1
|
Khan A, Zia K, Khan SA, Khalid A, Abdalla AN, Bibi M, Ul-Haq Z. Identification of IL-2 inducible tyrosine kinase inhibitors by quantum mechanics and ligand based virtual screening approaches. J Biomol Struct Dyn 2024; 42:3630-3640. [PMID: 37216319 DOI: 10.1080/07391102.2023.2214220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Interleukin-2-inducible T-cell kinase (ITK) is a crucial intracellular signaling mediator in normal and malignant T-cells and natural killer cells. Selective inhibition of ITK might be useful for treating a variety of disorders including; autoimmune, inflammatory, and neoplastic disorders. Over the past two decades, the clinical management of ITK inhibitors has progressed dramatically. So far, specific inhibitor with no off-target effects against ITK is available. Herein, we aim to discover potential virtual hits to fasten the process of drug design and development against ITK. In this regard, the key chemical characteristics of ITK inhibitors were identified using ligand-based pharmacophore modeling. The validated pharmacophore comprises one hydrogen bond donor and three hydrogen bond acceptors and was utilized as a 3D query in virtual screening using ZINC, Covalent, and in-house databases. A total of 12 hit compounds were chosen on the basis of their critical interactions with the significant amino acids of ITK. The orbital energies such as HOMO and LUMO of the hit compounds were calculated to evaluate the inhibitor's potencies. Further, molecular dynamics simulation demonstrated the stability of ITK upon binding of selected virtual hits. Binding energy using the MMGBSA method showed the potential binding affinity of all the hits with ITK. The research identifies key chemical characteristics with geometric restrictions that lead to ITK inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alamgir Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Komal Zia
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Salman Ali Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- National Center for Research, Medicinal and Aromatic Plants Research Institute, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Marium Bibi
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Zaheer Ul-Haq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Chatterjee B, Sarkar M, Bose S, Alam MT, Chaudhary AA, Dixit AK, Tripathi PP, Srivastava AK. MicroRNAs: Key modulators of inflammation-associated diseases. Semin Cell Dev Biol 2024; 154:364-373. [PMID: 36670037 DOI: 10.1016/j.semcdb.2023.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Inflammation is a multifaceted biological and pathophysiological response to injuries, infections, toxins, and inflammatory mechanisms that plays a central role in the progression of various diseases. MicroRNAs (miRNAs) are tiny, 19-25 nucleotides long, non-coding RNAs that regulate gene expression via post-transcriptional repression. In this review, we highlight the recent findings related to the significant roles of miRNAs in regulating various inflammatory cascades and immunological processes in the context of many lifestyle-related diseases such as diabetes, cardiovascular diseases, cancer, etc. We also converse on how miRNAs can have a dual impact on inflammatory responses, suggesting that regulation of their functions for therapeutic purposes may be disease-specific.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mrinmoy Sarkar
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Md Tanjim Alam
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh, Saudi Arabia
| | | | - Prem Prakash Tripathi
- Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Xu SJ, Chen JH, Chang S, Li HL. The role of miRNAs in T helper cell development, activation, fate decisions and tumor immunity. Front Immunol 2024; 14:1320305. [PMID: 38264670 PMCID: PMC10803515 DOI: 10.3389/fimmu.2023.1320305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
T helper (Th) cells are central members of adaptive immunity and comprise the last line of defense against pathogen infection and malignant cell invasion by secreting specific cytokines. These cytokines then attract or induce the activation and differentiation of other immune cells, including antibody-producing B cells and cytotoxic CD8+ T cells. Therefore, the bidirectional communication between Th cells and tumor cells and their positioning within the tumor microenvironment (TME), especially the tumor immune microenvironment (TIME), sculpt the tumor immune landscape, which affects disease initiation and progression. The type, number, and condition of Th cells in the TME and TIME strongly affect tumor immunity, which is precisely regulated by key effectors, such as granzymes, perforins, cytokines, and chemokines. Moreover, microRNAs (miRNAs) have emerged as important regulators of Th cells. In this review, we discuss the role of miRNAs in regulating Th cell mediated adaptive immunity, focusing on the development, activation, fate decisions, and tumor immunity.
Collapse
Affiliation(s)
- Shi-Jun Xu
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jin-Hua Chen
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hai-Liang Li
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Chimenti C, Magnocavallo M, Vetta G, Alfarano M, Manguso G, Ajmone F, Ballatore F, Costantino J, Ciaramella P, Severino P, Miraldi F, Lavalle C, Vizza CD. The Role of MicroRNA in the Myocarditis: a Small Actor for a Great Role. Curr Cardiol Rep 2023:10.1007/s11886-023-01888-5. [PMID: 37269474 DOI: 10.1007/s11886-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW Myocarditis is an inflammation of the myocardium secondary to a variety of agents such as infectious pathogens, toxins, drugs, and autoimmune disorders. In our review, we provide an overview of miRNA biogenesis and their role in the etiology and pathogenesis of myocarditis, evaluating future directions for myocarditis management. RECENT FINDINGS Advances in genetic manipulation techniques allowed to demonstrate the important role of RNA fragments, especially microRNAs (miRNAs), in cardiovascular pathogenesis. miRNAs are small non-coding RNA molecules that regulate the post-transcriptional gene expression. Advances in molecular techniques allowed to identify miRNA's role in pathogenesis of myocarditis. miRNAs are related to viral infection, inflammation, fibrosis, and apoptosis of cardiomyocytes, making them not only promising diagnostic markers but also prognostics and therapeutic targets in myocarditis. Of course, further real-world studies will be needed to assess the diagnostic accuracy and applicability of miRNA in the myocarditis diagnosis.
Collapse
Affiliation(s)
- Cristina Chimenti
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy.
| | - Michele Magnocavallo
- Cardiology Division, Arrhythmology Unit, S. Giovanni Calibita Hospital, Isola Tiberina, Rome, Italy
| | - Giampaolo Vetta
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Messina, Mesina, Italy
| | - Maria Alfarano
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Giulia Manguso
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Francesco Ajmone
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Federico Ballatore
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Jacopo Costantino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Piera Ciaramella
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Paolo Severino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Fabio Miraldi
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carlo Lavalle
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carmine Dario Vizza
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Poorghobadi S, Agharezaei M, Ghanbari M, Bahramali G, Abbasian L, Sajadipour M, Baesi K. Discordant immune response among treatment experienced patients infected with HIV-1: Crosstalk between MiRNAs expression and CD4+ T cells count. Int Immunopharmacol 2023; 114:109533. [PMID: 36508918 DOI: 10.1016/j.intimp.2022.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND One of the problems with treating HIV-infected patients with ARVs is that the treatment can reduce viral load and does not increase the number of CD4 cells (immunological discordance). There are still challenges to treating HIV-positive patients. AIM This study aimed to investigate the expression level of 18 miRNAs involved in the proliferation and differentiation of CD4+ T cells in a target (discordant immune response) and a control (immune response) group. METHODS In this case-control study, 18 miRNAs were selected and synthesized according to the in-silico analysis and published literatures. RNA extraction was performed from PBMC cells of 30 HIV-1 positive patients in the sample bank. The expression level of microRNAs was calculated by the relative q PCR method (2-ΔΔCt method), and data were analyzed using GraphPad Prism software version 8.0.2. RESULTS The results of fold change calculation and statistical analysis showed that the expression levels of miR-30b (p value: 0.01, fold change: 0.23), miR-155 (p value: 0.04, fold change: 0.44), miR-181a (p value: 0.01, fold change: 0.37), and miR-190b (p value: 0.01, fold change: 0.39) had a significant decrease in the target group compared to the control group. CONCLUSION In summary, various studies have shown that miRNAs, including miR-30b, miR-155, miR-181a, and miR-190b, are involved in the proliferation, differentiation, and development of CD4+ T cells. One reason for the lack of increase in CD4+ T cells may be the reduced expression of these miRNAs.
Collapse
Affiliation(s)
- Shima Poorghobadi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Agharezaei
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ghanbari
- Department of Microbial Biotechnology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Golnaz Bahramali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Abbasian
- Department of Infectious Diseases and Tropical Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Sajadipour
- South Health Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
MicroRNAs in T Cell-Immunotherapy. Int J Mol Sci 2022; 24:ijms24010250. [PMID: 36613706 PMCID: PMC9820302 DOI: 10.3390/ijms24010250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) act as master regulators of gene expression in homeostasis and disease. Despite the rapidly growing body of evidence on the theranostic potential of restoring miRNA levels in pre-clinical models, the translation into clinics remains limited. Here, we review the current knowledge of miRNAs as T-cell targeting immunotherapeutic tools, and we offer an overview of the recent advances in miRNA delivery strategies, clinical trials and future perspectives in RNA interference technologies.
Collapse
|
7
|
Li D, Liu L, Du X, Ma W, Zhang J, Piao W. MiRNA-374b-5p and miRNA-106a-5p are related to inflammatory bowel disease via regulating IL-10 and STAT3 signaling pathways. BMC Gastroenterol 2022; 22:492. [DOI: 10.1186/s12876-022-02533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is one of the most frequent gastrointestinal disorders worldwide. Although the actual etiology of IBD remains unclear, growing evidence suggests that CD4+ T cells-associated cytokines, including interferon (IFN)-γ, interleukin (IL)-10 and IL-17A, are crucial for the occurrence of IBD. It has been reported that there is a positive association between miRNAs and IBD development. In this study, we investigated the roles of hsa-miRNA-374b-5p(miRNA-374b-5p) and hsa-miRNA-106a-5p(miRNA-106a-5p) in regulating IBD development.
Methods
Serum was obtained from vein blood of IBD patients and healthy controls, qRT-PCR was performed to study the expression of miRNA-374b-5p and miRNA-106a-5p. Furthermore, we investigate the effects of overexpression or inhibition of miRNA-374b-5p on naïve CD4 + T cell subsets differentiation from vein blood of healthy controls by RT-qPCR, flow cytometry and western blot. And more the prediction and confirmation of the targeting genes of miRNA-374b-5p and miRNA-106a-5p were performed by bioinformatics softwares and dual-luciferase reporter assay.
Results
The results showed that miRNA-106a-5p and miRNA-374b-5p were significantly overexpressed in IBD patients. MiRNA-374b-5p could enhance Th1/Th17 cell differentiation and was related to IBD pathogenesis. MiRNA-374b-5p overexpression induced the mRNA expression of IL-17A and IFN-γ, and suppressed that of IL-10 in T cells. MiRNA-374b-5p inhibition decreased the mRNA expression of IL-17A and IFN-γ, while upregulated that of IL-10 in T cells. These qPCR data were further verified at protein level by western blotting and flow cytometry. In addition, dual-luciferase reporter (DLR) assay indicated that miRNA-374b-5p was directly targeted by IL-10, a key anti-inflammatory cytokine for preventing the occurrence of IBD. Meanwhile, STAT3 was identified as a target gene of miRNA-106a-5p by DLR assays. Further analysis revealed that miRNA-374b-5p regulated JAK1 and STAT3 pathways in CD4+ T cells via IL-10/STAT3 axis. MiRNA-374b-5p overexpression remarkably decreased the mRNA expression and phosphorylated (ser-727) protein levels of STAT3, while miRNA-374b-5p inhibition had the opposite effects.
Conclusion
MiRNA-374b-5p and miRNA-106a-5p may contribute to IBD development by regulating IL-10/STAT3 signal transduction.
Collapse
|
8
|
microRNA, a Subtle Indicator of Human Cytomegalovirus against Host Immune Cells. Vaccines (Basel) 2022; 10:vaccines10020144. [PMID: 35214602 PMCID: PMC8874957 DOI: 10.3390/vaccines10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a double-stranded DNA virus that belongs to the β-herpesvirus family and infects 40–90% of the adult population worldwide. HCMV infection is usually asymptomatic in healthy individuals but causes serious problems in immunocompromised people. We restricted this narrative review (PubMed, January 2022) to demonstrate the interaction and molecular mechanisms between the virus and host immune cells with a focus on HCMV-encoded miRNAs. We found a series of HCMV-encoded miRNAs (e.g., miR-UL112 and miR-UL148D) are explicitly involved in the regulation of viral DNA replication, immune evasion, as well as host cell fate. MiRNA-targeted therapies have been explored for the treatment of atherosclerosis, cardiovascular disease, cancer, diabetes, and hepatitis C virus infection. It is feasible to develop an alternative vaccine to restart peripheral immunity or to inhibit HCMV activity, which may contribute to the antiviral intervention for serious HCMV-related diseases.
Collapse
|
9
|
Mi QS, Wang J, Liu Q, Wu X, Zhou L. microRNA dynamic expression regulates invariant NKT cells. Cell Mol Life Sci 2021; 78:6003-6015. [PMID: 34236444 PMCID: PMC11073247 DOI: 10.1007/s00018-021-03895-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Invariant natural killer T cells (iNKT) are a prevalent population of innate-like T cells in mice, but quite rare in humans that are critical for regulation of the innate and adaptive immune responses during antimicrobial immunity, tumor rejection, and inflammatory diseases. Multiple transcription factors and signaling molecules that contribute to iNKT cell selection and functional differentiation have been identified. However, the full molecular network responsible for regulating and maintaining iNKT populations remains unclear. MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved, small, non-coding RNAs that regulate gene expression post-transcriptionally. Previous reports uncovered the important roles of miRNAs in iNKT cell development and function using Dicer mutant mice. In this review, we discuss the emerging roles of individual miRNAs in iNKT cells reported by our group and other groups, including miR-150, miR-155, miR-181, let-7, miR-17 ~ 92 cluster, and miR-183-96-182 cluster. It is likely that iNKT cell development, differentiation, homeostasis, and functions are orchestrated through a multilayered network comprising interactions among master transcription factors, signaling molecules, and dynamically expressed miRNAs. We provide a comprehensive view of the molecular mechanisms underlying iNKT cell differentiation and function controlled by dynamically expressed miRNAs.
Collapse
Affiliation(s)
- Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.
| | - Jie Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Queping Liu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Xiaojun Wu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.
| |
Collapse
|
10
|
Regulation and Functions of Protumoral Unconventional T Cells in Solid Tumors. Cancers (Basel) 2021; 13:cancers13143578. [PMID: 34298791 PMCID: PMC8304984 DOI: 10.3390/cancers13143578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate-adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.
Collapse
|
11
|
Vallianou NG, Evangelopoulos A, Kounatidis D, Stratigou T, Christodoulatos GS, Karampela I, Dalamaga M. Diabetes Mellitus and SARS-CoV-2 Infection: Pathophysiologic Mechanisms and Implications in Management. Curr Diabetes Rev 2021; 17:e123120189797. [PMID: 33388022 DOI: 10.2174/1573399817666210101110253] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Currently, diabetes mellitus (DM), as well as coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are major public health issues worldwide. BACKGROUND It has been suggested that patients with DM are more vulnerable to SARS-CoV-2 infection and suffer from more severe forms of the disease. METHODS A literature search was performed using PubMed, Scopus, and Google search engines. RESULTS Angiotensin-converting enzyme-2 (ACE2) is the major receptor of SARS-CoV-2 in the human host. The differential expression of ACE2 in the lungs of patients with DM makes them more susceptible to COVID-19. Additionally, acute or chronic hyperglycemia renders individuals in an immune-suppressive state, with impaired innate and adaptive immunity function, also contributing to the severity of COVID-19 infection among patients with DM. Other factors contributing to a more severe course of COVID-19 include the coexistence of obesity in T2DM, the endothelial inflammation induced by the SARS-CoV-2 infection, which aggravates the endothelial dysfunction observed in both T1DM and T2DM, and the hypercoagulability presented in COVID-19 infection that increases the thrombotic tendency in DM. CONCLUSION This review summarizes the pathophysiologic mechanisms underlying the coexistence of both pandemics as well as the current recommendations and future perspectives regarding the optimal treatment of inpatients and outpatients with DM in the era of SARS-CoV-2 infection. Notably, the currently recommended drugs for the treatment of severe COVID-19, dexamethasone and remdesivir, may cause hyperglycemia, an adverse effect that physicians should bear in mind when caring for patients with DM and COVID-19.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676 Athens, Greece
| | | | - Dimitris Kounatidis
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676 Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676 Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 MikrasAsias street, 11527 Athens, Greece; 4Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, Haidari, 12462 Athens, Greece
| | - Irene Karampela
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 MikrasAsias street, 11527 Athens, Greece; 4Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, Haidari, 12462 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 MikrasAsias street, 11527 Athens, Greece; 4Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, Haidari, 12462 Athens, Greece
| |
Collapse
|
12
|
MiR-374b-5p Regulates T Cell Differentiation and Is Associated with rEg.P29 Immunity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8024763. [PMID: 32908913 PMCID: PMC7463394 DOI: 10.1155/2020/8024763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022]
Abstract
Cystic echinococcosis (CE) is a zoonotic disease caused by Echinococcus granulosus (Eg) infection. Our previous study confirmed that recombinant Eg.P29 (rEg.P29) could protect against echinococcus granulosus secondary infection in sheep and mice. The aim of the study was to investigate the association between immunoprotection of rEg.P29 vaccine and mmu-miR-374b-5p (miR-374b-5p) and study the immunity influence of miR-374b-5p on CD4+ T cells in mice spleen. MiR-374b-5p level was significantly increased after the second-week and the fourth week of vaccination with rEg.P29. Overexpression of miR-374b-5p increased IFN-γ, IL-2, IL-17A mRNA levels and decreased IL-10 mRNA levels in CD4+ T cells. Moreover, the inhibition of miR-374b-5p decreased IFN-γ and IL-17A and increased IL-10 mRNA levels in CD4+ T cells; this was further confirmed by the flow cytometry. The vaccination of rEg.P29 enhanced miR-374b-5p expression that was associated with a higher Th1 and Th17 immune response, a lower IL-10 mRNA production with miR-374b-5p overexpression, a lower Th1 immune response, and a higher IL-10 mRNA levels with miR-374b-5p inhibitions. To sum up, these data suggest that miR-374b-5p may participate in rEg.P29 immunity by regulating Th1 and Th17 differentiation.
Collapse
|
13
|
Abstract
BACKGROUND Individuals with diabetes are at a greater risk of hospitalization and mortality resulting from viral, bacterial, and fungal infections. The coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread quickly to more than 213 countries and claimed 395,779 lives as of June 7, 2020. Notably, in several studies, diabetes is one of the most reported comorbidities in patients with severe COVID-19. SCOPE OF REVIEW In this review, I summarize the clinical data on the risk for infectious diseases in individuals with diabetes while highlighting the mechanisms for altered immune regulation. The focus is on coronaviruses. Based on the new clinical data obtained from COVID-19 patients, a discussion of mechanisms, such as cytokine storm, pulmonary and endothelial dysfunction, and hypercoagulation, that may render individuals with diabetes more vulnerable to COVID-19 is provided. MAJOR CONCLUSIONS Epidemiological studies show that poorly controlled diabetes is a risk factor for various infectious diseases. Given the global burden of diabetes and the pandemic nature of coronaviruses, understanding how diabetes affects COVID-19 severity is critical to designing tailored treatments and clinical management of individuals affected by diabetes.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Betacoronavirus
- COVID-19
- Child
- Comorbidity
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Cytokines/metabolism
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/immunology
- Female
- Humans
- Immunity, Cellular
- Immunity, Innate
- Incidence
- Male
- Mice
- Middle Aged
- Pandemics
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Risk Factors
- SARS-CoV-2
Collapse
Affiliation(s)
- Suheda Erener
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, 85764, Neuherberg, Germany.
| |
Collapse
|
14
|
Wang J, Han B. Dysregulated CD4+ T Cells and microRNAs in Myocarditis. Front Immunol 2020; 11:539. [PMID: 32269577 PMCID: PMC7109299 DOI: 10.3389/fimmu.2020.00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Myocarditis is a polymorphic disease complicated with indeterminate etiology and pathogenesis, and represents one of the most challenging clinical problems lacking specific diagnosis and effective therapy. It is caused by a complex interplay of environmental and genetic factors, and causal links between dysregulated microribonucleic acids (miRNAs) and myocarditis have also been supported by recent epigenetic researches. Both dysregulated CD4+ T cells and miRNAs play critical roles in the pathogenesis of myocarditis, and the classic triphasic model of its pathogenesis consists of the acute infectious, subacute immune, and recovery/chronic myopathic phase. CD4+ T cells are key pathogenic factors underlying the development and progression of myocarditis, and the effector and regulatory subsets, respectively, promote and inhibit autoimmune responses. Furthermore, the reciprocal interplay of these subsets influences the pathogenesis as well. Dysregulated miRNAs along with their mRNA and protein targets have been identified in heart biopsies (intracellular miRNAs) and body fluids (circulating miRNAs) during myocarditis. These miRNAs show phase-dependent changes, and correlate with viral infection, immune status, fibrosis, destruction of cardiomyocytes, arrhythmias, cardiac functions, and outcomes. Thus, miRNAs are promising diagnostic markers and therapeutic targets in myocarditis. In this review, we review myocarditis with an emphasis on its pathogenesis, and present a summary of current knowledge of dysregulated CD4+ T cells and miRNAs in myocarditis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
15
|
Sambucci M, Gargano F, Guerrera G, Battistini L, Borsellino G. One, No One, and One Hundred Thousand: T Regulatory Cells' Multiple Identities in Neuroimmunity. Front Immunol 2019; 10:2947. [PMID: 31956323 PMCID: PMC6955595 DOI: 10.3389/fimmu.2019.02947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
As the Nobel laureate Luigi Pirandello wrote in his novels, identities can be evanescent. Although a quarter of a century has passed since regulatory T cells (Treg) were first described, new studies continue to reveal surprising and contradictory features of this lymphocyte subset. Treg cells are the core of the immunological workforce engaged in the restraint of autoimmune or inflammatory reactions, and their characterization has revealed substantial heterogeneity and complexity in the phenotype and gene expression profiles, proving them to be a most versatile and adaptive cell type, as exemplified by their plasticity in fine-tuning immune responses. Defects in Treg function are associated with several autoimmune diseases, including multiple sclerosis, which is caused by an inappropriate immune reaction toward brain components; conversely, the beneficial effects of immunomodulating therapies on disease progression have been shown to partly act upon the biology of these cells. Both in animals and in humans the pool of circulating Treg cells is a mixture of natural (nTregs) and peripherally-induced Treg (pTregs). Particularly in humans, circulating Treg cells can be phenotypically subdivided into different subpopulations, which so far are not well-characterized, particularly in the context of autoimmunity. Recently, Treg cells have been rediscovered as mediators of tissue healing, and have also shown to be involved in organ homeostasis. Moreover, stability of the Treg lineage has recently been addressed by several conflicting reports, and immune-suppressive abilities of these cells have been shown to be dynamically regulated, particularly in inflammatory conditions, adding further levels of complexity to the study of this cell subset. Finally, Treg cells exert their suppressive function through different mechanisms, some of which—such as their ectoenzymatic activity—are particularly relevant in CNS autoimmunity. Here, we will review the phenotypically and functionally discernible Treg cell subpopulations in health and in multiple sclerosis, touching also upon the effects on this cell type of immunomodulatory drugs used for the treatment of this disease.
Collapse
Affiliation(s)
- Manolo Sambucci
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Luca Battistini
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | |
Collapse
|
16
|
Zhou T, Hu Z, Yang S, Sun L, Yu Z, Wang G. Role of Adaptive and Innate Immunity in Type 2 Diabetes Mellitus. J Diabetes Res 2018; 2018:7457269. [PMID: 30533447 PMCID: PMC6250017 DOI: 10.1155/2018/7457269] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022] Open
Abstract
After the recognition of the essential role of the immune system in the progression of type 2 diabetes mellitus, more studies are focused on the effects produced by the abnormal differentiation of components of the immune system. In patients suffering from obesity or T2DM, there were alterations in proliferation of T cells and macrophages, and impairment in function of NK cells and B cells, which represented abnormal innate and adaptive immunity. The abnormality of either innate immunity, adaptive immunity, or both was involved and interacted with each other during the progression of T2DM. Although previous studies have revealed the functional involvement of T cells in T2DM, and the regulation of metabolism by the innate or adaptive immune system during the pathogenesis of T2DM, there has been a lack of literature reviewing the relevant role of adaptive and innate immunity in the progression of T2DM. Here, we will review their relevant roles, aiming to provide new thought for the development of immunotherapy in T2DM.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zheng Hu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhenxiang Yu
- Department of Respiration, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|