1
|
Reduzzi C, Nicolo' E, Singhal S, Venetis K, Ortega-Franco A, de Miguel-Perez D, Dipasquale A, Gouda MA, Saldanha EF, Kasi PM, Jantus-Lewintre E, Fusco N, Malapelle U, Gandara DR, Rolfo C, Serrano MJ, Cristofanilli M. Unveiling the impact of circulating tumor cells: Two decades of discovery and clinical advancements in solid tumors. Crit Rev Oncol Hematol 2024; 203:104483. [PMID: 39159706 DOI: 10.1016/j.critrevonc.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Circulating tumor cells (CTCs) enumeration and molecular profiling hold promise in revolutionizing the management of solid tumors. Their understanding has evolved significantly over the past two decades, encompassing pivotal biological discoveries and clinical studies across various malignancies. While for some tumor types, such as breast, prostate, and colorectal cancer, CTCs are ready to enter clinical practice, for others, additional research is required. CTCs serve as versatile biomarkers, offering insights into tumor biology, metastatic progression, and treatment response. This review summarizes the latest advancements in CTC research and highlights future directions of investigation. Special attention is given to concurrent evaluations of CTCs and other circulating biomarkers, particularly circulating tumor DNA. Multi-analyte assessment holds the potential to unlock the full clinical capabilities of liquid biopsy. In conclusion, CTCs represent a transformative biomarker in precision oncology, offering extraordinary opportunities to translate scientific discoveries into tangible improvements in patient care.
Collapse
Affiliation(s)
- Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Eleonora Nicolo'
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Surbhi Singhal
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Konstantinos Venetis
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Ana Ortega-Franco
- Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erick F Saldanha
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, ON, Canada
| | - Pashtoon M Kasi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| | - Eloisa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, Unidad Mixta TRIAL (Fundación para la Investigación del Hospital General Universitario de Valencia y Centro de Investigación Príncipe Felipe) and CIBERONC, Valencia, Spain
| | - Nicola Fusco
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20121, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli 80131, Italy
| | - David R Gandara
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Maria Jose Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain; Pathological Anatomy Unit, Molecular Pathology Laboratory,Virgen de las Nieves. University Hospital, Av. Dr. Olóriz 16, Granada 18012, Spain
| | - Massimo Cristofanilli
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| |
Collapse
|
2
|
Li X, Dong J, Li B, Aimei O, Sun Y, Wu X, Liu W, Li R, Li Z, Yang Y. Prediction of Neoadjuvant Chemoradiotherapy Sensitivity in Patients With Esophageal Squamous Cell Carcinoma Using CT-Based Radiomics Combined With Clinical Features. Dose Response 2024; 22:15593258241301525. [PMID: 39588071 PMCID: PMC11587189 DOI: 10.1177/15593258241301525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 11/27/2024] Open
Abstract
Background: For patients with resectable locally advanced esophageal squamous cell carcinoma (ESCC), the current standard treatment is neoadjuvant chemoradiotherapy (nCRT) plus radical surgery. Objective: This study aimed to establish a predictive model, based on computed tomography (CT) radiomics features and clinical parameters, to predict sensitivity to nCRT in patients with ESCC pre-treatment. The goal was to provide risk stratification and decision-making recommendations for clinical treatments and offer more valuable information for developing personalized therapies. Methods: This retrospective study involved 102 patients diagnosed with ESCC through biopsy who underwent nCRT. To select radiomics features, we used the least absolute shrinkage and selection operator (LASSO) algorithm. A combined model was constructed, integrating the selected clinically relevant parameters with the Rad-Score. To assess the performance of this combined model, we utilized calibration curves and receiver operating characteristic (ROC) curves. Results: Nine optimal radiomics features were selected using the LASSO algorithm. The support vector machine (SVM) classifier was identified as having the best predictive performance. The area under the curve (AUC) of the SVM training group was 0.937 (95% CI: 0.856-1.000), and of the validation group was 0.831 (95% CI: 0.679-0.983). Smoking and alcohol history, neutrophil to lymphocyte ratio, serum aspartate aminotransferase to alanine aminotransferase ratio, and carcinoembryonic antigen and fibrinogen levels were independent predictors of sensitivity to nCRT in patients with ESCC. The AUCs of the combined model for the training and validation groups were 0.870 (95% CI: 0.774-0.964) and 0.821 (95% CI: 0.669-0.972), respectively. The calibration curve showed that the nomogram's predictions were close to the actual clinical observations, indicating that the model exhibited good predictive performance. Conclusion: Our combined model based on Rad-Score and clinical characteristics showed high predictive performance for predicting sensitivity to nCRT in patients with ESCC. It may be useful for predicting treatment effects in clinical practice and demonstrates the significant potential of radiomics in predicting and optimizing treatment decisions.
Collapse
Affiliation(s)
- Xindi Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
- Department of Oncology, Shandong University, Shandong Provincial Third Hospital, Jinan, China
| | - Jigang Dong
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
- Qingdao Jiaozhou Central Hospital, Qingdao, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ouyang Aimei
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yahong Sun
- Department of Oncology, Shandong University, Shandong Provincial Third Hospital, Jinan, China
| | - Xia Wu
- Department of Oncology, Shandong University, Shandong Provincial Third Hospital, Jinan, China
| | - Wenjuan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, China
| | - Ruobing Li
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhongyuan Li
- School of Medical Imaging, Shandong Second Medical University, Weifang, China
| | - Yu Yang
- Shandong Medical Imaging and Radiotherapy Engineering Center (SMIREC), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Deng Y, Tan C, Huang S, Zhou Z, Luo X, Yang X, Sun M. Engineered Platelet for In Situ Natural Killer Cell Activation to Inhibit Tumor Recurrence. NANO LETTERS 2024; 24:11814-11822. [PMID: 39282986 DOI: 10.1021/acs.nanolett.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Natural killer (NK) cells offer profound advantages against tumor recurrence due to their unique immunological behavior. NK cell therapies associated with the antibody-dependent cell-mediated cytotoxicity (ADCC) effect have made remarkable progress while being limited by insufficient antibody binding and the exhausted state of NK cells in the postsurgical immunosuppressive microenvironment. Leveraging the adherence of PLT to tumor cells, we developed an exogenously implanted platelet (PLT)-based NK cell-driven system (PLT-IgG-IL15) to improve the identifiability of residual tumors with IgG antibody labeling for NK cells catching and engaging, which consequently restored the ADCC effect and promoted the recovery of their killing function. Furthermore, interleukin-15 (IL-15) participated in the augmentation of NK cell function. Collectively, PLT-IgG-IL15 served as an NK cell tumor cell engager as well as an NK cell charger, achieving a <40% recurrence rate in mouse tumor models.
Collapse
Affiliation(s)
- Yueyang Deng
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Caixia Tan
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Shuguang Huang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xinping Luo
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Yang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Wang K, Jiang M, Li T, Liu Y, Zong Q, Xu Q, Ullah I, Chen Y, Xue W, Yuan Y. A Synergistic Chemoimmunotherapy System Leveraging PD-L1 Blocking and Bioorthogonal Prodrug Activation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402322. [PMID: 38718226 DOI: 10.1002/adma.202402322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/05/2024] [Indexed: 05/15/2024]
Abstract
Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain challenging in overcoming the current limitations of chemoimmunotherapy. An antitumor chemoimmunotherapy system comprising bioorthogonal reaction-ready group tetrazine (TZ) modified with an anti-PD-L1 antibody (αPD-L1TZ) and TZ-activatable prodrug vinyl ether-doxorubicin (DOX-VE) for self-reinforced anti-tumor chemoimmunotherapy is proposed. The αPD-L1TZ effectively disrupts the PD-L1/PD-1 interaction and activates the DOX prodrug in situ through the bioorthogonal click reaction of TZ and VE. Conversely, the activated DOX upregulates PD-L1 on the surface of tumor cells, facilitating tumor accumulation of αPD-L1TZ and enhancing DOX-VE activation. Furthermore, the activated DOX-induced immunogenic cell death of tumor cells, substantially improving the response efficiency of αPD-L1 in an immune-suppressive tumor microenvironment. Thus, PD-L1 blocking and bioorthogonal in situ prodrug activation synergistically enhance the antitumor efficacy of the chemoimmunotherapy system. Therefore, the system significantly enhances αPD-L1 tumor accumulation and prodrug activation and induces a robust immunological memory effect to prevent tumor recurrence and metastasis. Thus, a feasible chemoimmunotherapy combination regimen is presented.
Collapse
Affiliation(s)
- Kewei Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, P. R. China
| | - Maolin Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Tao Li
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Ye Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Qingyu Zong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Qing Xu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Ihsan Ullah
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Yahui Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
5
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
6
|
Aktar S, Islam F, Cheng T, Gamage SMK, Choudhury IN, Islam MS, Lu CT, Hamid FB, Ishida H, Abe I, Xie N, Gopalan V, Lam AK. Correlation between KRAS Mutation and CTLA-4 mRNA Expression in Circulating Tumour Cells: Clinical Implications in Colorectal Cancer. Genes (Basel) 2023; 14:1808. [PMID: 37761948 PMCID: PMC10530465 DOI: 10.3390/genes14091808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Combination strategies of KRAS inhibition with immunotherapy in treating advanced or recurrent colorectal carcinoma (CRC) may need to be assessed in circulating tumour cells (CTCs) to achieve better clinical outcomes. This study aimed to investigate the genomic variations of KRAS in CTCs and matched CRC tissues and compared mRNA expression of KRAS and CTLA-4 between wild-type and KRAS-mutated CTCs and CRC tissues. Clinicopathological correlations were also compared. Six known mutations of KRAS were identified at both codon 12 and codon 13 (c.35G>T/G12V, c.35G>A7/G12D, c.35G>C/G12A, c.34G>A/G12S, c.38G>C/G13A, and c.38G>A/G13D). Three CTC samples harboured the identified mutations (16.7%; 3/18), while fifteen matched primary tumour tissues (65.2%, 15/23) showed the mutations. CTCs harbouring the KRAS variant were different from matched CRC tissue. All the mutations were heterozygous. Though insignificant, CTLA-4 mRNA expression was higher in patients carrying KRAS mutations. Patients harbouring KRAS mutations in CTCs were more likely to have poorly differentiated tumours (p = 0.039) and with lymph node metastasis (p = 0.027) and perineural invasion (p = 0.014). KRAS mutations in CTCs were also significantly correlated with overall pathological stages (p = 0.027). These findings imply the genetic basis of KRAS with immunotherapeutic target molecules based on a real-time platform. This study also suggests the highly heterogeneous nature of cancer cells, which may facilitate the assessment of clonal dynamics across a single patient's disease.
Collapse
Affiliation(s)
- Sharmin Aktar
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Tracie Cheng
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Sujani Madhurika Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Indra Neil Choudhury
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Biochemistry & Biotechnology, University of Barishal, Barishal 8254, Bangladesh
| | - Cu Tai Lu
- Department of Surgery, Gold Coast University Hospital, Gold Coast, QLD 4215, Australia;
| | - Faysal Bin Hamid
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Hirotaka Ishida
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
| | - Ichiro Abe
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
| | - Nan Xie
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Alfred K. Lam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- Pathology Queensland, Gold Coast University Hospital, Southport, QLD 4215, Australia
| |
Collapse
|
7
|
Gupta C, Singh P, Vaidya S, Ambre P, Coutinho E. A novel thermoresponsive nano carrier matrix of hyaluronic acid, methotrexate and chitosan to target the cluster of differentiation 44 receptors in tumors. Int J Biol Macromol 2023; 243:125238. [PMID: 37290545 DOI: 10.1016/j.ijbiomac.2023.125238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Major challenges in current cancer chemotherapy include drug resistance, low efficacy and non-selectivity, resulting in undesirable side effects. In this study, we demonstrate a solution to these challenges that involves a dual targeting approach for tumors that overexpress CD44 receptors. The approach employs a nano-formulation (tHAC-MTX nano assembly), fabricated from hyaluronic acid (HA), the natural ligand for CD44, conjugated with methotrexate (MTX) and complexed with the thermoresponsive polymer 6-O-carboxymethylchitosan (6-OCMC) graft poly(N-isopropylacrylamide) [6-OCMC-g-PNIPAAm]. The thermoresponsive component was designed to have a lower critical solution temperature of 39 °C (the temperature of tumor tissues). In-vitro drug release studies reveal faster release of the drug at the higher temperatures of the tumor tissue likely due to the conformation changes in the thermoresponsive component of the nano assembly. Drug release was also enhanced in the presence of hyaluronidase enzyme. Higher cellular uptake and greater cytotoxicity of the nanoparticles were demonstrated in cancer cells that overexpress CD44 receptors suggesting a receptor binding and cellular uptake mechanism. Such nano-assemblies which incorporate multiple targeting mechanisms have the potential to improve efficacy and decrease side effects of cancer chemotherapy.
Collapse
Affiliation(s)
- Chandan Gupta
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, Maharashtra, India
| | - Pinky Singh
- Haffkine Institute for Training, Research and Testing, Acharya Donde Marg, Parel, Mumbai 400012, Maharashtra, India
| | - Shashikant Vaidya
- Haffkine Institute for Training, Research and Testing, Acharya Donde Marg, Parel, Mumbai 400012, Maharashtra, India
| | - Premlata Ambre
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, Maharashtra, India.
| | - Evans Coutinho
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, Maharashtra, India; St John Institute of Pharmacy and Research, Vevoor, Manor Road, Palghar East, Palghar 401404, India
| |
Collapse
|
8
|
Farhadi F, Rajagopal JR, Veziroglu EM, Abdollahi H, Shiri I, Nikpanah M, Morris MA, Zaidi H, Rahmim A, Saboury B. Multi-Scale Temporal Imaging: From Micro- and Meso- to Macro-scale-time Nuclear Medicine. PET Clin 2023; 18:135-148. [DOI: 10.1016/j.cpet.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Cerón R, Martínez A, Ramos C, De la Cruz A, García A, Mendoza I, Palmeros G, Montaño Figueroa EH, Navarrete J, Jiménez-Morales S, Martinez-Murillo C, Olarte I. Overexpression of BCL2, BCL6, VEGFR1 and TWIST1 in Circulating Tumor Cells Derived from Patients with DLBCL Decreases Event-Free Survival. Onco Targets Ther 2022; 15:1583-1595. [PMID: 36606244 PMCID: PMC9809418 DOI: 10.2147/ott.s386562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignant lymphoid neoplasm and is the most common subtype of non-Hodgkin lymphoma in adults. More than half of patients with DLBCL can achieve remission with standard R-CHOP regimes; however, approximately 30-40% of patients are still failing this standard therapy, which remains as an important cause of progression and mortality of this disease. It is necessary to have diagnostic and monitoring tools that allow us to improve the accuracy of prognosis in these patients. Circulating tumor cells (CTCs) identification through molecular biomarkers is one of the novel strategies that have been used in other types of cancer, and we aim to use this tool to analyze the potential role in DLBCL. Patients and Methods We analyzed 138 blood samples of patients with DLBCL, of which CTCs were isolated by density gradient for subsequent detection and quantitation of molecular biomarkers using RT-qPCR with TaqMan probes. Survival analysis was performed using Kaplan-Meier curves. Results We found overexpression of ABCB1, αSMA, BCL2, BCL6 and VEGFR1 genes, as well as the presence of CK19, EpCAM, KI67, MAGE-A4, SNAIL and TWIST1 genes. CK19 and EpCAM expression were associated with a minor OS (85.7% vs 98.1%, p = 0.002). The overexpression of BCL2, BCL6, VEGFR1 and TWIST1 was related to a minor EFS (p = 0.001). Conclusion This study showed that in liquid biopsies analyzed, the presence of CTCs can be confirmed through molecular biomarkers, and it has an impact on OS and EFs, making this detection useful in the follow-up and prognosis of patients with DLBCL.
Collapse
Affiliation(s)
- Rafael Cerón
- Posgrado en Ciencias Biológicas, Biomedicina, UNAM, CDMX, México,Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Adolfo Martínez
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Christian Ramos
- Department of Medical Hematology, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Adrián De la Cruz
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Anel García
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Iveth Mendoza
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Goujon Palmeros
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | | | - Juan Navarrete
- Department of Hematopathology, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratory of Cancer Genomics, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Carlos Martinez-Murillo
- Department of Medical Hematology, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Irma Olarte
- Department of Molecular Biology, Hematology Service, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City, Mexico,Correspondence: Irma Olarte, Dr. Balmis 148, Col. Doctores, Alc. Cuauhtémoc, Mexico City, ZC. 06726, Mexico, Tel +525527892000 Ext. 1609, Email
| |
Collapse
|
10
|
Pang S, Xu S, Wang L, Wu H, Chu Y, Ma X, Li Y, Zou B, Wang S, Zhou G. Molecular profiles of single circulating tumor cells from early breast cancer patients with different lymph node statuses. Thorac Cancer 2022; 14:156-167. [PMID: 36408679 PMCID: PMC9834698 DOI: 10.1111/1759-7714.14728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Characterization of early breast cancer circulating tumor cells (CTCs) may provide valuable information on tumor metastasis. METHODS We used immunomagnetic nanospheres to capture CTCs from the peripheral blood of eight early breast cancer patients and then performed single-cell RNA sequencing using our proposed bead-dd-seq method. RESULTS CTCs displayed obvious tumor cell characteristics, such as the activation of oxidative stress, proliferation, and promotion of metastasis. CTCs were clustered into two subtypes significantly correlated with the lymph node metastasis status of patients. CTCs in subtype 1 showed a strong metastatic ability because these CTCs have the phenotype of partial epithelial-mesenchymal transition and enriched transcripts, indicating breast cancer responsiveness and proliferation. Furthermore, DNA damage repair pathways were significantly upregulated in subtype 1. We performed in vitro and in vivo investigations, and found that cellular oxidative stress and further DNA damage existed in CTCs. The activated DNA damage repair pathway in CTCs favors resistance to cisplatin. A checkpoint kinase 1 inhibitor sensitized CTCs to cisplatin in mouse models of breast cancer metastasis. CONCLUSION The present study dissects the molecular characteristics of CTCs from early-stage breast cancer, providing novel insight into the understanding of CTC behavior in breast cancer metastasis.
Collapse
Affiliation(s)
- Shuyun Pang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina
| | - Shu Xu
- School of Basic Medical Science and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Lulu Wang
- Department of General Surgery, Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Haiping Wu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina,School of Pharmaceutical ScienceSouthern Medical UniversityGuangzhouChina
| | - Yanan Chu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina
| | - Xueping Ma
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Shaohua Wang
- Department of General Surgery, Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina,School of Pharmaceutical ScienceSouthern Medical UniversityGuangzhouChina,School of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
11
|
Ma X, Ou K, Liu X, Yang L. Application progress of liquid biopsy in gastric cancer. Front Oncol 2022; 12:969866. [PMID: 36185234 PMCID: PMC9521037 DOI: 10.3389/fonc.2022.969866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors globally. Guiding the individualized treatment of GC is the focus of research. Obtaining representative biological samples to study the biological characteristics of GC is the focus of diagnosis and treatment of GC. Liquid biopsy technology can use high-throughput sequencing technology to detect biological genetic information in blood. Compared with traditional tissue biopsy, liquid biopsy can determine the dynamic changes of tumor. As a noninvasive auxiliary diagnostic method, liquid biopsy can provide diagnostic and prognostic information concerning the progression of the disease. Liquid biopsy includes circulating tumor cells, circulating tumor DNA, circulating tumor RNA, tumor educated platelets, exosomes, and cytokines. This article describes the classification of liquid biopsy and its application value in the occurrence, development, and therapeutic efficacy of GC.
Collapse
|
12
|
Ye JJ, Yu W, Xie BR, Li K, Liu MD, Dong X, Chen ZX, Feng J, Zhang XZ. Self-Reinforced Cancer Targeting (SRCT) Depending on Reciprocally Enhancing Feedback between Targeting and Therapy. ACS NANO 2022; 16:5851-5866. [PMID: 35412799 DOI: 10.1021/acsnano.1c10999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conventional cancer targeting methodology needs to be reformed to overcome the intrinsic barriers responsible for poor targeting efficiency. This study describes a concept of self-reinforced cancer targeting (SRCT) by correlating targeting with therapy in a reciprocally enhancing manner. SRCT is achieved on the basis of two prerequisites: (1) target molecules have to be expressed on cancer cell membranes but not on normal cells, and (2) notably, their expression on cancer cells must be actively upregulated in response to cellular attack by cancer treatments. As a proof-of-concept, a GRP78-targeting nanovehicle for chemotherapy was designed. Resultant data showed that chemotherapeutic drugs could effectively elevate GRP78 expression on the plasma membranes of cancer cells while having minimal influence on normal cells. DOX pretreatment of cancer cells and tumor tissues can greatly increase the targeting efficacy and therapeutic performance of the prepared GRP78-targeting nanomedicine while somewhat disfavoring the nontargeting counterpart. In vivo and in vitro results demonstrated that this GRP78-targeting nanomedicine could accurately target cancer cells to not only implement chemotherapy but also induce GRP78 upregulation on cancer cells, eventually benefiting continuous cancer-cell-targeted attack by the nanomedicines remaining in the blood circulation or administered in the next dose. The GRP78-targeting nanomedicine displays much better antitumor performance compared with the nontargeting counterpart. SRCT is expected to advance cancer-targeted therapy based on the positive dependency between targeting and therapeutic modalities.
Collapse
Affiliation(s)
- Jing-Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Wuyang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Bo-Ru Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Ke Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Miao-Deng Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, P.R. China
| | - Zhao-Xia Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
13
|
Abstract
Integration of ecological and evolutionary features has begun to understand the interplay of tumor heterogeneity, microenvironment, and metastatic potential. Developing a theoretical framework is intrinsic to deciphering tumors' tremendous spatial and longitudinal genetic variation patterns in patients. Here, we propose that tumors can be considered evolutionary island-like ecosystems, that is, isolated systems that undergo evolutionary and spatiotemporal dynamic processes that shape tumor microenvironments and drive the migration of cancer cells. We examine attributes of insular systems and causes of insularity, such as physical distance and connectivity. These properties modulate migration rates of cancer cells through processes causing spatial and temporal isolation of the organs and tissues functioning as a supply of cancer cells for new colonizations. We discuss hypotheses, predictions, and limitations of tumors as islands analogy. We present emerging evidence of tumor insularity in different cancer types and discuss their relevance to the islands model. We suggest that the engagement of tumor insularity into conceptual and mathematical models holds promise to illuminate cancer evolution, tumor heterogeneity, and metastatic potential of cells.
Collapse
Affiliation(s)
- Antonia Chroni
- Institute for Genomics and Evolutionary Medicine, Temple University, USA
- Department of Biology, Temple University, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, USA
- Department of Biology, Temple University, USA
- Center for Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Cho JH, Sim MH, Kim SY, Kim K, Lee T, Lee J, Kang WK, Kim ST. Analysis of intrapatient heterogeneity of circulating tumor cells at the single-cell level in the cerebrospinal fluid of a patient with metastatic gastric cancer. J Cancer Res Ther 2021; 17:1047-1051. [PMID: 34528562 DOI: 10.4103/jcrt.jcrt_108_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background The aims of this study were to detect circulating tumor cells (CTCs) at the single-cell level in cerebrospinal fluid (CSF) and to identify intrapatient heterogeneity of CTCs in a patient with gastric cancer (GC) with leptomeningeal metastasis (LM) using Di-Electro-Phoretic Array technology. Materials and Methods The CSF samples were drawn from a patient who was diagnosed with GC with LM. The CSF samples were centrifuged and stained with antibody cocktail to recognize 4',6-diamidino-2-phenylindole, cytokeratin, and epithelial cell adhesion molecule (EpCAM). Gene sequencing was also conducted to evaluate the status of the gene alteration profile of CSFCTCs as compared with those of the CSF non-CTCs and the primary tumor tissue. Results Among total 38 cells from the samples, 25 cells represented CK+ (EpCAM+), which boiled down to 0.53 CTCs in 1 mL of CSF. Each CTC was heterogeneous in terms of morphology and degree of marker expression. Some CTCs have a spindle-like shape, whereas others have a round shape. Based on molecular profiling between the 25 CK+ (EpCAM+) CTCs and 13 CK-/EpCAM- cells (i.e., the non-CTCs), CSFCTCs harbored mutations such as MDM2, TP53, KRAS, STK11, and ALK, whereas mutation of these genes was not observed in the CSF non-CTCs. Four genes of nine mutational genes totally observed in the CSFCTCs were also noted in the primary tumor tissue. Conclusions We enriched CTCs through a single-cell sorting process in CSF samples of a GC patient with LM. We also demonstrated the intrapatient heterogeneity of the CTCs at the single-cell level.
Collapse
Affiliation(s)
- Jang Ho Cho
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; Department of Internal Medicine, Division of Hemato-Oncology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Moon-Hee Sim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Young Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Taehyang Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Real-Time Detection of Tumor Cells during Capture on a Filter Element Significantly Enhancing Detection Rate. BIOSENSORS-BASEL 2021; 11:bios11090312. [PMID: 34562902 PMCID: PMC8472380 DOI: 10.3390/bios11090312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022]
Abstract
Circulating tumor cells (CTCs) that enter the bloodstream play an important role in the formation of metastases. The prognostic significance of CTCs as biomarkers obtained from liquid biopsies is intensively investigated and requires accurate methods for quantification. The purpose of this study was the capture of CTCs on an optically accessible surface for real-time quantification. A filtration device was fabricated from a transparent material so that capturing of cells could be observed microscopically. Blood samples were spiked with stained tumor cells and the sample was filtrated using a porous structure with pore sizes of 7.4 µm. The possible removal of lysed erythrocytes and the retention of CTCs were assessed. The filtration process was observed in real-time using fluorescence microscopy, whereby arriving cells were counted in order to determine the number of CTCs present in the blood. Through optimization of the microfluidic channel design, the cell retention rate could be increased by 13% (from 76% ± 7% to 89% ± 5%). Providing the possibility for real-time detection significantly improved quantification efficiency even for the smallest cells evaluated. While end-point evaluation resulted in a detection rate of 63% ± 3% of the spiked cells, real-time evaluation led to an increase of 21% to 84% ± 4%. The established protocol provides an advantageous and efficient method for integration of fully automated sample preparation and CTC quantification into a lab-on-a-chip system.
Collapse
|
16
|
Wölfl B, te Rietmole H, Salvioli M, Kaznatcheev A, Thuijsman F, Brown JS, Burgering B, Staňková K. The Contribution of Evolutionary Game Theory to Understanding and Treating Cancer. DYNAMIC GAMES AND APPLICATIONS 2021; 12:313-342. [PMID: 35601872 PMCID: PMC9117378 DOI: 10.1007/s13235-021-00397-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 05/05/2023]
Abstract
Evolutionary game theory mathematically conceptualizes and analyzes biological interactions where one's fitness not only depends on one's own traits, but also on the traits of others. Typically, the individuals are not overtly rational and do not select, but rather inherit their traits. Cancer can be framed as such an evolutionary game, as it is composed of cells of heterogeneous types undergoing frequency-dependent selection. In this article, we first summarize existing works where evolutionary game theory has been employed in modeling cancer and improving its treatment. Some of these game-theoretic models suggest how one could anticipate and steer cancer's eco-evolutionary dynamics into states more desirable for the patient via evolutionary therapies. Such therapies offer great promise for increasing patient survival and decreasing drug toxicity, as demonstrated by some recent studies and clinical trials. We discuss clinical relevance of the existing game-theoretic models of cancer and its treatment, and opportunities for future applications. Moreover, we discuss the developments in cancer biology that are needed to better utilize the full potential of game-theoretic models. Ultimately, we demonstrate that viewing tumors with evolutionary game theory has medically useful implications that can inform and create a lockstep between empirical findings and mathematical modeling. We suggest that cancer progression is an evolutionary competition between different cell types and therefore needs to be viewed as an evolutionary game.
Collapse
Affiliation(s)
- Benjamin Wölfl
- Department of Mathematics, University of Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Hedy te Rietmole
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monica Salvioli
- Department of Mathematics, University of Trento, Trento, Italy
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Artem Kaznatcheev
- Department of Biology, University of Pennsylvania, Philadelphia, USA
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Frank Thuijsman
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Joel S. Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Boudewijn Burgering
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- The Oncode Institute, Utrecht, The Netherlands
| | - Kateřina Staňková
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
- Department of Engineering Systems and Services, Faculty of Technology, Policy and Management, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
17
|
Arechederra M, Recalde M, Gárate-Rascón M, Fernández-Barrena MG, Ávila MA, Berasain C. Epigenetic Biomarkers for the Diagnosis and Treatment of Liver Disease. Cancers (Basel) 2021; 13:1265. [PMID: 33809263 PMCID: PMC7998165 DOI: 10.3390/cancers13061265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Research in the last decades has demonstrated the relevance of epigenetics in controlling gene expression to maintain cell homeostasis, and the important role played by epigenome alterations in disease development. Moreover, the reversibility of epigenetic marks can be harnessed as a therapeutic strategy, and epigenetic marks can be used as diagnosis biomarkers. Epigenetic alterations in DNA methylation, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) expression have been associated with the process of hepatocarcinogenesis. Here, we summarize epigenetic alterations involved in the pathogenesis of chronic liver disease (CLD), particularly focusing on DNA methylation. We also discuss their utility as epigenetic biomarkers in liquid biopsy for the diagnosis and prognosis of hepatocellular carcinoma (HCC). Finally, we discuss the potential of epigenetic therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- María Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (M.R.); (M.G.-R.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Miriam Recalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (M.R.); (M.G.-R.); (M.G.F.-B.)
| | - María Gárate-Rascón
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (M.R.); (M.G.-R.); (M.G.F.-B.)
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (M.R.); (M.G.-R.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Ávila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (M.R.); (M.G.-R.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (M.R.); (M.G.-R.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| |
Collapse
|
18
|
Freitas MO, Gartner J, Rangel-Pozzo A, Mai S. Genomic Instability in Circulating Tumor Cells. Cancers (Basel) 2020; 12:cancers12103001. [PMID: 33081135 PMCID: PMC7602879 DOI: 10.3390/cancers12103001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In this review, we focus on recent advances in the detection and quantification of tumor cell heterogeneity and genomic instability of CTCs and the contribution of chromosome instability studies to genetic heterogeneity in CTCs at the single-CTC level. Abstract Circulating tumor cells (CTCs) can promote distant metastases and can be obtained through minimally invasive liquid biopsy for clinical assessment in cancer patients. Having both genomic heterogeneity and instability as common features, the genetic characterization of CTCs can serve as a powerful tool for a better understanding of the molecular changes occurring at tumor initiation and during tumor progression/metastasis. In this review, we will highlight recent advances in the detection and quantification of tumor cell heterogeneity and genomic instability in CTCs. We will focus on the contribution of chromosome instability studies to genetic heterogeneity in CTCs at the single-CTC level by discussing data from different cancer subtypes and their impact on diagnosis and precision medicine.
Collapse
Affiliation(s)
- Monique Oliveira Freitas
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Genetic Service, Institute of Paediatrics and Puericulture Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, Brazil
- Clinical Medicine Postgraduate Programme, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-913, Brazil
| | - John Gartner
- Departments of Pathology and Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-204-787-4125 (S.M.)
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-204-787-4125 (S.M.)
| |
Collapse
|
19
|
A Direct Comparison between the Lateral Magnetophoretic Microseparator and AdnaTest for Isolating Prostate Circulating Tumor Cells. MICROMACHINES 2020; 11:mi11090870. [PMID: 32961814 PMCID: PMC7570110 DOI: 10.3390/mi11090870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Circulating tumor cells (CTCs) are important biomarkers for the diagnosis, prognosis, and treatment of cancer. However, because of their extreme rarity, a more precise technique for isolating CTCs is required to gain deeper insight into the characteristics of cancer. This study compares the performance of a lateral magnetophoretic microseparator (“CTC-μChip”), as a representative microfluidic device, and AdnaTest ProstateCancer (Qiagen), as a commercially available specialized method, for isolating CTCs from the blood of patients with prostate cancer. The enumeration and genetic analysis results of CTCs isolated via the two methods were compared under identical conditions. In the CTC enumeration experiment, the number of CTCs isolated by the CTC-μChip averaged 17.67 CTCs/mL, compared to 1.56 CTCs/mL by the AdnaTest. The number of contaminating white blood cells (WBCs) and the CTC purity with the CTC-μChip averaged 772.22 WBCs/mL and 3.91%, respectively, whereas those with the AdnaTest averaged 67.34 WBCs/mL and 1.98%, respectively. Through genetic analysis, using a cancer-specific gene panel (AR (androgen receptor), AR-V7 (A\androgen receptor variant-7), PSMA (prostate specific membrane antigen), KRT19 (cytokeratin-19), CD45 (PTPRC, Protein tyrosine phosphatase, receptor type, C)) with reverse transcription droplet digital PCR, three genes (AR, AR-V7, and PSMA) were more highly expressed in cells isolated by the CTC-μChip, while KRT19 and CD45 were similarly detected using both methods. Consequently, this study showed that the CTC-μChip can be used to isolate CTCs more reliably than AdnaTest ProstateCancer, as a specialized method for gene analysis of prostate CTCs, as well as more sensitively obtain cancer-associated gene expressions.
Collapse
|
20
|
Ko S, Park J, Lee Y, Lee DW, Macgregor RB, Oh YK. Biochemical reprogramming of tumors for active modulation of receptor-mediated nanomaterial delivery. Biomaterials 2020; 262:120343. [PMID: 32911254 DOI: 10.1016/j.biomaterials.2020.120343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023]
Abstract
Here we report that reactive oxygen species (ROS) can reprogram cancer cells to increase the expression of specific receptors and modulate the delivery of nanomaterials. Gold and γ-polyglutamic acid (γ-PGA) hybrid nanoparticles (PGANP) were prepared via a facile single-step process. Gold nanoclusters in PGANP were dispersed within the tangled γ-PGA matrix of the nanoparticles. The condensed assembly of gold nanoclusters in γ-PGA matrix enabled the interparticle plasmon coupling effect, which lacks in single gold nanoparticles. Compared with gold nanoparticles of the similar sizes, PGANP showed significantly higher absorbance at near infrared (NIR) wavelength and light-to-heat converting ratios, resulting in greater temperature increase upon NIR light irradiation. Pretreatment of HeLa cancer cells with methylene blue (MB) generated reactive oxygen species. The ROS reprogrammed the cancer cells to express higher cell membrane levels of gamma glutamyl transferase (GGT), which is known to bind to γ-PGA of PGANP. MB pretreatment significantly enhanced delivery of PGANP to cancer cells. Cancer cells internalized PGANP to a greater extent and, were highly susceptible to irradiation with NIR light, which reduced cell viability to near zero. In vivo, MB pretreatment of HeLa xenograft mice increased the expression of GGT in tumor tissues. In mice pretreated with MB and exposed to NIR irradiation, PGANP treatment resulted in complete tumor ablation. The strategy of actively reprogramming tumor membrane levels of target receptors could be widely applied to overcome the heterogeneity of cancer cells. Although we used interparticle plasmon coupling effect-based PGANP for proving the concept of receptor-modulated delivery, this strategy could be broadly applicable to the active modulation of the receptor-mediated delivery of anticancer nanomaterials.
Collapse
Affiliation(s)
- Seungbeom Ko
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yeon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Da Woon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
21
|
Vanni I, Tanda ET, Spagnolo F, Andreotti V, Bruno W, Ghiorzo P. The Current State of Molecular Testing in the BRAF-Mutated Melanoma Landscape. Front Mol Biosci 2020; 7:113. [PMID: 32695793 PMCID: PMC7338720 DOI: 10.3389/fmolb.2020.00113] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 01/19/2023] Open
Abstract
The incidence of melanoma, among the most lethal cancers, is widespread and increasing. Metastatic melanoma has a poor prognosis, representing about 90% of skin cancer mortality. The increased knowledge of tumor biology and the greater understanding of the immune system role in the anti-tumor response has allowed us to develop a more rational approach to systemic therapies. The discovery of activating BRAF mutations in half of all melanomas has led to the development of molecularly targeted therapy with BRAF and MEK inhibitors, which dramatically improved outcomes of patients with stage IV BRAF-mutant melanoma. More recently, the results of clinical phase III studies conducted in the adjuvant setting led to the combined administration of BRAF and MEK inhibitors also in patients with resected high-risk melanoma (stage III). Therefore, BRAF mutation testing has become a priority to determine the oncologist's choice and course of therapy. In this review, we will report the molecular biology-based strategies used for BRAF mutation detection with the main advantages and disadvantages of the most commonly used diagnostic strategies. The timing of such molecular assessment in patients with cutaneous melanoma will be discussed, and we will also examine considerations and approaches for accurate and effective BRAF testing.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | | | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| |
Collapse
|
22
|
Wang Q, Zhao L, Han L, Tuo X, Ma S, Wang Y, Feng X, Liang D, Sun C, Wang Q, Song Q, Li Q. The Discordance of Gene Mutations between Circulating Tumor Cells and Primary/Metastatic Tumor. Mol Ther Oncolytics 2019; 15:21-29. [PMID: 31650022 PMCID: PMC6804648 DOI: 10.1016/j.omto.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are an important part in the field of "liquid biopsy." However, major questions remain to be answered whether the mutations in the CTCs represent the mutations in primary tumor tissue and metastatic tumors. We compared the genetic mutations between CTCs and their matched tumors, and extracted data on the heterogeneity of the mutational status in CTCs and the change in mutations of CTCs before and during treatment. For mutations detected in single genes, we calculated the concordance of the mutations between the CTCs and primary tumor tissue. For mutations detected in multiple genes, we calculated the concordance of the mutations between the CTCs and primary/metastatic tumor tissue. The heterogeneity of the mutational status is clearly present in CTCs. For mutations detected in a single gene, the overall concordance of mutations is 53.05%. For mutations detected in multiple genes, the concordance of mutations is extremely different. The heterogeneity of the mutational status existed in single CTCs, and the mutational status of CTCs was discordant with that of tumor tissue.
Collapse
Affiliation(s)
- Qi Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lanbo Zhao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lu Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xiaoqian Tuo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijia Ma
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yiran Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xue Feng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Dongxin Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chao Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qing Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qing Song
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Qiling Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
23
|
Liu Y, Khan AR, Du X, Zhai Y, Tan H, Zhai G. Progress in the polymer-paclitaxel conjugate. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
25
|
Cell-Free DNA in the Liquid Biopsy Context: Role and Differences Between ctDNA and CTC Marker in Cancer Management. Methods Mol Biol 2019; 1909:47-73. [PMID: 30580422 DOI: 10.1007/978-1-4939-8973-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid biopsy is a new diagnostic concept to investigate the molecular features of solid tumors by blood, saliva, urine, and any other body fluids which show a source of potential biomarkers. In cancer patients, it is a simple and less invasive mean, representing a sustainable alternative to interrogate all tumor cells longitudinally, quantifying and characterizing the biological materials (DNAs, RNAs, proteins) which originate from cancer tissues. Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) analysis from a simple blood draw received enormous attention for the related clinical research results. A rich scientific literature demonstrates that liquid biopsy is a valid instrument to assess the tumor biomarkers in real time and profile the cancer genotype in diagnostic and prognostic field, as well to quantify minimal residual disease, during patient follow-up. This could be a breakthrough for a companion diagnostic and personalized medicine. Liquid biopsy needs further implementation in the methodological aspects as well as cost-based assessment. The number of new molecular diagnostic assays increases day by day, but the standards for their adoption and clinical validation are still to be achieved.
Collapse
|
26
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
27
|
Petanidis S, Kioseoglou E, Salifoglou A. Metallodrugs in Targeted Cancer Therapeutics: Aiming at Chemoresistance- related Patterns and Immunosuppressive Tumor Networks. Curr Med Chem 2019; 26:607-623. [DOI: 10.2174/0929867324666171116125908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
Abstract
Tumor cell chemoresistance is a major challenge in cancer therapeutics. Major
select metal-based drugs are potent anticancer mediators yet they exhibit adverse sideeffects
and are efficient against limited types of malignancies. A need, therefore, arises
for novel metallodrugs with improved efficacy and decreased toxicity. Enhancement of
antitumor drugs based on anticancer metals is currently a very active research field, with
considerable efforts having been made toward elucidating the mechanisms of immune action
of complex metalloforms and optimizing their immunoregulatory bioactivity through
appropriate synthetic structural modification(s) and encapsulation in suitable nanocarriers,
thereby enhancing their selectivity, specificity, stability, and bioactivity. In that respect,
comprehending the molecular factors involved in drug resistance and immune response
may help us develop new approaches toward more promising chemotherapies, reducing
the rate of relapse and overcoming chemoresistance. In this review, a) molecular immunerelated
mechanisms in the tumor microenvironment, responsible for lower drug sensitivity
and tumor relapse, along with b) strategies for reversing drug resistance and targeting
immunosuppressive tumor networks, while concurrently optimizing the design of complex
metalloforms bearing anti-tumor activity, are discussed in an effort to identify and
overcome chemoresistance mechanisms for effective tumor immunotherapeutic approaches.
Collapse
Affiliation(s)
- Savvas Petanidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Efrosini Kioseoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Athanasios Salifoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
28
|
Abstract
The clinical utility of tissue biopsies in cancer management will continue to expand, especially with the evolving role of targeted therapies. "Liquid biopsy" refers to testing a patient's biofluid samples such as blood or urine to detect tumor-derived molecules and cells that can be used diagnostically and prognostically in the assessment of cancer. Many proof-of-concept and pilot studies have shown the clinical potential of liquid biopsies as diagnostic and prognostic markers which would provide a surrogate for the conventional "solid biopsy". In this review, we focus on three methods of liquid biopsy-circulating tumor cells, extracellular vesicles, and circulating tumor DNA-to provide a landscape view of their clinical applicability in cancer management and research.
Collapse
Affiliation(s)
- Matthew Scarlotta
- 1 Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Cem Simsek
- 2 Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Amy K Kim
- 2 Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
29
|
Ravegnini G, Sammarini G, Serrano C, Nannini M, Pantaleo MA, Hrelia P, Angelini S. Clinical relevance of circulating molecules in cancer: focus on gastrointestinal stromal tumors. Ther Adv Med Oncol 2019; 11:1758835919831902. [PMID: 30854029 PMCID: PMC6399766 DOI: 10.1177/1758835919831902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/30/2018] [Indexed: 12/12/2022] Open
Abstract
In recent years, growing research interest has focused on the so-called liquid biopsy. A simple blood test offers access to a plethora of information, which might be extremely helpful in understanding or characterizing specific diseases. Blood contains different molecules, of which circulating free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs) and extracellular vesicles (EVs) are the most relevant. Conceivably, these molecules have the potential for tumor diagnosis, monitoring tumor evolution, and evaluating treatment response and pharmacological resistance. This review aims to present a state-of-the-art of recent advances in circulating DNA and circulating RNA in gastrointestinal stromal tumors (GISTs). To date, progress in liquid biopsy has been scarce in GISTs due to several issues correlated with the nature of the pathology. Namely, heterogeneity in primary and secondary mutations in key driver genes has greatly slowed the development and application in GISTs, unlike in other tumor types in which liquid biopsy has already been translated into clinical practice. However, meaningful novel data have shown in recent years a significant clinical potential of ctDNA, CTCs, EVs and circulating RNA in GISTs.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Sammarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - César Serrano
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maria A Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
30
|
Po JW, Ma Y, Balakrishna B, Brungs D, Azimi F, de Souza P, Becker TM. Immunomagnetic isolation of circulating melanoma cells and detection of PD-L1 status. PLoS One 2019; 14:e0211866. [PMID: 30735560 PMCID: PMC6368301 DOI: 10.1371/journal.pone.0211866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/23/2019] [Indexed: 11/18/2022] Open
Abstract
Personalised medicine targeted to specific biomarkers such as BRAF and c-Kit has radically improved the success of melanoma therapy. More recently, further advances have been made using therapies targeting the immune response. In particular, therapies targeting the PD-1/PD-L1 or CTLA-4 axes alone or in combination have shown more sustained responses in 30–60% of patients. However, these therapies are associated with considerable toxicities and useful biomarkers to predict responders and non-responders are slow to emerge. Here we developed a reliable melanoma circulating tumor cell (CTC) detection method with PD-L1 evaluation on CTCs. A set of melanoma cell surface markers was tested as candidates for targeted melanoma CTC isolation and a melanoma specific immunostaining-based CTC identification protocol combined with PD-L1 detection was established. In vitro testing of the effect of exposure to blood cells on melanoma cell PD-L1 expression was undertaken. Immunomagnetic targeting isolated melanoma CTCs in up to 87.5% of stage IV melanoma patient blood samples and 3 8.6% of these had some PD-L1 expressing CTCs. Our in vitro data demonstrate PD-L1 induction on melanoma cells in the blood.This study established a robust, reliable method to isolate melanoma CTCs and detect expression of PD-L1 on these cells.
Collapse
Affiliation(s)
- Joseph W. Po
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Western Sydney University, School of Medicine, NSW, Australia
| | - Yafeng Ma
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- University of New South Wales, South Western Sydney Medical School, Liverpool NSW, Australia
| | | | - Daniel Brungs
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Illawarra Cancer Centre, Wollongong Hospital, Wollongong, Australia
| | | | - Paul de Souza
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Western Sydney University, School of Medicine, NSW, Australia
- University of New South Wales, South Western Sydney Medical School, Liverpool NSW, Australia
- Liverpool Hospital, Liverpool NSW, Australia
| | - Therese M. Becker
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Western Sydney University, School of Medicine, NSW, Australia
- University of New South Wales, South Western Sydney Medical School, Liverpool NSW, Australia
- * E-mail:
| |
Collapse
|
31
|
Zinggeler M, Brandstetter T, Rühe J. Biophysical Insights on the Enrichment of Cancer Cells from Whole Blood by (Affinity) Filtration. Sci Rep 2019; 9:1246. [PMID: 30718672 PMCID: PMC6362249 DOI: 10.1038/s41598-018-37541-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/22/2018] [Indexed: 12/31/2022] Open
Abstract
Circulating tumor cells (CTCs) play a key role during the metastatic process of human cancers and their reliable detection and characterization could enable new and effective ways of cancer diagnosis, monitoring and treatment. However, due to their ultralow concentration in patient blood, the CTCs must first be enriched before such analysis can be performed. Classical microfiltration is an important and widely used method for the mechanical enrichment of CTCs. This method exploits that CTCs are generally larger than the accompanying blood cells, however, does not differentiate the cells in other ways. In an affinity filtration, selectivity is added by functionalizing the membrane with specific antibodies against a CTC-characteristic surface protein such as the epithelial cell adhesion molecule (EpCAM). A common shortcoming of both filtration approaches is that there is still a poor understanding of the enrichment process and the systems developed so far are frequently operated under non-optimized conditions. To address this, systematic filtration experiments are performed in this work using the EpCAM+ cell line MCF-7 as CTC-model and standard track-etched membranes modified with or without antibodies against EpCAM. The influences of the key filtration parameters time and applied pressure are studied and it is found that in all cases the extent of cell recovery is limited by a lysis process which occurs on the membrane surface. Counterintuitively, it is found that filtration at rather high pressures is advantageous to ensure high recovery rates. To describe the pressure-induced lysis process a biophysical model is developed. This model allows the determination of optimum filtration conditions to achieve both high cancer cell recovery and large blood sample throughput. It is demonstrated that this way practically 100% of spiked cancer cells can be recovered from milliliters of undiluted whole blood within seconds.
Collapse
Affiliation(s)
- Marc Zinggeler
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Thomas Brandstetter
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany.
| |
Collapse
|
32
|
Ji T, Lang J, Ning B, Qi F, Wang H, Zhang Y, Zhao R, Yang X, Zhang L, Li W, Shi X, Qin Z, Zhao Y, Nie G. Enhanced Natural Killer Cell Immunotherapy by Rationally Assembling Fc Fragments of Antibodies onto Tumor Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804395. [PMID: 30549110 DOI: 10.1002/adma.201804395] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Recent advances in cancer immunotherapy have exploited the efficient potential of natural killer (NK) cells to kill tumor cells through antibody-dependent cell-mediated cytotoxicity (ADCC). However, this therapeutic strategy is seriously limited by tumor antigen heterogeneity since antibodies can only recognize specific antigens. In this work, modified antibodies or their Fc fragments that can target solid tumors without the necessity of specific antigen presentation on tumors are developed. Briefly, Fc fragments or therapeutic monoclonal antibodies are conjugated with the N-terminus of pH low insertion peptide so that they will selectively assemble onto the membrane of solid tumor cells via the conformational transformation of the peptide by responding to the acidic tumor microenvironment. The inserted Fc fragments or antibodies can efficiently activate NK cells, initiating ADCC and killing multiple types of tumor cells, including antigen-negative cancer cells. In vivo therapeutic results also exhibit significant efficacy on both primary solid tumors and tumor metastasis. These modified Fc fragments and antibodies present strong potential to overcome the limitation of tumor antigen heterogeneity, broadening the applications of NK cell immunotherapy on solid tumor treatment.
Collapse
Affiliation(s)
- Tianjiao Ji
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jiayan Lang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
- Sino-Danish Center for Education and Research/Sino-Danish College of UCAS, Beijing, 100190, China
| | - Bo Ning
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Feifei Qi
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yinlong Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ruifang Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Xiao Yang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Lijing Zhang
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, 200433, China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhihai Qin
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Guangjun Nie
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| |
Collapse
|
33
|
S Iliescu F, Sim WJ, Heidari H, P Poenar D, Miao J, Taylor HK, Iliescu C. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. Electrophoresis 2019; 40:1457-1477. [PMID: 30676660 DOI: 10.1002/elps.201800446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/14/2022]
Abstract
Circulating tumor cells (CTCs) play an essential role in the metastasis of tumors, and thus can serve as a valuable prognostic factor for malignant diseases. As a result, the ability to isolate and characterize CTCs is essential. This review underlines the potential of dielectrophoresis for CTCs enrichment. It begins by summarizing the key performance parameters and challenges of CTCs isolation using microfluidics. The two main categories of CTCs enrichment-affinity-based and label-free methods-are analysed, emphasising the advantages and disadvantages of each as well as their clinical potential. While the main argument in favour of affinity-based methods is the strong specificity of CTCs isolation, the major advantage of the label-free technologies is in preserving the integrity of the cellular membrane, an essential requirement for downstream characterization. Moving forward, we try to answer the main question: "What makes dielectrophoresis a method of choice in CTCs isolation?" The uniqueness of dielectrophoretic CTCs enrichment resides in coupling the specificity of the isolation process with the conservation of the membrane surface. The specificity of the dielectrophoretic method stems from the differences in the dielectric properties between CTCs and other cells in the blood: the capacitances of the malignantly transformed cellular membranes of CTCs differ from those of other cells. Examples of dielectrophoretic devices are described and their performance evaluated. Critical requirements for using dielectrophoresis to isolate CTCs are highlighted. Finally, we consider that DEP has the potential of becoming a cytometric method for large-scale sorting and characterization of cells.
Collapse
Affiliation(s)
| | - Wen Jing Sim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Hossein Heidari
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Daniel P Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, Nanyang Technological University, Singapore
| | - Jianmin Miao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Hayden K Taylor
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Ciprian Iliescu
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, Singapore
| |
Collapse
|
34
|
Szczepanik A, Sierzega M, Drabik G, Pituch-Noworolska A, Kołodziejczyk P, Zembala M. CD44 + cytokeratin-positive tumor cells in blood and bone marrow are associated with poor prognosis of patients with gastric cancer. Gastric Cancer 2019; 22:264-272. [PMID: 30056567 PMCID: PMC6394724 DOI: 10.1007/s10120-018-0858-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The phenotypic heterogeneity of circulating tumor cells (CTC) in peripheral blood and disseminated tumor cells (DTC) in bone marrow is an important constraint for clinical decision making. Here, we investigated the implications of two different subpopulations of these cells in gastric cancer (GC). METHODS GC patients (n = 228) who underwent elective gastric resections were prospectively examined for CTC/DTC. The cells obtained from peripheral blood and bone marrow aspirates were sorted by flow cytometry and CD45- cells expressing cytokeratins (8, 18, and 19) and CD44 were identified by immunofluorescent double staining. RESULTS Ninety-three (41%) patients had cytokeratin-positive tumor cells in either blood or bone marrow, while cells expressing CD44 were found in 22 (10%) cases. CK+CD44+ cells were significantly more common among patients with distant metastases (50 vs 19%, P = 0.001), while no such correlations were demonstrated for CK+CD44- cells. Detection of CK+CD44+ cells, but not CK+CD44-, was associated with significantly shortened survival. Moreover, the Cox proportional hazards model identified CK+CD44+ cells as a negative prognostic factor with an odds ratio of 2.38 (95% CI 1.28-4.41, P = 0.006). CONCLUSION CD44+ phenotype of cytokeratin-positive cells in blood and bone marrow is an independent prognostic factor in patients with gastric cancer.
Collapse
Affiliation(s)
- Antoni Szczepanik
- First Department of Surgery, Jagiellonian University Medical College, 40 Kopernika Street, Kraków, 31-501, Poland
| | - Marek Sierzega
- First Department of Surgery, Jagiellonian University Medical College, 40 Kopernika Street, Kraków, 31-501, Poland.
| | - Grażyna Drabik
- Department of Clinical Immunology, Jagiellonian University Medical College, 265 Wielicka Street, 30-663, Kraków, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Jagiellonian University Medical College, 265 Wielicka Street, 30-663, Kraków, Poland
| | - Piotr Kołodziejczyk
- First Department of Surgery, Jagiellonian University Medical College, 40 Kopernika Street, Kraków, 31-501, Poland
| | - Marek Zembala
- Department of Clinical Immunology, Jagiellonian University Medical College, 265 Wielicka Street, 30-663, Kraków, Poland
| |
Collapse
|
35
|
Abstract
Circulating tumor cells (CTCs) are rare tumor cells found in the blood of patients with cancer that can be reliably detected by CTC technologies to provide prognostic, predictive, and diagnostic information. CTC sampling reflects intratumoral and intertumoral heterogeneity better than targeted biopsy. CTC samples are minimally invasive and amenable to repeated sampling, allowing real-time evaluation of tumor in response to therapy-related pressures and possibly early detection. Cytology is the most natural arena for integration of CTC testing. CTC technology may also be deployed to enhance and facilitate the practice of cytology and surgical pathology.
Collapse
Affiliation(s)
- Alarice C Lowe
- Cytology, Brigham and Women's Hospital, 75 Francis Street, MRB 308, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Mann J, Reeves HL, Feldstein AE. Liquid biopsy for liver diseases. Gut 2018; 67:2204-2212. [PMID: 30177542 DOI: 10.1136/gutjnl-2017-315846] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
With the growing number of novel therapeutic approaches for liver diseases, significant research efforts have been devoted to the development of liquid biopsy tools for precision medicine. This can be defined as non-invasive reliable biomarkers that can supplement and eventually replace the invasive liver biopsy for diagnosis, disease stratification and monitoring of response to therapeutic interventions. Similarly, detection of liver cancer at an earlier stage of the disease, potentially susceptible to curative resection, can be critical to improve patient survival. Circulating extracellular vesicles, nucleic acids (DNA and RNA) and tumour cells have emerged as attractive liquid biopsy candidates because they fulfil many of the key characteristics of an ideal biomarker. In this review, we summarise the currently available information regarding these promising and potential transformative tools, as well as the issues still needed to be addressed for adopting various liquid biopsy approaches into clinical practice. These studies may pave the way to the development of a new generation of reliable, mechanism-based disease biomarkers.
Collapse
Affiliation(s)
- Jelena Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helen L Reeves
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, California, USA
| |
Collapse
|
37
|
Li L, Wang W, Zhang R, Liu J, Yu J, Wu X, Xu Y, Ma M, Huang J. High expression of LAMP2 predicts poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Biomark 2018; 19:305-311. [PMID: 28453465 DOI: 10.3233/cbm-160469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND LAMP2 is one of the major protein components of lysosome. In addition to the expression on the lysosomal membrane, LAMP2 has also been found relocalizing to the cell surface of some highly metastatic tumor cells. OBJECTIVE The aim of this study was to detect the expression levels of LAMP2 and discuss its roles in esophageal squamous cell carcinoma (ESCC). METHODS Six hundred and ten tissue samples of ESCC were collected to construct tissue microarrays, which were stained by immunohistochemistry. RESULTS After immunohistochemical staining, 596 patients including 460 men and 136 women were analyzed. The LAMP2 expression levels were significantly different based on degrees of histological differentiation (χ2= 108.906, P< 0.001). The similar results were also observed in TNM stages (χ2= 23.835, P< 0.01). LAMP2 expression levels negatively correlated with degrees of histological differentiation (P< 0.01). Logistic regression analysis showed that the LAMP2 expression levels were correlated with the degrees of histological differentiation (OR=𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛 0.452, P< 0.001) and TNM stages (OR=𝑇𝑁𝑀 1.482, P= 0.42). Besides, Kaplan-Meier survival curves indicated that patients with higher expression of LAMP2 exhibited poor prognosis (P< 0.05). CONCLUSIONS Our results demonstrated that LAMP2 expression levels correlated with tumor histological differentiation and TNM stages. High expression of LAMP2 predicts poor prognosis in patients with ESCC.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Renya Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jianli Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Juan Yu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiaoxiao Wu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ying Xu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ming Ma
- Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jian Huang
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
38
|
Hu F, Mao X, Zhang Y, Zheng X, Gu P, Wang H, Zhang X. Reliability of using circulating tumor cells for detecting epidermal growth factor receptor mutation status in advanced non-small-cell lung cancer patients: a meta-analysis and systematic review. Onco Targets Ther 2018; 11:1373-1384. [PMID: 29559795 PMCID: PMC5857158 DOI: 10.2147/ott.s158479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the clinical value of circulating tumor cells as a surrogate to detect epidermal growth factor receptor mutation in advanced non-small-cell lung cancer (NSCLC) patients. Methods We searched the electronic databases, and all articles meeting predetermined selection criteria were included in this study. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. The evaluation indexes of the diagnostic performance were the summary receiver operating characteristic curve and area under the summary receiver operating characteristic curve. Results Eight eligible publications with 255 advanced NSCLC patients were included in this meta-analysis. Taking tumor tissues as reference, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of circulating tumor cells for detecting the epidermal growth factor receptor mutation status were found to be 0.82 (95% confidence interval [CI]: 0.50–0.95), 0.95 (95% CI: 0.24–1.00), 16.81 (95% CI: 0.33–848.62), 0.19 (95% CI: 0.06–0.64), and 86.81 (95% CI: 1.22–6,154.15), respectively. The area under the summary receiver operating characteristic curve was 0.92 (95% CI: 0.89–0.94). The subgroup analysis showed that the factors of blood volume, histological type, EGFR-tyrosine kinase inhibitor therapy, and circulating tumor cell and tissue test methods for EGFR accounted for the significant difference of the pooled specificity. No significant difference was found between the pooled sensitivity of the subgroup. Conclusion Our meta-analysis confirmed that circulating tumor cells are a good surrogate for detecting epidermal growth factor receptor mutation when tumor tissue is unavailable in advanced NSCLC patients, but more precise techniques are needed to improve their clinical efficiency.
Collapse
Affiliation(s)
- Fang Hu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaowei Mao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yujun Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoxuan Zheng
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Gu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huimin Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xueyan Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Wu CP, Wu P, Zhao HF, Liu WL, Li WP. Clinical Applications of and Challenges in Single-Cell Analysis of Circulating Tumor Cells. DNA Cell Biol 2018; 37:78-89. [PMID: 29265876 DOI: 10.1089/dna.2017.3981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chang-peng Wu
- Department of Neurosurgery, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Peng Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group Department of Urology, Shenzhen, China
| | - Hua-fu Zhao
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wen-lan Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-ping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
40
|
Shafran Y, Zurgil N, Ravid-Hermesh O, Sobolev M, Afrimzon E, Hakuk Y, Shainberg A, Deutsch M. Nitric oxide is cytoprotective to breast cancer spheroids vulnerable to estrogen-induced apoptosis. Oncotarget 2017; 8:108890-108911. [PMID: 29312577 PMCID: PMC5752490 DOI: 10.18632/oncotarget.21610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
Estrogen-induced apoptosis has become a successful treatment for postmenopausal metastatic, estrogen receptor-positive breast cancer. Nitric oxide involvement in the response to this endocrine treatment and its influence upon estrogen receptor-positive breast cancer progression is still unclear. Nitric oxide impact on the MCF7 breast cancer line, before and after estrogen-induced apoptosis, was investigated in 3D culture systems using unique live-cell imaging methodologies. Spheroids were established from MCF7 cells vulnerable to estrogen-induced apoptosis, before and after exposure to estrogen. Spheroids derived from estrogen-treated cells exhibited extensive apoptosis levels with downregulation of estrogen receptor expression, low proliferation rate and reduced metabolic activity, unlike spheroids derived from non-treated cells. In addition to basic phenotypic differences, these two cell cluster types are diverse in their reactions to exogenous nitric oxide. A dual effect of nitric oxide was observed in the breast cancer phenotype sensitive to estrogen-induced apoptosis. Nitric oxide, at the nanomolar level, induced cell proliferation, high metabolic activity, downregulation of estrogen receptor and enhanced collective invasion, contributing to a more aggressive phenotype. Following hormone supplementation, breast cancer 3D clusters were rescued from estrogen-induced apoptosis by these low nitric oxide-donor concentrations, since nitric oxide attenuates cell death levels, upregulates survivin expression and increases metabolic activity. Higher nitric oxide concentrations (100nM) inhibited cell growth, metabolism and promoted apoptosis. These results suggest that nitric oxide, in nanomolar concentrations, may inhibit estrogen-induced apoptosis, playing a major role in hormonal therapy. Inhibiting nitric oxide activity may benefit breast cancer patients and ultimately reduce tumor recurrence.
Collapse
Affiliation(s)
- Yana Shafran
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Naomi Zurgil
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Orit Ravid-Hermesh
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Maria Sobolev
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Elena Afrimzon
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Yaron Hakuk
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Asher Shainberg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Mordechai Deutsch
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
41
|
Huang J, Li L, Liu J, Yu J, Wu X, Xu Y, Ma M, Wang W, Zhang R. Altered expression of lysosomal associated membrane protein 1 in esophageal squamous cell carcinoma. Pathol Res Pract 2017; 213:938-942. [PMID: 28687162 DOI: 10.1016/j.prp.2017.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 04/21/2017] [Accepted: 05/25/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers. LAMP1, major protein components of lysosome, is primarily located on the lysosomal membrane and rarely expressed on the surface of normal cells, playing an important role in the lysosome-mediated physiological processes. Previous studies confirmed that LAMP1 showed high expression in astrocytoma. The purpose of this study was to investigate the expression levels of LAMP1 and to discuss its roles in ESCC. METHODS We collected 610 tissue samples of ESCC patients to construct tissue microarrays, which were subsequently stained by immunohistochemistry with LAMP1 antibody. RESULTS After immunohistochemical staining, a total of 584 patients, including 453 men and 131 women, were analysed. The positive immunostaining was mainly located at the cytoplasm. The LAMP1 expression levels were significantly different between different T status (P<0.001), TNM stages (P<0.01) and degrees of tumor histological differentiation (P<0.001). Besides, LAMP1 expression levels were positively correlated with TNM stages (P<0.05). The higher the TNM stages, the higher the LAMP1 expression levels. Similar results also appeared in degrees of tumor histological differentiation (P<0.01), but not in ages, genders, tumor size, T status, lymphatic metastasis and tumor locations (P>0.05). CONCLUSION LAMP1 is involved in the TNM stages and histological differentiation of the ESCC. Targeted therapy for LAMP1 may be a promising novel therapeutic strategy against poorly differentiated ESCC.
Collapse
Affiliation(s)
- Jian Huang
- Central Laboratory, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Lei Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Jianli Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Juan Yu
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Xiaoxiao Wu
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Ying Xu
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Ming Ma
- Thoracic Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China.
| | - Renya Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China.
| |
Collapse
|
42
|
Fiori ME, Villanova L, De Maria R. Cancer stem cells: at the forefront of personalized medicine and immunotherapy. Curr Opin Pharmacol 2017; 35:1-11. [DOI: 10.1016/j.coph.2017.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/05/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023]
|
43
|
Deleye L, Tilleman L, Vander Plaetsen AS, Cornelis S, Deforce D, Van Nieuwerburgh F. Performance of four modern whole genome amplification methods for copy number variant detection in single cells. Sci Rep 2017; 7:3422. [PMID: 28611458 PMCID: PMC5469777 DOI: 10.1038/s41598-017-03711-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
Whole genome amplification (WGA) has become an invaluable tool to perform copy number variation (CNV) detection in single, or a limited number of cells. Unfortunately, current WGA methods introduce representation bias that limits the detection of small CNVs. New WGA methods have been introduced that might have the potential to reduce this bias. We compared the performance of PicoPLEX DNA-Seq (Picoseq), DOPlify, REPLI-g and Ampli-1 WGA for aneuploidy screening and copy number analysis using shallow whole genome massively parallel sequencing (MPS), starting from single or a limited number of cells. Although the four WGA methods perform differently, they are all suited for this application.
Collapse
Affiliation(s)
- Lieselot Deleye
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Ann-Sophie Vander Plaetsen
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Senne Cornelis
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
44
|
Xu Z, Xi T, Han Y, Guo X, Liu F, Jiang M, Wan D, Xue X, He S, Ren R, Li W, Zhi Q. Circulating miR-1826 in plasma correlates with circulating tumor cells and is a prognostic marker in colorectal cancer. Tumour Biol 2017; 39:1010428317705333. [PMID: 28468583 DOI: 10.1177/1010428317705333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Our previous study showed that miR-1826 was a newly identified oncogenic non-coding RNA in colorectal cancer. But the potential relationship between miR-1826 and tumor metastasis has not been fully elucidated. The purpose of this study was to evaluate the clinical significance of circulating miR-1826 and its possible associations with circulating tumor cells in colorectal cancer. Our results first found that serum miR-1826 was significantly upregulated in colorectal cancer patients, compared with that in healthy volunteers ( p = 0.003). Similar results were also found in colorectal cancer with distant metastasis ( p = 0.001) and advanced colorectal cancer ( p < 0.001) patients, respectively. Clinicopathological analysis implied that circulating miR-1826 was positively associated with pT stage ( p = 0.026), lymphatic metastasis ( p = 0.034), distant metastasis ( p = 0.012), and tumor-node-metastasis stage ( p = 0.020). Besides, our univariate and multivariate analyses demonstrated that high serum miR-1826 expression could act as a prognostic and independent factor for overall survival of colorectal cancer patients ( p < 0.05), which led to a poorer 5-year overall survival rate ( p = 0.025). The area under the curve value of circulating miR-1826 was up to 0.848 ± 0.043, which strongly suggested serum miR-1826 as an effective diagnostic biomarker in colorectal cancer patients ( p < 0.001). Our subsequent experiments demonstrated that patients with high level of circulating tumor cells showed a higher level of miR-1826 expression, compared with the circulating tumor cell-negative patients ( p = 0.011). Similar results also showed that the amount of circulating tumor cells in high miR-1826 group was significantly higher than that in low miR-1826 group ( p = 0.001). Furthermore, the relationship between serum miR-1826 and circulating tumor cells was analyzed using SPSS software and a significant logarithmic relationship was found, which meant that circulating miR-1826 closely correlated with the amount of circulating tumor cells in colorectal cancer patient serum ( r = 0.283, p < 0.01). Our findings strongly suggested that serum miR-1826 could serve as an effective and non-invasive biomarker for diagnosis and prognosis of colorectal cancer. Circulating miR-1826 may be an important target in colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhihua Xu
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyi Xi
- 2 Department of General Surgery, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Ye Han
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaobo Guo
- 3 Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fei Liu
- 4 Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Jiang
- 5 Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daiwei Wan
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaofeng Xue
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Songbing He
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Ren
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- 5 Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
45
|
Yadavalli S, Jayaram S, Manda SS, Madugundu AK, Nayakanti DS, Tan TZ, Bhat R, Rangarajan A, Chatterjee A, Gowda H, Thiery JP, Kumar P. Data-Driven Discovery of Extravasation Pathway in Circulating Tumor Cells. Sci Rep 2017; 7:43710. [PMID: 28262832 PMCID: PMC5337960 DOI: 10.1038/srep43710] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/26/2017] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) play a crucial role in cancer dissemination and provide a promising source of blood-based markers. Understanding the spectrum of transcriptional profiles of CTCs and their corresponding regulatory mechanisms will allow for a more robust analysis of CTC phenotypes. The current challenge in CTC research is the acquisition of useful clinical information from the multitude of high-throughput studies. To gain a deeper understanding of CTC heterogeneity and identify genes, pathways and processes that are consistently affected across tumors, we mined the literature for gene expression profiles in CTCs. Through in silico analysis and the integration of CTC-specific genes, we found highly significant biological mechanisms and regulatory processes acting in CTCs across various cancers, with a particular enrichment of the leukocyte extravasation pathway. This pathway appears to play a pivotal role in the migration of CTCs to distant metastatic sites. We find that CTCs from multiple cancers express both epithelial and mesenchymal markers in varying amounts, which is suggestive of dynamic and hybrid states along the epithelial-mesenchymal transition (EMT) spectrum. Targeting the specific molecular nodes to monitor disease and therapeutic control of CTCs in real time will likely improve the clinical management of cancer progression and metastases.
Collapse
Affiliation(s)
- S. Yadavalli
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560 066, India
| | - S. Jayaram
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560 066, India
- Manipal University, Madhav Nagar, Manipal, 576104, India
| | - S. S. Manda
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560 066, India
- Center for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | - A. K. Madugundu
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560 066, India
- Center for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | - D. S. Nayakanti
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560 066, India
| | - T. Z. Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore 117599, Singapore
| | - R. Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - A. Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - A. Chatterjee
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560 066, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India
| | - H. Gowda
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560 066, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India
| | - J. P. Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore 117599, Singapore
- Comprehensive Cancer Center, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94805 Villejuif, France
- CNRS UMR 7057, Matter and Complex Systems, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet 75013 Paris, France
- Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - P. Kumar
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560 066, India
| |
Collapse
|
46
|
Hemodynamic shear stress stimulates migration and extravasation of tumor cells by elevating cellular oxidative level. Cancer Lett 2017; 388:239-248. [DOI: 10.1016/j.canlet.2016.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
|
47
|
Thiele JA, Bethel K, Králíčková M, Kuhn P. Circulating Tumor Cells: Fluid Surrogates of Solid Tumors. ANNUAL REVIEW OF PATHOLOGY 2017; 12:419-447. [PMID: 28135562 PMCID: PMC7846475 DOI: 10.1146/annurev-pathol-052016-100256] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of circulating tumor cells (CTCs) has demonstrated clinical validity as a prognostic tool based on enumeration, but since the introduction of this tool to the clinic in 2004, further clinical utility and widespread adoption have been limited. However, immense efforts have been undertaken to further the understanding of the mechanisms behind the biology and kinetics of these rare cells, and progress continues toward better applicability in the clinic. This review describes recent advances within the field, with a particular focus on understanding the biological significance of CTCs, and summarizes emerging methods for identifying, isolating, and interrogating the cells that may provide technical advantages allowing for the discovery of more specific clinical applications. Included is an atlas of high-definition images of CTCs from various cancer types, including uncommon CTCs captured only by broadly inclusive nonenrichment techniques.
Collapse
Affiliation(s)
- J-A Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
| | - K Bethel
- Scripps Clinic Medical Group, Scripps Clinic, La Jolla, California 92121
| | - M Králíčková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, 301 00 Pilsen, Czech Republic
| | - P Kuhn
- Bridge Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089;
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
48
|
Xu G, Tan Y, Xu T, Yin D, Wang M, Shen M, Chen X, Shi X, Zhu X. Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip for cancer cell capture and culture. Biomater Sci 2017; 5:752-761. [DOI: 10.1039/c6bm00933f] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip are able to effectively capture cancer cells.
Collapse
Affiliation(s)
- Gangwei Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Yulong Tan
- Department of Thoracic Surgery
- Huashan Hospital
- Fudan University
- Shanghai 200040
- P. R. China
| | - Tiegang Xu
- State Key Laboratory of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Di Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Mengyuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xiaofeng Chen
- Department of Thoracic Surgery
- Huashan Hospital
- Fudan University
- Shanghai 200040
- P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xiaoyue Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
49
|
Bu J, Kang YT, Kim YJ, Cho YH, Chang HJ, Kim H, Moon BI, Kim HG. Dual-patterned immunofiltration (DIF) device for the rapid efficient negative selection of heterogeneous circulating tumor cells. LAB ON A CHIP 2016; 16:4759-4769. [PMID: 27858042 DOI: 10.1039/c6lc01179a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The analysis of circulating tumor cells (CTCs) is an emerging field for estimating the metastatic relapse and tumor burden of cancer patients. However, the isolation of CTCs is still challenging due to their ambiguity, rarity, and heterogeneity. Here, we present an anti-CD45 antibody based dual-patterned immunofiltration (DIF) device for the enrichment of heterogeneous CTC subtypes by effective elimination of leukocytes. Our uniquely designed dual-patterned layers significantly enhance the binding chance between immuno-patterns and leukocytes due to the fluidic whirling and the increased binding sites, thus achieving superior negative selection in terms of high-throughput and high purity. From the experiments using lung cancer cells, 97.07 ± 2.79% of leukocytes were eliminated with less than 10% loss of cancerous cells at the flow rate of 1 mL h-1. To verify the device as a potential diagnostic tool, CTCs were collected from 11 cancer patients' blood and an average of 283.3 CTC-like cells were identified while less than 1 CTC-like cells were found from healthy donors. The samples were also analyzed by immunohistochemistry and the reverse transcription polymerase chain reaction to identify their heterogeneous characteristics. These remarkable results demonstrate that the present device could help to understand the unknown properties or undiscovered roles of CTCs with a non-biased view.
Collapse
Affiliation(s)
- Jiyoon Bu
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Yoon-Tae Kang
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Young Jun Kim
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Young-Ho Cho
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hee Jin Chang
- Research Institute and Hospital, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Hojoong Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Byung-In Moon
- College of Medicine, Ewha Womans University and Ewha Medical Research Institute, 911-1, MokDong, YangCheon-Ku, Seoul, 07985, Republic of Korea
| | - Ho Gak Kim
- Catholic University of Daegu School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea
| |
Collapse
|
50
|
Bulfoni M, Turetta M, Del Ben F, Di Loreto C, Beltrami AP, Cesselli D. Dissecting the Heterogeneity of Circulating Tumor Cells in Metastatic Breast Cancer: Going Far Beyond the Needle in the Haystack. Int J Mol Sci 2016; 17:ijms17101775. [PMID: 27783057 PMCID: PMC5085799 DOI: 10.3390/ijms17101775] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/08/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Although the enumeration of circulating tumor cells (CTC) defined as expressing both epithelial cell adhesion molecule and cytokeratins (EpCAM+/CK+) can predict prognosis and response to therapy in metastatic breast, colon and prostate cancer, its clinical utility (i.e., the ability to improve patient outcome by guiding therapy) has not yet been proven in clinical trials. Therefore, scientists are now focusing on the molecular characterization of CTC as a way to explore its possible use as a “surrogate” of tumor tissues to non-invasively assess the genomic landscape of the cancer and its evolution during treatment. Additionally, evidences confirm the existence of CTC in epithelial-to-mesenchymal transition (EMT) characterized by a variable loss of epithelial markers. Since the EMT process can originate cells with enhanced invasiveness, stemness and drug-resistance, the enumeration and characterization of this population, perhaps the one truly responsible of tumor recurrence and progression, could be more clinically useful. For these reasons, several devices able to capture CTC independently from the expression of epithelial markers have been developed. In this review, we will describe the types of heterogeneity so far identified and the key role played by the epithelial-to-mesenchymal transition in driving CTC heterogeneity. The clinical relevance of detecting CTC-heterogeneity will be discussed as well.
Collapse
Affiliation(s)
- Michela Bulfoni
- Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Matteo Turetta
- Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Fabio Del Ben
- Department of Clinical Pathology, CRO Aviano National Cancer Institute, via F. Gallini 2, 33081 Aviano, Italy.
| | - Carla Di Loreto
- Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
- Institute of Pathology, University Hospital of Udine-ASUIUD, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Antonio Paolo Beltrami
- Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Daniela Cesselli
- Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|