1
|
Lin W, Wang S, Liu R, Zhang D, Zhang J, Qi X, Li Z, Miao M, Cai X, Su G. Research progress of cPLA2 in cardiovascular diseases (Review). Mol Med Rep 2025; 31:103. [PMID: 39981923 PMCID: PMC11868774 DOI: 10.3892/mmr.2025.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Cytoplasmic phospholipase A2 (cPLA2) is a vital member of the PLA2 family. Studies have demonstrated that cPLA2 plays a key role in various inflammatory‑related diseases and cancers. However, limited research has focused on cPLA2 in cardiovascular diseases. The present review discussed and summarized the research progress on cPLA2 in atherosclerosis, cardiomyopathy, myocardial ischemia‑reperfusion injury and other related conditions. It also highlighted the critical molecular mechanisms by which cPLA2 regulates the pathophysiological processes of vascular endothelial cells, platelets and myocardial cells in cardiovascular diseases. Current studies confirm that cPLA2 plays an important role in cardiovascular diseases and has the potential to become a therapeutic target for the diagnosis, treatment evaluation and prognosis of these conditions. The present review systematically explored the significant role of cPLA2 in cardiovascular diseases and elaborated on its underlying molecular mechanisms. The findings aimed to refine the theoretical understanding of cardiovascular disease pathogenesis and provide a foundation for developing novel treatment strategies.
Collapse
Affiliation(s)
- Wenyu Lin
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Shuya Wang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Ronghan Liu
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Dan Zhang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Jiaxing Zhang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Xiaohan Qi
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Zheng Li
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Meng Miao
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Xiaojun Cai
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guohai Su
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
2
|
Yuan Y, Lin Q, Feng HY, Zhang Y, Lai X, Zhu MH, Wang J, Shi J, Huang Y, Zhang L, Lu Q, Yuan Z, Lovell JF, Chen HZ, Sun P, Fang C. A multistage drug delivery approach for colorectal primary tumors and lymph node metastases. Nat Commun 2025; 16:1439. [PMID: 39920155 PMCID: PMC11806101 DOI: 10.1038/s41467-025-56768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
The presence of lymph node (LN) metastases guides cancer staging and worsens prognoses. Incomplete lymphadenectomy of metastatic LNs may end up with disease recurrence, while excessive resection can result in increased postoperative complications with even no survival benefit. Thus, effective non-invasive methods to treat metastatic LNs would be highly desirable. Here, we develop an enzyme-responsive formulation of small-sized doxorubicin-loaded mesoporous silica nanoparticles (DMSN, 40 nm) encapsulated in nanoliposomes (DMSN@Pla-Lipo, 160 nm). The liposomal membrane contains 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), two phospholipids sensitive to secreted phospholipase A2 in human colorectal tumors. In an orthotopic colorectal murine tumor model, phospholipase-induced membrane permeabilization triggers the liberation of DMSN from liposomes for enhanced tumor penetration, conferring an enhanced suppression for the primary tumor. Furthermore, through translocation into metastatic LNs via tumor lymphatics, metastatic tumor cells in LNs are eradicated. Metastases to other major organs are also suppressed, which can be ascribed to the inhibition of colorectal cancer metastasis-associated TGF-β, Wnt, and Hippo signaling pathways in metastatic LNs. The treatment confers an 80% 90-day survival rate in this aggressive tumor model. Taken together, this study demonstrates a deliberate treatment approach for management of both primary tumors and metastatic LNs through multistage drug delivery.
Collapse
Affiliation(s)
- Yihang Yuan
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Quanjun Lin
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Hai-Yi Feng
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yunpeng Zhang
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Jue Wang
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Jiangpei Shi
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yanhu Huang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Lele Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Zeli Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
3
|
Wen F, Ling H, Ran R, Li X, Wang H, Liu Q, Li M, Yu T. LPCAT3 regulates the proliferation and metastasis of serous ovarian cancer by modulating arachidonic acid. Transl Oncol 2025; 52:102256. [PMID: 39733744 PMCID: PMC11743812 DOI: 10.1016/j.tranon.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Lysophosphatidylcholine acyltransferase 3 (LPCAT3) promotes ferroptosis through the incorporating polyunsaturated fatty acids into membrane phospholipids, however, its role in serous ovarian cancer remains unclear. Here explored cancer proliferation and metastasis after modulating LPCAP3. METHODS LPCAT3 protein in ovarian cancer tissues was detected using bioinformatic and immunohistoche mical assays. Cell behaviors were observed after up- or down-regulating LPCAT3. Lipid metabolites were determined, and then the pathway enrichment analysis was performed. RESULTS The expression level of LPCAT3 in serous ovarian cancer tissues was lower than that in other types of ovarian cancer, and high expression was associated with a longer survival time. Overexpressing LPCAT3 reduced cell proliferation, migration and invasion via enhancing ferroptosis and decreasing the survival signaling; these behaviors were enhanced in LPCAT3-downknocked cells, where a higher abundance of arachidonic acid was observed followed by up-regulation of the downstream survival signaling. In vivo, up-regulation of LPCAT3 decreased tumor growth, but down-regulation enhanced tumor growth and metastasis. CONCLUSIONS LPCAT3 modulated metabolism of arachidonic acid, thereby regulating ferroptosis and the survival signaling to determine cancer growth and metastasis.
Collapse
Affiliation(s)
- Fang Wen
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongjian Ling
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Ran
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinya Li
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Houmei Wang
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qianfen Liu
- Women and Children's Hospital, Chongqing Medical University (Chongqing Health Center for Women and Children), China
| | - Min Li
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Tinghe Yu
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Song X, Qiao L, Dou X, Chang J, Zeng X, Deng T, Yang G, Liu P, Wang C, Xu Q, Xu C. Hypertriglyceridemia-modulated gut microbiota promotes lysophosphatidylcholine generation to aggravate acute pancreatitis in a TLR4-dependent manner. IMETA 2025; 4:e70003. [PMID: 40027483 PMCID: PMC11865321 DOI: 10.1002/imt2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Hypertriglyceridemia (HTG) can lead to the disorder of gut microbiota in mice, resulting in the increase of endotoxin content. HTG can also aggravate the damage of intestinal barrier function and intestinal bacterial translocation in acute pancreatitis (AP) mice. Toll-like receptor 4 gene (Tlr4) knockout can significantly reduce gut permeability and endotoxin invasion in AP mice. In addition, HTG-modulated gut microbiota could up-regulate glycerophospholipid metabolism and increase lysophosphatidylcholine (LysoPC) content in a TLR4-dependent manner, thereby aggravating pancreatic injury in AP.
Collapse
Affiliation(s)
- Xiaofan Song
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Lei Qiao
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Xina Dou
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Jiajing Chang
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Xiaonan Zeng
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Tianjing Deng
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Ge Yang
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Peiyun Liu
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | | | - Qinhong Xu
- Department of Geriatric Surgerythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Chunlan Xu
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Department of Geriatric Surgerythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
5
|
Chaudary AS, Guo Y, Utkin YN, Barancheshmeh M, Dagda RK, Gasanoff ES. Sphingomyelin Inhibits Hydrolytic Activity of Heterodimeric PLA 2 in Model Myelin Membranes: Pharmacological Relevance. J Membr Biol 2025; 258:29-46. [PMID: 39438323 DOI: 10.1007/s00232-024-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
In this work, the heterodimeric phospholipase A2, HDP-2, from viper venom was investigated for its hydrolytic activity in model myelin membranes as well as for its effects on intermembrane exchange of phospholipids (studied by phosphorescence quenching) and on phospholipid polymorphism (studied by 1H-NMR spectroscopy) to understand the role of sphingomyelin (SM) in the demyelination of nerve fibers. By using well-validated in vitro approaches, we show that the presence of SM in model myelin membranes leads to a significant inhibition of the hydrolytic activity of HDP-2, decreased intermembrane phospholipid exchange, and reduced phospholipid polymorphism. Using AutoDock software, we show that the NHδ+ group of the sphingosine backbone of SM binds to Tyr22(C=Opbδ-) of HDP-2 via a hydrogen bond which keeps only the polar head of SM inside the HDP-2's active center and positions the sn-2 acyl ester bond away from the active center, thus making it unlikely to hydrolyze the alkyl chains at the sn-2 position. This observation strongly suggests that SM inhibits the catalytic activity of HDP-2 by blocking access to other phospholipids to the active center of the enzyme. Should this observation be verified in further studies, it would offer a tantalizing opportunity for developing effective pharmaceuticals to stop the demyelination of nerve fibers by aberrant PLA2s with overt activity - as observed in brain degenerative diseases - by inhibiting SM hydrolysis and/or facilitating SM synthesis in the myelin sheath membrane.
Collapse
Affiliation(s)
- Anwaar S Chaudary
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China
| | - Yanglin Guo
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maryam Barancheshmeh
- Universal Scientific Education and Research Network (USERN), Reno, NV, 89512, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada Medical School, Reno, NV, 89557, USA
| | - Edward S Gasanoff
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China.
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Ashcroft FJ, Bourboula A, Mahammad N, Barbayianni E, Feuerherm AJ, Nguyen TT, Hayashi D, Kokotou MG, Alevizopoulos K, Dennis EA, Kokotos G, Johansen B. Next generation thiazolyl ketone inhibitors of cytosolic phospholipase A 2 α for targeted cancer therapy. Nat Commun 2025; 16:164. [PMID: 39747052 PMCID: PMC11696576 DOI: 10.1038/s41467-024-55536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Eicosanoids are key players in inflammatory diseases and cancer. Targeting their production by inhibiting Group IVA cytosolic phospholipase A2 (cPLA2α) offers a promising approach for cancer therapy. In this study, we synthesize a second generation of thiazolyl ketone inhibitors of cPLA2α starting with compound GK470 (AVX235) and test their in vitro and cellular activities. We identify a more potent and selective lead molecule, GK420 (AVX420), which we test in parallel with AVX235 and a structurally unrelated compound, AVX002 for inhibition of cell viability across a panel of cancer cell lines. From this, we show that activity of polycomb group repressive complex 2 is a key molecular determinant of sensitivity to cPLA2α inhibition, while resistance depends on antioxidant response pathways. Consistent with these results, we show that elevated intracellular reactive oxygen species and activating transcription factor 4 target gene expression precede cell death in AVX420-sensitive T-cell acute lymphoblastic leukemia cells. Our findings imply cPLA2α may support cancer by mitigating oxidative stress and inhibiting tumor suppressor expression and suggest that AVX420 has potential for treating acute leukemias and other cancers that are susceptible to oxidative cell death.
Collapse
Affiliation(s)
- Felicity J Ashcroft
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asimina Bourboula
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Nur Mahammad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Efrosini Barbayianni
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Astrid J Feuerherm
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thanh Thuy Nguyen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Edward A Dennis
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, USA
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece.
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece.
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
7
|
Lagal DJ, Ortiz-Alcántara Á, Pedrajas JR, McDonagh B, Bárcena JA, Requejo-Aguilar R, Padilla CA. Loss of peroxiredoxin 6 alters lipid composition and distribution resulting in increased sensitivity to ferroptosis. Biochem J 2024; 481:1997-2015. [PMID: 39601357 DOI: 10.1042/bcj20240445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/03/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Peroxiredoxin 6 (PRDX6) is a multifunctional enzyme involved in phospholipid peroxide repair and metabolism. In this study we investigated the global lipid composition of a human hepatocarcinoma cell line SNU475 lacking PRDX6 and lipid related cellular processes. There was a general decrease in multiple lipids species upon loss of PRDX6, in particular sphingomyelins and acylcarnitines, consistent with previously observed alterations in cell signaling pathways and mitochondrial dysfunction. Deprivation of docosahexaenoic acid and related species was also evident. However, a few striking exceptions are worth highlighting: (1) Three specific arachidonic acid (AA) containing phophatidylcholines (PC) increased significantly. The increase of sn1-stearic/sn2-PUFA containing PC and sn2-AA containing plasmenyls are indicative of a preference of PRDX6 iPLA2 activity for these AA storage glycerophospholipids. (2) Several polyunsaturated fatty acids (PUFA) and PUFA containing triacylglycerols accumulated together with increased formation of lipid droplets, an indication of altered FA flux and PUFA sequestration in PRDX6 knockout cells. Loss of PRDX6 resulted in increased sensitivity to erastin-induced ferroptosis, independent of selenium and GPX4, as a consequence of increased levels of lipid hydroperoxides, that reverted to normal levels upon rescue with PRDX6. The results presented demonstrate that all three enzymatic activities of PRDX6 contribute to the role of this multifunctional enzyme in diverse cellular processes, including membrane phospholipid remodeling and glycerophospholipid functional diversity, resulting in altered lipid peroxides and modulation of AA disposition and traffic. These contributions highlight the complexity of the changes that loss of PRDX6 exerts on cell functionality.
Collapse
Affiliation(s)
- Daniel J Lagal
- Department of Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain
| | - Ángel Ortiz-Alcántara
- Department of Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
| | - José R Pedrajas
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, Jaen, Spain
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
| | - J Antonio Bárcena
- Department of Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
| | - Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
| | - C Alicia Padilla
- Department of Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
| |
Collapse
|
8
|
Zhu H, Shi H, Lu J, Zhu K, Yang L, Guo L, Tang L, Shi Y, Hu X. Proteomic profiling reveals the significance of lipid metabolism in small cell lung cancer recurrence and metastasis. J Transl Med 2024; 22:1117. [PMID: 39707352 PMCID: PMC11662706 DOI: 10.1186/s12967-024-05926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a lethal and recalcitrant malignancy with early metastases. However, the molecular and cellular mechanisms underlying its aggressive characteristics remain relatively elusive. METHODS In this study, we conducted a comprehensive proteomic analysis of 90 primary tumors, 15 patient-matched lymph node metastatic tumors, and 15 brain metastatic tumors derived from a cohort of 105 SCLC patients. The potential mechanism for SCLC metastasis was investigated based on the variety of protein expression profiles. RESULTS Primary tumors were divided into two categories according to the their different protein expression profiles, using metastatic tumors as reference. Proteomic comparisons across different groups revealed that lipid metabolism, especially phospholipid metabolism, and immune response had a critical role in SCLC metastasis. Additionally, it was shown that high- and low-density lipoprotein cholesterol were both independent prognostic factors for disease free survival of SCLC patients. To identify critical regulators of metastasis in SCLC, support vector machine was adopted to generate a biomarker combination of ten proteins, all of which significantly correlated with the infiltration of immune cells. Furthermore, it was demonstrated that high expression of phospholipase A2 group IIA in stroma was associated with delayed disease recurrence in limited stage SCLC. CONCLUSIONS This study highlighted the critical significance of lipid metabolism, especially phospholipid metabolism in the disease recurrence and metastasis of SCLC.
Collapse
Affiliation(s)
- Haohua Zhu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Huiyang Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jingyu Lu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kai Zhu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Xingsheng Hu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Zhao D, Zhang Y, Wang F, Kaewmanee R, Cui W, Wu T, Du Y. Drug-phospholipid conjugate nano-assembly for drug delivery. SMART MEDICINE 2024; 3:e20240053. [PMID: 39776594 PMCID: PMC11669785 DOI: 10.1002/smmd.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Phospholipid-based liposomes are among the most successful nanodrug delivery systems in clinical use. However, these conventional liposomes present significant challenges including low drug-loading capacity and issues with drug leakage. Drug-phospholipid conjugates (DPCs) and their assemblies offer a promising strategy for addressing these limitations. In this review, we summarize recent advances in the design, synthesis, and application of DPCs for drug delivery. We begin by discussing the chemical backbone structures and various design strategies such as phosphate head embedding and mono-/bis-embedding in the sn-1/sn-2 positions. Furthermore, we highlight stimulus-responsive designs of DPCs and their applications in treating diseases such as cancer, inflammation, and malaria. Lastly, we explore future directions for DPCs development and their potential applications in drug delivery.
Collapse
Affiliation(s)
- Ding Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixiang Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rames Kaewmanee
- Department of Materials ScienceFaculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianqi Wu
- Department of Radiation OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Hidalgo I, Sorolla MA, Sorolla A, Salud A, Parisi E. Secreted Phospholipases A2: Drivers of Inflammation and Cancer. Int J Mol Sci 2024; 25:12408. [PMID: 39596471 PMCID: PMC11594849 DOI: 10.3390/ijms252212408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Secreted phospholipase 2 (sPLA2) is the largest family of phospholipase A2 (PLA2) enzymes with 11 mammalian isoforms. Each sPLA2 exhibits different localizations and specific properties, being involved in a very wide spectrum of biological processes. The enzymatic activity of sPLA2 has been well described; however, recent findings have shown that they could regulate different signaling pathways by acting directly as ligands. Arachidonic acid (AA) and its derivatives are produced by sPLA2 in collaboration with other molecules in the extracellular space, making important impacts on the cellular environment, being especially relevant in the contexts of immunity and cancer. For these reasons, this review focuses on sPLA2 functions in processes such as the promotion of EMT, angiogenesis, and immunomodulation in the context of tumor initiation and progression. Finally, we will also describe how this knowledge has been applied in the search for new sPLA2 inhibitory compounds that can be used for cancer treatment.
Collapse
Affiliation(s)
- Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
11
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
12
|
Li S, Qin C, Peng SM, Wang YB, Wang Y, Wang XS, Shi JG, Li XC. A newly identified secretory phospholipase A2 group XIIA homolog (LcPLA2XIIA) in Larimichthys crocea exhibits antimicrobial and antitumor activities. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109924. [PMID: 39332653 DOI: 10.1016/j.fsi.2024.109924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The phospholipase A2 (PLA2) superfamily has attracted increasing attention in recent years due to the multiple physiological and pathological functions exerted by its members. Up to date, the knowledge about the biological role of PLA2XIIA subfamily members remains limited. In this study, a new member of PLA2XIIA subfamily, LcPLA2XIIA, was characterized in large yellow croaker. Different from most members of the PLA2 superfamily with positive charge, LcPLA2XIIA encodes an anionic protein, which is similar to other members of PLA2XIIA subfamily. LcPLA2XIIA is highly expressed in the intestine, and afterwards, it is up-regulated after with Pseudomonas plecoglossicida or Staphylococcus aureus. LcPLA2XIIA exhibits strong inhibitory activity against these two bacteria. The results indicate that LcPLA2XIIA plays an important role in the antimicrobial immune responses of large yellow croaker. LcPLA2XIIA displays strong binding activity to all the tested bacteria. It specifically interacts with LTA, a unique component on the surface of Gram-positive bacteria. It also significantly promotes bacterial agglutination in the presence of Ca2+. These findings reveal that the binding and agglutinating abilities of LcPLA2XIIA to bacteria contribute greatly to its antibacterial activity. In addition, LcPLA2XIIA significantly inhibits the proliferation of infectious hematopoietic necrosis virus instead of recombinant human adenovirus type 5. It also suppresses the growth of human colorectal adenocarcinoma cells by inducing apoptosis, but it has no obvious inhibitory effect on the growth of epithelioma papulosum cyprinid cells. This study provides new insights into the antibacterial activity, and the mechanism of LcPLA2XIIA in large yellow croaker, and antiviral and antitumor functions of PLA2XIIA subfamily members.
Collapse
Affiliation(s)
- Shouhu Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China
| | - Chuang Qin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China
| | - Shi-Ming Peng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Ya-Bing Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China
| | - Xiao-Shan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jian-Gao Shi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China.
| |
Collapse
|
13
|
Gao Y, Yang Z, Bajpai AK, Wang W, Zhang L, Xia Z. Resveratrol enhances the antiliver cancer effect of cisplatin by targeting the cell membrane protein PLA2. Front Oncol 2024; 14:1453164. [PMID: 39381045 PMCID: PMC11458693 DOI: 10.3389/fonc.2024.1453164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Background In this study, we aimed to explore the mechanism by which resveratrol promotes cisplatin-induced death of HepG2 cells and to provide a potential strategy for resveratrol in the treatment of cancer. Methods HepG2 cells were exposed to a range of drug concentrations for 24 h: resveratrol (2.5 μg/mL [10.95 μM], 5 μg/mL [21.91 μM], 10 μg/mL [43.81 μM], 20 μg/mL [87.62 μM], 40 μg/mL [175.25 μM], and 80 μg/mL [350.50 μM]), cisplatin (0.625 μg/mL [2.08 μM], 1.25 μg/mL [4.17 μM], 2.5 μg/mL [8.33 μM], 4.5 μg/mL [15.00 μM], and 10 μg/mL [33.33 μM]), 24 μg/mL (105.15 μM) resveratrol + 9 μg/mL (30.00 μM) cisplatin, and 12 μg/mL (52.57 μM) resveratrol + 4.5 μg/mL (15.00 μM) cisplatin. The interaction of two drugs was evaluated by coefficient of drug interaction (CDI), which was based on the Pharmacological Additivity model. The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect the effect of different concentrations of drugs on cell viability, while transcriptome sequencing was used to identify pathways associated with higher gene enrichment. Synchrotron radiation FTIR microspectroscopy experiments and data analysis were conducted to obtain detailed spectral information. The second-derivative spectra were calculated using the Savitzky-Golay algorithm. Single-cell infrared spectral absorption matrices were constructed to analyze the spectral characteristics of individual cells. The Euclidean distance between cells was calculated to assess their spectral similarity. The cell-to-cell Euclidean distance was computed to evaluate the spatial relationships between cells. The target protein of resveratrol was verified by performing a Western blot analysis. Results After 24 h of treatment with resveratrol, HepG2 cell growth was inhibited in a dose-dependent manner. Resveratrol promotes cisplatin-induced HepG2 cell death through membrane-related pathways. It also significantly changes the membrane components of HepG2 cells. Additionally, resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2. Conclusion Resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2 and promotes cisplatin-induced HepG2 cell death. The combination of cisplatin and resveratrol can play a synergistic therapeutic effect on HepG2 cells.
Collapse
Affiliation(s)
- Yu Gao
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhanyi Yang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenben Wang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Liyuan Zhang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhenhong Xia
- Department of Pharmacy, Binzhou Medical University, Yantai, China
- Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
14
|
Nam H, Kim D, Jin X, Park S. Metabolic determinants of leukemia onset variability in genetically homogeneous AKR mice. Biochem Biophys Res Commun 2024; 725:150257. [PMID: 38901226 DOI: 10.1016/j.bbrc.2024.150257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Leukemia is a complex disease shaped by the intricate interplay of genetic and environmental factors. Given our preliminary data showing different leukemia incidence in genetically homogenous AKR mice harboring the spontaneous leukemia-inducing mutation Rmcfs, we sought to unravel the role of metabolites and gut microbiota in the leukemia penetrance. Our metabolomic analysis revealed distinct serum metabolite profiles between mice that developed leukemia and those that did not. We discovered that linoleic acid (LA), an essential ω-6 polyunsaturated fatty acid, was significantly decreased in the leukemia group, with the lower levels observed starting from 25 weeks before the onset. A predictive model based on LA levels demonstrated high accuracy in predicting leukemia development (area under curve 0.82). In vitro experiment confirmed LA's cytotoxic effects against leukemia cells, and in vivo study showed that a diet enriched with LA prolonged survival in AKR mice. Furthermore, gut microbiome analysis identified specific Lachnospiraceae species, that affect host lipid metabolism, are exclusively present in the leukemia group, suggesting their potential influence on LA metabolism and leukemia development. These findings shed light on the complex relationship between metabolites, gut microbiota, and leukemia development, providing valuable insights into the role of non-genetic factors in leukemia penetrance and potential strategies for leukemia prevention.
Collapse
Affiliation(s)
- Hoonsik Nam
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Doyeon Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Xing Jin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Adeyi OE, Somade OT, Ugwor EI, Ajayi BO, Adeyi AO, Rahman SA, Adams SO, Ayanwale MO, Adediran OO, Ambali G, Phillip YP, Abass DO, Adebisi YO, Okwori KA, Moses D, Somoye AO, Ugbaja RN, Ademuyiwa O. Syringic acid through reduction of inflammation, oxidative injury, and downregulation of NF-κB-IL-6 pathway ameliorates HFD-induced pulmonary toxicity in male Wistar rats. COMPARATIVE CLINICAL PATHOLOGY 2024; 33:787-802. [DOI: 10.1007/s00580-024-03601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 01/04/2025]
|
16
|
Wang ML, Zhang YJ, He DL, Li T, Zhao MM, Zhao LM. Inhibition of PLA2G4A attenuated valproic acid- induced lysosomal membrane permeabilization and restored impaired autophagic flux: Implications for hepatotoxicity. Biochem Pharmacol 2024; 227:116438. [PMID: 39025409 DOI: 10.1016/j.bcp.2024.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Valproic acid (VPA) has broad efficacy against several seizures but causes liver injury limiting its prolonged clinical use. Some studies have demonstrated that VPA-induced hepatotoxicity is characterized by microvesicular hepatic steatosis. However, novel detailed mechanisms to explain VPA-induced hepatic steatosis and experimentally rigorously validated protective agents are still lacking. In this study, 8-week-old C57BL/6J mice were gavaged with VPA (500 mg/kg/d) for 4 weeks to establish an in vivo model of VPA-induced chronic liver injury. Quantitative proteomic and non-targeted lipidomic analyses were performed to explore the underlying mechanisms of VPA-induced hepatotoxicity. As a result, VPA-induced hepatotoxicity is associated with impaired autophagic flux, which is attributed to lysosomal dysfunction. Further studies revealed that VPA-induced lysosomal membrane permeabilization (LMP), allows soluble lysosomal enzymes to leak into the cytosol, which subsequently led to impaired lysosomal acidification. A lower abundance of glycerophospholipids and an increased abundance of lysophospholipids in liver tissues of mice in the VPA group strongly indicated that VPA-induced LMP may be mediated by the activation of phospholipase PLA2G4A. Metformin (Met) acted as a potential protective agent attenuating VPA-induced liver dysfunction and excessive lipid accumulation. Molecular docking and cellular thermal shift assays demonstrated that Met inhibited the activity of PLA2G4A by directly binding to it, thereby ameliorating VPA-induced LMP and autophagic flux impairment. In conclusion, this study highlights the therapeutic potential of targeting PLA2G4A-mediated lysosomal dysfunction in VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ming-Lu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu-Jia Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Da-Long He
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Tong Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ming-Ming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li-Mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Nakayama S, Yoda E, Yamashita S, Takamatsu Y, Suzuki Y, Kondo Y, Hara S. Knockdown of iPLA 2γ enhances cisplatin-induced apoptosis by increasing ROS-dependent peroxidation of mitochondrial phospholipids in bladder cancer cells. Free Radic Biol Med 2024; 220:301-311. [PMID: 38734266 DOI: 10.1016/j.freeradbiomed.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cisplatin (CDDP) is a platinum-based drug with anti-cancer activity and is widely used as a standard therapy for bladder cancer. It is well known that CDDP causes cell death by increasing the generation of reactive oxygen species (ROS) and lipid peroxidation, but the mechanism of its anti-cancer effects has not been fully elucidated. There are still some problems such as chemoresistance in CDDP therapy. In the present study, we found the expression of Ca2+-independent phospholipase A2γ (iPLA2γ), which has been reported to regulate cellular redox homeostasis by inhibiting lipid peroxide accumulation, in human bladder cancer tissues. Thus, we investigated the effect of iPLA2γ knockdown on CDDP-induced bladder cancer cell death. As a result, we found that iPLA2γ knockdown significantly enhanced CDDP-induced apoptosis, intracellular and mitochondrial ROS production, cytochrome c release and caspase activation in bladder cancer cells. Moreover, mitochondrial membrane potential was decreased and peroxidation of mitochondrial phospholipids was increased by iPLA2γ knockdown. It was also shown that co-treatment of bromoenol lactone, an iPLA2 inhibitor, increased CDDP-induced apoptosis. These results indicated that iPLA2γ plays an important role in protecting bladder cancer cells from CDDP-induced apoptosis, and that iPLA2γ inhibitors might represent a novel strategy in CDDP-based multi-drug therapy.
Collapse
Affiliation(s)
- Satoko Nakayama
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Saki Yamashita
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yuka Takamatsu
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yasutomo Suzuki
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yukihiro Kondo
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
18
|
Pethe A, Joshi S, Ali Dar T, Poddar NK. Revisiting the role of phospholipases in alzheimer's: crosstalk with processed food. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39002140 DOI: 10.1080/10408398.2024.2377290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Phospholipases such as phospholipase-A, phospholipase-B, phospholipase-C and phospholipase-D are important functional enzymes of the cell membrane responsible for a variety of functions such as signal transduction, production of lipid mediators, metabolite digestion and playing a pathological role in central nervous system diseases. Phospholipases have shown an association with Alzheimer's disease and these enzymes have found a correlation with several metabolic pathways that can lead to the activation of inflammatory signals via astrocytes and microglial cells. We also highlighted unhealthy practices like smoking and consuming processed foods, rich in nitroso compounds and phosphatidic acid, which contribute to neuronal damage in AD through phospholipases. A few therapeutic approaches such as the use of inhibitors of phospholipase-D,phospholipase A2 as well as autophagy-mediated inhibition have been discussed to control the onset of AD. This paper serves as a crosstalk between phospholipases and their role in neurodegenerative pathways as well as their influence on other biomolecules of lipid membranes, which are acquired through unhealthy diets and possible methods to treat these anomalies occurring due to their metabolic disorder involving phospholipases acting as major signaling molecules.
Collapse
Affiliation(s)
- Atharv Pethe
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Siddhi Joshi
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
19
|
Wei Y, Lv J, Zhu S, Wang S, Su J, Xu C. Enzyme-responsive liposomes for controlled drug release. Drug Discov Today 2024; 29:104014. [PMID: 38705509 DOI: 10.1016/j.drudis.2024.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Compared to other nanovectors, liposomes exhibit unique advantages, such as good biosafety and high drug-loading capacity. However, slow drug release from conventional liposomes makes most payloads unavailable, restricting the therapeutic efficacy. Therefore, in the last ∼20 years, enzyme-responsive liposomes have been extensively investigated, which liberate drugs under the stimulation of enzymes overexpressed at disease sites. In this review, we elaborate on the research progress on enzyme-responsive liposomes. The involved enzymes mainly include phospholipases, particularly phospholipase A2, matrix metalloproteinases, cathepsins, and esterases. These enzymes can cleave ester bonds or specific peptide sequences incorporated in the liposomes for controlled drug release by disrupting the primary structure of liposomes, detaching protective polyethylene glycol shells, or activating liposome-associated prodrugs. Despite decades of efforts, there are still a lack marketed products of enzyme-responsive liposomes. Therefore, more efforts should be made to improve the safety and effectiveness of enzyme-responsive liposomes and address the issues associated with production scale-up.
Collapse
Affiliation(s)
- Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Jiajing Lv
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Shiyu Zhu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China.
| |
Collapse
|
20
|
Liu Y, Ma J, Xu J, Li P, Wang D, Zhang M, Geng Z. A study on the catalytic domain of pork phospholipase A 2: Enzymatic properties and hydrolysis characteristics of phosphatidylcholine and its hydroperoxide. Int J Biol Macromol 2024; 270:132516. [PMID: 38768921 DOI: 10.1016/j.ijbiomac.2024.132516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Endogenous phospholipase A2 (PLA2) plays an important role in phospholipids degradation during cured meat products manufacturing. The present study was undertaken to reveal more information about the endogenous PLA2 in muscles and its role in degradation of intramuscular phospholipids. With the catalytic domain of pork calcium-independent PLA2 (iPLA2cd), impacts of physic-chemical factors on the activity were investigated and substrate specificity of the enzyme were tested respectively. The optimum temperature and pH of pork iPLA2cd were 40 °C and 7.5, respectively. The iPLA2cd could be stimulated by adequate contents of NaCl and ATP, and inhibited by CaCl2 and NaNO2. For native phospholipids, the iPLA2cd was of a little higher affinity towards phosphatidylcholine (PC) than phosphatidylethanolamine (PE), phosphoserine (PS) and phosphatidylinositol (PI). The iPLA2cd could preferentially hydrolyze peroxidized PC over the native PC. The results would help better understand the degradation of phospholipids and the role played by endogenous enzymes during meat products manufacturing.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingjing Ma
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Jiamei Xu
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengpeng Li
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Daoying Wang
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Muhan Zhang
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Zhiming Geng
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| |
Collapse
|
21
|
Shao F, Yao Y, Weng D, Wang R, Liu R, Zhang Y, Li E, Wang M, Tang Y, Ding Y, Xie Y. Causal association of plasma circulating metabolites with nephritis: a Mendelian randomization study. Front Nutr 2024; 11:1364841. [PMID: 38765814 PMCID: PMC11099270 DOI: 10.3389/fnut.2024.1364841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Background Nephritis is a pivotal catalyst in chronic kidney disease (CKD) progression. Although epidemiological studies have explored the impact of plasma circulating metabolites and drugs on nephritis, few have harnessed genetic methodologies to establish causal relationships. Methods Through Mendelian randomization (MR) in two substantial cohorts, spanning large sample sizes, we evaluated over 100 plasma circulating metabolites and 263 drugs to discern their causal effects on nephritis risk. The primary analytical tool was the inverse variance weighted (IVW) analysis. Our bioinformatic scrutiny of GSE115857 (IgA nephropathy, 86 samples) and GSE72326 (lupus nephritis, 238 samples) unveiled anomalies in lipid metabolism and immunological characteristics in nephritis. Thorough sensitivity analyses (MR-Egger, MR-PRESSO, leave-one-out analysis) were undertaken to verify the instrumental variables' (IVs) assumptions. Results Unique lipoprotein-related molecules established causal links with diverse nephritis subtypes. Notably, docosahexaenoic acid (DHA) emerged as a protective factor for acute tubulointerstitial nephritis (ATIN) (OR1 = 0.84, [95% CI 0.78-0.90], p1 = 0.013; OR2 = 0.89, [95% CI 0.82-0.97], p2 = 0.007). Conversely, multivitamin supplementation minus minerals notably increased the risk of ATIN (OR = 31.25, [95% CI 9.23-105.85], p = 0.004). Reduced α-linolenic acid (ALA) levels due to lipid-lowering drugs were linked to both ATIN (OR = 4.88, [95% CI 3.52-6.77], p < 0.001) and tubulointerstitial nephritis (TIN) (OR = 7.52, [95% CI 2.78-20.30], p = 0.042). While the non-renal drug indivina showed promise for TIN treatment, the use of digoxin, hydroxocobalamin, and liothyronine elevated the risk of chronic tubulointerstitial nephritis (CTIN). Transcriptome analysis affirmed that anomalous lipid metabolism and immune infiltration are characteristic of IgA nephropathy and lupus nephritis. The robustness of these causal links was reinforced by sensitivity analyses and leave-one-out tests, indicating no signs of pleiotropy. Conclusion Dyslipidemia significantly contributes to nephritis development. Strategies aimed at reducing plasma low-density lipoprotein levels or ALA supplementation may enhance the efficacy of existing lipid-lowering drug regimens for nephritis treatment. Renal functional status should also be judiciously considered with regard to the use of nonrenal medications.
Collapse
Affiliation(s)
- Fengling Shao
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yingling Yao
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Dunchu Weng
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Runzhi Wang
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ruiling Liu
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yongjia Zhang
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Erhan Li
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Mengdi Wang
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yuewu Tang
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yajun Xie
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Safi R, Menéndez P, Pol A. Lipid droplets provide metabolic flexibility for cancer progression. FEBS Lett 2024; 598:1301-1327. [PMID: 38325881 DOI: 10.1002/1873-3468.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
A hallmark of cancer cells is their remarkable ability to efficiently adapt to favorable and hostile environments. Due to a unique metabolic flexibility, tumor cells can grow even in the absence of extracellular nutrients or in stressful scenarios. To achieve this, cancer cells need large amounts of lipids to build membranes, synthesize lipid-derived molecules, and generate metabolic energy in the absence of other nutrients. Tumor cells potentiate strategies to obtain lipids from other cells, metabolic pathways to synthesize new lipids, and mechanisms for efficient storage, mobilization, and utilization of these lipids. Lipid droplets (LDs) are the organelles that collect and supply lipids in eukaryotes and it is increasingly recognized that the accumulation of LDs is a new hallmark of cancer cells. Furthermore, an active role of LD proteins in processes underlying tumorigenesis has been proposed. Here, by focusing on three major classes of LD-resident proteins (perilipins, lipases, and acyl-CoA synthetases), we provide an overview of the contribution of LDs to cancer progression and discuss the role of LD proteins during the proliferation, invasion, metastasis, apoptosis, and stemness of cancer cells.
Collapse
Affiliation(s)
- Rémi Safi
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
| |
Collapse
|
23
|
Feng J, Wang ZX, Bin JL, Chen YX, Ma J, Deng JH, Huang XW, Zhou J, Lu GD. Pharmacological approaches for targeting lysosomes to induce ferroptotic cell death in cancer. Cancer Lett 2024; 587:216728. [PMID: 38431036 DOI: 10.1016/j.canlet.2024.216728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Lysosomes are crucial organelles responsible for the degradation of cytosolic materials and bulky organelles, thereby facilitating nutrient recycling and cell survival. However, lysosome also acts as an executioner of cell death, including ferroptosis, a distinctive form of regulated cell death that hinges on iron-dependent phospholipid peroxidation. The initiation of ferroptosis necessitates three key components: substrates (membrane phospholipids enriched with polyunsaturated fatty acids), triggers (redox-active irons), and compromised defence mechanisms (GPX4-dependent and -independent antioxidant systems). Notably, iron assumes a pivotal role in ferroptotic cell death, particularly in the context of cancer, where iron and oncogenic signaling pathways reciprocally reinforce each other. Given the lysosomes' central role in iron metabolism, various strategies have been devised to harness lysosome-mediated iron metabolism to induce ferroptosis. These include the re-mobilization of iron from intracellular storage sites such as ferritin complex and mitochondria through ferritinophagy and mitophagy, respectively. Additionally, transcriptional regulation of lysosomal and autophagy genes by TFEB enhances lysosomal function. Moreover, the induction of lysosomal iron overload can lead to lysosomal membrane permeabilization and subsequent cell death. Extensive screening and individually studies have explored pharmacological interventions using clinically available drugs and phytochemical agents. Furthermore, a drug delivery system involving ferritin-coated nanoparticles has been specifically tailored to target cancer cells overexpressing TFRC. With the rapid advancements in understandings the mechanistic underpinnings of ferroptosis and iron metabolism, it is increasingly evident that lysosomes represent a promising target for inducing ferroptosis and combating cancer.
Collapse
Affiliation(s)
- Ji Feng
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Zi-Xuan Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Jin-Lian Bin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Yong-Xin Chen
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China; Department of Physiology, School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, 530200, PR China
| | - Jing Ma
- Department of Physiology, School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, 530200, PR China
| | - Jing-Huan Deng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiao-Wei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, Guangxi Province, 530021, PR China.
| |
Collapse
|
24
|
Jaramillo-Granada AM, Li J, Flores Villarreal A, Lozano O, Ruiz-Suárez JC, Monje-Galvan V, Sierra-Valdez FJ. Modulation of Phospholipase A 2 Membrane Activity by Anti-inflammatory Drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7038-7048. [PMID: 38511880 DOI: 10.1021/acs.langmuir.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The phospholipase A2 (PLA2) superfamily consists of lipolytic enzymes that hydrolyze specific cell membrane phospholipids and have long been considered a central hub of biosynthetic pathways, where their lipid metabolites exert a variety of physiological roles. A misregulated PLA2 activity is associated with mainly inflammatory-derived pathologies and thus has shown relevant therapeutic potential. Many natural and synthetic anti-inflammatory drugs (AIDs) have been proposed as direct modulators of PLA2 activity. However, despite the specific chemical properties that these drugs share in common, little is known about the indirect modulation able to finely tune membrane structural changes at the precise lipid-binding site. Here, we use a novel experimental strategy based on differential scanning calorimetry to systematically study the structural properties of lipid membrane systems during PLA2 cleavage and under the influence of several AIDs. For a better understanding of the AIDs-membrane interaction, we present a comprehensive and comparative set of molecular dynamics (MD) simulations. Our thermodynamic results clearly demonstrate that PLA2 cleavage is hindered by those AIDs that significantly reduce the lipid membrane cooperativity, while the rest of the AIDs oppositely tend to catalyze PLA2 activity to different extents. On the other hand, our MD simulations support experimental results by providing atomistic details on the binding, insertion, and dynamics of each AID on a pure lipid system; the drug efficacy to impact membrane cooperativity is related to the lipid order perturbation. This work suggests a membrane-based mechanism of action for diverse AIDs against PLA2 activity and provides relevant clues that must be considered in its modulation.
Collapse
Affiliation(s)
- Angela M Jaramillo-Granada
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico
| | - Jinhui Li
- Department of Chemical and Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | | | - Omar Lozano
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León 64460, Mexico
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - J C Ruiz-Suárez
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | | |
Collapse
|
25
|
Zhang Z, Cao W, Xing H, Guo S, Huang L, Wang L, Sui X, Lu K, Luo Y, Wang Y, Yang J. A mix & act liposomes of phospholipase A2-phosphatidylserine for acute brain detoxification by blood‒brain barrier selective-opening. Acta Pharm Sin B 2024; 14:1827-1844. [PMID: 38572103 PMCID: PMC10985032 DOI: 10.1016/j.apsb.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 04/05/2024] Open
Abstract
In the treatment of central nervous system disease, the blood-brain barrier (BBB) is a major obstruction to drug delivery that must be overcome. In this study, we propose a brain-targeted delivery strategy based on selective opening of the BBB. This strategy allows some simple bare nanoparticles to enter the brain when mixed with special opening material; however, the BBB still maintains the ability to completely block molecules from passing through. Based on the screening of BBB opening and matrix delivery materials, we determined that phospholipase A2-catalyzed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine liposomes can efficiently carry drugs into the brain immediately. At an effective dose, this delivery system is safe, especially with its effect on the BBB being reversible. This mix & act delivery system has a simple structure and rapid preparation, making it a strong potential candidate for drug delivery across the BBB.
Collapse
Affiliation(s)
- Zinan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institutes of Pharmacology and Toxicology, Beijing 100850, China
| | - Wenbin Cao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institutes of Pharmacology and Toxicology, Beijing 100850, China
| | - Huanchun Xing
- Tianjin University of Science and Technology, Tianjin 300222, China
| | - Shuai Guo
- Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Lijuan Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institutes of Pharmacology and Toxicology, Beijing 100850, China
| | - Lin Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institutes of Pharmacology and Toxicology, Beijing 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institutes of Pharmacology and Toxicology, Beijing 100850, China
| | - Kui Lu
- Tianjin University of Science and Technology, Tianjin 300222, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institutes of Pharmacology and Toxicology, Beijing 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institutes of Pharmacology and Toxicology, Beijing 100850, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institutes of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
26
|
Zhou PY, Zhu DX, Chen YJ, Feng QY, Mao YH, Zhuang AB, Xu JM. High patatin like phospholipase domain containing 8 expression as a biomarker for poor prognosis of colorectal cancer. World J Gastrointest Oncol 2024; 16:787-797. [PMID: 38577466 PMCID: PMC10989391 DOI: 10.4251/wjgo.v16.i3.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Patatin like phospholipase domain containing 8 (PNPLA8) has been shown to play a significant role in various cancer entities. Previous studies have focused on its roles as an antioxidant and in lipid peroxidation. However, the role of PNPLA8 in colorectal cancer (CRC) progression is unclear. AIM To explore the prognostic effects of PNPLA8 expression in CRC. METHODS A retrospective cohort containing 751 consecutive CRC patients was enrolled. PNPLA8 expression in tumor samples was evaluated by immunohistochemistry staining and semi-quantitated with immunoreactive scores. CRC patients were divided into high and low PNPLA8 expression groups based on the cut-off values, which were calculated by X-tile software. The prognostic value of PNPLA8 was identified using univariate and multivariate Cox regression analysis. The overall survival (OS) rates of CRC patients in the study cohort were compared with Kaplan-Meier analysis and Log-rank test. RESULTS PNPLA8 expression was significantly associated with distant metastases in our cohort (P = 0.048). CRC patients with high PNPLA8 expression indicated poor OS (median OS = 35.3, P = 0.005). CRC patients with a higher PNPLA8 expression at either stage I and II or stage III and IV had statistically significant shorter OS. For patients with left-sided colon and rectal cancer, the survival curves of two PNPLA8-expression groups showed statistically significant differences. Multivariate analysis also confirmed that high PNPLA8 expression was an independent prognostic factor for overall survival (hazard ratio HR = 1.328, 95%CI: 1.016-1.734, P = 0.038). CONCLUSION PNPLA8 is a novel independent prognostic factor for CRC. These findings suggest that PNPLA8 is a potential target in clinical CRC management.
Collapse
Affiliation(s)
- Peng-Yang Zhou
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - De-Xiang Zhu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yi-Jiao Chen
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Qing-Yang Feng
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yi-Hao Mao
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ao-Bo Zhuang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jian-Min Xu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Hernandez-Corbacho M, Canals D. Drug Targeting of Acyltransferases in the Triacylglyceride and 1-O-AcylCeramide Biosynthetic Pathways. Mol Pharmacol 2024; 105:166-178. [PMID: 38164582 DOI: 10.1124/molpharm.123.000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.
Collapse
Affiliation(s)
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
28
|
Tajdari M, Peyrovinasab A, Bayanati M, Ismail Mahboubi Rabbani M, Abdolghaffari AH, Zarghi A. Dual COX-2/TNF-α Inhibitors as Promising Anti-inflammatory and Cancer Chemopreventive Agents: A Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e151312. [PMID: 39830670 PMCID: PMC11742592 DOI: 10.5812/ijpr-151312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 01/22/2025]
Abstract
Cyclooxygenases (COX) play a pivotal role in inflammation and are responsible for the production of prostaglandins (PGs). Two types of COXs have been identified as key biological targets for drug design: Constitutive COX-1 and inducible COX-2. Nonsteroidal anti-inflammatory drugs (NSAIDs) target COX-1, while selective COX-2 inhibitors are designed for COX-2. These COX isoforms are involved in multiple physiological and pathological pathways throughout the body. Overproduction of tumor necrosis factor-alpha (TNF-α) plays a role in COX-2's inflammatory activity. Tumor necrosis factor-alpha can contribute to cardiac fibrosis, heart failure, and various cancers by upregulating the COX-2/PGE2 axis. Therefore, suppressing COX activity has emerged as a potentially effective treatment for chronic inflammatory disorders and cancer. This review explores the mechanisms of TNF-α-induced COX-2/PGE2 expression, a significant pathophysiological feature of cancer development. Furthermore, we summarize chemical compounds with dual COX-2/TNF-α inhibitory actions, providing an overview of their structure-activity relationship. These insights may contribute to the development of new generations of dual-acting COX-2/TNF-α inhibitors with enhanced efficacy.
Collapse
Affiliation(s)
- Mobina Tajdari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Bayanati
- Department of Food Technology Research, National Nutrition, and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Abdolghaffari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Tan Z, Deme P, Boyapati K, Claes BSR, Duivenvoorden AAM, Heeren RMA, Tressler CM, Haughey NJ, Glunde K. Key regulator PNPLA8 drives phospholipid reprogramming induced proliferation and migration in triple-negative breast cancer. Breast Cancer Res 2023; 25:148. [PMID: 38017485 PMCID: PMC10683240 DOI: 10.1186/s13058-023-01742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and leads to the poorest patient outcomes despite surgery and chemotherapy treatment. Exploring new molecular mechanisms of TNBC that could lead to the development of novel molecular targets are critically important for improving therapeutic options for treating TNBC. METHODS We sought to identify novel therapeutic targets in TNBC by combining genomic and functional studies with lipidomic analysis, which included mechanistic studies to elucidate the pathways that tie lipid profile to critical cancer cell properties. Our studies were performed in a large panel of human breast cancer cell lines and patient samples. RESULTS Comprehensive lipid profiling revealed that phospholipid metabolism is reprogrammed in TNBC cells. We discovered that patatin-like phospholipase domain-containing lipase 8 (PNPLA8) is overexpressed in TNBC cell lines and tissues from breast cancer patients. Silencing of PNPLA8 disrupted phospholipid metabolic reprogramming in TNBC, particularly affecting the levels of phosphatidylglycerol (PG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and glycerophosphocholine (GPC). We showed that PNPLA8 is essential in regulating cell viability, migration and antioxidation in TNBC cells and promoted arachidonic acid and eicosanoid production, which in turn activated PI3K/Akt/Gsk3β and MAPK signaling. CONCLUSIONS Our study highlights PNPLA8 as key regulator of phospholipid metabolic reprogramming and malignant phenotypes in TNBC, which could be further developed as a novel molecular treatment target.
Collapse
Affiliation(s)
- Zheqiong Tan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keerti Boyapati
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Annet A M Duivenvoorden
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Caitlin M Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman James Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Liang T, Kong Y, Xue H, Wang W, Li C, Chen C. Mutations of RAS genes identified in acute myeloid leukemia affect glycerophospholipid metabolism pathway. Front Oncol 2023; 13:1280192. [PMID: 38033488 PMCID: PMC10682766 DOI: 10.3389/fonc.2023.1280192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a malignant disease originating from myeloid hematopoietic stem cells. Recent studies have shown that certain gene mutations promote tumor cell survival and affect the prognosis of patients by affecting metabolic mechanisms in tumor cells. RAS gene mutations are prevalent in AML, and the RAS signaling pathway is closely related to many metabolic pathways. However, the effects of different RAS gene mutations on AML cell metabolism are unclear. Objectives The main purpose of this study was to explore the effect of RAS gene mutation on the metabolic pathway of tumor cells. Methods In this study, we first used a retrovirus carrying a mutant gene to prepare Ba/F3 cell lines with RAS gene mutations, and then compared full-transcriptome data of Ba/F3 cells before and after RAS gene mutation and found that differentially expressed genes after NRASQ61K and KRASG12V mutation. Results We found a total of 1899 differentially expressed genes after NRASQ61K and KRASG12V mutation. 1089 of these genes were involved in metabolic processes, of which 167 genes were enriched in metabolism-related pathways. In metabolism-related pathways, differential genes were associated with the lipid metabolism pathway. Moreover, by comparing groups, we found that the expression of the DGKzeta and PLA2G4A genes in the glycerophospholipid metabolism pathway was significantly upregulated. Conclusion In conclusion, our study revealed that RAS gene mutation is closely related to the glycerophospholipid metabolism pathway in Ba/F3 cells, which may contribute to new precision therapy strategies and the development and application of new therapeutic drugs for AML.
Collapse
Affiliation(s)
- Tianqi Liang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yanxiang Kong
- Department of Reproductive Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongman Xue
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Wenqing Wang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Chunmou Li
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Chun Chen
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
31
|
Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol 2023; 601:4873-4893. [PMID: 36398654 PMCID: PMC10192497 DOI: 10.1113/jp282053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 07/28/2023] Open
Abstract
Exosomes are nanosized vesicles that carry biologically diverse molecules for intercellular communication. Researchers have been trying to engineer exosomes for therapeutic purposes by using different approaches to deliver biologically active molecules to the various target cells efficiently. Recent technological advances may allow the biodistribution and pharmacokinetics of exosomes to be modified to meet scientific needs with respect to specific diseases. However, it is essential to determine an exosome's optimal dosage and potential side effects before its clinical use. Significant breakthroughs have been made in recent decades concerning exosome labelling and imaging techniques. These tools provide in situ monitoring of exosome biodistribution and pharmacokinetics and pinpoint targetability. However, because exosomes are nanometres in size and vary significantly in contents, a deeper understanding is required to ensure accurate monitoring before they can be applied in clinical settings. Different research groups have established different approaches to elucidate the roles of exosomes and visualize their spatial properties. This review covers current and emerging strategies for in vivo and in vitro exosome imaging and tracking for potential studies.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Karen Colin
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- UAB School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Liang J, Li L, Li L, Zhou X, Zhang Z, Huang Y, Xiao X. Lipid metabolism reprogramming in head and neck cancer. Front Oncol 2023; 13:1271505. [PMID: 37927468 PMCID: PMC10622980 DOI: 10.3389/fonc.2023.1271505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Lipid metabolism reprogramming is one of the most prominent metabolic anomalies in cancer, wherein cancer cells undergo dysregulation of lipid metabolism to acquire adequate energy, cell membrane building blocks, as well as signaling molecules essential for cell proliferation, survival, invasion, and metastasis. These adaptations enable cancer cells to effectively respond to challenges posed by the tumor microenvironment, leading to cancer therapy resistance and poor cancer prognosis. Head and neck cancer, ranking as the seventh most prevalent cancer, exhibits numerous abnormalities in lipid metabolism. Nevertheless, the precise role of lipid metabolic rewiring in head and neck cancer remains unclear. In line with the LIPID MAPS Lipid Classification System and cancer risk factors, the present review delves into the dysregulated molecules and pathways participating in the process of lipid uptake, biosynthesis, transportation, and catabolism. We also present an overview of the latest advancements in understanding alterations in lipid metabolism and how they intersect with the carcinogenesis, development, treatment, and prognosis of head and neck cancer. By shedding light on the significance of metabolic therapy, we aspire to improve the overall prognosis and treatment outcomes of head and neck cancer patients.
Collapse
Affiliation(s)
- Jinfeng Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Limei Li
- Department of Pediatric Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Yi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
33
|
Zhang J, Li Z, Zhang Y, Guo YL, Zhu YR, Xia WX, Dai Y, Xia YF. Mume Fructus (Prunus mume Sieb. et Zucc.) extract accelerates colonic mucosal healing of mice with colitis induced by dextran sulfate sodium through potentiation of cPLA2-mediated lysophosphatidylcholine synthesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154985. [PMID: 37516090 DOI: 10.1016/j.phymed.2023.154985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/15/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Mume Fructus (MF) is the fruit of Prunus mume Sieb. et Zucc, a plant of Rosaceae family. Previous studies demonstrated that MF was capable of ameliorating ulcerative colitis (UC) in mice, its action mechanism needs to be clarified. PURPOSE This study deciphered whether and how MF extract accelerates colonic mucosal healing, the therapeutic endpoint of UC. METHODS Biochemical, histopathological and qRT-PCR analyses were utilized to define the therapeutic efficacy of MF on dextran sulfate sodium (DSS)-induced colitis in mice. UHPLC-QTOF-MS/MS-based metabolomics technique was adopted to explore the changes of endogenous metabolites associated with UC and responses to MF intervention. qRT-PCR analysis was performed to confirm the molecular pathway in vivo. The effects of MF and lysophosphatidylcholine (LPC) on cell viability, wound healing, proliferation, and migration were examined through a series of in vitro experiments. Moreover, the effects of different subtypes of phospholipase A2 (PLA2) inhibitors on MF-treated colonic epithelial cells were detected by wound healing test and transwell assay. RESULTS Orally administered MF could alleviate colitis in mice mainly by accelerating the healing of colonic mucosa. Guided by an unbiased metabolomics screen, we identified LPC synthesis as a major modifying pathway in colitis mice after MF treatment. Notably, MF facilitated the synthesis of LPC by enhancing the expression of PLA2 in colitis mice. Mechanistically, MF and LPC accelerated wound closure by promoting cell migration. Moreover, the promotion of MF on wound healing and migration of colonic epithelial cells was blunted by a cytosolic phospholipase A2 (cPLA2) inhibitor. CONCLUSION MF can facilitate colonic mucosal healing of mice with colitis through cPLA2-mediated intestinal LPC synthesis, which may become a novel therapeutic agent of UC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ze Li
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yi-Lei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan-Rong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen-Xin Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yu-Feng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
34
|
Cai J, Cui J, Wang L. S-palmitoylation regulates innate immune signaling pathways: molecular mechanisms and targeted therapies. Eur J Immunol 2023; 53:e2350476. [PMID: 37369620 DOI: 10.1002/eji.202350476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
S-palmitoylation is a reversible posttranslational lipid modification that targets cysteine residues of proteins and plays critical roles in regulating the biological processes of substrate proteins. The innate immune system serves as the first line of defense against pathogenic invaders and participates in the maintenance of tissue homeostasis. Emerging studies have uncovered the functions of S-palmitoylation in modulating innate immune responses. In this review, we focus on the reversible palmitoylation of innate immune signaling proteins, with particular emphasis on its roles in the regulation of protein localization, protein stability, and protein-protein interactions. We also highlight the potential and challenge of developing therapies that target S-palmitoylation or de-palmitoylation for various diseases.
Collapse
Affiliation(s)
- Jing Cai
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liqiu Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Oh M, Jang SY, Lee JY, Kim JW, Jung Y, Kim J, Seo J, Han TS, Jang E, Son HY, Kim D, Kim MW, Park JS, Song KH, Oh KJ, Kim WK, Bae KH, Huh YM, Kim SH, Kim D, Han BS, Lee SC, Hwang GS, Lee EW. The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism. Nat Commun 2023; 14:5728. [PMID: 37714840 PMCID: PMC10504358 DOI: 10.1038/s41467-023-41462-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
Arachidonic and adrenic acids in the membrane play key roles in ferroptosis. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen reveals that darapladib, an inhibitor of Lp-PLA2, synergistically induces ferroptosis in the presence of GPX4 inhibitors. We show that darapladib is able to enhance ferroptosis under lipoprotein-deficient or serum-free conditions. Furthermore, we find that Lp-PLA2 is located in the membrane and cytoplasm and suppresses ferroptosis, suggesting a critical role for intracellular Lp-PLA2. Lipidomic analyses show that darapladib treatment or deletion of PLA2G7, which encodes Lp-PLA2, generally enriches phosphatidylethanolamine species and reduces lysophosphatidylethanolamine species. Moreover, combination treatment of darapladib with the GPX4 inhibitor PACMA31 efficiently inhibits tumour growth in a xenograft model. Our study suggests that inhibition of Lp-PLA2 is a potential therapeutic strategy to enhance ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Mihee Oh
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
| | - Ji-Yoon Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
| | - Jiwoo Kim
- Therapeutics and Biotechnology Department, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 305-764, Korea
| | - Jinho Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Eunji Jang
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Korea
| | - Hye Young Son
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Korea
| | - Dain Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
- Department of Life Science, Ewha Womans University, Seoul, 03760, Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | | | - Kwon-Ho Song
- Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu, 42472, Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Yong-Min Huh
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Korea
| | - Soon Ha Kim
- MitoImmune Therapeutics Inc., Seoul, 06123, Korea
| | - Doyoun Kim
- Therapeutics and Biotechnology Department, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea.
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
36
|
Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Biomolecules 2023; 13:1371. [PMID: 37759771 PMCID: PMC10527456 DOI: 10.3390/biom13091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Tayebeh Ghorbi
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Parisa Shali
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Agriculture, Ghent University, 9000 Ghent, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
37
|
Wang H, Zhang Z, Ruan S, Yan Q, Chen Y, Cui J, Wang X, Huang S, Hou B. Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol 2023; 13:1251561. [PMID: 37736551 PMCID: PMC10509481 DOI: 10.3389/fonc.2023.1251561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ability of cancer stem cells (CSCs) to self-renew, differentiate, and generate new tumors is a significant contributor to drug resistance, relapse, and metastasis. Therefore, the targeting of CSCs for treatment is particularly important. Recent studies have demonstrated that CSCs are more susceptible to ferroptosis than non-CSCs, indicating that this could be an effective strategy for treating tumors. Ferroptosis is a type of programmed cell death that results from the accumulation of lipid peroxides caused by intracellular iron-mediated processes. CSCs exhibit different molecular characteristics related to iron and lipid metabolism. This study reviews the alterations in iron metabolism, lipid peroxidation, and lipid peroxide scavenging in CSCs, their impact on ferroptosis, and the regulatory mechanisms underlying iron metabolism and ferroptosis. Potential treatment strategies and novel compounds targeting CSC by inducing ferroptosis are also discussed.
Collapse
Affiliation(s)
- Hailiang Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Xinjian Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
38
|
Roncero AM, Tobal IE, Moro RF, Diez D, Marcos IS. Halimanes and cancer: ent-halimic acid as a starting material for the synthesis of antitumor drugs. Front Chem 2023; 11:1225355. [PMID: 37674527 PMCID: PMC10477373 DOI: 10.3389/fchem.2023.1225355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 09/08/2023] Open
Abstract
The development of new anti-cancer agents is an urgent necessity nowadays, as it is one of the major causes of mortality worldwide. Many drugs currently used are derived from natural products. Halimanes are a class of bicyclic diterpenoids present in various plants and microorganisms. Many of them exhibit biological activities such as antitumor, antimicrobial, or anti-inflammatory. Among them, ent-halimic acid is an easily accessible compound, in large quantities, from the ethyl acetate extract of the plant Halimium viscosum, and it has been used as a starting material in a number of bioactive molecules. In this work, we review all the natural halimanes with antitumor and related activities until date as well as the synthesis of antitumor compounds using ent-halimic acid as a starting material.
Collapse
Affiliation(s)
| | | | | | | | - Isidro S. Marcos
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
39
|
Parisi E, Hidalgo I, Montal R, Pallisé O, Tarragona J, Sorolla A, Novell A, Campbell K, Sorolla MA, Casali A, Salud A. PLA2G12A as a Novel Biomarker for Colorectal Cancer with Prognostic Relevance. Int J Mol Sci 2023; 24:10889. [PMID: 37446068 DOI: 10.3390/ijms241310889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Metastasis is the leading cause of colorectal cancer (CRC)-related deaths. Therefore, the identification of accurate biomarkers predictive of metastasis is needed to better stratify high-risk patients to provide preferred management and reduce mortality. In this study, we identified 13 new genes that modified circulating tumor cell numbers using a genome-wide genetic screen in a whole animal CRC model. Candidate genes were subsequently evaluated at the gene expression level in both an internal human CRC cohort of 153 patients and an independent cohort from the TCGA including 592 patients. Interestingly, the expression of one candidate, PLA2G12A, significantly correlated with both the time to recurrence and overall survival in our CRC cohort, with its low expression being an indicator of a poor clinical outcome. By examining the TCGA cohort, we also found that low expression of PLA2G12A was significantly enriched in epithelial-mesenchymal transition signatures. Finally, the candidate functionality was validated in vitro using three different colon cancer cell lines, revealing that PLA2G12A deficiency increases cell proliferation, migration, and invasion. Overall, our study identifies PLA2G12A as a prognostic biomarker of early-stage CRC, providing evidence that its deficiency promotes tumor growth and dissemination.
Collapse
Affiliation(s)
- Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Robert Montal
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Basic Medical Sciences, University of Lleida and IRBLleida, 25198 Lleida, Spain
| | - Ona Pallisé
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Jordi Tarragona
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anna Novell
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Andreu Casali
- Department of Basic Medical Sciences, University of Lleida and IRBLleida, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
40
|
Salucci S, Aramini B, Bartoletti-Stella A, Versari I, Martinelli G, Blalock W, Stella F, Faenza I. Phospholipase Family Enzymes in Lung Cancer: Looking for Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3245. [PMID: 37370855 DOI: 10.3390/cancers15123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer (LC) is the second most common neoplasm in men and the third most common in women. In the last decade, LC therapies have undergone significant improvements with the advent of immunotherapy. However, the effectiveness of the available treatments remains insufficient due to the presence of therapy-resistant cancer cells. For decades, chemotherapy and radiotherapy have dominated the treatment strategy for LC; however, relapses occur rapidly and result in poor survival. Malignant lung tumors are classified as either small- or non-small-cell lung carcinoma (SCLC and NSCLC). Despite improvements in the treatment of LC in recent decades, the benefits of surgery, radiotherapy, and chemotherapy are limited, although they have improved the prognosis of LC despite the persistent low survival rate due to distant metastasis in the late stage. The identification of novel prognostic molecular markers is crucial to understand the underlying mechanisms of LC initiation and progression. The potential role of phosphatidylinositol in tumor growth and the metastatic process has recently been suggested by some researchers. Phosphatidylinositols are lipid molecules and key players in the inositol signaling pathway that have a pivotal role in cell cycle regulation, proliferation, differentiation, membrane trafficking, and gene expression. In this review, we discuss the current understanding of phosphoinositide-specific phospholipase enzymes and their emerging roles in LC.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Beatrice Aramini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - William Blalock
- "Luigi Luca Cavalli-Sforza'' Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Franco Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
41
|
Ortiz-Placín C, Castillejo-Rufo A, Estarás M, González A. Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology. Molecules 2023; 28:molecules28114316. [PMID: 37298790 DOI: 10.3390/molecules28114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
One of the most important constituents of the cell membrane is arachidonic acid. Lipids forming part of the cellular membrane can be metabolized in a variety of cellular types of the body by a family of enzymes termed phospholipases: phospholipase A2, phospholipase C and phospholipase D. Phospholipase A2 is considered the most important enzyme type for the release of arachidonic acid. The latter is subsequently subjected to metabolization via different enzymes. Three enzymatic pathways, involving the enzymes cyclooxygenase, lipoxygenase and cytochrome P450, transform the lipid derivative into several bioactive compounds. Arachidonic acid itself plays a role as an intracellular signaling molecule. Additionally, its derivatives play critical roles in cell physiology and, moreover, are involved in the development of disease. Its metabolites comprise, predominantly, prostaglandins, thromboxanes, leukotrienes and hydroxyeicosatetraenoic acids. Their involvement in cellular responses leading to inflammation and/or cancer development is subject to intense study. This manuscript reviews the findings on the involvement of the membrane lipid derivative arachidonic acid and its metabolites in the development of pancreatitis, diabetes and/or pancreatic cancer.
Collapse
Affiliation(s)
- Cándido Ortiz-Placín
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Alba Castillejo-Rufo
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Matías Estarás
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Antonio González
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
42
|
Relationship between tumor microbiota transcriptional activity and gene expression in breast cancer. BMC Cancer 2023; 23:252. [PMID: 36927310 PMCID: PMC10018882 DOI: 10.1186/s12885-023-10726-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND A few studies have reported the distribution of the microbiota in breast cancer tissues, but few reports have compared the microbiota in different subtypes of breast cancer tissue. Moreover, no study has reported on the relationship between the microbiota and gene expression in breast tumor. METHODS Sections of formalin-fixed paraffin-embedded (FFPE) tissue were prepared from the breast tumors of 70 patients and were subjected to microarray analysis to identify gene expression profiles. The same total RNA samples were also used to analyze the microbiota activity in tumor tissues by performing 16 S rRNA sequencing and internal transcribed spacer (ITS) sequencing of reverse transcript cDNA with Illumina Miseq. Pearson's correlation coefficient was used for calculating the correlation between microbial relative activity and gene expression. RESULTS The microbiota transcriptional activity of 70 FFPE samples mainly consisted of the phyla Bacteroidetes, Firmicutes and Proteobacteria. Prevotella_9, Bacteroides and Alloprevotella were the most active genera in ER+/HER2-, ER+/HER2 + and ER-/HER2 + tumors, while triple-negative samples exhibited a higher activity of Lactobacillus. In ER-negative samples (triple-negative and ER-/HER2+), 479 genes, including the breast carcinogenesis genes phospholipase A2, histone cluster 2, Crk-like, and cyclin D1, were significantly positive associated with the activity of Lactobacillus. CONCLUSION This was the first study to clarify an association between the breast tumor microbiota transcriptional activity and the expression of carcinogenesis genes in ER-negative breast cancer. Changes in the microbiota of breast tissue induced by external factors might be one of the key causes of ER negative breast cancer.
Collapse
|
43
|
Miranda de Souza Duarte-Filho LA, Ortega de Oliveira PC, Yanaguibashi Leal CE, de Moraes MC, Picot L. Ligand fishing as a tool to screen natural products with anticancer potential. J Sep Sci 2023:e2200964. [PMID: 36808885 DOI: 10.1002/jssc.202200964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Cancer is the second leading cause of death in the world and its incidence is expected to increase with the aging of the world's population and globalization of risk factors. Natural products and their derivatives have provided a significant number of approved anticancer drugs and the development of robust and selective screening assays for the identification of lead anticancer natural products are essential in the challenge of developing personalized targeted therapies tailored to the genetic and molecular characteristics of tumors. To this end, a ligand fishing assay is a remarkable tool to rapidly and rigorously screen complex matrices, such as plant extracts, for the isolation and identification of specific ligands that bind to relevant pharmacological targets. In this paper, we review the application of ligand fishing with cancer-related targets to screen natural product extracts for the isolation and identification of selective ligands. We provide critical analysis of the system configurations, targets, and key phytochemical classes related to the field of anticancer research. Based on the data collected, ligand fishing emerges as a robust and powerful screening system for the rapid discovery of new anticancer drugs from natural resources. It is currently an underexplored strategy according to its considerable potential.
Collapse
Affiliation(s)
| | | | - Cíntia Emi Yanaguibashi Leal
- Departamento de Ciências Farmacêuticas, Pós-Graduação em Biociências (PGB) Universidade Federal do Vale do São Francisco, Petrolina, Brazil
| | - Marcela Cristina de Moraes
- Departamento de Química Orgânica, Laboratório BIOCROM, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
| | - Laurent Picot
- UMR CNRS 7266 LIENSs, Département de Biotechnologie, La Rochelle Université, La Rochelle, France
| |
Collapse
|
44
|
Ni Y, Liu J, Zeng L, Yang Y, Liu L, Yao M, Chai L, Zhang L, Li Y, Zhang L, Li W. Natural product manoalide promotes EGFR-TKI sensitivity of lung cancer cells by KRAS-ERK pathway and mitochondrial Ca 2+ overload-induced ferroptosis. Front Pharmacol 2023; 13:1109822. [PMID: 36712673 PMCID: PMC9873971 DOI: 10.3389/fphar.2022.1109822] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Manoalide (MA), a proven natural inhibitor of PLA2 has anticancer effects, but its potential application and mechanism as an anticancer drug to promote EGFR-TKI sensitivity in lung cancer cells have not been studied. Methods: KRAS-mutated lung cancer cells and organoids, acquired osimertinib-resistant lung cancer cell lines HCC827OR, were used as EGFR-TKI-resistant models. CCK-8, clone formation, apoptosis assays, and calcein-AM staining were performed to investigate the inhibitory effects of MA in lung cancer cells and organoids. The flow cytometry or confocal microscope was used to detect lipid droplets, ROS, lipid peroxidation, mitochondria Ca2+, and iron content. The oxygen consumption rate (OCR) and fatty acid oxidation (FAO) were used to estimate the effect of MA on mitochondrial function. Results: MA inhibits the proliferation of KRAS-mutated lung cancer cells and organoids. In addition, MA induces ER stress in a ROS-dependent mechanism. The ROS induced by MA is mainly in mitochondrial and causes lipid peroxidation, thereby inhibiting mitochondrial FAO metabolism and promoting the accumulation of lipid droplets. MA also suppresses the KRAS-ERK pathway through ROS and promotes the sensitivity of KRAS-mutated lung cancer cells and organoids to osimertinib. Furthermore, MA induces ferroptosis by suppressing the NRF2-SLC7A11 axis and mitochondrial Ca2+ overload induced-FTH1 pathways to promote the sensitivity of osimertinib-resistant lung cancer cells to osimertinib. Conclusions: MA is a candidate EGFR-TKI sensitizer in KRAS-mutated and osimertinib-resistant lung cancer cells.
Collapse
Affiliation(s)
- Yinyun Ni
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network (NHC Key Laboratory of Transplant Engineering and Immunology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyan Zeng
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network (NHC Key Laboratory of Transplant Engineering and Immunology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network (NHC Key Laboratory of Transplant Engineering and Immunology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network (NHC Key Laboratory of Transplant Engineering and Immunology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Menglin Yao
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network (NHC Key Laboratory of Transplant Engineering and Immunology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chai
- Institute of Core facility, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Zhang
- Institute of Core facility, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Institute of Core facility, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network (NHC Key Laboratory of Transplant Engineering and Immunology), West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Li Zhang, ; Weimin Li,
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network (NHC Key Laboratory of Transplant Engineering and Immunology), West China Hospital, Sichuan University, Chengdu, Sichuan, China,Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Li Zhang, ; Weimin Li,
| |
Collapse
|
45
|
Khan SA, Ilies MA. The Phospholipase A2 Superfamily: Structure, Isozymes, Catalysis, Physiologic and Pathologic Roles. Int J Mol Sci 2023; 24:ijms24021353. [PMID: 36674864 PMCID: PMC9862071 DOI: 10.3390/ijms24021353] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The phospholipase A2 (PLA2) superfamily of phospholipase enzymes hydrolyzes the ester bond at the sn-2 position of the phospholipids, generating a free fatty acid and a lysophospholipid. The PLA2s are amphiphilic in nature and work only at the water/lipid interface, acting on phospholipid assemblies rather than on isolated single phospholipids. The superfamily of PLA2 comprises at least six big families of isoenzymes, based on their structure, location, substrate specificity and physiologic roles. We are reviewing the secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca2+-independent PLA2 (iPLA2), lipoprotein-associated PLA2 (LpPLA2), lysosomal PLA2 (LPLA2) and adipose-tissue-specific PLA2 (AdPLA2), focusing on the differences in their structure, mechanism of action, substrate specificity, interfacial kinetics and tissue distribution. The PLA2s play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity and Alzheimer's disease, which are also detailed in this review.
Collapse
|
46
|
Zhang H, Chen Y, Li F, Wu C, Cai W, Ye H, Su H, He M, Yang L, Wang X, Zhou K, Ni W. Elamipretide alleviates pyroptosis in traumatically injured spinal cord by inhibiting cPLA2-induced lysosomal membrane permeabilization. J Neuroinflammation 2023; 20:6. [PMID: 36609266 PMCID: PMC9825014 DOI: 10.1186/s12974-023-02690-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating injury that may result in permanent motor impairment. The active ingredients of medications are unable to reach the affected area due to the blood‒brain barrier. Elamipretide (SS-31) is a new and innovative aromatic cationic peptide. Because of its alternating aromatic and cationic groups, it freely crosses the blood‒brain barrier. It is also believed to decrease inflammation and protect against a variety of neurological illnesses. This study explored the therapeutic value of SS-31 in functional recovery after SCI and its possible underlying mechanism. A spinal cord contusion injury model as well as the Basso Mouse Scale, footprint assessment, and inclined plane test were employed to assess how well individuals could function following SCI. The area of glial scarring, the number of dendrites, and the number of synapses after SCI were confirmed by HE, Masson, MAP2, and Syn staining. Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays were employed to examine the expression levels of pyroptosis-, autophagy-, lysosomal membrane permeabilization (LMP)- and MAPK signalling-related proteins. The outcomes showed that SS-31 inhibited pyroptosis, enhanced autophagy and attenuated LMP in SCI. Mechanistically, we applied AAV vectors to upregulate Pla2g4A in vivo and found that SS-31 enhanced autophagy and attenuated pyroptosis and LMP by inhibiting phosphorylation of cPLA2. Ultimately, we applied asiatic acid (a p38-MAPK agonist) to test whether SS-31 regulated cPLA2 partially through the MAPK-P38 signalling pathway. Our group is the first to suggest that SS-31 promotes functional recovery partially by inhibiting cPLA2-mediated autophagy impairment and preventing LMP and pyroptosis after SCI, which may have potential clinical application value.
Collapse
Affiliation(s)
- Haojie Zhang
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Yituo Chen
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Feida Li
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Chenyu Wu
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Wanta Cai
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Hantao Ye
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Haohan Su
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Mingjun He
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Liangliang Yang
- grid.268099.c0000 0001 0348 3990School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| | - Xiangyang Wang
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Kailiang Zhou
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Wenfei Ni
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
47
|
Thangam C, Cyril R, Sekar R, Jayasree R, Ramachandran V, Langeswaran K, Asir AB, Subbaraj GK. Role of phospholipase A2 in squamous cell carcinoma and breast cancer. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:315-335. [DOI: 10.1016/b978-0-323-95697-0.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
48
|
Ni WF, Zhou KL, Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY. Functions and mechanisms of cytosolic phospholipase A 2 in central nervous system trauma. Neural Regen Res 2023; 18:258-266. [PMID: 35900400 PMCID: PMC9396495 DOI: 10.4103/1673-5374.346460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
49
|
Noreen S, Hasan S, Ishtiaq M, Ghumman SA. Phospholipases in cancer progression and metastasis. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:303-313. [DOI: 10.1016/b978-0-323-95697-0.00021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Dorninger F, Werner ER, Berger J, Watschinger K. Regulation of plasmalogen metabolism and traffic in mammals: The fog begins to lift. Front Cell Dev Biol 2022; 10:946393. [PMID: 36120579 PMCID: PMC9471318 DOI: 10.3389/fcell.2022.946393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Due to their unique chemical structure, plasmalogens do not only exhibit distinct biophysical and biochemical features, but require specialized pathways of biosynthesis and metabolization. Recently, major advances have been made in our understanding of these processes, for example by the attribution of the gene encoding the enzyme, which catalyzes the final desaturation step in plasmalogen biosynthesis, or by the identification of cytochrome C as plasmalogenase, which allows for the degradation of plasmalogens. Also, models have been presented that plausibly explain the maintenance of adequate cellular levels of plasmalogens. However, despite the progress, many aspects around the questions of how plasmalogen metabolism is regulated and how plasmalogens are distributed among organs and tissues in more complex organisms like mammals, remain unresolved. Here, we summarize and interpret current evidence on the regulation of the enzymes involved in plasmalogen biosynthesis and degradation as well as the turnover of plasmalogens. Finally, we focus on plasmalogen traffic across the mammalian body - a topic of major importance, when considering plasmalogen replacement therapies in human disorders, where deficiencies in these lipids have been reported. These involve not only inborn errors in plasmalogen metabolism, but also more common diseases including Alzheimer's disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| |
Collapse
|