|
Broad targeting of triptolide to resistance and sensitization for cancer therapy. Biomed Pharmacother 2018; 104:771-780. [DOI: 10.1016/j.biopha.2018.05.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022] Open
|
27
|
Down‐regulation of intracellular anti‐apoptotic proteins, particularly c‐FLIP by therapeutic agents; the novel view to overcome resistance to TRAIL. J Cell Physiol 2018; 233:6470-6485. [DOI: 10.1002/jcp.26585] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
28
|
Hamdi AM, Jiang ZZ, Guerram M, Yousef BA, Hassan HM, Ling JW, Zhang LY. Biochemical and computational evaluation of Triptolide-induced cytotoxicity against NSCLC. Biomed Pharmacother 2018; 103:1557-1566. [PMID: 29864943 DOI: 10.1016/j.biopha.2018.04.198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022] Open
Abstract
Triptolide is the major bioactive component isolated from the Chinese Medicinal plant Tripterygium wilfordii. Despite the growing interest and the plethora of reports discussing the pharmacological activity of this diterpenoid, no clear consensus regarding its cellular targets and full mechanism of action has been reached. In the present work, a combined in vitro and in silico approach was used to evaluate the biological activity of Triptolide on Non-small cell lung cancer (NSCLC). In vitro, Triptolide treatment induced apoptosis in NSCLC cell lines and down-regulated the phosphorylation of AKT, mTOR, and p70S6K. Triptolide also impacted cellular glycolysis as well as the antioxidant response through the impairment of glucose utilization, HKII, glutathione, and NRF2 levels. Molecular docking results examined the possible interactions between Triptolide and AKT and predicted an allosteric binding to AKT-1 structure. Molecular dynamics simulations were further used to evaluate the stability of the complex formed by Triptolide's best conformer and AKT. These findings provide an insightful approach to the anticancer effect of Triptolide against NSCLC and highlight a possible new role for AKT/mTOR HKII inhibition.
Collapse
Affiliation(s)
- Aida M Hamdi
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, China
| | - Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Bashir A Yousef
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China; Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jia-Wei Ling
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
29
|
Gao H, Zhang Y, Dong L, Qu XY, Tao LN, Zhang YM, Zhai JH, Song YQ. Triptolide induces autophagy and apoptosis through ERK activation in human breast cancer MCF-7 cells. Exp Ther Med 2018; 15:3413-3419. [PMID: 29545863 DOI: 10.3892/etm.2018.5830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
To investigate the effects of triptolide (TPI) on proliferation, autophagy and death in human breast cancer MCF-7 cells, and to elucidate the associated molecular mechanisms, intracellular alterations were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays. The results of the MTT assay revealed that TPI significantly reduced the MCF-7 cell survival rate when the concentration was >10 nmol/l. TPI activated a caspase cascade reaction by regulating Bcl-2-associated X protein (Bax), caspase-3 and B-cell lymphoma 2 expression, and promoted programmed cell death via the mitochondrial pathway. The results demonstrated that TPI significantly reduced the cell proliferation rate and viability in a time- and dose-dependent manner, which was confirmed by western blotting and immunofluorescent staining. TPI induced autophagy and influenced p38 mitogen-activated protein kinases, extracellular signal-regulated kinase (Erk)1/2, and mammalian target of rapamycin (mTOR) phosphorylation, which resulted in apoptosis. When cells were treated with a combination of TPI and the Erk1/2 inhibitor U0126, the downregulation of P62 and upregulation of Bax were inhibited, which demonstrated that the inhibition of Erk1/2 reversed the autophagy changes induced by TPI. The results indicated that Erk1/2 activation may be a novel mechanism by which TPI induces autophagy and apoptosis in MCF-7 breast cancer cells. In conclusion, TPI affects the proliferation and apoptosis of MCF-7 cells, potentially via autophagy and p38/Erk/mTOR phosphorylation. The present study offers a novel view of the mechanisms by which TPI regulates cell death.
Collapse
Affiliation(s)
- Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China.,School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yue Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Dong
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Yu Qu
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li-Na Tao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yue-Ming Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing-Hui Zhai
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan-Qing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
30
|
Xu H, Fan X, Zhang G, Liu X, Li Z, Li Y, Jiang B. LLDT-288, a novel triptolide analogue exhibits potent antitumor activity in vitro and in vivo. Biomed Pharmacother 2017; 93:1004-1009. [DOI: 10.1016/j.biopha.2017.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023] Open
|
31
|
Ding B, Wahid MA, Wang Z, Xie C, Thakkar A, Prabhu S, Wang J. Triptolide and celastrol loaded silk fibroin nanoparticles show synergistic effect against human pancreatic cancer cells. NANOSCALE 2017; 9:11739-11753. [PMID: 28782773 PMCID: PMC5648537 DOI: 10.1039/c7nr03016a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pancreatic cancer is a lethal disease with a dreadful 5-year survival rate of only 5%. In spite of several treatment options, the prognosis still remains extremely poor. Therefore, novel therapy strategies with combinations of drugs are urgently required to combat this fatal disease. Triptolide (TPL) and celastrol (CL), two main compounds in traditional Chinese medicine isolated from Thunder God Vine, have a broad range of bioactivities including anticancer activity. Silk fibroin (SF), a naturally occurring protein with several unique properties, is an ideal carrier material. In this study, we prepared TPL and CL loaded silk fibroin nanoparticles (TPL-SFNPs and CL-SFNPs) by a modified desolvation method and evaluated their synergistic effects against human pancreatic cancer cells. Both SFNPs were characterized for particle size and zeta potential. The entrapment efficiency, drug loading, and drug release profiles were evaluated by HPLC. The cytotoxicity and synergistic effect of SFNPs were investigated in MIA PaCa-2 and PANC-1 human pancreatic cells. The results showed that the particle sizes of TPL-SFNPs and CL-SFNPs were 166.4 ± 4.6 nm and 170.4 ± 2.3 nm, with a mean zeta potential -27.2 ± 2.0 mV and -25.5 ± 2.57 mV, respectively. TPL-SFNPs and CL-SFNPs have a drug loading of 57.0 ± 4.7 μg mg-1 and 63.5 ± 3.8 μg mg-1 along with an encapsulation efficiency of 81.8 ± 2.8% and 87.0 ± 5.1%, respectively. Drug release studies revealed that a rapid release of the drugs from SFNPs was observed at pH 4.5 (lysosomal pH) and a delayed release was observed at pH 7.4 (plasma pH). TPL-SFNPs (IC50 3.80 and 4.75 nM) and CL-SFNPs (IC50 0.38 and 0.64 μM) were 2-3 fold more potent against MIA PaCa-2 and PANC-1 cells than free TPL (IC50 11.25 and 11.58 nM) and CL (IC50 0.84 and 1.23 μM). Furthermore, co-treatment with TPL-SFNPs and CL-SFNPs increased the growth inhibition of the same cells significantly in comparison with TPL-SFNPs or CL-SFNPs alone. Almost all combination index (CI) values, calculated using the CompuSyn software, were <1, suggesting that the growth inhibition effect of TPL-SFNPs in combination with CL-SFNPs was synergistic rather than additive, further suggesting that this novel combination may offer a potential treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - Md Arif Wahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - Zhijun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - Chen Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - Arvind Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
32
|
Kang KH, Han MH, Jeong JW, Park C, Lee SH, Lee HW, Hong SH, Choi YH, Hong SH. Bufalin sensitizes human bladder carcinoma cells to TRAIL-mediated apoptosis. Oncol Lett 2017; 14:853-859. [PMID: 28693242 PMCID: PMC5494769 DOI: 10.3892/ol.2017.6223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, has garnered interest as it is relatively non-toxic to normal cells, but selectively induces apoptotic cell death in multiple types of transformed or malignant cells. Bufalin is the major digoxin-like immunoreactive component of Sum Su, which is obtained from the skin and parotid venom gland of the toad. Bufalin is known to inhibit cell proliferation and induce apoptosis in a variety of cancer cells. The present study investigated whether bufalin promoted TRAIL-induced apoptotic cell death. In the present study, a combined treatment using bufalin and TRAIL significantly increased TRAIL-mediated inhibition of cell viability and increased apoptosis in T24 human bladder cancer cells. The apoptotic effects were associated with the upregulation of death receptor proteins and the downregulation of cellular Fas-associated death domain-like interleukin-1β-converting enzyme inhibitory protein and X-linked inhibitor of apoptosis protein. Furthermore, the data revealed that bufalin and TRAIL activated caspase-3, −8 and −9 and subsequently increased the degradation of poly (ADP-ribose) polymerase. Taken altogether, the nontoxic doses of bufalin and TRAIL sensitized T24 cells to TRAIL-mediated apoptosis. Therefore, bufalin may provide an effective therapeutic strategy for the safe treatment of human bladder cancers that are resistant to TRAIL.
Collapse
Affiliation(s)
- Kyung-Hwa Kang
- Department of Physiology, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Min Ho Han
- Natural Products Research Team, National Marine Biodiversity Institute of Korea, Seocheon, South Chungcheong 325-902, Republic of Korea
| | - Jin-Woo Jeong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea.,Anti-Aging Research Center & Blue-Bio Industry RIC; Dongeui University, Busan 614-714, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Science and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Sang-Hyup Lee
- Department of Korean Medical Classics, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Hai Woong Lee
- Department of Public Health, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea.,Anti-Aging Research Center & Blue-Bio Industry RIC; Dongeui University, Busan 614-714, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| |
Collapse
|
33
|
Inhibition of Sp1 prevents ER homeostasis and causes cell death by lysosomal membrane permeabilization in pancreatic cancer. Sci Rep 2017; 7:1564. [PMID: 28484232 PMCID: PMC5431512 DOI: 10.1038/s41598-017-01696-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) stress initiates an important mechanism for cell adaptation and survival, named the unfolded protein response (UPR). Severe or chronic/prolonged UPR can breach the threshold for survival and lead to cell death. There is a fundamental gap in knowledge on the molecular mechanism of how chronic ER stress is stimulated and leads to cell death in pancreatic ductal adenocarcinoma (PDAC). Our study shows that downregulating specificity protein 1 (Sp1), a transcription factor that is overexpressed in pancreatic cancer, activates UPR and results in chronic ER stress. In addition, downregulation of Sp1 results in its decreased binding to the ER stress response element present in the promoter region of Grp78, the master regulator of ER stress, thereby preventing homeostasis. We further show that inhibition of Sp1, as well as induction of ER stress, leads to lysosomal membrane permeabilization (LMP), a sustained accumulation of cytosolic calcium, and eventually cell death in pancreatic cancer.
Collapse
|
34
|
Zhao X, Sun W, Puszyk WM, Wallet S, Hochwald S, Robertson K, Liu C. Focal adhesion kinase inhibitor PF573228 and death receptor 5 agonist lexatumumab synergistically induce apoptosis in pancreatic carcinoma. Tumour Biol 2017; 39:1010428317699120. [PMID: 28459212 DOI: 10.1177/1010428317699120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pancreatic cancer has one of the lowest survival rates of all cancers. The mechanism underlying chemo-resistance of pancreatic cancer is not well understood. Our previous article reported that small molecule YM155 induced apoptosis in pancreatic cancer cells via activation of death receptor 5. In this study, we aim to continuously address death receptor 5-mediated apoptosis in chemo-resistant pancreatic carcinoma. We found that in comparison to paired pancreatic cancer tissues and adjacent normal tissues, five of the six cancer tissues had downregulated death receptor 5 and upregulated Bcl-xL. Mono treatment with lexatumumab was not sufficient to induce apoptosis in pancreatic cancer cells, whereas focal adhesion kinase inhibitor PF573228 significantly sensitized lexatumumab-induced apoptosis. Western blotting analysis revealed that lexatumumab and PF573228 combination treatment increased death receptor 5 but decreased Bcl-xL expression. Interestingly, pre-treatment with Bcl-xL inhibitor ABT263 reversed the insensitivity of panc-1 cells to lexatumumab or PF573228-induced apoptosis. Specific small interfering RNA-mediated gene silencing of Bcl-xL effectively sensitized pancreatic cancer cells to lexatumumab or PF573228-induced apoptosis. Furthermore, lexatumumab and PF573228 combination was shown to exhibit significant xenograft pancreatic tumor growth inhibition in SCID mice. Our data provide fundamental evidence to support the notion that lexatumumab and PF573228 co-treatment could be a potentially effective regime for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- 1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- 2 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Sun
- 1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - William M Puszyk
- 2 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shannon Wallet
- 3 Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Steve Hochwald
- 4 Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Keith Robertson
- 5 Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Chen Liu
- 2 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Li M, Song LH, Yue GGL, Lee JKM, Zhao LM, Li L, Zhou X, Tsui SKW, Ng SSM, Fung KP, Tan NH, Lau CBS. Bigelovin triggered apoptosis in colorectal cancer in vitro and in vivo via upregulating death receptor 5 and reactive oxidative species. Sci Rep 2017; 7:42176. [PMID: 28181527 PMCID: PMC5299840 DOI: 10.1038/srep42176] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/05/2017] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer and the third highest cancer-related mortality in the United States. Bigelovin, a sesquiterpene lactone isolated from Inula helianthus aquatica, has been proven to induce apoptosis and exhibit anti-inflammatory and anti-angiogenic activities. However, the effects of bigelovin on CRC and underlying mechanisms have not been explored. The present study demonstrated that bigelovin exhibited potent anti-tumor activities against CRC in vitro and in vivo. Bigelovin suppressed cell proliferation and colony formation and induced apoptosis in human colorectal cancer HT-29 and HCT 116 cells in vitro. Results also revealed that bigelovin activated caspases, caused the G2/M cell cycle arrest and induced DNA damage through up-regulation of death receptor (DR) 5 and increase of ROS. In HCT 116 xenograft model, bigelovin treatment resulted in suppression of tumor growth. Bigelovin at 20 mg/kg showed more significant tumor suppression and less side effects than conventional FOLFOX (containing folinic acid, 5-fluorouracil and oxaliplatin) treatment. In addition, in vivo data confirmed that anti-tumor activity of bigelovin in CRC was through induction of apoptosis by up-regulating DR5 and increasing ROS. In conclusion, these results strongly suggested that bigelovin has potential to be developed as therapeutic agent for CRC patients.
Collapse
Affiliation(s)
- Mingyue Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Li-Hua Song
- School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Li-Mei Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lin Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xunian Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Simon Siu-Man Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwok-Pui Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Ning-Hua Tan
- School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| |
Collapse
|
36
|
Nogueira DR, Yaylim I, Aamir Q, Kahraman OT, Fayyaz S, Kamran-ul-Hassan Naqvi S, Farooqi AA. TRAIL mediated signaling in pancreatic cancer. Asian Pac J Cancer Prev 2017; 15:5977-82. [PMID: 25124560 DOI: 10.7314/apjcp.2014.15.15.5977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Research over the years has progressively shown substantial broadening of the tumor necrosis factor alpha- related apoptosis-inducing ligand (TRAIL)-mediated signaling landscape. Increasingly it is being realized that pancreatic cancer is a multifaceted and genomically complex disease. Suppression of tumor suppressors, overexpression of oncogenes, epigenetic silencing, and loss of apoptosis are some of the extensively studied underlying mechanisms. Rapidly accumulating in vitro and in vivo evidence has started to shed light on the resistance mechanisms in pancreatic cancer cells. More interestingly a recent research has opened new horizons of miRNA regulation by DR5 in pancreatic cancer cells. It has been shown that DR5 interacts with the core microprocessor components Drosha and DGCR8, thus impairing processing of primary let-7. Xenografting DR5 silenced pancreatic cancer cells in SCID-mice indicated that there was notable suppression of tumor growth. There is a paradigm shift in our current understanding of TRAIL mediated signaling in pancreatic cancer cells that is now adding new layers of concepts into the existing scientific evidence. In this review we have attempted to provide an overview of recent advances in TRAIL mediated signaling in pancreatic cancer as evidenced byfindings of in vitro and in vivo analyses. Furthermore, we discuss nanotechnological advances with emphasis on PEG-TRAIL and four-arm PEG cross-linked hyaluronic acid (HA) hydrogels to improve availability of TRAIL at target sites.
Collapse
Affiliation(s)
- Daniele Rubert Nogueira
- Department of Industrial Pharmacy, Health Science Center, Federal University of Santa Maria, Santa Maria-RS, Brazil E-mail :
| | | | | | | | | | | | | |
Collapse
|
37
|
Triptolide Combined with Radiotherapy for the Treatment of Nasopharyngeal Carcinoma via NF-κB-Related Mechanism. Int J Mol Sci 2016; 17:ijms17122139. [PMID: 27999372 PMCID: PMC5187939 DOI: 10.3390/ijms17122139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022] Open
Abstract
Advanced nasopharyngeal carcinoma (NPC) has a poor prognosis because of the lack of an effective treatment. Here we explored the efficiency and the molecular mechanisms of combined treatment with triptolide and ionizing radiation for treating NPC. Human nasopharyngeal carcinoma (CNE) cells were treated with triptolide, ionizing radiation, or triptolide plus ionizing radiation in vitro. Tumor potency was examined in an in vivo CNE cell xenograft mouse model, which was treated as above. Our results demonstrated that triptolide caused a significant reduction in cell growth and colony number, and induced a marked apoptosis that was further enhanced with increasing doses of ionizing radiation. Combination treatment synergistically reduced tumor weight and volume without obvious toxicity. Western blot analysis in vitro and in vivo showed that triptolide induced apoptotic protein Bax expression and inhibited phosph-NF-κB p65, Bcl-2 and VEGF proteins without affecting other NF-κB related protein expression. In conclusion, our findings revealed that triptolide plus ionizing radiation had synergistic anti-tumor and anti-angiogenesis effects in NPC via down-regulating NF-κB p65 phosphorylation. The combination therapy may provide novel mechanism insights into inhibit NPC.
Collapse
|
38
|
Jao HY, Yu FS, Yu CS, Chang SJ, Liu KC, Liao CL, Ji BC, Bau DT, Chung JG. Suppression of the migration and invasion is mediated by triptolide in B16F10 mouse melanoma cells through the NF-kappaB-dependent pathway. ENVIRONMENTAL TOXICOLOGY 2016; 31:1974-1984. [PMID: 26420756 DOI: 10.1002/tox.22198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/10/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
Melanoma cancer is one of the major causes of death in humans worldwide. Triptolide is one of the active components of Tripterygium wilfordii Hook F, and has biological activities including induced cell cycle arrest and induction of apoptosis but its antimetastatic effects on murine melanoma cells have not yet been elucidated. Herein, we investigated the effect of triptolide on the inhibition of migration and invasion and possible associated signal pathways in B16F10 murine melanoma cancer cells. Wound healing assay and Matrigel Cell Migration Assay and Invasion System demonstrated that triptolide marked inhibiting the migration and invasion of B16F10 cells. Gelatin zymography assay demonstrated that triptolide significantly inhibited the activities of matrix metalloproteinases-2 (MMP-2). Western blotting showed that triptolide markedly reduced CXCR4, SOS1, GRB2, p-ERK, FAK, p-AKT, Rho A, p-JNK, NF-κB, MMP-9, and MMP-2 but increased PI3K and p-p38 and COX2 after compared to the untreated (control) cells. Real time PCR indicated that triptolide inhibited the gene expression of MMP-2, FAK, ROCK-1, and NF-κB but did not significantly affect TIMP-1 and -2 gene expression in B16F10 cells in vitro. EMSA assay also showed that triptolide inhibited NF-κB DNA binding in a dose-dependent manner. Confocal laser microscopy examination also confirmed that triptolide inhibited the expression of NF-κB in B16F10 cells. Taken together, we suggest that triptolide inhibited B16F10 cell migration and invasion via the inhibition of NF-κB expression then led to suppress MMP-2 and -9 expressions. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1974-1984, 2016.
Collapse
Affiliation(s)
- Hui-Yu Jao
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan, ROC
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung, 404, Taiwan, ROC
| | - Chun-Shu Yu
- School of Pharmacology, China Medical University, Taichung, 404, Taiwan, ROC
| | - Shu-Jen Chang
- School of Pharmacology, China Medical University, Taichung, 404, Taiwan, ROC
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 404, Taiwan, ROC
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan, ROC
| | - Bin-Chuan Ji
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500, Taiwan, ROC
| | - Da-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan, ROC
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, 404, Taiwan, ROC
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan, ROC
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan, ROC
| |
Collapse
|
39
|
Modi S, Kir D, Banerjee S, Saluja A. Control of Apoptosis in Treatment and Biology of Pancreatic Cancer. J Cell Biochem 2016. [PMID: 26206252 DOI: 10.1002/jcb.25284] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is estimated to be the 12th most common cancer in the United States in 2014 and yet this malignancy is the fourth leading cause of cancer-related death in the United States. Late detection and resistance to therapy are the major causes for its dismal prognosis. Apoptosis is an actively orchestrated cell death mechanism that serves to maintain tissue homoeostasis. Cancer develops from normal cells by accruing significant changes through one or more mechanisms, leading to DNA damage and mutations, which in a normal cell would induce this programmed cell death pathway. As a result, evasion of apoptosis is one of the hallmarks of cancer cells. PDAC is notoriously resistant to apoptosis, thereby explaining its aggressive nature and resistance to conventional treatment modalities. The current review is focus on understanding different intrinsic and extrinsic pathways in pancreatic cancer that may affect apoptosis in this disease.
Collapse
Affiliation(s)
- Shrey Modi
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Devika Kir
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Sulagna Banerjee
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Ashok Saluja
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| |
Collapse
|
40
|
Bcl-xL inhibition by molecular-targeting drugs sensitizes human pancreatic cancer cells to TRAIL. Oncotarget 2016; 6:41902-15. [PMID: 26506422 PMCID: PMC4747197 DOI: 10.18632/oncotarget.5881] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/06/2015] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various types of cancer cells without damaging normal cells. However, in terms of pancreatic cancer, not all cancer cells are sensitive to TRAIL. In this study, we examined a panel of human pancreatic cancer cell lines for TRAIL sensitivity and investigated the effects of Bcl-2 family inhibitors on their response to TRAIL. Both ABT-263 and ABT-737 inhibited the function of Bcl-2, Bcl-xL, and Bcl-w. Of the nine pancreatic cancer cell lines tested, six showed no or low sensitivity to TRAIL, which correlated with protein expression of Bcl-xL. ABT-263 significantly sensitized four cell lines (AsPC-1, Panc-1, CFPAC-1, and Panc10.05) to TRAIL, with reduced cell viability and increased apoptosis. Knockdown of Bcl-xL, but not Bcl-2, by siRNA transfection increased the sensitivity of AsPC-1 and Panc-1 cells to TRAIL. ABT-263 treatment had no effect on protein expression of Bcl-2, Bcl-xL, or c-FLIPs. In Panc-1 cells, ABT-263 increased the surface expression of death receptor (DR) 5; the NF-κB pathway, but not endoplasmic reticulum stress, participated in the increase. In xenograft mouse models, the combination of TRAIL and ATB-737 suppressed the in vivo tumor growth of AsPC-1 and Panc-1 cells. These results indicate that Bcl-xL is responsible for TRAIL resistance in human pancreatic cancer cells, and that Bcl-2 family inhibitors could represent promising reagents to sensitize human pancreatic cancers in DR-targeting therapy.
Collapse
|
41
|
Triptonide Effectively Inhibits Wnt/β-Catenin Signaling via C-terminal Transactivation Domain of β-catenin. Sci Rep 2016; 6:32779. [PMID: 27596363 PMCID: PMC5011721 DOI: 10.1038/srep32779] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/15/2016] [Indexed: 01/16/2023] Open
Abstract
Abnormal activation of canonical Wnt/β-catenin signaling is implicated in many diseases including cancer. As a result, therapeutic agents that disrupt this signaling pathway have been highly sought after. Triptonide is a key bioactive small molecule identified in a traditional Chinese medicine named Tripterygium wilfordii Hook F., and it has a broad spectrum of biological functions. Here we show that triptonide can effectively inhibit canonical Wnt/β-catenin signaling by targeting the downstream C-terminal transcription domain of β-catenin or a nuclear component associated with β-catenin. In addition, triptonide treatment robustly rescued the zebrafish “eyeless” phenotype induced by GSK-3β antagonist 6-bromoindirubin-30-oxime (BIO) for Wnt signaling activation during embryonic gastrulation. Finally, triptonide effectively induced apoptosis of Wnt-dependent cancer cells, supporting the therapeutic potential of triptonide.
Collapse
|
42
|
Targeting HSF1 disrupts HSP90 chaperone function in chronic lymphocytic leukemia. Oncotarget 2016; 6:31767-79. [PMID: 26397138 PMCID: PMC4741638 DOI: 10.18632/oncotarget.5167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/28/2015] [Indexed: 12/01/2022] Open
Abstract
CLL is a disease characterized by chromosomal deletions, acquired copy number changes and aneuploidy. Recent studies have shown that overexpression of Heat Shock Factor (HSF) 1 in aneuploid tumor cells can overcome deficiencies in heat shock protein (HSP) 90-mediated protein folding and restore protein homeostasis. Interestingly, several independent studies have demonstrated that HSF1 expression and activity also affects the chaperoning of HSP90 kinase clients, although the mechanism underlying this observation is unclear. Here, we determined how HSF1 regulates HSP90 function using CLL as a model system. We report that HSF1 is overexpressed in CLL and treatment with triptolide (a small molecule inhibitor of HSF1) induces apoptosis in cultured and primary CLL B-cells. We demonstrate that knockdown of HSF1 or its inhibition with triptolide results in the reduced association of HSP90 with its kinase co-chaperone cell division cycle 37 (CDC37), leading to the partial depletion of HSP90 client kinases, Bruton's Tyrosine Kinase (BTK), c-RAF and cyclin-dependent kinase 4 (CDK4). Treatment with triptolide or HSF1 knockdown disrupts the cytosolic complex between HSF1, p97, HSP90 and the HSP90 deacetylase- Histone deacetylase 6 (HDAC6). Consequently, HSF1 inhibition results in HSP90 acetylation and abrogation of its chaperone function. Finally, tail vein injection of Mec-1 cells into Rag2−/−IL2Rγc−/− mice followed by treatment with minnelide (a pro-drug of triptolide), reduced leukemia, increased survival and attenuated HSP90-dependent survival signaling in vivo. In conclusion, our study provides a strong rationale to target HSF1 and test the activity of minnelide against human CLL.
Collapse
|
43
|
Jiang QW, Cheng KJ, Mei XL, Qiu JG, Zhang WJ, Xue YQ, Qin WM, Yang Y, Zheng DW, Chen Y, Wei MN, Zhang X, Lv M, Chen MW, Wei X, Shi Z. Synergistic anticancer effects of triptolide and celastrol, two main compounds from thunder god vine. Oncotarget 2016; 6:32790-804. [PMID: 26447544 PMCID: PMC4741730 DOI: 10.18632/oncotarget.5411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/25/2015] [Indexed: 02/07/2023] Open
Abstract
Triptolide and celastrol are two main active compounds isolated from Thunder God Vine with the potent anticancer activity. However, the anticancer effect of triptolide in combination with celastrol is still unknown. In the present study, we demonstrated that the combination of triptolide with celastrol synergistically induced cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the increased intracellular ROS accumulation in cancer cells. Pretreatment with ROS scavenger N-acetyl-L-cysteine dramatically blocked the apoptosis induced by co-treatment with triptolide and celastrol. Treatment with celastrol alone led to the decreased expressions of HSP90 client proteins including survivin, AKT, EGFR, which was enhanced by the addition of triptolide. Additionally, the celastrol-induced expression of HSP70 and HSP27 was abrogated by triptolide. In the nude mice with xenograft tumors, the lower-dose combination of triptolide with celastrol significantly inhibited the growth of tumors without obvious toxicity. Overall, triptolide in combination with celastrol showed outstanding synergistic anticancer effect in vitro and in vivo, suggesting that this beneficial combination may offer a promising treatment option for cancer patients.
Collapse
Affiliation(s)
- Qi-Wei Jiang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Ke-Jun Cheng
- Chemical Biology Center, Lishui Institute of Agricultural Sciences, Lishui, Zhejiang, China.,National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Long Mei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jian-Ge Qiu
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Wen-Ji Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - You-Qiu Xue
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Wu-Ming Qin
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Di-Wei Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yao Chen
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Meng-Ning Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xu Zhang
- National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Min Lv
- Institute of Materia Medica, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xing Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Zhao X, Zhang Q, Chen L. Triptolide induces the cell apoptosis of osteosarcoma cells through the TRAIL pathway. Oncol Rep 2016; 36:1499-505. [PMID: 27461934 DOI: 10.3892/or.2016.4957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/08/2016] [Indexed: 11/05/2022] Open
Abstract
Research on triptolide, a diterpenoid epoxide found in the Thunder God Vine Tripterygium wilfordii, has increased our knowledge of the pharmacology, pharmacokinetics, toxicology and clinical application of this agent. In the present study, we aimed to identify the effects of triptolide on the apoptosis of osteosarcoma cells and to evaluate the anti-proliferative action of this agent. MG-63 cells were treated either with various doses of triptolide (50, 100 or 200 nM) or DMSO for 6, 12 and 24 h. Treatment with triptolide effectively suppressed the cell viability and induced the apoptosis of osteosarcoma MG-63 cells as detected by MTT assay and flow cytometry, respectively. In addition, by using caspase-3, caspase-8 and caspase-9 activity assays and western blot analysis, the anticancer effects of triptolide against osteosarcoma growth were found to involve activation of the DR-5/p53/Bax/caspase-9/ caspase-3 signaling pathway and the DR-5/FADD/caspase-8/lysosomal/cathepsin B/caspase-3 signaling pathway in the MG-63 cells. An important factor in the anticancer effects of triptolide against osteosarcoma was TRAIL-DR-5. The data suggest that triptolide may be a potential novel chemotherapeutic agent for osteosarcoma and acts through the TRAIL-DR-5 signaling pathway.
Collapse
Affiliation(s)
- Xingwei Zhao
- Department of Orthopaedics, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong, P.R. China
| | - Qiang Zhang
- Department of Orthopaedics, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong, P.R. China
| | - Liang Chen
- Department of Orthopaedics, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong, P.R. China
| |
Collapse
|
45
|
Zhang H, Gong C, Qu L, Ding X, Cao W, Chen H, Zhang B, Zhou G. Therapeutic effects of triptolide via the inhibition of IL-1β expression in a mouse model of ulcerative colitis. Exp Ther Med 2016; 12:1279-1286. [PMID: 27588050 PMCID: PMC4997980 DOI: 10.3892/etm.2016.3490] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/29/2016] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the effect of triptolide (TL) on ulcerative colitis (UC) and explore the potential association between the therapeutic effects of TL and IL-1β expression using a 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS)-induced mouse model to simulate human UC. A total of 70 BALB/c female mice were randomly allocated into seven equal groups: Group A, blank control; group B, normal saline injection; group C, propylene glycol injection; group D (TL1), 0.2 mg/kg TL; group E (TL2), 0.4 mg/kg TL; group F (TL3), 0.6 mg/kg TL; and group G, dexamethasone injection. Mice activity, diet and stool characteristics were recorded daily. Mice were sacrificed by cervical dislocation on day 8, and disease activity indices, colon tissue histological scores and colonic histopathological scores were subsequently calculated. Serum levels of IL-1β were evaluated by enzyme-linked immunosorbent assay, and IL-1β expression levels were examined by reverse transcription-quantitative polymerase chain reaction with colonic mucosa specimen at the gene level and western blot analysis at the protein level. The IL-1β mRNA and protein expression levels were significantly elevated in the normal saline injection and propylene glycol injection groups compared with the blank control group and (P<0.01). In TL (TL2 and TL3)- and dexamethasone-treated mice, IL-1β expression levels were significantly decreased, as compared with the normal saline and propylene glycol injection groups (P<0.05). No significant difference was detected between TL (TL2 and TL3) and dexamethasone treatments. The results of the present study indicated that IL-1β expression was upregulated in the UC mouse model, which may be associated with the development and progression of UC. Furthermore, TL inhibited IL-1β expression, suggesting that TL may be a novel therapeutic target for the treatment of UC.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chen Gong
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang, Jiangsu 215401, P.R. China
| | - Lishuai Qu
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaoling Ding
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Cao
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haiqin Chen
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Bin Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guoxiong Zhou
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
46
|
Inhibitory Effects of Triptolide on Human Liver Cytochrome P450 Enzymes and P-Glycoprotein. Eur J Drug Metab Pharmacokinet 2016; 42:89-98. [DOI: 10.1007/s13318-016-0323-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Ziaei S, Halaby R. Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: A mini review. AVICENNA JOURNAL OF PHYTOMEDICINE 2016; 6:149-64. [PMID: 27222828 PMCID: PMC4877967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Triptolide, the active component of Tripterygium wilfordii Hook F has been used to treat autoimmune and inflammatory conditions for over two hundred years in traditional Chinese medicine. However, the processes through which triptolide exerts immunosuppression and anti-inflammation are not understood well. In this review, we discuss the autoimmune disorders and inflammatory conditions that are currently treated with triptolide. Triptolide also possesses anti-tumorigenic effects. We discuss the toxicity of various triptolide derivatives and offer suggestions to improve its safety. This study also examines the clinical trials that have investigated the efficacy of triptolide. Our aim is to examine the mechanisms that are responsible for the immunosuppressive, anti-inflammatory, and anti-cancer effects of triptolide. MATERIALS AND METHODS The present review provides a comprehensive summary of the literature with respect to the immunosuppressive, anti-inflammatory, and anti-cancer properties of triptolide. RESULTS Triptolide possesses immunosuppressive, anti-inflammatory, and anti-cancer effects. CONCLUSION Triptolide can be used alone or in combination with existing therapeutic modalities as novel treatments for autoimmune disorders, cancers, and for immunosuppression.
Collapse
|
48
|
Minnelide Overcomes Oxaliplatin Resistance by Downregulating the DNA Repair Pathway in Pancreatic Cancer. J Gastrointest Surg 2016; 20:13-23; discussion 23-4. [PMID: 26503259 PMCID: PMC4698020 DOI: 10.1007/s11605-015-3000-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/14/2015] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Oxaliplatin is part of pancreatic cancer therapy in the FOLFIRINOX or GEMOX/XELOX regimen. DNA damage repair is one of the factors responsible for oxaliplatin resistance that eventually develops in this cancer. Triptolide/Minnelide has been shown to be effective against pancreatic cancer in preclinical trials. In this study, we evaluated the efficacy of combination of triptolide and oxaliplatin against pancreatic cancer. METHODS Highly aggressive pancreatic cancer cells (MIA PaCa-2 and PANC-1) were treated with oxaliplatin (0-10 μM), low-dose triptolide (50 nM), or a combination of both for 24-48 h. Cell viability, apoptosis, and DNA damage were evaluated by appropriate methods. Nucleotide excision repair pathway components were quantitated using qPCR and Western blot. Combination of low doses of Minnelide and oxaliplatin was tested in an orthotopic murine model of pancreatic cancer. RESULTS Proliferation of pancreatic cancer cells was markedly inhibited by combination treatment. Triptolide potentiated apoptotic cell death induced by oxaliplatin and sensitized cancer cells towards oxaliplatin-induced DNA damage by suppressing the oxaliplatin-induced DNA damage repair pathway. Combination of low doses of Minnelide and oxaliplatin inhibited tumor progression by inducing significant apoptotic cell death in these tumors. CONCLUSIONS Combination of low doses of Minnelide and oxaliplatin has immense potential to emerge as a novel therapeutic strategy against pancreatic cancer.
Collapse
|
49
|
Brincks EL, Kucaba TA, James BR, Murphy KA, Schwertfeger KL, Sangwan V, Banerjee S, Saluja AK, Griffith TS. Triptolide enhances the tumoricidal activity of TRAIL against renal cell carcinoma. FEBS J 2015; 282:4747-4765. [PMID: 26426449 DOI: 10.1111/febs.13532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 08/19/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
Renal cell carcinoma (RCC) is resistant to traditional cancer therapies, and metastatic RCC (mRCC) is incurable. The shortcomings in current therapeutic options for patients with mRCC provide the rationale for the development of novel treatment protocols. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has proven to be a potent inducer of tumor cell death in vitro and in vivo, and a number of TRAIL death receptor agonists (recombinant TRAIL or TRAIL death receptor-specific mAb) have been developed and tested clinically. Unfortunately the clinical efficacy of TRAIL has been underwhelming and is likely due to a number of possible mechanisms that render tumors resistant to TRAIL, prompting the search for drugs that increase tumor cell susceptibility to TRAIL. The objective of this study was to determine the effectiveness of combining the diterpene triepoxide triptolide, or its water-soluble prodrug, Minnelide, with TRAIL receptor agonists against RCC in vitro or in vivo, respectively. TRAIL-induced apoptotic death of human RCC cells was increased in the presence of triptolide. The triptolide-induced sensitization was accompanied by increased TRAIL-R2 (DR5) and decreased heat shock protein 70 expression. In vivo treatment of mice bearing orthotopic RCC (Renca) tumors showed the combination of Minnelide and agonistic anti-DR5 mAb significantly decreased tumor burden and increased animal survival compared to either therapy alone. Our data suggest triptolide/Minnelide sensitizes RCC cells to TRAIL-induced apoptosis through altered TRAIL death receptor and heat shock protein expression.
Collapse
Affiliation(s)
- Erik L Brincks
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Britnie R James
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | | | - Kathryn L Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Veena Sangwan
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Sulagna Banerjee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Ashok K Saluja
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455.,Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
50
|
Jin J, Sun X, Zhao Z, Wang W, Qiu Y, Fu X, Huang M, Huang Z. Activation of the farnesoid X receptor attenuates triptolide-induced liver toxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:894-901. [PMID: 26321738 DOI: 10.1016/j.phymed.2015.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Triptolide, an active ingredient extracted from the Chinese herb Tripterygium wilfordii Hook f., has multiple pharmacological properties, including anti-inflammatory, immune-modulatory, and anti-proliferative activities. However, the hepatotoxicity of triptolide always limits its clinical applications. HYPOTHESIS/PURPOSE Farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays a key role in hepatoprotection through the maintenance of liver metabolism homeostasis. This study explored the role of FXR in triptolide-induced cytotoxicity and investigated whether activation of FXR can protect against triptolide-induced liver injury. STUDY DESIGN The role of FXR in triptolide-induced cytotoxicity was investigated in HepG2 cells. In addition, the protective effect of the selective FXR agonist GW4064 on triptolide-induced hepatotoxicity was explored in BALB/c mice. METHODS HepG2 cells were transient transfected with FXR expression plasmid or FXR-siRNA. The cytotoxicity was compared using the MTT assay. The extent of liver injury was assessed by histopathology and serum aminotransferases. The expression of FXR and its target genes were detected by Western blot and qRT-PCR. RESULTS The transient overexpression of FXR protected against triptolide-induced cell death, whereas FXR knockdown with a specific small interfering RNA resulted in increased cytotoxicity. In BALB/c mice, treatment with the FXR agonist GW4064 attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and lipid peroxidation. Moreover, the livers of GW4064-treated mice showed increased expression of FXR and several related target genes involved in phase II and phase III xenobiotic metabolism. CONCLUSION Taken together, these results indicate that activation of FXR attenuates triptolide-induced hepatotoxicity and provide direct implications for the development of novel therapeutic strategies against triptolide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xiaozhe Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Wenwen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuwen Qiu
- Center of Laboratory animals, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xinlu Fu
- Center of Laboratory animals, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Center of Laboratory animals, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|