1
|
Ng CS, Qin J. SWI/SNF deficient tumors - morphology, immunophenotype, genetics, epigenetics, nosology and therapy. J Transl Med 2024:102185. [PMID: 39542101 DOI: 10.1016/j.labinv.2024.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
About 20% of human cancers harbor mutations of genes encoding SWI/SNF (Switch/Sucrose Non-Fermentable) complex subunits. Deficiency of subunits of the complex is present in 10% non-small cell lung cancers (NSCLC; SMARCA4/SMARCA2 deficient), 100% thoracic SMARCA4/A2 deficient undifferentiated tumors (TSADUDT; SMARCA4/A2 deficient), malignant rhabdoid tumor (MRT) and atypical/teratoid tumor (AT/RT) (SMARCB1 deficient), >90% of small cell carcinoma of the ovary, hypercalcemic type (SCCOHT; SMARCA4/SMARCA2 deficient), frequently in undifferentiated/dedifferentiated endometrial carcinoma (UDEC/DDEC; SMARCA4, SMARCA2, SMARCB1, ARID1A/B deficient), 100% SMARCA4 deficient undifferentiated uterine sarcoma (SDUS; SMARCA4 deficient); and in various other tumors from multifarious anatomic sites. Silencing of SWI/SNF gene expression may be genomically or epigenetically driven, causing loss of tumor suppression function or facilitating other oncogenic events. The SWI/SNF deficient tumors share the phenotype of poor or no differentiation, often with a variable component of rhabdoid tumor cells. They present at advanced stages with poor prognosis. Rhabdoid tumor cell phenotype is a useful feature to prompt investigation for this group of tumors. In the thoracic space, the overlap in morphology, immunophenotype, genetics, and epigenetics of SMARCA4/A2 deficient NSCLC and TSADUDT appears more significant. This raises a possible nosological relationship between TSADUDT and SMARCA4/A2 deficient NSCLC. Increased understanding of the genetics, epigenetics, and mechanisms of oncogenesis in these poor prognostic tumors, which are often resistant to conventional treatment, opens a new horizon of therapy for the tumors.
Collapse
Affiliation(s)
- Chi Sing Ng
- Department of Pathology, Caritas Medical Center, Wing Hong Street, Kowloon, Hong Kong.
| | - Jilong Qin
- Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Yanjiang West Road, Guangzhou, China.
| |
Collapse
|
2
|
Fatema K, Wang Y, Pavek A, Larson Z, Nartker C, Plyler S, Jeppesen A, Mehling B, Capecchi MR, Jones KB, Barrott JJ. Arid1a Loss Enhances Disease Progression in a Murine Model of Osteosarcoma. Cancers (Basel) 2024; 16:2725. [PMID: 39123453 PMCID: PMC11311538 DOI: 10.3390/cancers16152725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Yanliang Wang
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Adriene Pavek
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Zachary Larson
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Christopher Nartker
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Shawn Plyler
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Amanda Jeppesen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Breanna Mehling
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Mario R. Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Kevin B. Jones
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Jared J. Barrott
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Simmons Center for Cancer Research, Provo, UT 84602, USA
| |
Collapse
|
3
|
Mirandari A, Parker H, Ashton-Key M, Stevens B, Walewska R, Stamatopoulos K, Bryant D, Oscier DG, Gibson J, Strefford JC. The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:877-901. [PMID: 39280243 PMCID: PMC11390296 DOI: 10.37349/etat.2024.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 09/18/2024] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare, predominantly indolent B-cell lymphoma constituting fewer than 2% of lymphoid neoplasms. However, around 30% of patients have a shorter survival despite currently available treatments and the prognosis is especially poor for the 5-15% of cases that transform to a large cell lymphoma. Mounting evidence suggests that the molecular pathogenesis of SMZL is critically shaped by microenvironmental triggering and cell-intrinsic aberrations. Immunogenetic investigations have revealed biases in the immunoglobulin gene repertoire, indicating a role of antigen selection. Furthermore, cytogenetic studies have identified recurrent chromosomal abnormalities such as deletion of the long arm of chromosome 7, though specific disease-associated genes remain elusive. Our knowledge of SMZL's mutational landscape, based on a limited number of cases, has identified recurring mutations in KLF2, NOTCH2, and TP53, as well as genes clustering within vital B-cell differentiation pathways. These mutations can be clustered within patient subgroups with different patterns of chromosomal lesions, immunogenetic features, transcriptional signatures, immune microenvironments, and clinical outcomes. Regarding SMZL epigenetics, initial DNA methylation profiling has unveiled epigenetically distinct patient subgroups, including one characterized by elevated expression of Polycomb repressor complex 2 (PRC2) components. Furthermore, it has also demonstrated that patients with evidence of high historical cell division, inferred from methylation data, exhibit inferior treatment-free survival. This review provides an overview of our current understanding of SMZL's molecular basis and its implications for patient outcomes. Additionally, it addresses existing knowledge gaps, proposes future research directions, and discusses how a comprehensive molecular understanding of the disease will lead to improved management and treatment choices for patients.
Collapse
Affiliation(s)
- Amatta Mirandari
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Margaret Ashton-Key
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, SO16 6YD Southampton, UK
| | - Benjamin Stevens
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - David G Oscier
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
4
|
Luo L, Zhao L, Cui L, Peng C, Ou S, Zeng Y, Liu B. The roles of chromatin regulatory factors in endometriosis. J Assist Reprod Genet 2024; 41:863-873. [PMID: 38270747 PMCID: PMC11052748 DOI: 10.1007/s10815-024-03026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE Endometriosis is an estrogen-dependent inflammatory disease and one of the most common gynecological diseases in women of reproductive age. The aim of the review was to explore the relationship between the chromatin regulatory factors and endometriosis. METHODS By searching for literature on chromatin regulators and endometriosis in PuMed. Finally, 98 documents were selected. RESULTS Chromatin regulators (CRs) are essential epigenetic regulatory factors that can regulate chromatin structure changes and are usually divided into three categories: DNA methylation compounds, histone modification compounds, and chromatin remodeling complexes. Noncoding RNAs are also chromatin regulators and can form heterochromatin by binding to protein complexes. Chromatin regulators cause abnormal gene expression by regulating chromatin structure, thereby affecting the occurrence and development of endometriosis. CONCLUSION This review summarizes the participation of chromatin regulators in the mechanisms of endometriosis, and these changes in related chromatin regulators provide a comprehensive reference for diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Liumei Luo
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Zhao
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education; Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences,, Guangxi Medical University, Nanning, China
| | - Chuyu Peng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ou
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Zeng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
Liu H, Liang J, Dai X, Peng Y, Xiong W, Zhang L, Li X, Li W, Liu K, Bi S, Wang X, Zhang W, Liu Y. Transcriptome-wide N6-methyladenosine (m6A) methylation profiling of long non-coding RNAs in ovarian endometriosis. Genomics 2024; 116:110803. [PMID: 38290592 DOI: 10.1016/j.ygeno.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent internal epigenetic posttranscriptional mechanism for regulating mammalian RNA. Despite recent advances in determining the biological functions of m6A methylation, its association with the pathology of ovarian endometriosis remains uncertain. Herein, we performed m6A transcriptome-wide profiling to identify key lncRNAs with m6A modification involved in ovarian endometriosis development by bioinformatics analysis. We found the total m6A level was lower in ovarian endometriosis than in normal endometrium samples, with 9663 m6A peaks associated with 8989 lncRNAs detected in ovarian endometriosis and 9902 m6A peaks associated with 9210 lncRNAs detected in normal endometrium samples. These m6A peaks were primarily enriched within AAACU motifs. Functional enrichment analysis indicated that pathways involving the regulation of adhesion and development were significantly enriched in these differentially methylated lncRNAs. The regulatory relationships among lncRNAs, microRNAs (miRNAs), and mRNAs were identified by competing endogenous RNA (ceRNA) analysis and determination of the network regulating lncRNA-mRNA expression. Several specific lncRNA, including LINC00665, LINC00937, FZD10-AS1, DIO3OS and GATA2-AS1 which were differently expressed and modified by m6A, were validated using qRT-PCR and its interaction with infiltrating immune cells was explored. Furthermore, we found LncRNA DIO3OS promotes the invasion and migration of Human endometrial stromal cells (THESCs) and ALKBH5 regulates the expression of the lncRNA DIO3OS through m6A modification in vitro. Our study firstly revealed the transcriptome-wide map of m6A modification in lncRNAs of ovarian endometriosis. These findings may enable the determination of the underlying mechanism governing the pathogenesis of ovarian endometriosis and provide theoretical basis for further deeper research on the role of m6A in the development of ovarian endometriosis.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Dai
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuan Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Keyi Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siyi Bi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Murawski M, Jagodziński A, Bielawska-Pohl A, Klimczak A. Complexity of the Genetic Background of Oncogenesis in Ovarian Cancer-Genetic Instability and Clinical Implications. Cells 2024; 13:345. [PMID: 38391958 PMCID: PMC10886918 DOI: 10.3390/cells13040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Ovarian cancer is a leading cause of death among women with gynecological cancers, and is often diagnosed at advanced stages, leading to poor outcomes. This review explores genetic aspects of high-grade serous, endometrioid, and clear-cell ovarian carcinomas, emphasizing personalized treatment approaches. Specific mutations such as TP53 in high-grade serous and BRAF/KRAS in low-grade serous carcinomas highlight the need for tailored therapies. Varying mutation prevalence across subtypes, including BRCA1/2, PTEN, PIK3CA, CTNNB1, and c-myc amplification, offers potential therapeutic targets. This review underscores TP53's pivotal role and advocates p53 immunohistochemical staining for mutational analysis. BRCA1/2 mutations' significance as genetic risk factors and their relevance in PARP inhibitor therapy are discussed, emphasizing the importance of genetic testing. This review also addresses the paradoxical better prognosis linked to KRAS and BRAF mutations in ovarian cancer. ARID1A, PIK3CA, and PTEN alterations in platinum resistance contribute to the genetic landscape. Therapeutic strategies, like restoring WT p53 function and exploring PI3K/AKT/mTOR inhibitors, are considered. The evolving understanding of genetic factors in ovarian carcinomas supports tailored therapeutic approaches based on individual tumor genetic profiles. Ongoing research shows promise for advancing personalized treatments and refining genetic testing in neoplastic diseases, including ovarian cancer. Clinical genetic screening tests can identify women at increased risk, guiding predictive cancer risk-reducing surgery.
Collapse
Affiliation(s)
- Marek Murawski
- 1st Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Adam Jagodziński
- 1st Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
| |
Collapse
|
7
|
Xu C, Huang KK, Law JH, Chua JS, Sheng T, Flores NM, Pizzi MP, Okabe A, Tan ALK, Zhu F, Kumar V, Lu X, Benitez AM, Lian BSX, Ma H, Ho SWT, Ramnarayanan K, Anene-Nzelu CG, Razavi-Mohseni M, Abdul Ghani SAB, Tay ST, Ong X, Lee MH, Guo YA, Ashktorab H, Smoot D, Li S, Skanderup AJ, Beer MA, Foo RSY, Wong JSH, Sanghvi K, Yong WP, Sundar R, Kaneda A, Prabhakar S, Mazur PK, Ajani JA, Yeoh KG, So JBY, Tan P. Comprehensive molecular phenotyping of ARID1A-deficient gastric cancer reveals pervasive epigenomic reprogramming and therapeutic opportunities. Gut 2023; 72:1651-1663. [PMID: 36918265 DOI: 10.1136/gutjnl-2022-328332] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE Gastric cancer (GC) is a leading cause of cancer mortality, with ARID1A being the second most frequently mutated driver gene in GC. We sought to decipher ARID1A-specific GC regulatory networks and examine therapeutic vulnerabilities arising from ARID1A loss. DESIGN Genomic profiling of GC patients including a Singapore cohort (>200 patients) was performed to derive mutational signatures of ARID1A inactivation across molecular subtypes. Single-cell transcriptomic profiles of ARID1A-mutated GCs were analysed to examine tumour microenvironmental changes arising from ARID1A loss. Genome-wide ARID1A binding and chromatin profiles (H3K27ac, H3K4me3, H3K4me1, ATAC-seq) were generated to identify gastric-specific epigenetic landscapes regulated by ARID1A. Distinct cancer hallmarks of ARID1A-mutated GCs were converged at the genomic, single-cell and epigenomic level, and targeted by pharmacological inhibition. RESULTS We observed prevalent ARID1A inactivation across GC molecular subtypes, with distinct mutational signatures and linked to a NFKB-driven proinflammatory tumour microenvironment. ARID1A-depletion caused loss of H3K27ac activation signals at ARID1A-occupied distal enhancers, but unexpectedly gain of H3K27ac at ARID1A-occupied promoters in genes such as NFKB1 and NFKB2. Promoter activation in ARID1A-mutated GCs was associated with enhanced gene expression, increased BRD4 binding, and reduced HDAC1 and CTCF occupancy. Combined targeting of promoter activation and tumour inflammation via bromodomain and NFKB inhibitors confirmed therapeutic synergy specific to ARID1A-genomic status. CONCLUSION Our results suggest a therapeutic strategy for ARID1A-mutated GCs targeting both tumour-intrinsic (BRD4-assocatiated promoter activation) and extrinsic (NFKB immunomodulation) cancer phenotypes.
Collapse
Affiliation(s)
- Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Jia Hao Law
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joy Shijia Chua
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Taotao Sheng
- Epigenetic and Epigenomic Regulation, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Melissa Pool Pizzi
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xiaoyin Lu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Haoran Ma
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Shamaine Wei Ting Ho
- Epigenetic and Epigenomic Regulation, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University Health System, Singapore
- Human Genetics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
- Montreal Heart Institute, Quebec, Québec, Canada
- Department of Medicine, University of Montreal, Quebec, Québec, Canada
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Baltimore, Maryland, USA
| | | | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ming Hui Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yu Amanda Guo
- Computational and Systems Biology, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Duane Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Computational and Systems Biology, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Baltimore, Maryland, USA
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, National University Health System, Singapore
- Human Genetics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Kaushal Sanghvi
- Department of General Surgery, Tan Tock Seng Hospital, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Health System, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Pawel Karol Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaffer A Ajani
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Jimmy Bok-Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Epigenetic and Epigenomic Regulation, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
- Cellular and Molecular Research, National Cancer Centre, Singapore
| |
Collapse
|
8
|
Reddy D, Bhattacharya S, Workman JL. (mis)-Targeting of SWI/SNF complex(es) in cancer. Cancer Metastasis Rev 2023; 42:455-470. [PMID: 37093326 PMCID: PMC10349013 DOI: 10.1007/s10555-023-10102-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF (also called BAF) is critical for the regulation of gene expression. During the evolution from yeast to mammals, the BAF complex has evolved an enormous complexity that contains a high number of subunits encoded by various genes. Emerging studies highlight the frequent involvement of altered mammalian SWI/SNF chromatin-remodeling complexes in human cancers. Here, we discuss the recent advances in determining the structure of SWI/SNF complexes, highlight the mechanisms by which mutations affecting these complexes promote cancer, and describe the promising emerging opportunities for targeted therapies.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
9
|
Aguirre-Vázquez A, Castorena-Torres F, Silva-Ramírez B, Peñuelas-Urquides K, Camacho-Moll ME, Salazar-Olivo LA, Velasco I, Bermúdez de León M. Cell-type dependent regulation of pluripotency and chromatin remodeling genes by hydralazine. Stem Cell Res Ther 2023; 14:42. [PMID: 36927767 PMCID: PMC10021945 DOI: 10.1186/s13287-023-03268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The generation of induced pluripotent stem cells has opened the field of study for stem cell research, disease modeling and drug development. However, the epigenetic signatures present in somatic cells make cell reprogramming still an inefficient process. This epigenetic memory constitutes an obstacle in cellular reprogramming. Here, we report the effect of hydralazine (HYD) and valproic acid (VPA), two small molecules with proven epigenetic activity, on the expression of pluripotency genes in adult (aHF) and neonatal (nbHF) human fibroblasts. METHODS aHF and nbHF were treated with HYD and/or VPA, and viability and gene expression assays for OCT4, NANOG, c-MYC, KLF4, DNMT1, TET3, ARID1A and ARID2 by quantitative PCR were performed. aHF and nbHF were transfected with episomal plasmid bearing Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and exposed to HYD and VPA to determine the reprogramming efficiency. Methylation sensitive restriction enzyme (MSRE) qPCR assays were performed on OCT4 and NANOG promoter regions. Immunofluorescence assays were carried out for pluripotency genes on iPSC derived from aHF and nbHF. RESULTS HYD upregulated the expression of OCT4 (2.5-fold) and NANOG (fourfold) genes but not c-Myc or KLF4 in aHF and had no significant effect on the expression of all these genes in nbHF. VPA upregulated the expression of NANOG (twofold) in aHF and c-MYC in nbHF, while it downregulated the expression of NANOG in nbHF. The combination of HYD and VPA canceled the OCT4 and NANOG overexpression induced by HYD in aHF, while it reinforced the effects of VPA on c-Myc expression in nbHF. The HYD-induced overexpression of OCT4 and NANOG in aHDF was not dependent on demethylation of gene promoters, and no changes in the reprogramming efficiency were observed in both cell populations despite the downregulation of epigenetic genes DNMT1, ARID1A, and ARID2 in nbHF. CONCLUSIONS Our data provide evidence that HYD regulates the expression of OCT4 and NANOG pluripotency genes as well as ARID1A and ARID2 genes, two members of the SWI/SNF chromatin remodeling complex family, in normal human dermal fibroblasts.
Collapse
Affiliation(s)
- Alain Aguirre-Vázquez
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico.,Depto. de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, S.L.P., Mexico
| | | | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - María Elena Camacho-Moll
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Luis A Salazar-Olivo
- Depto. de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, S.L.P., Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 14269, Mexico City, Mexico
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
10
|
Wang Y, Su L, Wang W, Zhao J, Wang Y, Li S, Liu Y, Chai R, Li X, Teng Z, Liu C, Hu B, Ji F, Jiao J. Endothelial Arid1a deletion disrupts the balance among angiogenesis, neurogenesis and gliogenesis in the developing brain. Cell Prolif 2023; 56:e13447. [PMID: 36916004 DOI: 10.1111/cpr.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
The vascular system and the neural system processes occur simultaneously, the interaction among them is fundamental to the normal development of the central nervous system. Arid1a (AT-rich interaction domain 1A), which encodes an epigenetic subunit of the SWI/SNF chromatin-remodelling complex, is associated with promoter-mediated gene regulation and histone modification. However, the molecular mechanism of the interaction between cerebrovascular and neural progenitor cells (NPCs) remains unclear. To generate Arid1acKO-Tie2 mice, Arid1afl/fl mice were hybridized with Tie2-Cre mice. The Angiogenesis, neurogenesis and gliogenesis were studied by immunofluorescence staining and Western blotting. RNA-seq, RT-PCR, Western blotting, CO-IP and rescue experiments were performed to dissect the molecular mechanisms of Arid1a regulates fate determination of NPCs. We found that the absence of Arid1a results in increased the density of blood vessels, delayed neurogenesis and decreased gliogenesis, even after birth. Mechanistically, the deletion of Arid1a in endothelial cells causes a significant increase in H3k27ac and the secretion of maternal protein 2 (MATN2). In addition, matn2 alters the AKT/SMAD4 signalling pathway through its interaction with the NPCs receptor EGFR, leading to the decrease of SMAD4. SMAD complex further mediates the expression of downstream targets, thereby promoting neurogenesis and inhibiting gliogenesis. This study suggests that endothelial Arid1a tightly controls fate determination of NPCs by regulating the AKT-SMAD signalling pathway.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Libo Su
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jinyue Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sihan Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Renjie Chai
- Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xin Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Changmei Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Fen Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Vaicekauskaitė I, Sabaliauskaitė R, Lazutka JR, Jarmalaitė S. The Emerging Role of Chromatin Remodeling Complexes in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232213670. [PMID: 36430148 PMCID: PMC9697406 DOI: 10.3390/ijms232213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer (OC) is the fifth leading cause of women's death from cancers. The high mortality rate is attributed to the late presence of the disease and the lack of modern diagnostic tools, including molecular biomarkers. Moreover, OC is a highly heterogeneous disease, which contributes to early treatment failure. Thus, exploring OC molecular mechanisms could significantly enhance our understanding of the disease and provide new treatment options. Chromatin remodeling complexes (CRCs) are ATP-dependent molecular machines responsible for chromatin reorganization and involved in many DNA-related processes, including transcriptional regulation, replication, and reparation. Dysregulation of chromatin remodeling machinery may be related to cancer development and chemoresistance in OC. Some forms of OC and other gynecologic diseases have been associated with mutations in specific CRC genes. Most notably, ARID1A in endometriosis-related OC, SMARCA4, and SMARCB1 in hypercalcemic type small cell ovarian carcinoma (SCCOHT), ACTL6A, CHRAC1, RSF1 amplification in high-grade serous OC. Here we review the available literature on CRCs' involvement in OC to improve our understanding of its development and investigate CRCs as possible biomarkers and treatment targets for OC.
Collapse
Affiliation(s)
- Ieva Vaicekauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Rasa Sabaliauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
| | - Juozas Rimantas Lazutka
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Sonata Jarmalaitė
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
- Laboratory of Clinical Oncology, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
12
|
Mandal J, Mandal P, Wang TL, Shih IM. Treating ARID1A mutated cancers by harnessing synthetic lethality and DNA damage response. J Biomed Sci 2022; 29:71. [PMID: 36123603 PMCID: PMC9484255 DOI: 10.1186/s12929-022-00856-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Chromatin remodeling is an essential cellular process for organizing chromatin structure into either open or close configuration at specific chromatin locations by orchestrating and modifying histone complexes. This task is responsible for fundamental cell physiology including transcription, DNA replication, methylation, and damage repair. Aberrations in this activity have emerged as epigenomic mechanisms in cancer development that increase tumor clonal fitness and adaptability amidst various selection pressures. Inactivating mutations in AT-rich interaction domain 1A (ARID1A), a gene encoding a large nuclear protein member belonging to the SWI/SNF chromatin remodeling complex, result in its loss of expression. ARID1A is the most commonly mutated chromatin remodeler gene, exhibiting the highest mutation frequency in endometrium-related uterine and ovarian carcinomas. As a tumor suppressor gene, ARID1A is essential for regulating cell cycle, facilitating DNA damage repair, and controlling expression of genes that are essential for maintaining cellular differentiation and homeostasis in non-transformed cells. Thus, ARID1A deficiency due to somatic mutations propels tumor progression and dissemination. The recent success of PARP inhibitors in treating homologous recombination DNA repair-deficient tumors has engendered keen interest in developing synthetic lethality-based therapeutic strategies for ARID1A-mutated neoplasms. In this review, we summarize recent advances in understanding the biology of ARID1A in cancer development, with special emphasis on its roles in DNA damage repair. We also discuss strategies to harness synthetic lethal mechanisms for future therapeutics against ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
13
|
Jones CA, Tansey WP, Weissmiller AM. Emerging Themes in Mechanisms of Tumorigenesis by SWI/SNF Subunit Mutation. Epigenet Insights 2022; 15:25168657221115656. [PMID: 35911061 PMCID: PMC9329810 DOI: 10.1177/25168657221115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex uses the energy of ATP hydrolysis to alter contacts between DNA and nucleosomes, allowing regions of the genome to become accessible for biological processes such as transcription. The SWI/SNF chromatin remodeler is also one of the most frequently altered protein complexes in cancer, with upwards of 20% of all cancers carrying mutations in a SWI/SNF subunit. Intense studies over the last decade have probed the molecular events associated with SWI/SNF dysfunction in cancer and common themes are beginning to emerge in how tumor-associated SWI/SNF mutations promote malignancy. In this review, we summarize current understanding of SWI/SNF complexes, their alterations in cancer, and what is known about the impact of these mutations on tumor-relevant transcriptional events. We discuss how enhancer dysregulation is a common theme in SWI/SNF mutant cancers and describe how resultant alterations in enhancer and super-enhancer activity conspire to block development and differentiation while promoting stemness and self-renewal. We also identify a second emerging theme in which SWI/SNF perturbations intersect with potent oncoprotein transcription factors AP-1 and MYC to drive malignant transcriptional programs.
Collapse
Affiliation(s)
- Cheyenne A Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
14
|
Clemente V, Hoshino A, Shetty M, Nelson A, Erickson BK, Baker R, Rubin N, Khalifa M, Weroha SJ, Lou E, Bazzaro M. GLS1 is a protective factor in patients with ovarian clear cell carcinoma and its expression does not correlate with ARID1A-mutated tumors. CANCER RESEARCH COMMUNICATIONS 2022; 2:784-794. [PMID: 36082022 PMCID: PMC9451103 DOI: 10.1158/2767-9764.crc-22-0122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Targeting glutamine metabolism has emerged as a novel therapeutic strategy for several human cancers, including ovarian cancer. The primary target of this approach is the kidney isoform of glutaminase, glutaminase 1 (GLS1), a key enzyme in glutamine metabolism that is overexpressed in several human cancers. A first-in-class inhibitor of GLS1, called CB839 (Telaglenastat), has been investigated in several clinical trials, with promising results. The first clinical trial of CB839 in platinum-resistant ovarian cancer patients is forthcoming. ARID1A-mutated ovarian clear cell carcinoma (OCCC) is a relatively indolent and chemoresistant ovarian cancer histotype. In OCCC-derived cells ARID1A simultaneously drives GLS1 expression and metabolism reprograming. In ARID1A-mutated OCCC-derived mouse models, loss of ARID1A corresponds to GLS1 upregulation and increases sensitivity to GLS1 inhibition. Thus, targeting of GLS1 with CB839 has been suggested as a targeted approach for OCCC patients with tumors harboring ARID1A-mutations. Here, we investigated whether GLS1 is differentially expressed between OCCC patients whose tumors are ARID1A positive and patients whose tumors are ARID1A negative. In clinical specimens of OCCC, we found that GLS1 overexpression was not correlated with ARID1A loss. In addition, GLS1 overexpression was associated with better clinical outcomes. Our findings have implications for human trials using experimental therapeutics targeting GLS1.
Collapse
Affiliation(s)
- Valentino Clemente
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Asumi Hoshino
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Andrew Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Britt K. Erickson
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Ruth Baker
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Nathan Rubin
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Mahmoud Khalifa
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - S. John Weroha
- Departments of Oncology and Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota
| | - Emil Lou
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
15
|
Heinze K, Nazeran TM, Lee S, Krämer P, Cairns ES, Chiu DS, Leung SC, Kang EY, Meagher NS, Kennedy CJ, Boros J, Kommoss F, Vollert HW, Heitze F, du Bois A, Harter P, Grube M, Kraemer B, Staebler A, Kommoss FK, Heublein S, Sinn HP, Singh N, Laslavic A, Elishaev E, Olawaiye A, Moysich K, Modugno F, Sharma R, Brand AH, Harnett PR, DeFazio A, Fortner RT, Lubinski J, Lener M, Tołoczko-Grabarek A, Cybulski C, Gronwald H, Gronwald J, Coulson P, El-Bahrawy MA, Jones ME, Schoemaker MJ, Swerdlow AJ, Gorringe KL, Campbell I, Cook L, Gayther SA, Carney ME, Shvetsov YB, Hernandez BY, Wilkens LR, Goodman MT, Mateoiu C, Linder A, Sundfeldt K, Kelemen LE, Gentry-Maharaj A, Widschwendter M, Menon U, Bolton KL, Alsop J, Shah M, Jimenez-Linan M, Pharoah PD, Brenton JD, Cushing-Haugen KL, Harris HR, Doherty JA, Gilks B, Ghatage P, Huntsman DG, Nelson GS, Tinker AV, Lee CH, Goode EL, Nelson BH, Ramus SJ, Kommoss S, Talhouk A, Köbel M, Anglesio MS. Validated biomarker assays confirm that ARID1A loss is confounded with MMR deficiency, CD8 + TIL infiltration, and provides no independent prognostic value in endometriosis-associated ovarian carcinomas. J Pathol 2022; 256:388-401. [PMID: 34897700 PMCID: PMC9544180 DOI: 10.1002/path.5849] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
ARID1A (BAF250a) is a component of the SWI/SNF chromatin modifying complex, plays an important tumour suppressor role, and is considered prognostic in several malignancies. However, in ovarian carcinomas there are contradictory reports on its relationship to outcome, immune response, and correlation with clinicopathological features. We assembled a series of 1623 endometriosis-associated ovarian carcinomas, including 1078 endometrioid (ENOC) and 545 clear cell (CCOC) ovarian carcinomas, through combining resources of the Ovarian Tumor Tissue Analysis (OTTA) Consortium, the Canadian Ovarian Unified Experimental Resource (COEUR), local, and collaborative networks. Validated immunohistochemical surrogate assays for ARID1A mutations were applied to all samples. We investigated associations between ARID1A loss/mutation, clinical features, outcome, CD8+ tumour-infiltrating lymphocytes (CD8+ TILs), and DNA mismatch repair deficiency (MMRd). ARID1A loss was observed in 42% of CCOCs and 25% of ENOCs. We found no associations between ARID1A loss and outcomes, stage, age, or CD8+ TIL status in CCOC. Similarly, we found no association with outcome or stage in endometrioid cases. In ENOC, ARID1A loss was more prevalent in younger patients (p = 0.012) and was associated with MMRd (p < 0.001) and the presence of CD8+ TILs (p = 0.008). Consistent with MMRd being causative of ARID1A mutations, in a subset of ENOCs we also observed an association with ARID1A loss-of-function mutation as a result of small indels (p = 0.035, versus single nucleotide variants). In ENOC, the association with ARID1A loss, CD8+ TILs, and age appears confounded by MMRd status. Although this observation does not explicitly rule out a role for ARID1A influence on CD8+ TIL infiltration in ENOC, given current knowledge regarding MMRd, it seems more likely that effects are dominated by the hypermutation phenotype. This large dataset with consistently applied biomarker assessment now provides a benchmark for the prevalence of ARID1A loss-of-function mutations in endometriosis-associated ovarian cancers and brings clarity to the prognostic significance. © 2021 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Karolin Heinze
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Tayyebeh M. Nazeran
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Sandra Lee
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Pauline Krämer
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Evan S. Cairns
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
| | - Derek S. Chiu
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Samuel C.Y. Leung
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Eun Young Kang
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Nicola S. Meagher
- University of New South Wales, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, New South Wales, Australia
- University of New South Wales, School of Women’s and Children’s Health, Sydney, New South Wales, Australia
| | - Catherine J. Kennedy
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
| | - Jessica Boros
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
| | - Friedrich Kommoss
- Medizin Campus Bodensee, Institute of Pathology, Friedrichshafen, Germany
| | - Hans-Walter Vollert
- Medizin Campus Bodensee, Department of Gynecology and Obstetrics, Friedrichshafen, Germany
| | - Florian Heitze
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Andreas du Bois
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Philipp Harter
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Marcel Grube
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Bernhard Kraemer
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Annette Staebler
- University Hospital Tübingen, Institute of Pathology and Neuropathology, Tübingen, Germany
| | - Felix K.F. Kommoss
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Sabine Heublein
- University Hospital Heidelberg and National Center for Tumor Diseases, Department of Obstetrics and Gynecology, Heidelberg, Germany
| | - Hans-Peter Sinn
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Naveena Singh
- Barts Health National Health Service Trust, Department of Pathology, London, UK
| | - Angela Laslavic
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Esther Elishaev
- University of Pittsburgh School of Medicine, Department of Pathology, PA, USA
| | - Alex Olawaiye
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Kirsten Moysich
- Roswell Park Cancer Institute, Department of Cancer Prevention and Control, Buffalo, NY, USA
| | - Francesmary Modugno
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Raghwa Sharma
- Westmead Hospital, Tissue Pathology and Diagnostic Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Western Sydney University, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Paul R. Harnett
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- Westmead Hospital, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - Anna DeFazio
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Renée T. Fortner
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Jan Lubinski
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Marcin Lener
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Aleksandra Tołoczko-Grabarek
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Cezary Cybulski
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Helena Gronwald
- Pomeranian Medical University, Department of Propaedeutics, Physical Diagnostics and Dental Physiotherapy, Szczecin, Poland
| | - Jacek Gronwald
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Penny Coulson
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Mona A El-Bahrawy
- Imperial College London, Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital, London, UK
| | - Michael E. Jones
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Minouk J. Schoemaker
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Anthony J. Swerdlow
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
- The Institute of Cancer Research, Division of Breast Cancer Research, London, UK
| | - Kylie L. Gorringe
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, Australia
- Peter MacCallum Cancer Centre, Women’s Cancer Program, Melbourne, Australia
| | - Ian Campbell
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, Australia
- Peter MacCallum Cancer Centre, Cancer Genetics Laboratory, Research Division, Melbourne, Australia
| | - Linda Cook
- The University of New Mexico, Division of Epidemiology and Biostatistics, Albuquerque, NM, USA
| | - Simon A. Gayther
- Cedars-Sinai Medical Center, Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Los Angeles, CA, USA
| | - Michael E. Carney
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Department of Obstetrics and Gynecology, HI, USA
| | - Yurii B. Shvetsov
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | | | - Lynne R. Wilkens
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | - Marc T. Goodman
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Los Angeles, CA, USA
| | - Constantina Mateoiu
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Anna Linder
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Linda E. Kelemen
- Medical University of South Carolina, Hollings Cancer Center and Department of Public Health Sciences, Charleston, SC, USA
| | - Aleksandra Gentry-Maharaj
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
- University College London, Department of Women’s Cancer, Institute for Women’s Health, London, UK
| | | | - Usha Menon
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
| | - Kelly L. Bolton
- Washington University School of Medicine, Department of Hematology and Oncology, Division of Oncology, St. Louis, MO, USA
| | - Jennifer Alsop
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Mitul Shah
- Addenbrookes Hospital, Department of Histopathology, Cambridge, UK
| | | | - Paul D.P. Pharoah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - James D. Brenton
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Kara L. Cushing-Haugen
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, WA, USA
| | - Holly R. Harris
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, WA, USA
| | - Jennifer A. Doherty
- University of Utah, Huntsman Cancer Institute, Department of Population Health Sciences, Salt Lake City, UT, USA
| | - Blake Gilks
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Prafull Ghatage
- University of Calgary, Department of Oncology, Division of Gynecologic Oncology, Calgary, AB, Canada
| | - David G. Huntsman
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Gregg S. Nelson
- University of Calgary, Department of Oncology, Division of Gynecologic Oncology, Calgary, AB, Canada
| | - Anna V. Tinker
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
- University of British Columbia, Department of Medicine, Vancouver, BC, Canada
| | - Cheng-Han Lee
- University of Alberta, Department of Laboratory Medicine and Pathology, Edmonton, AB, Canada
| | - Ellen L. Goode
- Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, MN, USA
| | - Brad H. Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Susan J. Ramus
- University of New South Wales, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, New South Wales, Australia
- University of New South Wales, School of Women’s and Children’s Health, Sydney, New South Wales, Australia
| | - Stefan Kommoss
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Aline Talhouk
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Martin Köbel
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Michael S. Anglesio
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| |
Collapse
|
16
|
Jin M, Xu S, Li J, Li L, Tang C. Role of ARID1A in the Regulation of Human Trophoblast Migration and Invasion. Reprod Sci 2021; 29:2363-2373. [PMID: 34255312 DOI: 10.1007/s43032-021-00686-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022]
Abstract
Migration and invasion of trophoblasts is critical for human placental development, trophoblastic differentiation, and pregnancy-associated diseases. AT-rich interactive domain-containing protein 1A (ARID1A), a subunit of the SWI-SNF complex, has been suggested to participate in the regulation of fertility via placental disruption in mice. However, whether ARID1A regulates human placental development and function remains unknown. Here, using human trophoblast-like JEG-3 cell line, we report that ARID1A controls trophoblast cell migration and invasion. Overexpression of ARID1A inhibits JEG-3 cell migration and invasion, whereas knockdown of ARID1A promotes migration and invasion in JEG-3 cells. Mechanistically, while ARID1A reduces JEG-3 cell migration by down-regulation of Snail transcription, it restrains JEG-3 cell invasion by binding to and destabilization of MMP-9 protein. Finally, ARID1A is apparently up-regulated in placental tissues of preeclampsia compared to that of normal pregnancies. Our results thereby imply that ARID1A acts as a critical gene in supporting the physiological function of human mature placenta.
Collapse
Affiliation(s)
- Meiyuan Jin
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jiayong Li
- Department of Ophthalmology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Lu Li
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
17
|
Abstract
Endometriosis is a prevalent chronic disease that affects approximately 6% to 10% of reproductive-aged women. Although numerous researchers have endeavored to explore the etiology of endometriosis over a century, its etiology still remains an enigma. The exploration of pathophysiologic mechanism and novel therapy for endometriosis depends on ideal endometriotic models. In the previous decade, various endometriotic models have been established; therefore, we made a conclusion for available information on these models. This review summarized the common experimental models used in endometriotic studies, including their origins, characteristics, applications, and limitations. Endometriotic models played an important role in studying etiologies and novel treatments of endometriosis during the last decades. Among them, animal models and endometriotic cell lines were viewed as most common studying tools to explore the intrinsic entities of endometriosis. In addition, endometrial organoid also emerged and was regarded as an ideal studying tool for endometriosis research. Different research models collectively complement each other to advance the endometriosis research. The successful establishment of endometrial organoids means that organoids are expected to become an ideal model for studying endometriosis in the future.
Collapse
Affiliation(s)
- Zhi-Yue Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | |
Collapse
|
18
|
Pagliaroli L, Trizzino M. The Evolutionary Conserved SWI/SNF Subunits ARID1A and ARID1B Are Key Modulators of Pluripotency and Cell-Fate Determination. Front Cell Dev Biol 2021; 9:643361. [PMID: 33748136 PMCID: PMC7969888 DOI: 10.3389/fcell.2021.643361] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Organismal development is a process that requires a fine-tuned control of cell fate and identity, through timely regulation of lineage-specific genes. These processes are mediated by the concerted action of transcription factors and protein complexes that orchestrate the interaction between cis-regulatory elements (enhancers, promoters) and RNA Polymerase II to elicit transcription. A proper understanding of these dynamics is essential to elucidate the mechanisms underlying developmental diseases. Many developmental disorders, such as Coffin-Siris Syndrome, characterized by growth impairment and intellectual disability are associated with mutations in subunits of the SWI/SNF chromatin remodeler complex, which is an essential regulator of transcription. ARID1B and its paralog ARID1A encode for the two largest, mutually exclusive, subunits of the complex. Mutations in ARID1A and, especially, ARID1B are recurrently associated with a very wide array of developmental disorders, suggesting that these two SWI/SNF subunits play an important role in cell fate decision. In this mini-review we therefore discuss the available scientific literature linking ARID1A and ARID1B to cell fate determination, pluripotency maintenance, and organismal development.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 2020; 26:423-449. [PMID: 32154564 DOI: 10.1093/humupd/dmz047] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disease. Thus, it came as a complete surprise when it was reported recently that the majority of deep endometriosis lesions harbour somatic mutations and a sizeable portion of them contain known cancer-associated mutations (CAMs). Four more studies have since been published, all demonstrating the existence of CAMs in different subtypes of endometriosis. While the field is still evolving, the confirmation of CAMs has raised many questions that were previously overlooked. OBJECTIVE AND RATIONALE A comprehensive overview of CAMs in endometriosis has been produced. In addition, with the recently emerged understanding of the natural history of endometriotic lesions as well as CAMs in normal and apparently healthy tissues, this review attempts to address the following questions: Why has there been such a wild discrepancy in reported mutation frequencies? Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium? Would the presence of CAMs in endometriotic lesions increase the risk of cancer to the bearers? Why do endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart? What clinical implications, if any, do the CAMs have for the bearers? Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis? SEARCH METHODS The PubMed database was searched, from its inception to September 2019, for all papers in English using the term 'endometriosis and CAM', 'endometriosis and cancer-driver mutation', 'somatic mutations', 'fibrosis', 'fibrosis and epigenetic', 'CAMs and tumorigenesis', 'somatic mutation and normal tissues', 'oestrogen receptor and fibrosis', 'oxidative stress and fibrosis', 'ARID1A mutation', and 'Kirsten rat sarcoma mutation and therapeutics'. All retrieved papers were read and, when relevant, incorporated into the review results. OUTCOMES Seven papers that identified CAMs in endometriosis using various sequencing methods were retrieved, and their results were somewhat different. Yet, it is apparent that those using microdissection techniques and more accurate sequencing methods found more CAMs, echoing recent discoveries that apparently healthy tissues also harbour CAMs as a result of the replicative aging process. Hence endometriotic lesions, irrespective of subtype, if left intact, would generate CAMs as part of replicative aging, oxidative stress and perhaps other factors yet to be identified and, in some rare cases, develop cancer. The published data still are unable to paint a clear picture on pathogenesis of endometriosis. However, since endometriotic epithelial cells have a higher turnover than their stromal counterpart due to cyclic bleeding, and since the endometriotic stromal component can be formed by refresh influx of mesenchymal cells through epithelial-mesenchymal transition, endothelial-mesenchymal transition, mesothelial-mesenchymal transition and other processes as well as recruitment of bone-marrow-derived stem cells and outflow due to smooth muscle metaplasia, endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart. The epithelial and stromal cellular components develop in a dependent and co-evolving manner. Genes involved in CAMs are likely to be active players in lesional fibrogenesis, and hyperestrogenism and oxidative stress are likely drivers of both CAMs and fibrogenesis. Finally, endometriotic lesions harbouring CAMs would conceivably be more refractory to medical treatment, due, in no small part, to their high fibrotic content and reduced vascularity and cellularity. WIDER IMPLICATIONS The accumulating data on CAMs in endometriosis have shed new light on the pathogenesis and pathophysiology of endometriosis. They also suggest new challenges in management. The distinct yet co-evolving developmental trajectories of endometriotic stroma and epithelium underscore the importance of the lesional microenvironment and ever-changing cellular identity. Mutational profiling of normal endometrium from women of different ages and reproductive history is needed in order to gain a deeper understanding of the pathogenesis. Moreover, one area that has conspicuously received scant attention is the epigenetic landscape of ectopic, eutopic and normal endometrium.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| |
Collapse
|
20
|
Wilson MR, Reske JJ, Holladay J, Neupane S, Ngo J, Cuthrell N, Wegener M, Rhodes M, Adams M, Sheridan R, Hostetter G, Alotaibi FT, Yong PJ, Anglesio MS, Lessey BA, Leach RE, Teixeira JM, Missmer SA, Fazleabas AT, Chandler RL. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation. Cell Rep 2020; 33:108366. [PMID: 33176148 PMCID: PMC7682620 DOI: 10.1016/j.celrep.2020.108366] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis affects 1 in 10 women and is characterized by the presence of abnormal endometrium at ectopic sites. ARID1A mutations are observed in deeply invasive forms of the disease, often correlating with malignancy. To identify epigenetic dependencies driving invasion, we use an unbiased approach to map chromatin state transitions accompanying ARID1A loss in the endometrium. We show that super-enhancers marked by high H3K27 acetylation are strongly associated with ARID1A binding. ARID1A loss leads to H3K27 hyperacetylation and increased chromatin accessibility and enhancer RNA transcription at super-enhancers, but not typical enhancers, indicating that ARID1A normally prevents super-enhancer hyperactivation. ARID1A co-localizes with P300 at super-enhancers, and genetic or pharmacological inhibition of P300 in ARID1A mutant endometrial epithelia suppresses invasion and induces anoikis through the rescue of super-enhancer hyperacetylation. Among hyperactivated super-enhancers, SERPINE1 (PAI-1) is identified as an essential target gene driving ARID1A mutant endometrial invasion. Broadly, our findings provide rationale for therapeutic strategies targeting super-enhancers in ARID1A mutant endometrium.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jake J Reske
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jeanne Holladay
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Subechhya Neupane
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Julie Ngo
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Nina Cuthrell
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Marc Wegener
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mary Rhodes
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Marie Adams
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Fahad T Alotaibi
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; Department of Physiology, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Paul J Yong
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, Vancouver General Hospital, and BC Cancer, Vancouver, BC, Canada
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Richard E Leach
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Stacey A Missmer
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA; Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
21
|
Remodeling of the ARID1A tumor suppressor. Cancer Lett 2020; 491:1-10. [PMID: 32738271 DOI: 10.1016/j.canlet.2020.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
In recent years, AT-rich interactive domain-containing protein 1A (ARID1A) has been widely accepted as a bona fide tumor suppressor due to its essential role in preventing tumorigenesis and tumor progression in both mouse and human contexts. ARID1A shows high mutation frequencies in both cancers and preneoplastic lesions. The loss of ARID1A expression in cancer cells leads to increases in cell proliferation, invasion and migration and reductions in cell apoptosis and chemosensitivity. The tumor-suppressive role of ARID1A is mainly attributed to its regulation of gene transcription, which can be induced either directly by chromatin remodeling or indirectly by affecting histone modifications. ARID1A also acts independently of its cardinal transcription-regulating mechanisms, which include interfering with protein-protein interactions. Interestingly, nonmutational mechanisms, such as regulation by DNA hypermethylation, microRNAs, and ubiquitinases/deubiquitinases, have provided another perspective on ARID1A inactivation in cancer. Since the critical tumor-suppressive role of ARID1A has been revealed, several studies have attempted to identify synthetic lethal targets with ARID1A mutation/inactivation as an alternative strategy for cancer treatment.
Collapse
|
22
|
Wang Y, Hoang L, Ji JX, Huntsman DG. SWI/SNF Complex Mutations in Gynecologic Cancers: Molecular Mechanisms and Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:467-492. [PMID: 31977292 DOI: 10.1146/annurev-pathmechdis-012418-012917] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SWI/SNF (mating type SWItch/Sucrose NonFermentable) chromatin remodeling complexes interact with histones and transcription factors to modulate chromatin structure and control gene expression. These evolutionarily conserved multisubunit protein complexes are involved in regulating many biological functions, such as differentiation and cell proliferation. Genomic studies have revealed frequent mutations of genes encoding multiple subunits of the SWI/SNF complexes in a wide spectrum of cancer types, including gynecologic cancers. These SWI/SNF mutations occur at different stages of tumor development and are restricted to unique histologic types of gynecologic cancers. Thus, SWI/SNF mutations have to function in the appropriate tissue and cell context to promote gynecologic cancer initiation and progression. In this review, we summarize the current knowledge of SWI/SNF mutations in the development of gynecologic cancers to provide insights into both molecular pathogenesis and possible treatment implications for these diseases.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - Jennifer X Ji
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - David G Huntsman
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| |
Collapse
|
23
|
Wilson MR, Holladay J, Chandler RL. A mouse model of endometriosis mimicking the natural spread of invasive endometrium. Hum Reprod 2020; 35:58-69. [PMID: 31886851 PMCID: PMC8205619 DOI: 10.1093/humrep/dez253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Is it possible to establish a genetically engineered mouse model (GEMM) of endometriosis that mimics the natural spread of invasive endometrium? SUMMARY ANSWER Endometriosis occurs in an ARID1A (AT-rich interactive domain-containing protein 1A) and PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) mutant GEMM of endometrial dysfunction following salpingectomy. WHAT IS KNOWN ALREADY Although mouse models of endometriosis have long been established, most models rely on intraperitoneal injection of uterine fragments, steroid hormone treatments or the use of immune-compromised mice. STUDY DESIGN, SIZE, DURATION Mice harboring the lactotransferrin-Cre (LtfCre0/+), Arid1afl, (Gt)R26Pik3ca*H1047R and (Gt)R26mTmG alleles were subject to unilateral salpingectomies at 6 weeks of age. Control (n = 9), LtfCre0/+; (Gt)R26Pik3ca*H1047R; Arid1afl/+ (n = 8) and LtfCre0/+; (Gt)R26Pik3ca*H1047R; Arid1afl/fl (n = 9) were used for the study. The (Gt)R26mTmG allele was used for the purpose of fluorescent lineage tracing of endometrial epithelium. LtfCre0/+; (Gt)R26mTmG (n = 3) and LtfCre0/+; (Gt)R26Pik3ca*H1047R/mTmG; Arid1afl/fl (n = 4) were used for this purpose. Mice were followed until the endpoint of vaginal bleeding at an average time of 17 weeks of age. PARTICIPANTS/MATERIALS, SETTING, METHODS At 6 weeks of age, mice were subjected to salpingectomy surgery. Mice were followed until the time point of vaginal bleeding (average 17 weeks), or aged for 1 year in the case of control mice. At time of sacrifice, endometriotic lesions, ovaries and uterus were collected for the purpose of histochemical and immunohistochemical analyses. Samples were analyzed for markers of the endometriotic tissue and other relevant biomarkers. MAIN RESULTS AND THE ROLE OF CHANCE Following salpingectomy, LtfCre0/+; (Gt)R26Pik3ca*H1047R/mTmG; Arid1afl/fl mice developed endometriotic lesions, including lesions on the ovary, omentum and abdominal wall. Epithelial glands within lesions were negative for ARID1A and positive for phospho-S6 staining, indicating ARID1A-PIK3CA co-mutation status, and expressed EGFP (enhanced green fluorescent protein), indicating endometrial origins. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION LtfCre0/+; (Gt)R26Pik3ca*H1047R; Arid1afl/fl mice develop vaginal bleeding as a result of endometrial dysfunction at an average age of 17 weeks and must be sacrificed. Furthermore, while this model mimics the natural spread of endometriotic tissue directly from the uterus to the peritoneum, the data presented do not reject current hypotheses on endometriosis pathogenesis. WIDER IMPLICATIONS OF THE FINDINGS The idea that endometriosis is the result of abnormal endometrial tissue colonizing the peritoneum via retrograde menstruation has gained widespread support over the past century. However, most models of endometriosis take for granted this possibility, relying on the surgical removal of bulk uterine tissue and subsequent transplantation into the peritoneum. Growing evidence suggests that somatic mutations in ARID1A and PIK3CA are present in the endometrial epithelium. The establishment of a GEMM which mimics the natural spread of endometrium and subsequent lesion formation supports the hypothesis that endometriosis is derived from mutant endometrial epithelium with invasive properties. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the American Cancer Society PF-17-163-02-DDC (M.R.W.), the Mary Kay Foundation 026-16 (R.L.C.) and the Ovarian Cancer Research Fund Alliance 457446 (R.L.C.). The authors declare no competing interests.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jeanne Holladay
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| |
Collapse
|
24
|
Sun Y, Miao N, Sun T. Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas 2019; 156:29. [PMID: 31427911 PMCID: PMC6696680 DOI: 10.1186/s41065-019-0105-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Chromatin accessibility is crucial for gene expression regulation in specific cells and in multiple biological processes. Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) is an effective way to reveal chromatin accessibility at a genome-wide level. Through ATAC-seq, produced reads from a small number of cells reflect accessible regions that correspond to nucleosome positioning and transcription factor binding sites, due to probing hyperactive Tn5 transposase to DNA sequence. Conclusion In this review, we summarize both principle and features of ATAC-seq, highlight its applications in basic and clinical research. ATAC-seq has generated comprehensive chromatin accessible maps, and is becoming a powerful tool to understand dynamic gene expression regulation in stem cells, early embryos and tumors.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| |
Collapse
|
25
|
ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion. Nat Commun 2019; 10:3554. [PMID: 31391455 PMCID: PMC6686004 DOI: 10.1038/s41467-019-11403-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
ARID1A and PI3-Kinase (PI3K) pathway alterations are common in neoplasms originating from the uterine endometrium. Here we show that monoallelic loss of ARID1A in the mouse endometrial epithelium is sufficient for vaginal bleeding when combined with PI3K activation. Sorted mutant epithelial cells display gene expression and promoter chromatin signatures associated with epithelial-to-mesenchymal transition (EMT). We further show that ARID1A is bound to promoters with open chromatin, but ARID1A loss leads to increased promoter chromatin accessibility and the expression of EMT genes. PI3K activation partially rescues the mesenchymal phenotypes driven by ARID1A loss through antagonism of ARID1A target gene expression, resulting in partial EMT and invasion. We propose that ARID1A normally maintains endometrial epithelial cell identity by repressing mesenchymal cell fates, and that coexistent ARID1A and PI3K mutations promote epithelial transdifferentiation and collective invasion. Broadly, our findings support a role for collective epithelial invasion in the spread of abnormal endometrial tissue. PIK3CA mutations and ARID1A loss co-exist in endometrial neoplasms. Here, the authors show that these co-mutations drive gene expression profiles correlated with differential chromatin accessibility and ARID1A binding in the endometrial epithelium, resulting in partial EMT and myometrial invasion.
Collapse
|
26
|
Gong Z, Shen X, Yang J, Lai L, Wei S. Receptor Binding Inhibitor Suppresses Carcinogenesis of Cervical Cancer by Depressing Levels of FSHR and ERβ in Mice. Anticancer Agents Med Chem 2019; 19:1719-1727. [PMID: 31368878 DOI: 10.2174/1871520619666190801094059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/24/2019] [Accepted: 04/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND FSH Receptor Binding Inhibitor (FRBI) blocked the binding of FSH to FSHR. Our initial study revealed FRBI reduced the maturation rate, enhanced the apoptosis of sheep Cumulus-Oocyte Complex (COCs). Little is known about whether FRBI modulates ERβ and FSHR levels in the normal uterine and cancerous tissues. The present study aimed to evaluate the FRBI effects on the expressions of Estrogen Receptor-beta (ERβ) and FSH receptor (FSHR) in the uteri. METHODS 150 mice were assigned to FRBI+FSH (COM), FSH and control groups (CG). Mice of COM-1, COM-2 and COM-3 groups were simultaneously intramuscularly injected with 500, 750 and 1000 µg FRBI with 10 IU FSH, respectively for five days. Western blotting and qPCR were utilized to determine the expression of ERβ and FSHR. RESULTS In comparison with FSH group, uterine lumen and glands of COM groups became narrow. The uterine wall and endometrial epithelium were thinned, and uterine lumen became narrow. Epithelial cells were decreased. Uterine wall thicknesses of COM-1, COM-2 and COM-3 groups were reduced by 6.49%, 14.89% and 15.69% on day 30 as compared with FSH group. Uterine perimetrium thicknesses of COM-1, COM-2 and COM-3 groups were reduced by 16.17%, 17.93% and 19.92% on day 20 in comparison with FSH group. Levels of FSHR mRNAs and proteins of COM-1, COM-2 and COM-3 groups were less than FSH group on days 20 and 30 (P<0.05). ERβ protein of COM-3 group was less than FSH group. Serum estradiol (E2) and FSH concentrations of COM-2 and COM-3 were lower than that of FSH group on day 30. CONCLUSION FRBI could decrease UWT and UPT, also block the uterine development, decline expression levels of ERβ and FSHR protein. Additionally, FRBI reduced the secretion of secretion of FSH and E2. Downregulating expression of FSHR and ERβ may be a potential treatment regimen for cervical cancer patients.
Collapse
Affiliation(s)
- Zhuandi Gong
- Hospital of Medicine College, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiaoyun Shen
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621 010, China
| | - Juan Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Luju Lai
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Suocheng Wei
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China.,Research Center of Animal Cell Engineering and Technology of Gansu Province, Northwest Minzu University, Lanzhou, 730030, China
| |
Collapse
|
27
|
Bui CB, Le HK, Vu DM, Truong KDD, Nguyen NM, Ho MAN, Truong DQ. ARID1A-SIN3A drives retinoic acid-induced neuroblastoma differentiation by transcriptional repression of TERT. Mol Carcinog 2019; 58:1998-2007. [PMID: 31365169 DOI: 10.1002/mc.23091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 12/29/2022]
Abstract
Aggressive, high-risk neuroblastoma (NB) exhibits an immature differentiation state, profound epigenetic dysregulation and high telomerase activity. It has been suggested that aggressive NB may be treatable by inducing differentiation whereas therapeutic targeting of telomerase is under investigation for multiple cancer types. While epigenetic regulation of the telomerase reverse transcriptase (TERT) promoter has been described in high-risk NB, the exact molecular mechanisms are still not completely understood. Here we used quantitative real-time polymerase chain reaction (PCR), chromatin immunoprecipitation qPCR, quantitative telomeric repeat amplification protocol, and immunoblot techniques to investigate epigenetic regulation of TERT in wild-type and genetically modified NB cell lines. We demonstrated that TERT expression is reduced during 13-cis retinoic acid-induced NB differentiation and that this inversely correlated with increased expression of AT-rich interaction domain 1A (ARID1A), a subunit of the SWItch/sucrose nonfermentable chromatin remodeling complex. We showed that ARID1A directly caused suppression of TERT and was reliant on DNA binding and co-occupancy of the TERT promoter by the SIN3 transcription regulator family member A (SIN3A) repressor complex allowing NB differentiation to proceed. Finally, using data from NB patient cohorts, we reported a significant correlation between low ARID1A expression, elevated expression of TERT, and poorly differentiated, high-risk NB. These results provide insights into a key epigenetic pathway responsible for modulating TERT-driven NB progression, which could represent a target for therapeutic intervention.
Collapse
Affiliation(s)
- Chi-Bao Bui
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam.,Department of Molecular Oncology, City Children's Hospital, Ho Chi Minh City, Vietnam
| | - Hoa Kim Le
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam
| | - Diem My Vu
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Kieu-Diem Dinh Truong
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam
| | - Nhat Manh Nguyen
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam
| | - Minh Anh Nguyen Ho
- Department of Molecular and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Dinh Quang Truong
- Department of Molecular Oncology, City Children's Hospital, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
Gong Z, Shen X, Yang J, Yang K, Bai S, Wei S. FSH receptor binding inhibitor up-regulates ARID1A and PTEN genes associated with ovarian cancers in mice. Braz J Med Biol Res 2019; 52:e8381. [PMID: 31241714 PMCID: PMC6596365 DOI: 10.1590/1414-431x20198381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
Experiments were conducted to determine if the follicle-stimulating hormone (FSH) receptor binding inhibitor (FRBI) impacts the expression levels of AT-rich interactive domain-containing protein 1A (ARID1A) and phosphatase and tensin homolog (PTEN) in ovaries and blood, as well as expressions of follicle-stimulating hormone cognate receptor (FSHR) gene and proteins. Mice in FRBI-10, FRBI-20, FRBI-30, and FRBI-40 groups were intramuscularly injected with 10, 20, 30, and 40 mg FRBI/kg, respectively, for five consecutive days. Western blotting and qRT-PCR were utilized to determine expression levels of ARID1A and PTEN proteins and mRNAs. Serum ARID1A and PTEN concentrations of the FRBI-40 group were higher than the control group (CG) and FSH group (P<0.05). FSHR mRNA levels of FRBI-20, FRBI-30, and FRBI-40 groups were lower than that of CG and FSH groups on day 15 (P<0.05 or P<0.01). Expression levels of FSHR proteins of FRBI-30 and FRBI-40 groups were lower than those of CG and FSH groups (P<0.05). Levels of ARID1A and PTEN proteins of the FRBI-30 group were greater than CG on days 20 and 30 (P<0.05). FRBI doses had significant positive correlations to levels of ARID1A and PTEN proteins. Additionally, ARID1A and PTEN had negative correlations to FSHR mRNAs and proteins. A high dose of FRBI could promote the expression levels of ARID1A and PTEN proteins in ovarian tissues. FRBI increased serum concentrations of ARID1A and PTEN. However, FRBI depressed expression levels of FSHR mRNAs and proteins in mouse ovaries.
Collapse
Affiliation(s)
- Zhuandi Gong
- Medicine College Hospital, Northwest Minzu University, Lanzhou, China
| | - Xiaoyun Shen
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Juan Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Kun Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shengju Bai
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Suocheng Wei
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
29
|
Sen M, Wang X, Hamdan FH, Rapp J, Eggert J, Kosinsky RL, Wegwitz F, Kutschat AP, Younesi FS, Gaedcke J, Grade M, Hessmann E, Papantonis A, Strӧbel P, Johnsen SA. ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells. Clin Epigenetics 2019; 11:92. [PMID: 31217031 PMCID: PMC6585056 DOI: 10.1186/s13148-019-0690-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND ARID1A (AT-rich interactive domain-containing protein 1A) is a subunit of the BAF chromatin remodeling complex and plays roles in transcriptional regulation and DNA damage response. Mutations in ARID1A that lead to inactivation or loss of expression are frequent and widespread across many cancer types including colorectal cancer (CRC). A tumor suppressor role of ARID1A has been established in a number of tumor types including CRC where the genetic inactivation of Arid1a alone led to the formation of invasive colorectal adenocarcinomas in mice. Mechanistically, ARID1A has been described to largely function through the regulation of enhancer activity. METHODS To mimic ARID1A-deficient colorectal cancer, we used CRISPR/Cas9-mediated gene editing to inactivate the ARID1A gene in established colorectal cancer cell lines. We integrated gene expression analyses with genome-wide ARID1A occupancy and epigenomic mapping data to decipher ARID1A-dependent transcriptional regulatory mechanisms. RESULTS Interestingly, we found that CRC cell lines harboring KRAS mutations are critically dependent on ARID1A function. In the absence of ARID1A, proliferation of these cell lines is severely impaired, suggesting an essential role for ARID1A in this context. Mechanistically, we showed that ARID1A acts as a co-factor at enhancers occupied by AP1 transcription factors acting downstream of the MEK/ERK pathway. Consistently, loss of ARID1A led to a disruption of KRAS/AP1-dependent enhancer activity, accompanied by a downregulation of expression of the associated target genes. CONCLUSIONS We identify a previously unknown context-dependent tumor-supporting function of ARID1A in CRC downstream of KRAS signaling. Upon the loss of ARID1A in KRAS-mutated cells, enhancers that are co-occupied by ARID1A and the AP1 transcription factors become inactive, thereby leading to decreased target gene expression. Thus, targeting of the BAF complex in KRAS-mutated CRC may offer a unique, previously unknown, context-dependent therapeutic option in CRC.
Collapse
Affiliation(s)
- Madhobi Sen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Xin Wang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Gastroenterology Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jacobe Rapp
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jessica Eggert
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Ana Patricia Kutschat
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Fereshteh S Younesi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology & Gastrointestinal Oncology, University Medical Center Gӧttingen, 37075, Göttingen, Germany
| | - Argyris Papantonis
- Department of Pathology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Philipp Strӧbel
- Department of Pathology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Gastroenterology Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
30
|
Toumpeki C, Liberis A, Tsirkas I, Tsirka T, Kalagasidou S, Inagamova L, Anthoulaki X, Tsatsaris G, Kontomanolis EN. The Role of ARID1A in Endometrial Cancer and the Molecular Pathways Associated With Pathogenesis and Cancer Progression. In Vivo 2019; 33:659-667. [PMID: 31028182 PMCID: PMC6559907 DOI: 10.21873/invivo.11524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
AT-rich interaction domain 1A gene (ARID1A) encodes for a subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, a chromatin remodeling complex, and it has been implicated in the pathogenesis of various cancer types. In this review, we discuss how ARID1A is linked to endometrial cancer and what molecular pathways are affected by mutation or inhibition of ARID1A. We also discuss the potential use of ARID1A not only as a prognostic biomarker, but also as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Chrisavgi Toumpeki
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasios Liberis
- Second Department of Obstetrics and Gynecology, Hippokration General Hospital, Thessaloniki, Greece
| | - Ioannis Tsirkas
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodora Tsirka
- Department of Molecular Biology and Genetics, University of Thrace, Alexandroupolis, Greece
| | - Sofia Kalagasidou
- Department of Obstetrics and Gynecology, Bodosakio General Hospital of Ptolemaida, Ptolemaida, Greece
| | - Lola Inagamova
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Xanthoula Anthoulaki
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Tsatsaris
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Emmanuel N Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
31
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
32
|
|
33
|
Caumanns JJ, Wisman GBA, Berns K, van der Zee AGJ, de Jong S. ARID1A mutant ovarian clear cell carcinoma: A clear target for synthetic lethal strategies. Biochim Biophys Acta Rev Cancer 2018; 1870:176-184. [PMID: 30025943 DOI: 10.1016/j.bbcan.2018.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022]
Abstract
SWI/SNF chromatin remodeling complexes play an important role in the epigenetic regulation of chromatin structure and gene transcription. Mutual exclusive subunits in the SWI/SNF complex include the DNA targeting members ARID1A and ARID1B as well as the ATPases SMARCA2 and SMARCA4. SWI/SNF complexes are mutated across many cancer types. The highest mutation incidence is found in ARID1A, primarily consisting of deleterious mutations. Current advances have reported synthetic lethal interactions with the loss of ARID1A in several cancer types. In this review, we discuss targets that are only important for tumor growth in an ARID1A mutant context. We focus on synthetic lethal strategies with ARID1A loss in ovarian clear cell carcinoma, a cancer with the highest ARID1A mutation incidence (46-57%). ARID1A directed lethal strategies that can be exploited clinically include targeting of the DNA repair proteins PARP and ATR, and the epigenetic factors EZH2, HDAC2, HDAC6 and BRD2.
Collapse
Affiliation(s)
- Joseph J Caumanns
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Katrien Berns
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Centre Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
34
|
Endometriosis Malignant Transformation: Epigenetics as a Probable Mechanism in Ovarian Tumorigenesis. Int J Genomics 2018; 2018:1465348. [PMID: 29780815 PMCID: PMC5892233 DOI: 10.1155/2018/1465348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Endometriosis, defined as the presence of ectopic endometrial glands and stroma outside the uterine cavity, is a chronic, hormone-dependent gynecologic disease affecting millions of women across the world, with symptoms including chronic pelvic pain, dysmenorrhea, dyspareunia, dysuria, and subfertility. In addition, there is well-established evidence that, although endometriosis is considered benign, it is associated with an increased risk of malignant transformation, with the involvement of various mechanisms of development. More and more evidence reveals an important contribution of epigenetic modification not only in endometriosis but also in mechanisms of endometriosis malignant transformation, including DNA methylation and demethylation, histone modifications, and miRNA aberrant expressions. In this present review, we mainly summarize the research progress about the current knowledge regarding the epigenetic modifications of the relations between endometriosis malignant transformation and ovarian cancer in an effort to identify some risk factors probably associated with ectopic endometrium transformation.
Collapse
|
35
|
Datta S, Sherva RM, De La Cruz M, Long MT, Roy P, Backman V, Chowdhury S, Roy HK. Single Nucleotide Polymorphism Facilitated Down-Regulation of the Cohesin Stromal Antigen-1: Implications for Colorectal Cancer Racial Disparities. Neoplasia 2018; 20:289-294. [PMID: 29471289 PMCID: PMC5883624 DOI: 10.1016/j.neo.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Abstract
The biological underpinnings for racial disparities in colorectal cancer (CRC) incidence remain to be elucidated. We have previously reported that the cohesin SA-1 down-regulation is an early event in colon carcinogenesis which is dramatically accentuated in African-Americans. In order to investigate the mechanism, we evaluated single nucleotide polymorphisms (SNPs) for association with SA-1-related outcomes followed by gene editing of candidate SNP. We observed that rs34149860 SNP was significantly associated with a lower colonic mucosal SA-1 expression and evaluation of public databases showed striking racial discordance. Given that the predicted SNP would alter miR-29b binding site, we used CRISPR knock-in in CRC cells and demonstrated that the SNP but not wild-type had profound alterations in SA-1 expression with miR-29b inhibitor. This is the first demonstration of high-order chromatin regulators as a modulator of racial differences, risk alteration with SNPs and finally specific modulation by microRNAs.
Collapse
Affiliation(s)
- Somenath Datta
- Department of Medicine, Section of Gastroenterology, Boston University Medical Center, Boston, MA 02118, USA
| | - Richard M Sherva
- Department of Medicine, Section of Biomedical Genetics, Boston University Medical Center, Boston, MA 02118, USA
| | - Mart De La Cruz
- Department of Medicine, Section of Gastroenterology, Boston University Medical Center, Boston, MA 02118, USA
| | - Michelle T Long
- Department of Medicine, Section of Gastroenterology, Boston University Medical Center, Boston, MA 02118, USA
| | - Priya Roy
- Department of Medicine, Section of Gastroenterology, Boston University Medical Center, Boston, MA 02118, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Sanjib Chowdhury
- Department of Medicine, Section of Gastroenterology, Boston University Medical Center, Boston, MA 02118, USA.
| | - Hemant K Roy
- Department of Medicine, Section of Gastroenterology, Boston University Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
36
|
Halim TA, Attar R, Donfrancesco C, Farooqi AA, Zaman F. From Endometriosis to Cancer: Spotlight on Intracellular Signaling Cascades and MicroRNAs. RECENT TRENDS IN CANCER BIOLOGY: SPOTLIGHT ON SIGNALING CASCADES AND MICRORNAS 2018:1-10. [DOI: 10.1007/978-3-319-71553-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
37
|
Kelso TWR, Porter DK, Amaral ML, Shokhirev MN, Benner C, Hargreaves DC. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. eLife 2017; 6:30506. [PMID: 28967863 PMCID: PMC5643100 DOI: 10.7554/elife.30506] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is frequently mutated in cancer. Deficiency in its homolog ARID1B is synthetically lethal with ARID1A mutation. However, the functional relationship between these homologs has not been explored. Here, we use ATAC-seq, genome-wide histone modification mapping, and expression analysis to examine colorectal cancer cells lacking one or both ARID proteins. We find that ARID1A has a dominant role in maintaining chromatin accessibility at enhancers, while the contribution of ARID1B is evident only in the context of ARID1A mutation. Changes in accessibility are predictive of changes in expression and correlate with loss of H3K4me and H3K27ac marks, nucleosome spacing, and transcription factor binding, particularly at growth pathway genes including MET. We find that ARID1B knockdown in ARID1A mutant ovarian cancer cells causes similar loss of enhancer architecture, suggesting that this is a conserved function underlying the synthetic lethality between ARID1A and ARID1B.
Collapse
Affiliation(s)
- Timothy W R Kelso
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, California, United States
| | - Devin K Porter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, California, United States
| | - Maria Luisa Amaral
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, California, United States
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, California, United States
| | - Christopher Benner
- Department of Medicine, University of California San Diego, California, United States
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, California, United States
| |
Collapse
|