1
|
Khor GMS, Haghani S, Tan TRE, Lee ECY, Kannan B, Lim BY, Lee JY, Guo Z, Ko TK, Chan JY. High-Throughput Transcriptomics Identifies Chemoresistance-Associated Gene Expression Signatures in Human Angiosarcoma. Int J Mol Sci 2024; 25:10863. [PMID: 39409192 PMCID: PMC11476974 DOI: 10.3390/ijms251910863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Angiosarcomas, clinically aggressive cancers of endothelial origin, are a rare subtype of soft-tissue sarcomas characterized by resistance to chemotherapy and dismal prognosis. In this study, we aim to identify the transcriptomic biomarkers of chemoresistance in angiosarcoma. We examined 72 cases of Asian angiosarcomas, including 35 cases treated with palliative chemotherapy, integrating information from NanoString gene expression profiling, whole transcriptome profiling (RNA-seq), immunohistochemistry, cell line assays, and clinicopathological data. In the chemoresistant cohort (defined as stable disease or progression), we observed the significant overexpression of genes, including SPP1 (log2foldchange 3.49, adj. p = 0.0112), CXCL13, CD48, and CLEC5A, accompanied by the significant enrichment of myeloid compartment and cytokine and chemokine signaling pathways, as well as neutrophils and macrophages. RNA-seq data revealed higher SPP1 expression (p = 0.0008) in tumor tissues over adjacent normal compartments. Immunohistochemistry showed a significant moderate positive correlation between SPP1 protein and gene expression (r = 0.7016; p < 0.00110), while higher SPP1 protein expression correlated with lower chemotherapeutic sensitivity in patient-derived angiosarcoma cell lines MOLAS and ISOHAS. In addition, SPP1 mRNA overexpression positively correlated with epithelioid histology (p = 0.007), higher tumor grade (p = 0.0023), non-head and neck location (p = 0.0576), and poorer overall survival outcomes (HR 1.84, 95% CI 1.07-3.18, p = 0.0288). There was no association with tumor mutational burden, tumor inflammation signature, the presence of human herpesvirus-7, ultraviolet exposure signature, and metastatic state at diagnosis. In conclusion, SPP1 overexpression may be a biomarker of chemoresistance and poor prognosis in angiosarcoma. Further investigation is needed to uncover the precise roles and underlying mechanisms of SPP1.
Collapse
Affiliation(s)
- Glenys Mai Shia Khor
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
- Raffles Institution, 1 Raffles Institution Ln, Singapore 575954, Singapore
| | - Sara Haghani
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Tiffany Rui En Tan
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Elizabeth Chun Yong Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Boon Yee Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Zexi Guo
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
- Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
| |
Collapse
|
2
|
Ding T, Chen Q, Liu H, Zhang H, Sun Y, Zhao L, Gao Y, Wei Q. Single-cell RNA sequencing analysis reveals the distinct features of colorectal cancer with or without Fusobacterium nucleatum infection in PD-L1 blockade therapy. Heliyon 2024; 10:e37511. [PMID: 39309908 PMCID: PMC11416490 DOI: 10.1016/j.heliyon.2024.e37511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
MSS/pMMR patients are unresponsive to PD-1/PD-L1 blockade in colorectal cancer (CRC), but the mechanisms are unclear. A better understanding of immunotherapy resistance in CRC may lead to more precise treatment and expand the benefit of immunotherapy to patients. In this study, we constructed mouse model of subcutaneous CRC tumor received anti-PD-L1 treatment with or without fusobacterium nucleatum (F. nucleatum) infection. Then we used single-cell RNA sequencing (scRNA-seq) to explore the comprehensive landscape of the tumor microenvironment (TME). Our data delineated the composition, subclonal diversity and putative function of distinct cells, tracked the developmental trajectory of tumor cells and highlighted cell-cell interactions. We found different compositions and functions of both tumor cells and immune cells. Single anti-PD-L1 monoclonal antibody (mAb) treated tumor exhibited two specific clusters which might be resistant to PD-L1 blockade. The accumulation of immune cells, including T cell, NK cell and pro-inflammatory macrophage subset in tumors infected with F. nucleatum may be one of the reasons for the increased sensitivity to PD-L1 blockade. Thus, targeting F. nucleatum to change the composition of tumor cell subclusters and enliven the immune response might help to overcome immune checkpoint blockade (ICB) resistance.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medicine School, Nanjing University, Nanjing, China
| | - Qian Chen
- Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hu Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Heping Zhang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuefang Sun
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lamei Zhao
- Department of Pathology, Shanghai Clinical College, Anhui Medical University, Hefei, Anhui, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
3
|
Liu B, Liu L, Liu Y. Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy. Front Immunol 2024; 15:1450487. [PMID: 39315094 PMCID: PMC11416969 DOI: 10.3389/fimmu.2024.1450487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a type of cell death that plays a remarkable role in the growth and advancement of malignancies including hepatocellular carcinoma (HCC). Non-coding RNAs (ncRNAs) have a considerable impact on HCC by functioning as either oncogenes or suppressors. Recent research has demonstrated that non-coding RNAs (ncRNAs) have the ability to control ferroptosis in HCC cells, hence impacting the advancement of tumors and the resistance of these cells to drugs. Autophagy is a mechanism that is conserved throughout evolution and plays a role in maintaining balance in the body under normal settings. Nevertheless, the occurrence of dysregulation of autophagy is evident in the progression of various human disorders, specifically cancer. Autophagy plays dual roles in cancer, potentially influencing both cell survival and cell death. HCC is a prevalent kind of liver cancer, and genetic mutations and changes in molecular pathways might worsen its advancement. The role of autophagy in HCC is a subject of debate, as it has the capacity to both repress and promote tumor growth. Autophagy activation can impact apoptosis, control proliferation and glucose metabolism, and facilitate tumor spread through EMT. Inhibiting autophagy can hinder the growth and spread of HCC and enhance the ability of tumor cells to respond to treatment. Autophagy in HCC is regulated by several signaling pathways, such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs. Utilizing anticancer drugs to target autophagy may have advantageous implications for the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Panda VK, Mishra B, Nath AN, Butti R, Yadav AS, Malhotra D, Khanra S, Mahapatra S, Mishra P, Swain B, Majhi S, Kumari K, Radharani NNV, Kundu GC. Osteopontin: A Key Multifaceted Regulator in Tumor Progression and Immunomodulation. Biomedicines 2024; 12:1527. [PMID: 39062100 PMCID: PMC11274826 DOI: 10.3390/biomedicines12071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is composed of various cellular components such as tumor cells, stromal cells including fibroblasts, adipocytes, mast cells, lymphatic vascular cells and infiltrating immune cells, macrophages, dendritic cells and lymphocytes. The intricate interplay between these cells influences tumor growth, metastasis and therapy failure. Significant advancements in breast cancer therapy have resulted in a substantial decrease in mortality. However, existing cancer treatments frequently result in toxicity and nonspecific side effects. Therefore, improving targeted drug delivery and increasing the efficacy of drugs is crucial for enhancing treatment outcome and reducing the burden of toxicity. In this review, we have provided an overview of how tumor and stroma-derived osteopontin (OPN) plays a key role in regulating the oncogenic potential of various cancers including breast. Next, we dissected the signaling network by which OPN regulates tumor progression through interaction with selective integrins and CD44 receptors. This review addresses the latest advancements in the roles of splice variants of OPN in cancer progression and OPN-mediated tumor-stromal interaction, EMT, CSC enhancement, immunomodulation, metastasis, chemoresistance and metabolic reprogramming, and further suggests that OPN might be a potential therapeutic target and prognostic biomarker for the evolving landscape of cancer management.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Ramesh Butti
- Division of Hematology and Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75235, USA;
| | - Amit Singh Yadav
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - N. N. V. Radharani
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
5
|
Hendawi NY, Crane HL, Mehanna H, Bolt R, Lambert DW, Hunter KD. Fibroblasts from HPV-negative oropharynx squamous cell carcinomas stimulate the release of osteopontin from cancer cells via the release of IL-6. FRONTIERS IN ORAL HEALTH 2024; 5:1390081. [PMID: 38803348 PMCID: PMC11128591 DOI: 10.3389/froh.2024.1390081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction HPV-associated oropharyngeal squamous cell carcinoma (OPSCC) shows distinct biological and clinical behaviour when compared to HPV-negative OPSCC. The overall role of the tumour microenvironment (TME) in head and neck cancer progression and metastasis has been studied intensively, but differences in HPV-negative and HPV-positive OPSCCs are less understood. Objective To investigate the role of cancer-associated fibroblasts (CAFs) and the functional interactions of normal tonsil fibroblasts (NTFs) and OP CAFs with HPV+ and HPV- OPSCC cells and explore novel candidates in tumour-fibroblast crosstalk. Materials and methods A retrospective cohort of 143 primary OPSCCs was characterised using HPV16/18 RNAScope assay, p16 IHC and ɑ-SMA. Four OPSCC, three NTF and 2 new OPSCC CAF cultures were used to assess the cytokine-based interactions using cytokine arrays on conditioned media (CM), followed by co-culture approaches to identify the role of individual cell types and the role of OPN (SPP1) and IL-6 in SCC/fibroblast communication. Results HPV status was associated with better overall survival. Although ɑ-SMA expression was observed in both OPSCC subtypes, it provided survival stratification only in the HPV-positive group (Log-Rank p = 0.02). Three normal tonsillar fibroblast cultures (NTFs) were characterised by induction of myofibroblastic and senescent phenotypes with similar reactivity to our published NOF phenotype. The OPSCC-derived CAF cultures were characterised and their baseline myofibroblastic and senescence phenotypes varied. Cytokine array analysis of CM to identify novel candidates in the crosstalk between OPSCC tumour cells and NTFs/CAFs identified differences in the cytokine profiles on comparison of HPV+ and HPV- OPSCC cells. Osteopontin (OPN/SPP1) was identified, particularly in HPV-negative OPSCC cell analyses. We have demonstrated that OPN was produced by the OPSCC cells and revealed an associated upregulation of IL-6 in fibroblasts. Treatment of NTFs with rOPN showed alteration in phenotype, including increased contraction and IL-6 production. Antibody-mediated inhibition of CD44v6 attenuated the production of IL-6 by OPN in NTFs. Conclusion This investigation with OPSCC fibroblasts provides novel insights into the role of CAFs in OPSCC mediated by IL-6 stimulated release of OPN from HPV negative OPSCC cells. The details of HPV-positive SCC cell/fibroblast cytokine crosstalk remain elusive.
Collapse
Affiliation(s)
- Naeima Yahia Hendawi
- Academic Unit of Oral Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Faculty of Dentistry, University of Benghazi, Benghazi, Libya
| | - Hannah L. Crane
- Academic Unit of Oral Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Hisham Mehanna
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert Bolt
- Academic Unit of Oral Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Daniel W. Lambert
- Academic Unit of Oral Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- Academic Unit of Oral Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Wang G, Jiang X, Torabian P, Yang Z. Investigating autophagy and intricate cellular mechanisms in hepatocellular carcinoma: Emphasis on cell death mechanism crosstalk. Cancer Lett 2024; 588:216744. [PMID: 38431037 DOI: 10.1016/j.canlet.2024.216744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as a formidable global health challenge due to its prevalence, marked by high mortality and morbidity rates. This cancer type exhibits a multifaceted etiology, prominently linked to viral infections, non-alcoholic fatty liver disease, and genomic mutations. The inherent heterogeneity of HCC, coupled with its proclivity for developing drug resistance, presents formidable obstacles to effective therapeutic interventions. Autophagy, a fundamental catabolic process, plays a pivotal role in maintaining cellular homeostasis, responding to stressors such as nutrient deprivation. In the context of HCC, tumor cells exploit autophagy, either augmenting or impeding its activity, thereby influencing tumorigenesis. This comprehensive review underscores the dualistic role of autophagy in HCC, acting as both a pro-survival and pro-death mechanism, impacting the trajectory of tumorigenesis. The anti-carcinogenic potential of autophagy is evident in its ability to enhance apoptosis and ferroptosis in HCC cells. Pertinently, dysregulated autophagy fosters drug resistance in the carcinogenic context. Both genomic and epigenetic factors can regulate autophagy in HCC progression. Recognizing the paramount importance of autophagy in HCC progression, this review introduces pharmacological compounds capable of modulating autophagy-either inducing or inhibiting it, as promising avenues in HCC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Interventional, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110020, PR China
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
7
|
Liu C, Xiao Z, Wu S, Yang Z, Ji G, Duan J, Zhou T, Cao J, Liu X, Xu F. Multi-cohort validation study of a four-gene signature for risk stratification and treatment response prediction in hepatocellular carcinoma. Comput Biol Med 2023; 167:107694. [PMID: 37956625 DOI: 10.1016/j.compbiomed.2023.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The intricate molecular landscape of hepatocellular carcinoma (HCC) presents a significant challenge to achieving precise risk stratification through clinical genetic testing. At present, there is a paucity of robust gene signatures that could assist clinicians in making clinical decisions for patients with HCC. METHODS We obtained gene expression profiles of patients with HCC from 20 independent cohorts available in public databases. A gene signature was developed by employing two machine learning algorithms. In addition to validating the signature with high-throughput data in public cohorts, we external validated the signature in 64 HCC cases by RT-PCR method. We compared genomic, transcriptomic and proteomic features between different subgroups. We also compared our signature to 130 gene signatures that have already been published. RESULTS We developed a novel four-gene signature, designated as HCC4, that demonstrates significant potential for the prediction of survival outcomes in more than 1300 patients with HCC. The HCC4 also has potential for predicting recurrence and tumor volume doubling time, assessing transcatheter arterial chemoembolization and immunotherapy responses, and non-invasive detection of HCC. The high HCC4 score group shows a higher frequency of mutations in genes TP53, RB1 and TSC1/2, as well as increased activity of cell-cycle, glycolysis and hypoxia signaling pathways, higher cancer stemness score, and lower lipid metabolism activity. In seven HCC cohorts, HCC4 exhibited a higher average C-index in predicting overall survival compared to the 130 signatures previously published. Drug screening indicated that patients with high HCC4 scores were more sensitive to agents targeting AURKA, TUBB, JMJD6 and KIFC1. CONCLUSIONS Our findings demonstrated that HCC4 is a powerful tool for improving risk stratification and for identifying HCC patients who are most likely to benefit from TACE treatment, immunotherapy, and other experimental therapies.
Collapse
Affiliation(s)
- Cuicui Liu
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, No.6600 Nanfeng Hwy, Shanghai, 201499, China.
| | - Zhijun Xiao
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, No.6600 Nanfeng Hwy, Shanghai, 201499, China.
| | - Shenghong Wu
- Department of Oncology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, No.6600 Nanfeng Hwy, Shanghai, 201499, China.
| | - Zhen Yang
- Department of Central Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, No.6600 Nanfeng Hwy, Shanghai, 201499, China.
| | - Guowen Ji
- Department of Respiratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, No.6600 Nanfeng Hwy, Shanghai, 201499, China.
| | - Jingjing Duan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, No.6600 Nanfeng Hwy, Shanghai, 201499, China.
| | - Ting Zhou
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, No.6600 Nanfeng Hwy, Shanghai, 201499, China.
| | - Jinming Cao
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, No.6600 Nanfeng Hwy, Shanghai, 201499, China.
| | - Xiufeng Liu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, No.6600 Nanfeng Hwy, Shanghai, 201499, China.
| | - Feng Xu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, No.6600 Nanfeng Hwy, Shanghai, 201499, China.
| |
Collapse
|
8
|
Wu Q, Jiang G, Sun Y, Li B. Reanalysis of single-cell data reveals macrophage subsets associated with the immunotherapy response and prognosis of patients with endometrial cancer. Exp Cell Res 2023; 430:113736. [PMID: 37541419 DOI: 10.1016/j.yexcr.2023.113736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Endometrial cancer (EC) is an aggressive gynecological malignancy with an increased incidence rate. The immune landscape crucially affects immunotherapy efficacy and prognosis in EC patients. Here, we characterized the distinct tumor microenvironment signatures of EC tumors by analyzing single-cell RNA sequencing data from Gene Expression Omnibus and bulk RNA sequencing data from The Cancer Genome Atlas, which were compared with normal endometrium. Three macrophage subsets were identified, and two of them showed tissue-specific distribution. One of the macrophage subsets was dominant in macrophages derived from EC and exhibited characteristic behaviors such as promoting tumor growth and metastasis. One of the other macrophage subsets was mainly found in normal endometrium and served functions related to antigen presentation. We also identified a macrophage subset that was found in both EC and normal endometrial tissue. However, the pathway and cellular cross-talk of this subset were completely different based on the respective origin, suggesting a tumor-related differentiation mechanism of macrophages. Additionally, the tumor-enriched macrophage subset was found to predict immunotherapy responses in EC. Notably, we selected six genes from macrophage subset markers that could predict the survival of EC patients, SCL8A1, TXN, ANXA5, CST3, CD74 and NANS, and constructed a prognostic signature. To verify the signature, we identified immunohistochemistry for the tumor samples of 83 EC patients based on the selected genes and further followed up with the survival of the patients. Our results provide strong evidence that the signature can effectively predict the prognosis of EC patients.
Collapse
Affiliation(s)
- Qianhua Wu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Genyi Jiang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yihan Sun
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bilan Li
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
9
|
Abdolvahabi Z, Ezzati-Mobaser S, Hesari Z. The route of autophagy regulation by osteopontin: a review on the linking mechanisms. J Recept Signal Transduct Res 2023; 43:102-108. [PMID: 38082480 DOI: 10.1080/10799893.2023.2291563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
Autophagy is a dynamic intracellular process of protein degradation, which is mostly triggered by nutrient deprivation. This process initiates with the formation of autophagosomes, which they capture cytosolic material that is then degraded upon fusion with the lysosome. Several factors have been found to be associated with autophagy modulation, of which extracellular matrix (ECM) components has attracted the attention of recent studies. Osteopontin (OPN) is an important extracellular matrix component that has been detected in a wide range of tumor cells, and is involved in cancer cell invasion and metastasis. Recently, a number of studies have focused on the relationship of OPN with autophagy, by delineating the intracellular signaling pathways that connect OPN to the autophagy process. We will summarize signaling pathways and cell surface receptors, through which OPN regulates the process of autophagy.
Collapse
Affiliation(s)
- Zohreh Abdolvahabi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Samira Ezzati-Mobaser
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
10
|
Yu H, Zhong H, Sun J, Li N, Chen J, Shen B, Huang P, Shen X, Huang S, Zhong Y. Molecular signaling from microglia impacts macroglia autophagy and neurons survival in glaucoma. iScience 2023; 26:106839. [PMID: 37250793 PMCID: PMC10213002 DOI: 10.1016/j.isci.2023.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Interactions between microglia and macroglia play important roles in the neurodegeneration of the central nervous system and so is the situation between microglia and Müller cells in retina neurodegenerations like glaucoma. This study focuses on the roles of microglia-derived osteopontin (OPN) in impacting Müller cells and retinal ganglion cells (RGCs). Rat model and cell pressurization culture were used to simulate glaucoma scenarios. Animals were differently treated with anti-OPN, suppressors of OPN receptors (Itgαvβ3/CD44) or microglia inhibitor minocycline, while isolated retinal Müller cells were accordingly treated with conditioned media from microglia culture pretreated with pressuring, overexpression-OPN, SiR-OPN, or minocycline. SB203580 was introduced to explore the role of p38 MAPK signaling pathway. Results revealed microglia may secret OPN to impact Müller cells' autophagy and RGCs survival via binding to Itgαvβ3/CD44 receptors in glaucomatous neurodegeneration with involvement of p38 MAPK pathway. This discovery may benefit understanding neurodegenerative disorders and exploring therapeutics.
Collapse
Affiliation(s)
- Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Huimin Zhong
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Bingqiao Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Ping Huang
- Department of Orthopaedics, Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
- Department of Ophthalmology, Zhoushan Branch of Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Zhoushan, China
| |
Collapse
|
11
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Gao Q, Sun Z, Fang D. Integrins in human hepatocellular carcinoma tumorigenesis and therapy. Chin Med J (Engl) 2023; 136:253-268. [PMID: 36848180 PMCID: PMC10106235 DOI: 10.1097/cm9.0000000000002459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
Collapse
Affiliation(s)
- Qiong Gao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Osteopontin and Cancer: Insights into Its Role in Drug Resistance. Biomedicines 2023; 11:biomedicines11010197. [PMID: 36672705 PMCID: PMC9855437 DOI: 10.3390/biomedicines11010197] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. Currently, drug resistance is the main obstacle in cancer treatments with the underlying mechanisms of drug resistance yet to be fully understood. Osteopontin (OPN) is a member of the integrin binding glycophosphoprotein family that is overexpressed in several tumour types. It is involved in drug transport, apoptosis, stemness, energy metabolism, and autophagy, which may contribute to drug resistance. Thus, understanding the role of OPN in cancer drug resistance could be important. This review describes the OPN-based mechanisms that might contribute to cancer drug resistance, demonstrating that OPN may be a viable target for cancer therapy to reduce drug resistance in sensitive tumours.
Collapse
|
14
|
Fernández-Palanca P, Payo-Serafín T, San-Miguel B, Méndez-Blanco C, Tuñón MJ, González-Gallego J, Mauriz JL. Hepatocellular carcinoma cells loss lenvatinib efficacy in vitro through autophagy and hypoxia response-derived neuropilin-1 degradation. Acta Pharmacol Sin 2022; 44:1066-1082. [PMID: 36376373 PMCID: PMC10104874 DOI: 10.1038/s41401-022-01021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractDespite pharmacological advances such as lenvatinib approval, therapeutic failure of hepatocellular carcinoma (HCC) remains a big challenge due to the complexity of its underlying molecular mechanisms. Neuropilin-1 (NRP1) is a co-receptor involved in several cellular processes associated to chemoresistance development. Since both the double-edged process of autophagy and hypoxia-derived response play crucial roles in the loss of therapeutic effectiveness, herein we investigated the interplay among NRP1, autophagy and hypoxia in development of lenvatinib resistance in HCC cell lines. We first analyzed NRP1 expression levels in human HCC samples from public databases, found significantly increased NRP1 expression in human HCC samples as well as its correlation with advanced tumor and metastasis stages. Among 3 HCC cell lines (HepG2, Huh-7 and Hep3B), Hep3B and Huh-7 cells showed significantly increased NRP1 expression levels and cell migration ability together with higher susceptibility to lenvatinib. We demonstrated that NRP1 gene silencing significantly enhanced the anticancer effects of lenvatinib on Hep3B and Huh-7 cells. Furthermore, lenvatinib suppressed NRP1 expression through promoting autophagy in Hep3B and Huh-7 cells; co-treatment with bafilomycin A1 attenuated the antitumor effects of lenvatinib, and NRP1 silencing prevented this loss of in vitro effectiveness of lenvatinib even in the presence of bafilomycin A1. In addition, exposure to a hypoxic microenvironment significantly decreased NRP1 expression through autophagy in Hep3B and Huh-7 cells. Under hypoxia, HIF-1α directly modulated NRP1 expression; HIF-1α silencing not only enhanced the anticancer effects of combined lenvatinib and hypoxia, but also prevented the loss of effectiveness caused by bafilomycin A1, highlighting the potential role of HIF-1α-derived hypoxia response in the adaptive cellular response to lenvatinib and promoting resistance acquisition by autophagy modulation. Overall, NRP1 may constitute a potential therapeutic target to prevent lenvatinib failure derived from a hypoxia-associated modulation of autophagy in advanced HCC.
Collapse
|
15
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
16
|
Zhao K, Ma Z, Zhang W. Comprehensive Analysis to Identify SPP1 as a Prognostic Biomarker in Cervical Cancer. Front Genet 2022; 12:732822. [PMID: 35058964 PMCID: PMC8764398 DOI: 10.3389/fgene.2021.732822] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background: SPP1, secreted phosphoprotein 1, is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family. Previous studies have proven SPP1 overexpressed in a variety of cancers and can be identified as a prognostic factor, while no study has explored the function and carcinogenic mechanism of SPP1 in cervical cancer. Methods: We aimed to demonstrate the relationship between SPP1 expression and pan-cancer using The Cancer Genome Atlas (TCGA) database. Next, we validated SPP1 expression of cervical cancer in the Gene Expression Omnibus (GEO) database, including GSE7803, GSE63514, and GSE9750. The receiver operating characteristic (ROC) curve was used to evaluate the feasibility of SPP1 as a differentiating factor by the area under curve (AUC) score. Cox regression and logistic regression were performed to evaluate factors associated with prognosis. The SPP1-binding protein network was built by the STRING tool. Enrichment analysis by the R package clusterProfiler was used to explore potential function of SPP1. The single-sample GSEA (ssGSEA) method from the R package GSVA and TIMER database were used to investigate the association between the immune infiltration level and SPP1 expression in cervical cancer. Results: Pan-cancer data analysis showed that SPP1 expression was higher in most cancer types, including cervical cancer, and we got the same result in the GEO database. The ROC curve suggested that SPP1 could be a potential diagnostic biomarker (AUC = 0.877). High SPP1 expression was associated with poorer overall survival (OS) (P = 0.032). Further enrichment and immune infiltration analysis revealed that high SPP1 expression was correlated with regulating the infiltration level of neutrophil cells and some immune cell types, including macrophage and DC. Conclusion: SPP1 expression was higher in cervical cancer tissues than in normal cervical epithelial tissues. It was significantly associated with poor prognosis and immune cell infiltration. Thus, SPP1 may become a promising prognostic biomarker for cervical cancer patients.
Collapse
Affiliation(s)
- Kaidi Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Ma
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Park SY, Cho HS, Chung KH, Lee BN, Kim SH, Kim WJ, Jung JY. Inactivation of PI3K/Akt promotes the odontoblastic differentiation and suppresses the stemness with autophagic flux in dental pulp cells. J Dent Sci 2022; 17:145-154. [PMID: 35028032 PMCID: PMC8739242 DOI: 10.1016/j.jds.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Background/purpose Autophagy is involved in controlling differentiation of various cell types. The present study aimed to investigate the mechanism related to autophagy in regulating odontogenic differentiation of dental pulp cells. Materials and methods Human dental pulp cells (HDPCs) were cultured in differentiation inductive medium (DM) and odontoblastic differentiation and mineralization were evaluated by alkaline phosphatase (ALP) staining and Alizarin red S staining, respectively. Tooth cavity preparation was made on the mesial surface of lower first molars in rat. The expression of autophagy-related signal molecules was detected using Western blot analysis and Immunohistochemistry. Results HDPCs cultured in DM showed increased autophagic flux and declined phosphorylation of phosphoinositide 3-kinases (PI3K), protein kinase B (Akt), and mTOR. Dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP), markers of odontoblastic differentiation, were upregulated and autophagic activation showing increased LC3-II and decreased p62 levels was observed during odontogenic differentiation of HDPCs. However, PI3K blocker 3-methyladenine (3MA), lentiviral shLC3 and Akt activator SC79 attenuated the expression of LC3II as well as DMP-1, ALP activity and mineralization enhanced in HDPCs under DM condition. In addition, 3MA, shLC3 and SC79 recovered the expression of pluripotency factor CD146, Oct4 and Nanog downregulated in DM condition. In rat tooth cavity preparation model, the expression of LC3B and DMP-1 was elevated near odontoblast-dentin layer during reparative dentin formation, whereas 3MA significantly reduced the expression of LC3B and DMP-1. Conclusion These findings indicated autophagy promotes the odontogenic differentiation of dental pulp cells modulating stemness via PI3K/Akt inactivation and the repair of pulp.
Collapse
Affiliation(s)
- Sam Young Park
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Heui Seung Cho
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Kyung Hwun Chung
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Bin Na Lee
- Department of Operative Dentistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sun Hun Kim
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Won Jae Kim
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ji Yeon Jung
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Liu L, Liu Z, Meng L, Li L, Gao J, Yu S, Hu B, Yang H, Guo W, Zhang S. An Integrated Fibrosis Signature for Predicting Survival and Immunotherapy Efficacy of Patients With Hepatocellular Carcinoma. Front Mol Biosci 2022; 8:766609. [PMID: 34970594 PMCID: PMC8712696 DOI: 10.3389/fmolb.2021.766609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: Fibrosis, a primary cause of hepatocellular carcinoma (HCC), is intimately associated with inflammation, the tumor microenvironment (TME), and multiple carcinogenic pathways. Currently, due to widespread inter- and intra-tumoral heterogeneity of HCC, the efficacy of immunotherapy is limited. Seeking a stable and novel tool to predict prognosis and immunotherapy response is imperative. Methods: Using stepwise Cox regression, least absolute shrinkage and selection operator (LASSO), and random survival forest algorithms, the fibrosis-associated signature (FAIS) was developed and further validated. Subsequently, comprehensive exploration was conducted to identify distinct genomic alterations, clinical features, biological functions, and immune landscapes of HCC patients. Results: The FAIS was an independent prognostic predictor of overall survival and recurrence-free survival in HCC. In parallel, the FAIS exhibited stable and accurate performance at predicting prognosis based on the evaluation of Kaplan-Meier survival curves, receiver operator characteristic curves, decision curve analysis, and Harrell's C-index. Further investigation elucidated that the high-risk group presented an inferior prognosis with advanced clinical traits and a high mutation frequency of TP53, whereas the low-risk group was characterized by superior CD8+ T cell infiltration, a higher TIS score, and a lower TIDE score. Additionally, patients in the low-risk group might yield more benefits from immunotherapy. Conclusion: The FAIS was an excellent scoring system that could stratify HCC patients and might serve as a promising tool to guide surveillance, improve prognosis, and facilitate clinical management.
Collapse
Affiliation(s)
- Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingfang Meng
- Department of Infection Management, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shizhe Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Bowen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Han Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
19
|
Shao Z, Bi S. Endocrine regulation and metabolic mechanisms of osteopontin in the development and progression of osteosarcoma, metastasis and prognosis. Front Endocrinol (Lausanne) 2022; 13:1100063. [PMID: 36714568 PMCID: PMC9880040 DOI: 10.3389/fendo.2022.1100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Osteosarcoma is the most common type of malignant bone tumor, occurring in adolescents and patients over 60. It has a bimodal onset and a poor prognosis, and its development has not yet been fully explained. Osteopontin (OPN) is a high protein consisting of 314 amino acid residues with a negative charge and is involved in many biological activities. OPN is not only an essential part of the regulation of the nervous system and endocrine metabolism of skeletal cells. Still, it is also involved in several other important biological activities, such as the division, transformation, and proliferation of skeletal cells and their associated cells, such as bone tumor cells, including bone marrow mesenchymal stem cells, hematopoietic stem cells, osteoblasts, and osteoclasts. Osteoblasts and osteocytes. Recent studies have shown a strong correlation between OPN and the development and progression of many skeletal diseases, such as osteosarcoma and rheumatoid arthritis. This review aims to understand the mechanisms and advances in the role of OPN as a factor in the development, progression, metastasis, and prognosis of osteosarcoma in an attempt to provide a comprehensive summary of the mechanisms by which OPN regulates osteosarcoma progression and in the hope of contributing to the advancement of osteosarcoma research and clinical treatment.
Collapse
|
20
|
Jiang X, Zhang W, Li L, Xie S. Integrated Transcriptomic Analysis Revealed Hub Genes and Pathways Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Pathol Oncol Res 2021; 27:1609985. [PMID: 34737677 PMCID: PMC8560649 DOI: 10.3389/pore.2021.1609985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC), a high mortality malignancy, has become a worldwide public health concern. Acquired resistance to the multikinase inhibitor sorafenib challenges its clinical efficacy and the survival benefits it provides to patients with advanced HCC. This study aimed to identify critical genes and pathways associated with sorafenib resistance in HCC using integrated bioinformatics analysis. Differentially expressed genes (DEGs) were identified using four HCC gene expression profiles (including 34 sorafenib-resistant and 29 sorafenib-sensitive samples) based on the robust rank aggregation method and R software. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and small molecules reversing sorafenib resistance were searched for using the connectivity map (CMAP) database. Pearson correlation and survival analyses of hub genes were performed using cBioPortal and Gene Expression Profiling and Interactive Analysis (GEPIA). Finally, the expression levels of hub genes in sorafenib-resistant HCC cells were verified using quantitative polymerase chain reaction (q-PCR). A total of 165 integrated DEGs (66 upregulated and 99 downregulated in sorafenib resistant samples compared sorafenib sensitive ones) primarily enriched in negative regulation of endopeptidase activity, extracellular exosome, and protease binding were identified. Some pathways were commonly shared between the integrated DEGs. Seven promising therapeutic agents and 13 hub genes were identified. These findings provide a strategy and theoretical basis for overcoming sorafenib resistance in HCC patients.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Lifeng Li
- Department of Radiology, Changsha Central Hospital, Changsha, China
| | - Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Autophagy-Related Chemoprotection against Sorafenib in Human Hepatocarcinoma: Role of FOXO3 Upregulation and Modulation by Regorafenib. Int J Mol Sci 2021; 22:ijms222111770. [PMID: 34769197 PMCID: PMC8583804 DOI: 10.3390/ijms222111770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Early acquisition of sorafenib resistance is responsible for the dismal prognosis of advanced hepatocarcinoma (HCC). Autophagy, a catabolic process involved in liver homeostasis, has been associated with chemosensitivity modulation. Forkhead box O3 (FOXO3) is a transcription factor linked to HCC pathogenesis whose role on autophagy-related sorafenib resistance remains controversial. Here, we unraveled the linkage between autophagy and sorafenib resistance in HCC, focusing on the implication of FOXO3 and its potential modulation by regorafenib. We worked with two HepG2-derived sorafenib-resistant HCC in vitro models (HepG2S1 and HepG2S3) and checked HCC patient data from the UALCAN database. Resistant cells displayed an enhanced basal autophagic flux compared to HepG2, showing higher autophagolysosome content and autophagy markers levels. Pharmacological inhibition of autophagy boosted HepG2S1 and HepG2S3 apoptosis and subG1 cells, but reduced viability, indicating the cytoprotective role of autophagy. HCC samples displayed higher FOXO3 levels, being associated with shorter survival and autophagic genes expression. Consistently, chemoresistant in vitro models showed significant FOXO3 upregulation. FOXO3 knockdown suppressed autophagy and caused resistant cell death, demonstrating that overactivation of such pro-survival autophagy during sorafenib resistance is FOXO3-dependent; a cytoprotective mechanism that the second-line drug regorafenib successfully abolished. Therefore, targeting FOXO3-mediated autophagy could significantly improve the clinical efficacy of sorafenib.
Collapse
|
22
|
Scuto M, Trovato Salinaro A, Caligiuri I, Ontario ML, Greco V, Sciuto N, Crea R, Calabrese EJ, Rizzolio F, Canzonieri V, Calabrese V. Redox modulation of vitagenes via plant polyphenols and vitamin D: Novel insights for chemoprevention and therapeutic interventions based on organoid technology. Mech Ageing Dev 2021; 199:111551. [PMID: 34358533 DOI: 10.1016/j.mad.2021.111551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022]
Abstract
Polyphenols are chemopreventive through the induction of nuclear factor erythroid 2 related factor 2 (Nrf2)-mediated proteins and anti-inflammatory pathways. These pathways, encoding cytoprotective vitagenes, include heat shock proteins, such as heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1), as well as glutathione redox system to protect against cancer initiation and progression. Phytochemicals exhibit biphasic dose responses on cancer cells, activating at low dose, signaling pathways resulting in upregulation of vitagenes, as in the case of the Nrf2 pathway upregulated by hydroxytyrosol (HT) or curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Here, the importance of vitagenes in redox stress response and autophagy mechanisms, as well as the potential use of dietary antioxidants in the prevention and treatment of multiple types of cancer are discussed. We also discuss the possible relationship between SARS-CoV-2, inflammation and cancer, exploiting innovative therapeutic approaches with HT-rich aqueous olive pulp extract (Hidrox®), a natural polyphenolic formulation, as well as the rationale of Vitamin D supplementation. Finally, we describe innovative approaches with organoids technology to study human carcinogenesis in preclinical models from basic cancer research to clinical practice, suggesting patient-derived organoids as an innovative tool to test drug toxicity and drive personalized therapy.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Nello Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
23
|
Kim S, Cho H, Hong SO, Oh SJ, Lee HJ, Cho E, Woo SR, Song JS, Chung JY, Son SW, Yoon SM, Jeon YM, Jeon S, Yee C, Lee KM, Hewitt SM, Kim JH, Song KH, Kim TW. LC3B upregulation by NANOG promotes immune resistance and stem-like property through hyperactivation of EGFR signaling in immune-refractory tumor cells. Autophagy 2021; 17:1978-1997. [PMID: 32762616 PMCID: PMC8386750 DOI: 10.1080/15548627.2020.1805214] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Immune selection drives tumor cells to acquire refractory phenotypes. We previously demonstrated that cytotoxic T lymphocyte (CTL)-mediated immune pressure enriches NANOG+ tumor cells with stem-like and immune-refractory properties that make them resistant to CTLs. Here, we report that the emergence of refractory phenotypes is highly associated with an aberrant macroautophagic/autophagic state of the NANOG+ tumor cells and that the autophagic phenotype arises through transcriptional induction of MAP1LC3B/LC3B by NANOG. Furthermore, we found that upregulation of LC3B expression contributes to an increase in EGF secretion. The subsequent hyperactivation of EGFR-AKT signaling rendered NANOG+ tumor cells resistant to CTL killing. The NANOG-LC3B-p-EGFR axis was preserved across various types of human cancer and correlated negatively with the overall survival of cervical cancer patients. Inhibition of LC3B in immune-refractory tumor models rendered tumors susceptible to adoptive T-cell transfer, as well as PDCD1/PD-1 blockade, and led to successful, long-term control of the disease. Thus, our findings demonstrate a novel link among immune-resistance, stem-like phenotypes, and LC3B-mediated autophagic secretion in immune-refractory tumor cells, and implicate the LC3B-p-EGFR axis as a central molecular target for controlling NANOG+ immune-refractory cancer.Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; BafA1: bafilomycin A1; CASP3: caspase 3; CFSE: carboxyfluorescein succinimidyl ester; ChIP: chromatin immunoprecipitation; CI: confidence interval; CIN: cervical intraepithelial neoplasia; CSC: cancer stem cell; CTL: cytotoxic T lymphocyte; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; FIGO: International Federation of Gynecology and Obstetrics; GFP: green fluorescent protein; GZMB: granzyme B; HG-CIN: high-grade CIN; IHC: immunohistochemistry; LG-CIN: low-grade CIN; LN: lymph node; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCL1: myeloid cell leukemia sequence 1; MLANA/MART-1: melanoma antigen recognized by T cells 1; MUT: mutant; NANOG: Nanog homeobox; PDCD1/PD-1: programmed cell death 1; PMEL/gp100: premelanosome protein; RTK: receptor tyrosine kinase; TMA: tissue microarray; WT: wild type.
Collapse
Affiliation(s)
- Suyeon Kim
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Hanbyoul Cho
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon-Oh Hong
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Se Jin Oh
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Hyo-Jung Lee
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Eunho Cho
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Seon Rang Woo
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Joon Seon Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sung Wook Son
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Sang Min Yoon
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Yu-Min Jeon
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Seunghyun Jeon
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Cassian Yee
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyung-Mi Lee
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Stephen M. Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwon-Ho Song
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Tae Woo Kim
- Department of Biochemistry & Molecular Biology, Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Zubareva EY, Senchukova MA. Prognostic and predictive significance of osteopontin in malignant neoplasms. ADVANCES IN MOLECULAR ONCOLOGY 2021. [DOI: 10.17650/2313-805x-2021-8-2-23-28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Osteopontin is an extracellular matrix protein which is produced by different types of cells and plays an important functional role in many biological processes. This review discusses the main functions of osteopontin, its role in the progression and chemoresistance of malignant neoplasms, in the regulation of epithelial-mesenchymal transition, angiogenesis, and the body’s immune response to the tumor. The article considers the currently known mechanisms by which osteopontin affects to the survival, mobility and invasion of tumor cells, to tumor sensitivity to drug treatment, as well as the prospects for a integrated study of the predictive significance of osteopontin, markers of hypoxia, angiogenesis, epithelial- mesenchymal transition, and immunological tolerance.
Collapse
Affiliation(s)
- E. Yu. Zubareva
- Orenburg Regional Clinical Oncological Dispensary; Orenburg State Medical University
| | - M. A. Senchukova
- Orenburg Regional Clinical Oncological Dispensary; Orenburg State Medical University
| |
Collapse
|
25
|
Yang Y, Wu G, Li Q, Zheng Y, Liu M, Zhou L, Chen Z, Wang Y, Guo Q, Ji R, Zhou Y. Angiogenesis-Related Immune Signatures Correlate With Prognosis, Tumor Microenvironment, and Therapeutic Sensitivity in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:690206. [PMID: 34262941 PMCID: PMC8273615 DOI: 10.3389/fmolb.2021.690206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the highly heterogeneous cancers that lacks an effective risk model for prognosis prediction. Therefore, we searched for angiogenesis-related immune genes that affected the prognosis of HCC to construct a risk model and studied the role of this model in HCC. Methods: In this study, we collected the transcriptome data of HCC from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database. Pearson correlation analysis was performed to identify the association between immune genes and angiogenesis-related genes. Consensus clustering was applied to divide patients into clusters A and B. Subsequently, we studied the differentially expressed angiogenesis-related immune genes (DEari-genes) that affected the prognosis of HCC. The most significant features were identified by least absolute shrinkage and selection operator (LASSO) regression, and a risk model was constructed. The reliability of the risk model was evaluated in the TCGA discovery cohort and the ICGC validation cohort. In addition, we compared the novel risk model to the previous models based on ROC analysis. ssGSEA analysis was used for function evaluation, and pRRophetic was utilized to predict the sensitivity of administering chemotherapeutic agents. Results: Cluster A patients had favorable survival rates. A total of 23 DEari-genes were correlated with the prognosis of HCC. A five-gene (including BIRC5, KITLG, PGF, SPP1, and SHC1) signature-based risk model was constructed. After regrouping the HCC patients by the median score, we could effectively discriminate between them based on the adverse survival outcome, the unique tumor immune microenvironment, and low chemosensitivity. Conclusion: The five-gene signature-based risk score established by ari-genes showed a promising clinical prediction value.
Collapse
Affiliation(s)
- Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Guozhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qiang Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Lingshan Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Zhaofeng Chen
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
26
|
Song Z, Chen W, Athavale D, Ge X, Desert R, Das S, Han H, Nieto N. Osteopontin Takes Center Stage in Chronic Liver Disease. Hepatology 2021; 73:1594-1608. [PMID: 32986864 PMCID: PMC8106357 DOI: 10.1002/hep.31582] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Osteopontin (OPN) was first identified in 1986. The prefix osteo- means bone; however, OPN is expressed in other tissues, including liver. The suffix -pontin means bridge and denotes the role of OPN as a link protein within the extracellular matrix. While OPN has well-established physiological roles, multiple "omics" analyses suggest that it is also involved in chronic liver disease. In this review, we provide a summary of the OPN gene and protein structure and regulation. We outline the current knowledge on how OPN is involved in hepatic steatosis in the context of alcoholic liver disease and non-alcoholic fatty liver disease. We describe the mechanisms whereby OPN participates in inflammation and liver fibrosis and discuss current research on its role in hepatocellular carcinoma and cholangiopathies. To conclude, we highlight important points to consider when doing research on OPN and provide direction for making progress on how OPN contributes to chronic liver disease.
Collapse
Affiliation(s)
- Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, IL,Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
27
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
28
|
Moldogazieva NT, Mokhosoev IM, Zavadskiy SP, Terentiev AA. Proteomic Profiling and Artificial Intelligence for Hepatocellular Carcinoma Translational Medicine. Biomedicines 2021; 9:biomedicines9020159. [PMID: 33562077 PMCID: PMC7914649 DOI: 10.3390/biomedicines9020159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver with high morbidity and mortality rates worldwide. Since 1963, when alpha-fetoprotein (AFP) was discovered as a first HCC serum biomarker, several other protein biomarkers have been identified and introduced into clinical practice. However, insufficient specificity and sensitivity of these biomarkers dictate the necessity of novel biomarker discovery. Remarkable advancements in integrated multiomics technologies for the identification of gene expression and protein or metabolite distribution patterns can facilitate rising to this challenge. Current multiomics technologies lead to the accumulation of a huge amount of data, which requires clustering and finding correlations between various datasets and developing predictive models for data filtering, pre-processing, and reducing dimensionality. Artificial intelligence (AI) technologies have an enormous potential to overcome accelerated data growth, complexity, and heterogeneity within and across data sources. Our review focuses on the recent progress in integrative proteomic profiling strategies and their usage in combination with machine learning and deep learning technologies for the discovery of novel biomarker candidates for HCC early diagnosis and prognosis. We discuss conventional and promising proteomic biomarkers of HCC such as AFP, lens culinaris agglutinin (LCA)-reactive L3 glycoform of AFP (AFP-L3), des-gamma-carboxyprothrombin (DCP), osteopontin (OPN), glypican-3 (GPC3), dickkopf-1 (DKK1), midkine (MDK), and squamous cell carcinoma antigen (SCCA) and highlight their functional significance including the involvement in cell signaling such as Wnt/β-catenin, PI3K/Akt, integrin αvβ3/NF-κB/HIF-1α, JAK/STAT3 and MAPK/ERK-mediated pathways dysregulated in HCC. We show that currently available computational platforms for big data analysis and AI technologies can both enhance proteomic profiling and improve imaging techniques to enhance the translational application of proteomics data into precision medicine.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: or
| | - Innokenty M. Mokhosoev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| | - Sergey P. Zavadskiy
- Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| |
Collapse
|
29
|
Yu X, Wu J, Wu Q, Sun S. Quantitative analysis of autophagy-related protein LC3B by quantum-dot-based molecular imaging. Methods Cell Biol 2021; 165:177-185. [PMID: 34311866 DOI: 10.1016/bs.mcb.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Autophagy is a process that facilitates the maintenance of intracellular homeostasis by removing unnecessary or dysfunctional cellular components. It plays a role in inhibiting tumorigenesis in the early stage of the disease and might promote progression after tumor formation. Microtubule-associated protein light chain 3 (MAPLC3, better known as LC3), isoform B (LC3B), is one of the most commonly used markers of autophagy. The expression of LC3B has been studied in many cancers and was shown to be closely related to tumor progression. Here, we provide detailed experimental steps for the quantitative detection of LC3B expression in cancer tissue by quantum-dot-based molecular imaging. As compared to the traditional immunohistochemistry (IHC) employing standard fluorochromes, the present method has a higher signal amplitude and improved sensitivity enabling the accurate quantitative detection, which provides a foundation for functional research and the clinical application of LC3B biomarker.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Juan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
30
|
Liu J, Chen Z, Li W. Machine Learning for Building Immune Genetic Model in Hepatocellular Carcinoma Patients. JOURNAL OF ONCOLOGY 2021; 2021:6676537. [PMID: 33790969 PMCID: PMC7994091 DOI: 10.1155/2021/6676537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading liver cancer with special immune microenvironment, which played vital roles in tumor relapse and poor drug responses. In this study, we aimed to explore the prognostic immune signatures in HCC and tried to construct an immune-risk model for patient evaluation. METHODS RNA sequencing profiles of HCC patients were collected from the cancer genome Atlas (TCGA), international cancer genome consortium (ICGC), and gene expression omnibus (GEO) databases (GSE14520). Differentially expressed immune genes, derived from ImmPort database and MSigDB signaling pathway lists, between tumor and normal tissues were analyzed with Limma package in R environment. Univariate Cox regression was performed to find survival-related immune genes in TCGA dataset, and in further random forest algorithm analysis, significantly changed immune genes were used to generate a multivariate Cox model to calculate the corresponding immune-risk score. The model was examined in the other two datasets with recipient operation curve (ROC) and survival analysis. Risk effects of immune-risk score and clinical characteristics of patients were individually evaluated, and significant factors were then used to generate a nomogram. RESULTS There were 52 downregulated and 259 upregulated immune genes between tumor and relatively normal tissues, and the final immune-risk model (based on SPP1, BRD8, NDRG1, KITLG, HSPA4, TRAF3, ITGAV and MAP4K2) can better differentiate patients into high and low immune-risk subpopulations, in which high score patients showed worse outcomes after resection (p < 0.05). The differentially enriched pathways between the two groups were mainly about cell proliferation and cytokine production, and calculated immune-risk score was also highly correlated with immune infiltration levels. The nomogram, constructed with immune-risk score and tumor stages, showed high accuracy and clinical benefits in prediction of 1-, 3- and 5-year overall survival, which is useful in clinical practice. CONCLUSION The immune-risk model, based on expression of SPP1, BRD8, NDRG1, KITLG, HSPA4, TRAF3, ITGAV, and MAP4K2, can better differentiate patients into high and low immune-risk groups. Combined nomogram, using immune-risk score and tumor stages, could make accurate prediction of 1-, 3- and 5-year survival in HCC patients.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Zheng Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
31
|
Kawamoto M, Yamaji T, Saito K, Shirasago Y, Satomura K, Endo T, Fukasawa M, Hanada K, Osada N. Identification of Characteristic Genomic Markers in Human Hepatoma HuH-7 and Huh7.5.1-8 Cell Lines. Front Genet 2020; 11:546106. [PMID: 33193621 PMCID: PMC7581915 DOI: 10.3389/fgene.2020.546106] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
The human hepatoma-derived HuH-7 cell line and its derivatives (Huh7.5 and Huh7.5.1) have been widely used as a convenient experimental substitute for primary hepatocytes. In particular, these cell lines represent host cells suitable for propagating the hepatitis C virus (HCV) in vitro. The Huh7.5.1-8 cell line, a subline of Huh7.5.1, can propagate HCV more efficiently than its parental cells. To provide genomic information for cells' quality control, we performed whole-genome sequencing of HuH-7 and Huh7.5.1-8 and identified their characteristic genomic deletions, some of which are applicable to an in-house test for cell authentication. Among the genes related to HCV infection and replication, 53 genes were found to carry missense or loss-of-function mutations likely specific to the HuH-7 and/or Huh7.5.1-8. Eight genes, including DDX58 (RIG-I), BAX, EP300, and SPP1 (osteopontin), contained mutations observed only in Huh7.5.1-8 or mutations with higher frequency in Huh7.5.1-8. These mutations might be relevant to phenotypic differences between the two cell lines and may also serve as genetic markers to distinguish Huh7.5.1-8 cells from the ancestral HuH-7 cells.
Collapse
Affiliation(s)
- Masaki Kawamoto
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyoko Saito
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiro Satomura
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Toshinori Endo
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Osada
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan.,Global Station for Big Data and Cybersecurity, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Liu K, Hu H, Jiang H, Liu C, Zhang H, Gong S, Wei D, Yu Z. Upregulation of secreted phosphoprotein 1 affects malignant progression, prognosis, and resistance to cetuximab via the KRAS/MEK pathway in head and neck cancer. Mol Carcinog 2020; 59:1147-1158. [PMID: 32805066 DOI: 10.1002/mc.23245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Acquired resistance is a barrier to cetuximab efficacy in patients with head and neck squamous cell carcinoma (HNSCC). Secreted phosphoprotein 1 (SPP1) is involved in various biological processes, including immune responses, cancer progression, and prognosis in many cancers, while little is known in HNSCC. Bioinformatics methods were used to identify candidate genes and further in vivo and in vitro experiments were performed to examine and validate the function of SPP1. We found that SPP1 was upregulated and has been found to have an oncogenic role in HNSCC. We further confirmed that overexpression of SPP1 affected proliferation, migration, invasion, and survival, and inhibited apoptosis, whereas silencing of SPP1 yielded opposite results to those of SPP1 overexpression. In addition, activation of the KRAS/MEK pathway contributed to the SPP1-induced malignant progression of HNSCC and resistance to cetuximab. Furthermore, SPP1 knockdown or an MEK inhibitor overcame this cetuximab-resistance pattern. Taken together, our findings for the first time identify the role of SPP1 in tumor promotion, prognostic prediction, and potential therapeutic targeting, as well as resistance to cetuximab in HNSCC.
Collapse
Affiliation(s)
- Kai Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiying Hu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huanyu Jiang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenglei Liu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Zhang
- Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanchun Gong
- Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Key Laboratory of Otolaryngology, Qilu Hospital, Shandong University, NHFPC (Shandong University), Jinan, Shandong, China
| | - Zhenkun Yu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Sun Z, Zeng B, Liu D, Zhao Q, Wang J, Rosie Xing H. S100A8 transported by SEC23A inhibits metastatic colonization via autocrine activation of autophagy. Cell Death Dis 2020; 11:650. [PMID: 32811814 PMCID: PMC7435177 DOI: 10.1038/s41419-020-02835-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Metastasis is the main cause of failure of cancer treatment. Metastatic colonization is regarded the most rate-limiting step of metastasis and is subjected to regulation by a plethora of biological factors and processes. On one hand, regulation of metastatic colonization by autophagy appears to be stage- and context-dependent, whereas mechanistic characterization remains elusive. On the other hand, interactions between the tumor cells and their microenvironment in metastasis have long been appreciated, whether the secretome of tumor cells can effectively reshape the tumor microenvironment has not been elucidated mechanistically. In the present study, we have identified “SEC23A-S1008-BECLIN1-autophagy axis” in the autophagic regulation of metastatic colonization step, a mechanism that tumor cells can exploit autophagy to exert self-restrain for clonogenic proliferation before the favorable tumor microenvironment is established. Specifically, we employed a paired lung-derived oligometastatic cell line (OL) and the homologous polymetastatic cell line (POL) from human melanoma cell line M14 that differ in colonization efficiency. We show that S100A8 transported by SEC23A inhibits metastatic colonization via autocrine activation of autophagy. Furthermore, we verified the clinical relevance of our experimental findings by bioinformatics analysis of the expression of Sec23a and S100A8 and the clinical-pathological associations. We demonstrate that higher Sec23a and Atg5 expression levels appear to be protective factors and favorable diagnostic (TNM staging) and prognostic (overall survival) markers for skin cutaneous melanoma (SKCM) and colon adenocarcinoma (COAD) patients. And we confirm the bioinformatics analysis results with SKCM biopsy samples.
Collapse
Affiliation(s)
- Zhiwei Sun
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Bin Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Doudou Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Qiting Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China. .,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China.
| | - H Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China. .,State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
35
|
DNA methyltransferase mediates the hypermethylation of the microRNA 34a promoter and enhances the resistance of patient-derived pancreatic cancer cells to molecular targeting agents. Pharmacol Res 2020; 160:105071. [PMID: 32659427 DOI: 10.1016/j.phrs.2020.105071] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
DNA methyltransferase (DNMT) participates in the transformation or progression of human cancers by mediating the hypermethylation of cancer suppressors. However, the regulatory role of DNMT in pancreatic cancer cells remains poorly understood. In the present study, we demonstrated that DNMT1 repressed the expression of microRNA 34a (miR-34a) and enhanced the activation of the Notch pathway by mediating the hypermethylation of the miR-34a promoter. In patients with pancreatic cancer, the expression levels of DNMT1 were negatively related with those of miR-34a. Mechanistically, knockdown of DNMT1 decreased the methylation of the miR-34a promoter and enhanced the expression of miR-34a to inhibit the activation of the Notch pathway. Downregulation of the Notch pathway via the DNMT1/miR-34a axis significantly enhanced the sensitivity of pancreatic cells to molecular targeting agents. Therefore, the results of our study suggest that downregulation of DNMT enhances the expression of miR-34a and may be a potential therapeutic target for pancreatic cancer.
Collapse
|
36
|
Integrated analysis reveals critical glycolytic regulators in hepatocellular carcinoma. Cell Commun Signal 2020; 18:97. [PMID: 32576292 PMCID: PMC7310503 DOI: 10.1186/s12964-020-00539-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cancer cells primarily utilize aerobic glycolysis for energy production, a phenomenon known as the Warburg effect. Increased aerobic glycolysis supports cancer cell survival and rapid proliferation and predicts a poor prognosis in cancer patients. Methods Molecular profiles from The Cancer Genome Atlas (TCGA) cohort were used to analyze the prognostic value of glycolysis gene signature in human cancers. Gain- and loss-of-function studies were performed to key drivers implicated in hepatocellular carcinoma (HCC) glycolysis. The molecular mechanisms underlying Osteopontin (OPN)-mediated glycolysis were investigated by real-time qPCR, western blotting, immunohistochemistry, luciferase reporter assay, and xenograft and diethyl-nitrosamine (DEN)-induced HCC mouse models. Results Increased glycolysis predicts adverse clinical outcome in many types of human cancers, especially HCC. Then, we identified a handful of differentially expressed genes related to HCC glycolysis. Gain- and loss-of-function studies showed that OPN promotes, while SPP2, LECT2, SLC10A1, CYP3A4, HSD17B13, and IYD inhibit HCC cell glycolysis as revealed by glucose utilization, lactate production, and extracellular acidification ratio. These glycolysis-related genes exhibited significant tumor-promoting or tumor suppressive effect on HCC cells and these effects were glycolysis-dependent. Mechanistically, OPN enhanced HCC glycolysis by activating the αvβ3-NF-κB signaling. Genetic or pharmacological blockade of OPN-αvβ3 axis suppressed HCC glycolysis in xenograft tumor model and hepatocarcinogenesis induced by DEN. Conclusions Our findings reveal crucial determinants for controlling the Warburg metabolism in HCC cells and provide a new insight into the oncogenic roles of OPN in HCC. Video Abstract
Collapse
|
37
|
Tang M, Jiang Y, Jia H, Patpur BK, Yang B, Li J, Yang C. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:159-168. [PMID: 31852298 DOI: 10.1080/21691401.2019.1699822] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accumulating evidence links osteopontin (OPN), a pro-fibrogenic extracellular matrix protein, to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). In this study, liver tissues isolated from non-alcoholic steatohepatitis (NASH) patients expressed higher OPN than those of controls. However, the exact mechanism(s) for this phenomenon is yet to be clarified. Autophagy is the natural, regulated degradation and recycling of a cell's dysfunctional components, in order to maintain homeostasis. Increasing evidence supports that autophagy can constitute an effective Defence mechanism against NAFLD conditions. Herein, we constructed NAFLD mice model by high-fat (HF) and methionine-choline-deficient (MCD) diet and found that OPN is upregulated in livers of NAFLD mice. Besides, secreted OPN inhibited autophagosome-lysosome fusion via binding with its receptors integrin αVβ3 and αVβ5 in HepG2 cells supplemented with free fatty acids (FFA) and the livers of NAFLD mice. Silencing of OPN attenuated autophagy impairment and reduced lipid accumulation, while supplementation of OPN exhibited the opposite effect. Furthermore, treatment with anti-OPN Ab significantly attenuated steatosis as well as autophagy impairment in the liver. Our findings indicated that OPN plays a vital role in the pathogenesis of the development of NAFLD via autophagy impairment, which might represent a potential new therapeutic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Min Tang
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yan Jiang
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Haoyu Jia
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Bhuvanesh Kinish Patpur
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Bo Yang
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jing Li
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
38
|
Yu C, Wang Y, Liu T, Sha K, Song Z, Zhao M, Wang X. The microRNA miR-3174 Suppresses the Expression of ADAM15 and Inhibits the Proliferation of Patient-Derived Bladder Cancer Cells. Onco Targets Ther 2020; 13:4157-4168. [PMID: 32547057 PMCID: PMC7244357 DOI: 10.2147/ott.s246710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bladder cancer is a major urinary system cancer, and its mechanism of action regarding its progression is unclear. The goal of this study was to examine the expression of ADAM panel in the clinical specimens of bladder cancer and to investigate the role of miR-3174/ADAM15 (a disintegrin and metalloprotease 15) axis in the regulation of bladder cancer cell proliferation. Methods The expression of an ADAM gene panel (including ADAM8, 9, 10, 11, 12, 15, 17, 19, 22, 23, 28, and 33), including 30 pairs of bladder tumor and non-tumor specimens, was examined by Ion AmpliSeq Targeted Sequencing. A microRNA (miRNA) that could potentially target the ADAM with the highest expression level in the tumor tissue was identified using the online tool miRDB. Next, the interaction between the miRNA and ADAM15 was identified by Western blot. Finally, the proliferation of bladder cancer cells was examined using MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) experiments (cell proliferation examining) and subcutaneous tumor models by using nude mice. Results The expression of ADAM15 in tumor tissue was found statistically significant when compared to its expression in non-tumor tissue. Additionally, ADAM15's expression in tumor tissue was found the highest of all other tested ADAMs. Next, by using the online tool miRDB, a microRNA termed miR-3174 was identified that targets ADAM15 and inhibits its expression by binding to its 3'-untranslated region. Finally, we found that overexpression of miR-3174 in bladder cancer cells inhibited the proliferation of cells due to the inhibition of ADAM15. Conclusion In the present work, the data highlight that miR-3174 inhibits the proliferation of bladder cancer cells by targeting ADAM15.
Collapse
Affiliation(s)
- Chunhu Yu
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Ying Wang
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Tiejun Liu
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Kefu Sha
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Zhaoxia Song
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Mingjun Zhao
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Xiaolin Wang
- The Third District of Airforce Special Service Sanatorium, Chinese People's Liberation Army Air Force, Hangzhou 310021, Zhejiang Province, People's Republic of China
| |
Collapse
|
39
|
Zhang H, Wang R, Wang M, Luo J, Liu C. Inhibition of osteopontin overcomes acquired resistance to afatinib in EGFR-mutant non-small-cell lung cancer. Transl Cancer Res 2020; 9:754-762. [PMID: 35117421 PMCID: PMC8798064 DOI: 10.21037/tcr.2019.12.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/22/2019] [Indexed: 11/22/2022]
Abstract
Background We aimed to explore a novel therapeutic strategy to conquer acquired resistance to second generation EGFR-TKI afatinib in EGFR-mutant NSCLC. Methods Firstly, we established afatinib-resistant cell lines using increasing concentrations of afatinib. Secondly, we over-expressed or silenced the expression of osteopontin (OPN) using in-vitro transfection. Further, western blot analysis was used to detect the expressions of OPN and epithelial-mesenchymal transition (EMT) biomarkers. Finally, cell proliferation was evaluated by MTT assay. Results Afatinib (≤5.0 µmol/L)-resistant H1650 (H1650-AR) and H1975 (H1975-AR) cells were successfully established, and grew faster compared with both parental cells at the same time interval. Western blot analysis revealed that afatinib significantly promoted the expressions of OPN and EMT biomarkers in H1975-AR and H1650-AR cells. Gain and loss assays validated that OPN over-expression promoted acquired resistance to afatinib, and induced the expressions of EMT biomarkers in H1650-AR and H1975-AR cells. Conversely, silencing of OPN not only significantly sensitized resistant cells to afatinib, but also suppressed EMT progression in H1650-AR and H1975-AR cells. Conclusions These results demonstrated that OPN was required for acquired resistance of EGFR-mutant NSCLC cells to afatinib.
Collapse
Affiliation(s)
- Hongye Zhang
- Department of Oncology, Linyi Central Hospital, Yishui 276400, China
| | - Ruiyu Wang
- Department of Oncology, Linyi Central Hospital, Yishui 276400, China
| | - Mingxia Wang
- Department of Oncology, Linyi Central Hospital, Yishui 276400, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Changmin Liu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, China
| |
Collapse
|
40
|
Alotaibi MR, As Sobeai HM, Alaqil FA, Almutairi M, Alhazzani K, Sulaiman AA, Isab AA, Hadal Alotaibi N. A newly synthesized platinum-based compound (PBC-II) increases chemosensitivity of HeLa ovarian cancer cells via inhibition of autophagy. Saudi Pharm J 2019; 27:1203-1209. [PMID: 31885480 PMCID: PMC6921179 DOI: 10.1016/j.jsps.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/02/2019] [Indexed: 11/11/2022] Open
Abstract
There are many mechanisms of resistance, chemoresistance of HeLa cells to anti-cancer agents seems to be autophagy-mediated. While using very effective anti-cancers such as Doxorubicin and cisplatin, cells overcome the cytotoxicity of these drugs through promotion of what so-called cytoprotective autophagy. Here in this study, we sought to introduce a novel platinum-based compound PBC-II that possesses anti-cancer activity. Our data showed that PBC-II is able to induce apoptosis at relatively low concentrations, with no detectable reactive oxygen species (ROS). However, further experiments demonstrated that exposure of HeLa cells to PBC-II did not promote autophagy; rather, it resulted in accumulation of p62 and decrease in LC3-II levels. Autophagy was then promoted in HeLa cells pharmacologically by Doxorubicin and genetically by siRNA IL-10. In order to confirm promotion of autophagy in our model, we performed acridine orange staining to assess for autophagy under microscope as well as via flow cytometry. We then measured protein level of autophagy markers p62 and LC3 by western blot. Our data indicated that PBC-II interferes with therapy-induced autophagy. We also determined PI3K activity while co-incubation of PBC-II with autophagy inducers. It was clear that PI3K activation decreased when PBC-II was co-administered with autophagy inducers. Collectively, PBC-II exerts unique anti-proliferative effects associated with inhibition of autophagy, which indicates that PBC-II is potentially a promising agent to be used in resistant ovarian tumors.
Collapse
Affiliation(s)
- Moureq Rashed Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Homood Moqbel As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mashal Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adam A.A. Sulaiman
- Lab Technical Support Office (LTSO), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| |
Collapse
|
41
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
42
|
Yao Z, Yang Z, Chen F, Jiang Y, Fu C, Wang Y, Lu R, Wu H. Autophagy is essential for the endothelial differentiation of breast cancer stem‑like cells. Int J Mol Med 2019; 45:255-264. [PMID: 31746369 DOI: 10.3892/ijmm.2019.4399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/04/2019] [Indexed: 12/09/2022] Open
Abstract
Blood vessels serve an important role in tumor growth and metastasis, and recent studies have shown that certain tumor cancer stem cells may differentiate into endothelial cells and contribute to angiogenesis. In the present study, vascular endothelial growth factor (VEGF) was used to induce endothelial differentiation of breast cancer stem‑like cells (BCSLCs), and methods including flow cytometry, western blotting and immunofluorescence were used to study the relationship between autophagy and the endothelial differentiation of BCSLCs. The results showed that BCSLCs could differentiate into endothelial cells under the induction of VEGF in vitro. Subsequently, the role of autophagy in the endothelial differentiation of BCSLCs was examined. Autophagic activity was measured during endothelial differentiation of BCSLCs, and the association between autophagy and endothelial differentiation was investigated using autophagy activators, autophagy inhibitors and autophagy related 5 (Atg5)‑knockdown BCSLCs. Autophagy was increased during endothelial differentiation of BCSLCs, and there was a positive association between autophagy and endothelial differentiation. The ability of cells to undergo endothelial differentiation was reduced in BCSLCs with Atg5 knockdown. Therefore, autophagy was essential for endothelial differentiation of BCSLCs, and the findings of the present study may highlight novel potential avenues for reducing angiogenesis and improving treatment of breast cancer.
Collapse
Affiliation(s)
- Ziang Yao
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Zeqing Yang
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Fengjia Chen
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Yue Jiang
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Chengzhu Fu
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Yong Wang
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Ronghao Lu
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Haige Wu
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
43
|
miR-223 overexpression inhibits doxorubicin-induced autophagy by targeting FOXO3a and reverses chemoresistance in hepatocellular carcinoma cells. Cell Death Dis 2019; 10:843. [PMID: 31695022 PMCID: PMC6834650 DOI: 10.1038/s41419-019-2053-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
Doxorubicin is conventionally used in chemotherapy against hepatocellular carcinoma (HCC), but acquired resistance developed during long-term therapy limits its benefits. Autophagy, a conserved catabolic process for cellular self-protection and adaptation to the changing environment, is regarded as a potential clinical target to overcome doxorubicin resistance. In this study, the potential role of miR-223 in modulating doxorubicin-induced autophagy and sensitivity were evaluated in four transfected human HCC cell lines, and the in vivo relevance was assessed using a mouse xenograft model of HCC. We found that the well-defined miR-223 is expressed at low levels in doxorubicin treated HCC cells and that miR-223 overexpression inhibits the doxorubicin-induced autophagy that contributes to chemoresistance. Blockade of autophagic flux by chloroquine resulted in the failure of miR-223 inhibitor to suppress doxorubicin sensitivity of HCC cells. We further identified FOXO3a as a direct downstream target of miR-223 and primary mediator of the regulatory effect of miR-223 on doxorubicin-induced autophagy and chemoresistance in HCC cells. Finally, we confirmed the enhancement of doxorubicin sensitivity by agomiR-223 in xenograft models of HCC. These findings establish a novel miRNA-based approach for autophagy interference to reverse doxorubicin resistance in future chemotherapy regimens against human HCC.
Collapse
|
44
|
Pu Z, Wu L, Guo Y, Li G, Xiang M, Liu L, Zhan H, Zhou X, Tan H. LncRNA MEG3 contributes to adenosine-induced cytotoxicity in hepatoma HepG2 cells by downregulated ILF3 and autophagy inhibition via regulation PI3K-AKT-mTOR and beclin-1 signaling pathway. J Cell Biochem 2019; 120:18172-18185. [PMID: 31144362 DOI: 10.1002/jcb.29123] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023]
Abstract
Adenosine is a promising cytotoxic reagent for tumors, long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been indicated to play critical roles in tumorigenesis, ILF3 has been recognized as a MEG3-binding protein, however, the roles of adenosine and MEG3 on hepatoma are still ambiguous. To clarify the effects of MEG3 on the adenosine-induced cytotoxicity in hepatoma, MEG3 and ILF3 lentivirus were transduced into human hepatoma HepG2 cells to stimulate overexpression of MEG3 (OE MEG3) and overexpression of ILF3 (OE ILF3), furthermore, ILF3 small interfering RNA (siRNA) was also applied to downregulate the expression of ILF3. In this study, autophagy was markedly inhibited by low concentration of adenosine, which present by not only inhibited transformation from LC3-I to LC3-II and autophagosomes formation, but also the elevation of mTOR and reduction of beclin-1 proteins. Furthermore, low concentration of adenosine also exerted marked cytotoxicity representing induced cell apoptosis together with reductions of cell viability and migration, which were also markedly enhanced by OE MEG3. Novelly and excitingly, adenosine markedly stimulated MEG3 expression, OE MEG3 markedly decreased the ILF3 expression in HepG2 cells, and the adenosine-induced autophagy inhibition, together with the ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR were also boosted by OE MEG3. More interestingly, OE ILF3 increased autophagy, whereas downregulated ILF3, especially in the case of adenosine, led to marked autophagy inhibition by decreasing beclin-1. The present study demonstrates autophagy inhibition is involved in the adenosine-induced cytotoxicity in HepG2 cells, the cytotoxicity can be synergized by OE MEG3 via downregulated ILF3 to activate PI3K/Akt/mTOR and inactivate the beclin-1 signaling pathway. In conclusion, MEG3 and inhibition of autophagy might be potential targets for augmenting adenosine-induced cytotoxicity in hepatoma.
Collapse
Affiliation(s)
- Zejin Pu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Lingfei Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yitian Guo
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Guoping Li
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Mengqi Xiang
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Lixuan Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Haolian Zhan
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaotao Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Tan
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
45
|
苑 敏, 董 淑, 姚 言, 门 运, 毛 凯, 童 旭. [Inhibitory effect of connexin43 protein on autophagy in cisplatin-resistant testicular cancer I-10 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1089-1093. [PMID: 31640960 PMCID: PMC6881733 DOI: 10.12122/j.issn.1673-4254.2019.09.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of connexin43 (Cx43) protein on autophagy in cisplatin (DDP)-resistant testicular cancer I-10 cells. METHODS The expression of Cx43 proteins in testicular cancer I-10 cells and I-10/DDP cells were detected with Western blotting. I-10/DDP cells were transfected with a full- length mouse Cx43 vector (mCx43) via Lipofectamine2000, the empty vector or Lipofectamine2000 (blank control group), and the changes in the expressions of LC3 and p62 proteins were determined with Western blotting. mCherry-GFP-LC3B transfection and transmission electron microscopy were used to analyze the changes in autophagy of the cells with Cx43 overexpression. RESULTS Cx43 was significantly decreased in I-10/DDP cells compared with I-10 cells (P < 0.01). Transfection of the I-10/DDP cells with mCx43 vector resulted in significantly increased Cx43 expression in the cells (P < 0.01) and caused significantly decreased expression of LC3-Ⅱ (P < 0.01) and increased expression of p62 (P < 0.05) as compared with the negative control cells. Both transmission electron microscopy and mCherry-GFP-LC3B transfection showed that the number of autophagosomes was obviously reduced in mCx43-transfected cells as compared with the negative control cells. CONCLUSIONS Cx43 inhibits autophagy in cisplatin-resistant testicular cancer I-10 /DDP cells.
Collapse
Affiliation(s)
- 敏 苑
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 淑英 董
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 言雪 姚
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 运政 门
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 凯锦 毛
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 旭辉 童
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
46
|
Sun C, Enkhjargal B, Reis C, Zhang T, Zhu Q, Zhou K, Xie Z, Wu L, Tang J, Jiang X, Zhang JH. Osteopontin-Enhanced Autophagy Attenuates Early Brain Injury via FAK-ERK Pathway and Improves Long-Term Outcome after Subarachnoid Hemorrhage in Rats. Cells 2019; 8:cells8090980. [PMID: 31461955 PMCID: PMC6769958 DOI: 10.3390/cells8090980] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 01/31/2023] Open
Abstract
Osteopontin (OPN) enhances autophagy, reduces apoptosis, and attenuates early brain injury (EBI) after a subarachnoid hemorrhage (SAH). A total of 87 Sprague–Dawley rats were subjected to sham or SAH operations to further investigate the signaling pathway involved in osteopontin-enhanced autophagy during EBI, and the potential effect of recombinant OPN (rOPN) administration to improve long-term outcomes after SAH. Rats were randomly divided into five groups: Sham, SAH + Vehicle (PBS, phosphate-buffered saline), SAH + rOPN (5 μg/rat recombinant OPN), SAH + rOPN + Fib-14 (30 mg/kg of focal adhesion kinase (FAK) inhibitor-14), and SAH + rOPN + DMSO (dimethyl sulfoxide). Short-term and long-term neurobehavior tests were performed, followed by a collection of brain samples for assessment of autophagy markers in neurons, pathway proteins expression, and delayed hippocampal injury. Western blot, double immunofluorescence staining, Nissl staining, and Fluoro-Jade C staining assay were used. Results showed that rOPN administration increased autophagy in neurons and improved neurobehavior in a rat model of SAH. With the administration of FAK inhibitor-14 (Fib-14), neurobehavioral improvement and autophagy enhancement induced by rOPN were abolished, and there were consistent changes in the phosphorylation level of ERK1/2. In addition, early administration of rOPN in rat SAH models improved long-term neurobehavior results, possibly by alleviating hippocampal injury. These results suggest that FAK–ERK signaling may be involved in OPN-enhanced autophagy in the EBI phase after SAH. Early administration of rOPN may be a preventive and therapeutic strategy against delayed brain injury after SAH.
Collapse
Affiliation(s)
- Chengmei Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, China
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Keren Zhou
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Zhiyi Xie
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Lingyun Wu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Xiaodan Jiang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA.
| |
Collapse
|
47
|
Sun CM, Enkhjargal B, Reis C, Zhou KR, Xie ZY, Wu LY, Zhang TY, Zhu QQ, Tang JP, Jiang XD, Zhang JH. Osteopontin attenuates early brain injury through regulating autophagy-apoptosis interaction after subarachnoid hemorrhage in rats. CNS Neurosci Ther 2019; 25:1162-1172. [PMID: 31436915 PMCID: PMC6776743 DOI: 10.1111/cns.13199] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aim To determine the effect of osteopontin (OPN) on autophagy and autophagy‐apoptosis interactions after SAH. Methods The endovascular perforation model of SAH or sham surgery was performed in a total of 86 Sprague‐Dawley male rats. The temporal expressions of endogenous OPN and autophagy‐related proteins (Beclin 1, ATG5, LC3 II to I ratio) were measured in sham and SAH rats at different time points (3, 6, 12, 24, and 72 hours). Rats were randomly divided into three groups: Sham, SAH + Vehicle (PBS, phosphate‐buffered saline), and SAH + rOPN (5 μg/rat recombinant OPN). Neurobehavioral tests were performed 24 hours after SAH, followed by the collection of brain samples for assessment of autophagy and apoptosis proteins. These tests assessed whether an autophagy‐apoptosis relationship existed on the histological level in the brain. Results Endogenous OPN and autophagy‐related proteins all increased after SAH. rOPN administration improved neurological dysfunction, increased the expression of autophagy‐related proteins (Beclin 1, ATG5, LC3 II to I ratio) and antiapoptotic protein Bcl‐2, while decreasing the expression of proapoptotic proteins (cleaved Caspase‐3 and Bax). rOPN also regulated autophagy‐apoptosis interactions 24 hours after SAH. Conclusion rOPN attenuates early brain injury and inhibits neuronal apoptosis by activating autophagy and regulating autophagy‐apoptosis interactions.
Collapse
Affiliation(s)
- Cheng-Mei Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Ke-Ren Zhou
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Zhi-Yi Xie
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Ling-Yun Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Tong-Yu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Qi-Quan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Ji-Ping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Dan Jiang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
48
|
Pang X, Gong K, Zhang X, Wu S, Cui Y, Qian BZ. Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacol Res 2019; 144:235-244. [PMID: 31028902 DOI: 10.1016/j.phrs.2019.04.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Metastasis to bone frequently occurs in majority of patients with advanced breast cancer and prostate cancer, leading to devastating skeletal-related events and substantially reducing the survival of patients. Currently, the crosstalk between tumor cells and the bone stromal compartment was widely investigated for bone metastasis and the resistance to many conventional therapeutic methods. Osteopontin (OPN), also known as SPP1 (secreted phosphoprotein 1), a secreted and chemokine-like glyco-phosphoprotein is involved in tumor progression such as cell proliferation, angiogenesis, and metastasis. The expression of OPN in tumor tissue and plasma has been clinically proved to be correlated to poor prognosis and shortened survival in patients with breast cancer and prostate cancer. This review summarizes the multifaceted roles that OPN plays in bone microenvironment and drug resistance, with emphasis on breast and prostate cancers, via binding to αvβ3 integrin and CD44 receptor and inducing signaling cascades. We further discuss the promising therapeutic strategy for OPN targeting, mainly inhibiting OPN at transcriptional or protein level or blocking it binding to receptor or its downstream signaling pathways. The comprehending of the function of OPN in bone microenvironment is crucial for the development of novel biomarker and potential therapeutic target for the diagnosis and treatment of bone metastasis and against the emergence of drug resistance in advanced cancers.
Collapse
Affiliation(s)
- Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Xiaodan Zhang
- Department of Pharmacy, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Shiliang Wu
- Department of Urology, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xicheng District, 10034, Beijing, China.
| | - Bin-Zhi Qian
- Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University.University of Edinburgh and MRC Centre for Reproductive Health, 2 Edinburgh Cancer Research UK Centre Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom; Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Haizhu District, 510260, Guangzhou, China.
| |
Collapse
|
49
|
The Extracts of Artemisia absinthium L. Suppress the Growth of Hepatocellular Carcinoma Cells through Induction of Apoptosis via Endoplasmic Reticulum Stress and Mitochondrial-Dependent Pathway. Molecules 2019; 24:molecules24050913. [PMID: 30841648 PMCID: PMC6429450 DOI: 10.3390/molecules24050913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Artemisia absinthium L. has pharmaceutical and medicinal effects such as antimicrobial, antiparasitic, hepatoprotective, and antioxidant activities. Here, we prepared A. absinthium ethanol extract (AAEE) and its subfractions including petroleum ether (AAEE-Pe) and ethyl acetate (AAEE-Ea) and investigated their antitumor effect on human hepatoma BEL-7404 cells and mouse hepatoma H22 cells. The cell viability of hepatoma cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptosis, cell cycle, mitochondrial membrane potential (Δψm), and reactive oxygen species (ROS) were analyzed by flow cytometry. The levels of proteins in the cell cycle and apoptotic pathways were detected by Western blot. AAEE, AAEE-Pe, and AAEE-Ea exhibited potent cytotoxicity for both BEL-7404 cells and H22 cells through the induction of cell apoptosis and cell cycle arrest. Moreover, AAEE, AAEE-Pe, and AAEE-Ea significantly reduced Δψm, increased the release of cytochrome c, and promoted the cleavage of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP) in BEL-7404 and H22 cells. AAEE, AAEE-Pe, and AAEE-Ea significantly upregulated the levels of ROS and C/EBP-homologous protein (CHOP). Further, AAEE, AAEE-Pe, and AAEE-Ea significantly inhibited tumor growth in the H22 tumor mouse model and improved the survival of tumor mice without side effects. These results suggest that AAEE, AAEE-Pe, and AAEE-Ea inhibited the growth of hepatoma cells through induction of apoptosis, which might be mediated by the endoplasmic reticulum stress and mitochondrial-dependent pathway.
Collapse
|
50
|
Han X, Wang W, He J, Jiang L, Li X. Osteopontin as a biomarker for osteosarcoma therapy and prognosis. Oncol Lett 2019; 17:2592-2598. [PMID: 30854034 PMCID: PMC6365895 DOI: 10.3892/ol.2019.9905] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone malignancy, and is particularly prevalent in children and adolescents. OS is an aggressive tumor with a tendency to metastasize and invade to para-carcinoma tissues. The primary treatment for this tumor is a combination of surgery and chemotherapy. However, the prognosis remains poor due to chemoresistance and early metastasis. Osteopontin (OPN), a multifunctional secreted protein, has emerged as an important potential biomarker for diagnosing and treating cancer. The overexpression of OPN has been found in numerous malignant tumors, including breast, lung, gastric and ovarian cancer, as well as melanoma. Recent studies have suggested that OPN may provide an important function in the diagnosis and treatment of OS. The present review summarizes current knowledge and progress in understanding the potential role of OPN as a biomarker in OS.
Collapse
Affiliation(s)
- Xingwen Han
- Department of Orthopedics, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wenji Wang
- Department of Orthopedics, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jingjing He
- Department of Liver Diseases, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lei Jiang
- Department of Oncology Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|