1
|
Azevedo-Silva J, Amorim M, Tavares-Valente D, Sousa P, Mohamath R, Voigt EA, Guderian JA, Kinsey R, Viana S, Reis F, Pintado ME, Paddon CJ, Fox CB, Fernandes JC. Exploring yeast glucans for vaccine enhancement: Sustainable strategies for overcoming adjuvant challenges in a SARS-CoV-2 model. Eur J Pharm Biopharm 2024:114538. [PMID: 39461571 DOI: 10.1016/j.ejpb.2024.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Vaccine adjuvants are important for enhancing vaccine efficacy, and although aluminium salts (Alum) are the most used, their limited ability to induce specific immune responses has spurred the search for new adjuvants. However, many adjuvants fail during product development due to manufacturability, supply, stability, or safety concerns. This work hypothesizes that protein-free yeast glucans can be used as vaccine adjuvants due to their known immunostimulatory activity and high abundancy. Thus, high molecular weight glucans with over 99% purity, comprising 64-70% β-glucans and 29-35% α-glucans, were extracted from a wild-type yeast and an engineered yeast to produce a steviol glycoside. These glucans underwent carboxymethylation to enhance solubility. Both water-dispersible and particulate glucans were evaluated as adjuvants, either alone or in combination with Alum or squalene stable emulsion (SE), for a SARS-CoV-2 vaccine. The study demonstrated that glucans triggered a robust immune response and enhanced the effects of Alum and SE when used in combination, both in vitro and in vivo. Water-dispersible glucans combined with Alum, and particulate glucans combined with SE, increased the production of specific antibodies against SARS-CoV-2 spike protein and enhanced serum neutralization titers against SARS-CoV-2 pseudovirus. Furthermore, the results indicated that larger molecular weight glucans from engineered yeast exhibited stronger immunogenic activity in comparison to wild-type yeast glucans. In conclusion, appropriately formulated glucans have the potential to be scalable, low-cost vaccine adjuvants, potentially overcoming the limitations of current adjuvants.
Collapse
Affiliation(s)
- João Azevedo-Silva
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal
| | - Manuela Amorim
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal
| | - Diana Tavares-Valente
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal
| | - Pedro Sousa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal
| | - Randolph Mohamath
- Access to Advanced Health Institute, Formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Emily A Voigt
- Access to Advanced Health Institute, Formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Jeffrey A Guderian
- Access to Advanced Health Institute, Formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Robert Kinsey
- Access to Advanced Health Institute, Formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Sofia Viana
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3004-504, Coimbra, Portugal; Pharmacy, Coimbra Health School, Polytechnic Institute of Coimbra, Rua 5 de Outubro-SM Bispo, Apartado 7006 3046-854, Coimbra, Portugal
| | - Flávio Reis
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3004-504, Coimbra, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal
| | | | - Christopher B Fox
- Access to Advanced Health Institute, Formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - João C Fernandes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal.
| |
Collapse
|
2
|
Timira V, Chen X, Zhou P, Wu J, Wang T. Potential use of yeast protein in terms of biorefinery, functionality, and sustainability in food industry. Compr Rev Food Sci Food Saf 2024; 23:e13326. [PMID: 38572572 DOI: 10.1111/1541-4337.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
A growing demand for sustainable, alternative protein sources that are nutrient-dense, such as microorganisms, and insects, has gradually evolved. When paired with effective processing techniques, yeast cells contain substantial substances that could supply the population's needs for food, medicine, and fuel. This review article explores the potential of yeast proteins as a sustainable and viable alternative to animal and plant-based protein sources. It highlights the various yeast protein extraction methods including both mechanical and non-mechanical methods. The application of nanoparticles is one example of the fast-evolving technology used to damage microbial cells. SiO2 or Al2O3 nanoparticles break yeast cell walls and disrupt membranes, releasing intracellular bioactive compounds. Succinylation of yeast protein during extraction can increase yeast protein extraction rate, lower RNA concentration, raise yeast protein solubility, increase amino acid content, and improve yeast protein emulsification and foaming capabilities. Combining physical and enzymatic extraction methods generates the most representative pool of mannose proteins from yeast cell walls. Ethanol or isoelectric precipitation purifies mannose proteins. Mannoproteins can be used as foamy replacement for animal-derived components like egg whites due to their emulsification, stability, and foaming capabilities. Yeast bioactive peptide was separated by ultrafiltration after enzymatic hydrolysis of yeast protein and has shown hypoglycemic, hypotensive, and oxidative action in vitro studies. Additionally, the review delves into the physicochemical properties and stability of yeast-derived peptides as well as their applications in the food industry. The article infers that yeast proteins are among the promising sources of sustainable protein, with a wide range of potential applications in the food industry.
Collapse
Affiliation(s)
- Vaileth Timira
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junjun Wu
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Sousa P, Tavares-Valente D, Pereira CF, Pinto-Ribeiro I, Azevedo-Silva J, Madureira R, Ramos ÓL, Pintado M, Fernandes J, Amorim M. Circular economyeast: Saccharomyces cerevisiae as a sustainable source of glucans and its safety for skincare application. Int J Biol Macromol 2024; 265:130933. [PMID: 38508554 DOI: 10.1016/j.ijbiomac.2024.130933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Glucans, a polysaccharide naturally present in the yeast cell wall that can be obtained from side streams generated during the fermentation process, have gained increasing attention for their potential as a skin ingredient. Therefore, this study focused on the extraction method to isolate and purify water-insoluble glucans from two different Saccharomyces cerevisiae strains: an engineered strain obtained from spent yeast in an industrial fermentation process and a wild strain produced through lab-scale fermentation. Two water-insoluble extracts with a high glucose content (> 90 %) were achieved and further subjected to a chemical modification using carboxymethylation to improve their water solubility. All the glucans' extracts, water-insoluble and carboxymethylated, were structurally and chemically characterized, showing almost no differences between both yeast-type strains. To ensure their safety for skin application, a broad safety assessment was undertaken, and no cytotoxic effect, immunomodulatory capacity (IL-6 and IL-8 regulation), genotoxicity, skin sensitization, and impact on the skin microbiota were observed. These findings highlight the potential of glucans derived from spent yeast as a sustainable and safe ingredient for cosmetic and skincare formulations, contributing to the sustainability and circular economy.
Collapse
Affiliation(s)
- Pedro Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Inês Pinto-Ribeiro
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Raquel Madureira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Óscar L Ramos
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Fernandes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Amorim
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
4
|
Sousa P, Tavares-Valente D, Amorim M, Azevedo-Silva J, Pintado M, Fernandes J. β-Glucan extracts as high-value multifunctional ingredients for skin health: A review. Carbohydr Polym 2023; 322:121329. [PMID: 37839841 DOI: 10.1016/j.carbpol.2023.121329] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023]
Abstract
β-Glucans, which are naturally present in cereals, yeast, and mushrooms, have gained attention as a potential natural source for functional foods and pharmaceuticals. Due to the availability of β-glucans from several sources, different extraction methods can be employed to obtain high purity extracts that can be further modified to enhance their solubility or other biological properties. Apart from their known ability to interact with the immune system, β-glucans possess specific properties that could benefit overall skin health and prevent age-related signs, including soothing and antioxidant activities. As a result, the use of β-glucans to mitigate damage caused by environmental stressors or skin-related issues that accelerate skin aging or trigger chronic inflammation may represent a promising, natural, eco-friendly, and cost-effective approach to maintaining skin homeostasis balance. This review outlines β-glucan extraction methodologies, molecular structure, functionalization approaches, and explores skin-related benefits of β-glucans, along with an overview of related products in the market.
Collapse
Affiliation(s)
- Pedro Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Amorim
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Fernandes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
5
|
Utama GL, Oktaviani L, Balia RL, Rialita T. Potential Application of Yeast Cell Wall Biopolymers as Probiotic Encapsulants. Polymers (Basel) 2023; 15:3481. [PMID: 37631538 PMCID: PMC10459707 DOI: 10.3390/polym15163481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Biopolymers of yeast cell walls, such as β-glucan, mannoprotein, and chitin, may serve as viable encapsulants for probiotics. Due to its thermal stability, β-glucan is a suitable cryoprotectant for probiotic microorganisms during freeze-drying. Mannoprotein has been shown to increase the adhesion of probiotic microorganisms to intestinal epithelial cells. Typically, chitin is utilized in the form of its derivatives, particularly chitosan, which is derived via deacetylation. Brewery waste has shown potential as a source of β-glucan that can be optimally extracted through thermolysis and sonication to yield up to 14% β-glucan, which can then be processed with protease and spray drying to achieve utmost purity. While laminarinase and sodium deodecyle sulfate were used to isolate and extract mannoproteins and glucanase was used to purify them, hexadecyltrimethylammonium bromide precipitation was used to improve the amount of purified mannoproteins to 7.25 percent. The maximum chitin yield of 2.4% was attained by continuing the acid-alkali reaction procedure, which was then followed by dialysis and lyophilization. Separation and purification of yeast cell wall biopolymers via diethylaminoethyl (DEAE) anion exchange chromatography can be used to increase the purity of β-glucan, whose purity in turn can also be increased using concanavalin-A chromatography based on the glucan/mannan ratio. In the meantime, mannoproteins can be purified via affinity chromatography that can be combined with zymolase treatment. Then, dialysis can be continued to obtain chitin with high purity. β-glucans, mannoproteins, and chitosan-derived yeast cell walls have been shown to promote the survival of probiotic microorganisms in the digestive tract. In addition, the prebiotic activity of β-glucans and mannoproteins can combine with microorganisms to form synbiotics.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Jalan Sekeloa Selatan 1 No 1, Bandung 40134, Indonesia
| | - Lidya Oktaviani
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
| | - Roostita Lobo Balia
- Veterinary Study Program, Faculty of Medicine, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia;
| | - Tita Rialita
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
| |
Collapse
|
6
|
Reis SF, Martins VJ, Bastos R, Lima T, Correia VG, Pinheiro BA, Silva LM, Palma AS, Ferreira P, Vilanova M, Coimbra MA, Coelho E. Feasibility of Brewer's Spent Yeast Microcapsules as Targeted Oral Carriers. Foods 2023; 12:246. [PMID: 36673340 PMCID: PMC9857821 DOI: 10.3390/foods12020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Brewer's spent yeast (BSY) microcapsules have a complex network of cell-wall polysaccharides that are induced by brewing when compared to the baker's yeast (Saccharomyces cerevisiae) microcapsules. These are rich in (β1→3)-glucans and covalently linked to (α1→4)- and (β1→4)-glucans in addition to residual mannoproteins. S. cerevisiae is often used as a drug delivery system due to its immunostimulatory potential conferred by the presence of (β1→3)-glucans. Similarly, BSY microcapsules could also be used in the encapsulation of compounds or drug delivery systems with the advantage of resisting digestion conferred by (β1→4)-glucans and promoting a broader immunomodulatory response. This work aims to study the feasibility of BSY microcapsules that are the result of alkali and subcritical water extraction processes, as oral carriers for food and biomedical applications by (1) evaluating the resistance of BSY microcapsules to in vitro digestion (IVD), (2) their recognition by the human Dectin-1 immune receptor after IVD, and (3) the recognition of IVD-solubilized material by different mammalian immune receptors. IVD digested 44-63% of the material, depending on the extraction process. The non-digested material, despite some visible agglutination and deformation of the microcapsules, preserved their spherical shape and was enriched in (β1→3)-glucans. These microcapsules were all recognized by the human Dectin-1 immune receptor. The digested material was differentially recognized by a variety of lectins of the immune system related to (β1→3)-glucans, glycogen, and mannans. These results show the potential of BSY microcapsules to be used as oral carriers for food and biomedical applications.
Collapse
Affiliation(s)
- Sofia F. Reis
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vitor J. Martins
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Bastos
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Lima
- I3S, Institute for Research in Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Viviana G. Correia
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Benedita A. Pinheiro
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Lisete M. Silva
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Angelina S. Palma
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Paula Ferreira
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel Vilanova
- I3S, Institute for Research in Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IBMC, Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Manuel A. Coimbra
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisabete Coelho
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
β-glucans obtained from beer spent yeasts as functional food grade additive: Focus on biological activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Faustino M, Durão J, Pereira CF, Oliveira AS, Pereira JO, Pereira AM, Ferreira C, Pintado ME, Carvalho AP. Comparative Analysis of Mannans Extraction Processes from Spent Yeast Saccharomyces cerevisiae. Foods 2022; 11:foods11233753. [PMID: 36496561 PMCID: PMC9739389 DOI: 10.3390/foods11233753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Mannans are outstanding polysaccharides that have gained exponential interest over the years. These polysaccharides may be extracted from the cell wall of Saccharomyces cerevisiae, and recovered from the brewing or synthetic biology industries, among others. In this work, several extraction processes-physical, chemical and enzymatic-were studied, all aiming to obtain mannans from spent yeast S. cerevisiae. Their performance was evaluated in terms of yield, mannose content and cost. The resultant extracts were characterized in terms of their structure (FT-IR, PXRD and SEM), physicochemical properties (color, molecular weight distribution, sugars, protein, ash and water content) and thermal stability (DSC). The biological properties were assessed through the screening of prebiotic activity in Lactobacillus plantarum and Bifidobacterium animalis. The highest yield (58.82%) was achieved by using an alkaline thermal process, though the correspondent mannose content was low. The extract obtained by autolysis followed by a hydrothermal step resulted in the highest mannose content (59.19%). On the other hand, the extract obtained through the enzymatic hydrolysis displayed the highest prebiotic activity. This comparative study is expected to lay the scientific foundation for the obtention of well-characterized mannans from yeast, which will pave the way for their application in various fields.
Collapse
Affiliation(s)
- Margarida Faustino
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Durão
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
- Correspondence: (J.D.); (C.F.P.)
| | - Carla F. Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Correspondence: (J.D.); (C.F.P.)
| | - Ana Sofia Oliveira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Odila Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Ana M. Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Carlos Ferreira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela E. Pintado
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P. Carvalho
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
9
|
Olivares-Galván S, Marina M, García M. Extraction of valuable compounds from brewing residues: Malt rootlets, spent hops, and spent yeast. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
β-Glucans from Yeast—Immunomodulators from Novel Waste Resources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
β-glucans are a large class of complex polysaccharides with bioactive properties, including immune modulation. Natural sources of these compounds include yeast, oats, barley, mushrooms, and algae. Yeast is abundant in various processes, including fermentation, and they are often discarded as waste products. The production of biomolecules from waste resources is a growing trend worldwide with novel waste resources being constantly identified. Yeast-derived β-glucans may assist the host’s defence against infections by influencing neutrophil and macrophage inflammatory and antibacterial activities. β-glucans were long regarded as an essential anti-cancer therapy and were licensed in Japan as immune-adjuvant therapy for cancer in 1980 and new mechanisms of action of these molecules are constantly emerging. This paper outlines yeast β-glucans’ immune-modulatory and anti-cancer effects, production and extraction, and their availability in waste streams.
Collapse
|
11
|
Bezerra LS, Magnani M, Pimentel TC, de Oliveira JCPL, Freire FMDS, de Almeida AJPO, Rezende MSDA, Gonçalves IGA, de Medeiros IA, Veras RC. Yeast carboxymethyl-glucan improves endothelial function and inhibits platelet aggregation in spontaneously hypertensive rats. Food Funct 2022; 13:5406-5415. [PMID: 35474367 DOI: 10.1039/d1fo03492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxymethyl-glucan is a semi-synthetic derivative of β-D-glucan, a polysaccharide widely found in several natural sources, such as yeast, fungi, and cereals. This compound has beneficial effects on health and is considered an important immunomodulator. However, studies exploring carboxymethyl-glucan bioactivity in cardiovascular health remain lacking, mainly in hypertension. Thus, this study sought to expand understanding of the effects of carboxymethyl-glucan on vascular and platelet functions in a hypertensive animal model. Spontaneously hypertensive rats and their normotensive Wistar-Kyoto controls were assigned to five groups: control, carboxymethyl-glucan (60 mg kg-1), control spontaneously hypertensive rats, spontaneously hypertensive rats carboxymethyl-glucan (20 mg kg-1), and spontaneously hypertensive rats carboxymethyl-glucan (60 mg kg-1). Animals were treated for four weeks with carboxymethyl-glucan at doses of 20 and 60 mg kg-1 orally, and control rats received saline as a placebo. Vascular reactivity, platelet aggregation, and reactive oxygen species production were evaluated at the end of treatment. The results showed that carboxymethyl-glucan improved vascular function and reduced platelet aggregation, mainly at a 60 mg kg-1 dose. However, despite these effects, there was no reduction in levels of reactive oxygen species. These findings suggested that carboxymethyl-glucan modulates endothelial function. It also acts as a platelet antiaggregant, which is an interesting resource for managing hypertension and its thrombotic complications.
Collapse
Affiliation(s)
- Lorena Soares Bezerra
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba, Brazil.
| | - Marciane Magnani
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba, Brazil. .,Department of Food Engineering, Federal University of Paraíba (UFPB), Brazil
| | | | | | | | - Arthur José Pontes Oliveira de Almeida
- Post-Graduate Program in Development and Technological Innovation in Medicines, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| | - Mathania Silva de Almeida Rezende
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| | | | - Isac Almeida de Medeiros
- Department of Pharmaceutical Sciences, Health Sciences Center, UFPB, Campus I, 58059-900, João Pessoa, Paraíba - Brazil.,Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| | - Robson Cavalcante Veras
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba, Brazil. .,Department of Pharmaceutical Sciences, Health Sciences Center, UFPB, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| |
Collapse
|
12
|
Qiao Y, Ye X, Zhong L, Xia C, Zhang L, Yang F, Li Y, Fang X, Fu L, Huang Y, Cao H, Li Z, Cui Z. Yeast β-1,3-glucan production by an outer membrane β-1,6-glucanase: process optimization, structural characterization and immunomodulatory activity. Food Funct 2022; 13:3917-3930. [PMID: 35289343 DOI: 10.1039/d1fo02832d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The β-glucan from Saccharomyces cerevisiae is a potent adjuvant that exhibits a broad spectrum of biological activities and health benefits, and different processes have been established to prepare active β-glucan from yeast. However, studies concerning the effect of β-1,6-glucanase enzymolysis on the structure and immunomodulatory activity of yeast β-1,3-glucan are scarce. In this study, we aim to develop a novel enzymatic process for the preparation of immunologically active β-glucan (BYG) from baker's yeast using a β-1,6-glucanase GluM. The β-1,6-glucan in fungal cell wall was specifically hydrolyzed by GluM, and resulted in cell wall decomposition and β-glucan release. Batch production of BYG was realized with 17.8% yield, 85.3% purity and 75.4% recovery rate. Structural characterization indicated that BYG exhibits rod-like structures with natural triplex and nanoparticle-like substructures compared with the commercial Glucan 300. BYG ameliorated inflammation in a DSS-induced mouse model of colitis through inhibiting oxidative stress (NO, MDA and MPO), inflammatory mediators (NLRP3, ASC, caspase-1, iNOS and COX-2), and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, IFN-γ), increasing the expression levels of tight junction proteins (ZO-1, occludin and claudin-1) and modulating the production of gut microbiota-synthesized SCFAs compared to the control. Our results showed that yeast β-1,3-glucan prepared with β-1,6-glucanase exhibits structural integrity that is responsible for its favorable immunomodulatory activity.
Collapse
Affiliation(s)
- Yan Qiao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Fan Yang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Yongkai Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xiaodong Fang
- Guangzhou Hanyun Pharmaceutical Technology Co. Ltd, Guangzhou, China
| | - Lei Fu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China. .,Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Zhang X, Liu J, Wang X, Hu H, Zhang Y, Liu T, Zhao H. Structure characterization and antioxidant activity of carboxymethylated polysaccharide from
Pholiota nameko. J Food Biochem 2022; 46:e14121. [DOI: 10.1111/jfbc.14121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- Jilin Province Product Quality Supervision and Inspection Institute Changchun China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute Changchun China
| | - Xi Wang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Hewen Hu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Yanrong Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Tingting Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Hui Zhao
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| |
Collapse
|
14
|
A Simple and Efficient Mechanical Cell Disruption Method Using Glass Beads to Extract β-Glucans from Spent Brewer’s Yeast. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
β-glucan extraction from spent brewer’s yeast is a long process that starts with the lysis of yeast cells, this step lasting up to 36 h and can be disadvantageous when working on a small scale. In this study, a rapid cell rupture method was selected for the lysis of spent brewer’s yeast to obtain β-glucans. Optimal parameters were determined for the lysis of a cellular suspension of spent brewer’s yeast by vortexing with glass beads. Thus, parameters such as the number of 10 min vortex cycles from 1 to 3, the concentration of cell suspension (5, 10, and 15%), and the ratio of yeast/glass beads (1:1, 1:2, and 1:3) were varied in a Box-Behnken design. A cell lysis mechanism using glass beads allows the cell to rupture and permits the removal of intracellular content. An increase in yeast suspension concentration decreased the disruption efficiency, while a proportional increase was observed with the yeast/glass beads ratio and the increasing number of vortexing cycles. The optimal parameters for cell lysis were found to be a cell suspension concentration of 5%, a ratio of yeast/glass beads of 1:2, and a vortexing cycle of 3, with a disruption efficiency of 99.8%. The β-glucan fraction extracted from the optimal sample showed characteristic absorption bands at 1370.77 and 1153.92 cm−1, the content of β-glucan being 78.53%.
Collapse
|
15
|
Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
De Iseppi A, Marangon M, Lomolino G, Crapisi A, Curioni A. Red and white wine lees as a novel source of emulsifiers and foaming agents. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Golisch B, Lei Z, Tamura K, Brumer H. Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization. ACS Chem Biol 2021; 16:2087-2102. [PMID: 34709792 DOI: 10.1021/acschembio.1c00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The β-glucans are a disparate group of structurally diverse polysaccharides, whose members are widespread in human diets as components of the cell walls of plants, algae, and fungi (including yeasts), and as bacterial exopolysaccharides. Individual β-glucans from these sources have long been associated with positive effects on human health through metabolic and immunological effects. Remarkably, the β-configured glucosidic linkages that define these polysaccharides render them inaccessible to the limited repertoire of digestive enzymes encoded by the human genome. As a result, the various β-glucans become fodder for the human gut microbiota (HGM) in the lower gastrointestinal tract, where they influence community composition and metabolic output, including fermentation to short chain fatty acids (SCFAs). Only recently, however, have the specific molecular systems that enable the utilization of β-glucans by select members of the HGM been fully elucidated by combined genetic, biochemical, and structural biological approaches. In the context of β-glucan structures and their effects on human nutrition and health, we summarize here the functional characterization of individual polysaccharide utilization loci (PULs) responsible for the saccharification of mixed-linkage β(1→3)/β(1→4)-glucans, β(1→6)-glucans, β(1→3)-glucans, β(1→2)-glucans, and xyloglucans in symbiotic human gut bacteria. These exemplar PULs serve as well-defined biomarkers for the prediction of β-glucan metabolic capability in individual bacterial taxa and across the global human population.
Collapse
|
18
|
Ma M, Li Y, Chen J, Wang F, Yuan L, Li Y, Zhang B, Ye D, Han D, Jin H, Hu Q. High-cell-density cultivation of the flagellate alga Poterioochromonas malhamensis for biomanufacturing the water-soluble β-1,3-glucan with multiple biological activities. BIORESOURCE TECHNOLOGY 2021; 337:125447. [PMID: 34186327 DOI: 10.1016/j.biortech.2021.125447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
The microalga Poterioochromonas malhamensis was found to be capable of accumulating the storage β-1,3-glucan in soluble form under heterotrophic conditions. In this study, the highest biomass yield of 32.8 g L-1 was achieved by combining the utilization of ammonium chloride as the nitrogen source, simultaneous addition of vitamins B1 and B12 and maintenance of pH at 6.0. Sugar profiling and nuclear magnetic resonance analysis indicated that the P. malhamensis β-1,3-glucan was composed of glucose with the β-(1 → 3) main chain and the β-(1 → 6) side chain. Under the optimal cultivation conditions, the cellular β-1,3-glucan content was up to 55% of the cell dry weight. Moreover, the P. malhamensis β-1,3-glucan could significantly promote the fin regeneration and improve the in vivo antioxidative activity of zebrafish. This study underpins the feasibility of culturing P. malhamensis under heterotrophic conditions for producing the highly water-soluble bioactive β-1,3-glucans for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Mingyang Ma
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yanhua Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jianping Chen
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fuchen Wang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Yuan
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100864, PR China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100864, PR China
| | - Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100864, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
19
|
Bezerra LS, Magnani M, Pimentel TC, Freire FMDS, da Silva TAF, Ramalho RC, Alves AF, de Brito Alves JL, de Medeiros IA, Veras RC. Carboxymethyl-glucan from Saccharomyces cerevisiae reduces blood pressure and improves baroreflex sensitivity in spontaneously hypertensive rats. Food Funct 2021; 12:8552-8560. [PMID: 34337642 DOI: 10.1039/d1fo01079d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxymethyl-glucan (CMG) is a derivative of β-d-glucan extracted from Sacharomyces cerevisae. This polymer presents improved physicochemical properties and shows health benefits, such as immunomodulation, antioxidant, anti-inflammatory, anti-tumor, and antiplatelet activities, and improved vascular function. However, studies concerning the effect of administration of CMG on the cardiovascular parameters, mainly in the field of hypertension, are scarce. This study aimed to investigate the effect of administration of CMG in spontaneously hypertensive rats (SHR) and normotensive rats (WKY) models. Normotensive and hypertensive animals received CMG at doses of 20 mg kg-1 and 60 mg kg-1 for four weeks. Then, weight gain, lipid profile, renal function, blood pressure, cardiac hypertrophy, baroreflex sensitivity, and sympathetic tone were evaluated. Oral administration of CMG influenced weight gain and cholesterol levels, and significantly reduced urea in the hypertensive animals. It decreased blood pressure levels and cardiac hypertrophy, improved baroreflex response, and reduced the influence of sympathetic tone. The results demonstrate the antihypertensive effect of CMG through improvement in baroreflex sensitivity via sympathetic tone modulation.
Collapse
Affiliation(s)
- Lorena Soares Bezerra
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Marciane Magnani
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil. and Department of Food Engineering, Federal University of Paraíba (UFPB), Brazil
| | | | | | | | | | - Adriano Francisco Alves
- Department of Physiology and Pathology, Laboratory of Pathology, Health Sciences Center, UFPB, Brazil
| | - José Luiz de Brito Alves
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Isac Almeida de Medeiros
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, UFPB, Brazil
| | - Robson Cavalcante Veras
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil. and Department of Pharmaceutical Sciences, Health Sciences Center, UFPB, Brazil
| |
Collapse
|
20
|
Preece KE, Glávits R, Murbach TS, Endres JR, Hirka G, Vértesi A, Szakonyiné IP. Assessment of toxicological potential of sodium carboxymethyl beta-glucan, a novel beta-glucan. Food Chem Toxicol 2021; 152:112226. [PMID: 33905759 DOI: 10.1016/j.fct.2021.112226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023]
Abstract
In this experimental work, sodium carboxymethyl beta-glucan (CMBG), a chemically altered beta-glucan, is evaluated for mutagenicity and sub-acute oral toxicity. Specifically, the tested material was CM-Glucan Nu, a food grade powder ≥90% CMBG derived from Saccharomyces cerevisiae. A bacterial reverse mutation test was performed and resulted in no mutagenicity. A 28-day, repeated-dose, oral (gavage) toxicity test on rats was performed at dose levels of 0, 500, 1000, and 2000 mg/kg bw/day. No mortality, target organs or other treatment related effects were observed. The no observed adverse effect level (NOAEL) was 2000 mg/kg bw/day, the highest dose tested, for both male and female Han:WIST rats.
Collapse
Affiliation(s)
- Kayla E Preece
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Róbert Glávits
- Toxi-Coop Zrt., Magyar Jakobinusok Tere 4/B, H-1122, Budapest, Hungary.
| | - Timothy S Murbach
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - John R Endres
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Gábor Hirka
- Toxi-Coop Zrt., Magyar Jakobinusok Tere 4/B, H-1122, Budapest, Hungary.
| | - Adél Vértesi
- Toxi-Coop Zrt., Magyar Jakobinusok Tere 4/B, H-1122, Budapest, Hungary.
| | | |
Collapse
|
21
|
Spent Brewer's Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci 2021; 22:ijms22020825. [PMID: 33467670 PMCID: PMC7829969 DOI: 10.3390/ijms22020825] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.
Collapse
|
22
|
Shimada Y, Ishida T, Kato Y, Uwagami H, Kato Y, Kanematsu Y, Kikuchi Y, Ohara S. Material balance and energy consumption in the factory-scale coproduction of glucan and mannan from yeast extract residue. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yu Shimada
- Advanced Engineering Laboratories, Asahi Quality & Innovations, LTD
| | - Tetsuya Ishida
- Department of Corporate Strategy, Asahi Quality & Innovations, LTD
| | - Yuki Kato
- Advanced Engineering Laboratories, Asahi Quality & Innovations, LTD
| | - Hisanori Uwagami
- Advanced Engineering Laboratories, Asahi Quality & Innovations, LTD
| | - Yasuhito Kato
- Advanced Engineering Laboratories, Asahi Quality & Innovations, LTD
| | - Yuichiro Kanematsu
- Presidential Endowed Chair for “Platinum Society”, Organization for Interdisciplinary Research Project, The University of Tokyo
| | - Yasunori Kikuchi
- Presidential Endowed Chair for “Platinum Society”, Organization for Interdisciplinary Research Project, The University of Tokyo
| | - Satoshi Ohara
- Institute for Future Initiatives, the University of Tokyo
| |
Collapse
|
23
|
De Iseppi A, Marangon M, Vincenzi S, Lomolino G, Curioni A, Divol B. A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Calabrò S, Musco N, Roberti F, Vastolo A, Coppola M, Esposito L, Cutrignelli MI. Fermentability characteristics of different Saccharomyces cerevisiae cell wall using cat faeces as inoculum. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2019.1710727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Serena Calabrò
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Napoli, Italy
| | - Nadia Musco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Napoli, Italy
| | | | - Alessandro Vastolo
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Napoli, Italy
| | - Mario Coppola
- Dipartimento di Medicina di Precisione, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Luigi Esposito
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Napoli, Italy
| | | |
Collapse
|
25
|
The modifications of a fructan from Anemarrhena asphodeloides Bunge and their antioxidant activities. Int J Biol Macromol 2020; 164:4435-4443. [DOI: 10.1016/j.ijbiomac.2020.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
|
26
|
Hosseini M, Sharifan A. Biological Properties of Yeast-based Mannoprotein for Prospective Biomedical Applications. Comb Chem High Throughput Screen 2020; 24:831-840. [PMID: 32819224 DOI: 10.2174/1386207323999200818162030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/03/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products constitute more than half of all biomolecules lately being used in clinical settings. Mannoprotein derived from the yeast cell wall has found full biotechnological applications. OBJECTIVE This study was intended to investigate the antioxidant, anticancer, and toxicological properties of Kluyveromyces marxianus mannoprotein (KM). METHODS The KM extract was obtained through a sequence of operations, including centrifugation for cell isolation, precipitation with potassium citrate/sodium metabisulfite, and recovery and purification. Its antioxidant, growth inhibition, macrophage mitogenic, and toxic activities were evaluated for its future use in the biomedical field. RESULTS Significant inhibitory effects of KM were obtained on reactive species. It showed antiproliferative activity against HeLa (human cervical adenocarcinoma) and MCF-7 (human breast cancer) cell lines with no toxic effects on HUVECs (human umbilical vein endothelial cells). The in vitro model of CHO-K1 (Chinese hamster ovary) cell lines did not show the cytotoxic and genotoxic of KM. Moreover, it enhanced macrophage activity in terms of nitric oxide (NO) production and viability. No sign of acute toxicity was found in BALB/c mice, and body weight remained unchanged in guinea pigs over three months. CONCLUSION Comprehensive biological evaluations in this study are expected to expand the potential of KM as a natural material.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Currently at Diagnostic and Therapeutic Industrial Group, Khayyam Innovation Ecosystem, Mashhad, Iran
| | - Anoosheh Sharifan
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Song J, Chen H, Wei Y, Liu J. Synthesis of carboxymethylated β-glucan from naked barley bran and its antibacterial activity and mechanism against Staphylococcus aureus. Carbohydr Polym 2020; 242:116418. [DOI: 10.1016/j.carbpol.2020.116418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
|
28
|
De Iseppi A, Lomolino G, Marangon M, Curioni A. Current and future strategies for wine yeast lees valorization. Food Res Int 2020; 137:109352. [PMID: 33233056 DOI: 10.1016/j.foodres.2020.109352] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022]
Abstract
Wine lees is a sludge material mainly composed of dead yeast precipitated at the bottom of wine tanks. Along with grape pomace and grape stalks, it is one of the main by-products of the winemaking industry. Given that wine lees are considered a soil pollutant, their disposal represents a cost for wineries. Numerous wine lees recovery and valorization strategies have been proposed, with a particularly steep increase in published research in recent years. This attention is strictly linked to the concepts of circular economy and environmental sustainability that are attracting the interest of the scientific community. In this review, an overview on the available wine lees recovery and valorization strategies is reported. Additionally, the methods for the extraction and valorization of yeast's cell wall polysaccharides (β-glucans and mannoproteins) are discussed. Finally, current and future innovative applications in different sectors of yeast β-glucans and mannoproteins are described and critically discussed.
Collapse
Affiliation(s)
- Alberto De Iseppi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy
| | - Giovanna Lomolino
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy
| | - Matteo Marangon
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - Andrea Curioni
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy; Centre for Research in Viticulture and Enology (CIRVE), Viale XXVIII Aprile 14, 31015 Conegliano, Italy
| |
Collapse
|
29
|
Ruphuy G, Saloň I, Tomas J, Šalamúnová P, Hanuš J, Štěpánek F. Encapsulation of poorly soluble drugs in yeast glucan particles by spray drying improves dispersion and dissolution properties. Int J Pharm 2019; 576:118990. [PMID: 31899318 DOI: 10.1016/j.ijpharm.2019.118990] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022]
Abstract
In this work, novel amorphous solid dispersions based on yeast glucan particles were produced. Yeast glucan particles are hollow and porous, and they are mainly composed of amorphous polysaccharides. We hypothesized that these particles are suitable candidates for the amorphization of drugs with low water solubility. Model drugs ibuprofen and curcumin were successfully encapsulated in glucan particles by spray drying. Different spray-drying parameters were tested to evaluate the influence of atomizing droplet size and initial solid content on encapsulation efficiency. It was shown that higher solid content and, more significantly, larger droplet sizes lead to higher encapsulation efficiencies. The encapsulation efficiency of ibuprofen (10 wt%) into glucan particles was considerably improved from 41.3 ± 0.5% to 64.3 ± 0.2% by increasing initial solid content and droplet size with the two-fluid nozzle. The spray drying process was further optimized by using the ultrasonic nozzle and it was possible to achieve complete encapsulation of ibuprofen and curcumin without any precipitation of the active compound outside of the glucan particles. Overall, it was possible to produce completely amorphous composites with outstanding wettability and dispersion properties, and with significantly faster dissolution rates when compared to the micronized crude drug.
Collapse
Affiliation(s)
- Gabriela Ruphuy
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Ivan Saloň
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jan Tomas
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Petra Šalamúnová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jaroslav Hanuš
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| |
Collapse
|
30
|
Abstract
Β-glucan is a strongly hydrophilic non-starchy polysaccharide, which, when incorporated in food, is renowned for its ability to alter functional characteristics such as viscosity, rheology, texture, and sensory properties of the food product. The functional properties of β-glucans are directly linked to their origin/source, molecular weight, and structural features. The molecular weight and structural/conformational features are in turn influenced by method of extraction and modification of the β-glucan. For example, whereas physical modification techniques influence only the spatial structures, modification by chemical agents, enzyme hydrolysis, mechanical treatment, and irradiation affect both spatial conformation and primary structures of β-glucan. Consequently, β-glucan can be modified (via one or more of the aforementioned techniques) into forms that have desired morphological, rheological, and (bio)functional properties. This review describes how various modification techniques affect the structure, properties, and applications of β-glucans in the food industry.
Collapse
|
31
|
Protective effects of β-glucan extracted from spent brewer yeast during freeze-drying, storage and exposure to simulated gastrointestinal conditions of probiotic lactobacilli. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
De Iseppi A, Curioni A, Marangon M, Vincenzi S, Kantureeva G, Lomolino G. Characterization and emulsifying properties of extracts obtained by physical and enzymatic methods from an oenological yeast strain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5702-5710. [PMID: 31149736 DOI: 10.1002/jsfa.9833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Glycosylated compounds are one of the main fractions of the yeast cell wall. Thanks to their amphiphilic structure, they have been studied as stabilizers in food emulsions over a broad range of pH conditions with encouraging results. Nevertheless, extraction costs still represent an important limit for their application in the food industry. RESULTS In this research, four extraction methods were applied to yeast cells exploiting both physical (heating and sonication) and enzymatic approaches (use of three industrial enzyme preparations, namely Glucanex®, Sur Lies and Elevage). A fifth method involving a pure β-glucanase enzyme (Zymolyase) was taken as reference. These extraction methods were applied to the oenological strain Saccharomyces cerevisiae EC1118, and their extraction yields and chemical properties (quantitative and qualitative determination of sugars and proteins) were studied. Emulsifying activities were determined at three different pH values (3, 5 and 7). Extractions with Physical, Glucanex and Sur Lies methods were the most successful approaches to obtain relevant amounts of yeast compounds with good emulsifying activities for 2:1 oil-in-water emulsions at pH 3 and 7 over 48 h. CONCLUSIONS These results indicate that there is the potential for the extraction approaches here proposed to become viable tools for the recovery of yeast compounds to be used as emulsifiers in foods. This approach can be considered as the starting point to explore the possibility to exploit yeast by-products from the fermentation processes (e.g. fermentation lees from wine and beer making) as valuable compounds for food applications. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alberto De Iseppi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Andrea Curioni
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Simone Vincenzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
- Centre for Research in Viticulture and Enology (CIRVE), Conegliano, Italy
| | - Gulzhan Kantureeva
- Department of Food Engineering, M. Auezov South Kazakhstan State University, Shymkent, Kazakhstan
| | - Giovanna Lomolino
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| |
Collapse
|
33
|
Bzducha-Wróbel A, Pobiega K, Błażejak S, Kieliszek M. The scale-up cultivation of Candida utilis in waste potato juice water with glycerol affects biomass and β(1,3)/(1,6)-glucan characteristic and yield. Appl Microbiol Biotechnol 2018; 102:9131-9145. [PMID: 30215128 PMCID: PMC6208972 DOI: 10.1007/s00253-018-9357-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 11/08/2022]
Abstract
New ideas on production of yeast origin β-glucan preparations for industrial application are attracting interest considering market development of that high-value functional polysaccharide. Sellecting an efficient yeast producer and designing culture conditions are a prerequisite for obtaining high yield of β-glucan. The aim of this study was to describe at the first time the influence of the mode of cultivation (shake-flasks and batch fermentation) and time of culture on characteristic and yield of biomass and β(1,3)/(1,6)-glucan preparations of Candida utilis ATCC 9950 after cultivation in medium based on waste potato juice water supplemented with 10% of glycerol. After shake-flask culture, the biomass was characterized by higher protein content (app. 26.5%) compared to 19% after batch fermentation while the cultivation on a biofermentor scale promoted polysaccharides biosynthesis. The highest output of purified β(1,3)/(1,6)-glucan preparation (5.3 gd.w./L), containing app. 85% of that polysaccharide, was found after 48 h cultivation in biofermentor. Batch fermentation promoted biosynthesis of alkali-insoluble β(1,3)/(1,6)-glucan fraction, decreasing the content of β(1,6)-glucan. The yield of β(1,3)/(1,6)-glucan synthesis was 0.063 (g/g glycerol), while the productivity of that polysaccharide reached 0.094 (g/L/h). Longer batch fermentation (72 h) resulted in reduction of production efficiency of β-glucan preparation under studied conditions. The results of the study provide a new efficient biotechnological solution to produce high-value β-glucan preparations of C. utilis origin based on valorization of agro-waste potato juice water with glycerol.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland.
| | - Katarzyna Pobiega
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland
| | - Stanisław Błażejak
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland
| | - Marek Kieliszek
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland
| |
Collapse
|
34
|
Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Ma L, Chen Y, Wang X, Xiong M, Sun Y, Zhang X, Zhao Y. Design, characterization, and in vitro antiproliferative efficacy of gemcitabine conjugates based on carboxymethyl glucan. Bioorg Med Chem Lett 2018; 28:2920-2924. [PMID: 30017318 DOI: 10.1016/j.bmcl.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/21/2018] [Accepted: 07/07/2018] [Indexed: 12/25/2022]
Abstract
Gemcitabine (GEM) is widely used in clinical practice in the treatment of cancer and several other solid tumors. Nevertheless, the antitumor effect of GEM is partially prevented by some limitations including short half life, and lack of tumor localizing. Carboxymethyl glucan (CMG), a carboxymethylated derivative of β-(1-3)-glucan, shows biocompatibility and biodegradability as well as a potential anticarcinogenic effect. To enhance the antiproliferative activity of GEM, four water soluble conjugates of GEM bound to CMG via diverse amino acid linkers were designed and synthesized. 1H NMR, FT IR, elementary analysis and RP-HPLC chromatography were employed to verify the correct achievement of the conjugates. In vitro release study indicated that conjugates presented slower release in physiological buffer (pH 7.4) than acidic buffer (pH 5.5) mimicking the acidic tumor microenvironment. Moreover, A549, HeLa and Caco-2 cancer cell lines were used to evaluate the in vitro cytotoxicity of conjugates and the results showed that binding GEM to CMG significantly enhanced antiproliferative activity of GEM on A549 cells. Therefore, these conjugates may be potentially useful as a delivery vehicle in cancer therapy and worthy of further study on structure-activity relationship and antiproliferative activity in vitro and in vivo, especially for lung tumor.
Collapse
Affiliation(s)
- Lu Ma
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuancai Chen
- Zhuhai Tianxiangyuan Biotechnology and Development Co., Ltd., Zhuhai 519000, China
| | - Xude Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingzhou Xiong
- Zhuhai Tianxiangyuan Biotechnology and Development Co., Ltd., Zhuhai 519000, China
| | - Yuanyuan Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoshu Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
36
|
Bzducha-Wróbel A, Błażejak S, Kieliszek M, Pobiega K, Falana K, Janowicz M. Modification of the cell wall structure of Saccharomyces cerevisiae strains during cultivation on waste potato juice water and glycerol towards biosynthesis of functional polysaccharides. J Biotechnol 2018; 281:1-10. [PMID: 29885339 DOI: 10.1016/j.jbiotec.2018.06.305] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Changes in cell wall structure of four strains of Sacccharomyces cerevisiae species (brewer's, baker's and probiotic yeast) after culturing on deproteinated potato juice water (DPJW) with diverse addition of glycerol and different pH were investigated. It allowed to select conditions intensifying biosynthesis of β(1,3)/(1,6)-glucan and mannoproteins of cell walls of tested strains. Yeast cell wall structural polysaccharides show biological activity and technological usability in food industry but also decide about therapeutic properties of yeast biomass. The highest increase in the thickness of walls (by about 100%) and β-glucan layer (by about 120%) was stated after cultivation of S. cerevisiae R9 brewer's yeast in DPJW supplemented with 5 and 10% (w/v) of glycerol and pH 7.0 while S. cerevisiae var. boulardi PAN yeast synthesized by ab. 70% thicker β-glucan layer when the pH of growth medium was equal to 5.0. The cells of brewer's yeast (S. cerevisiae R9), probiotic (S. cerevisiae CNCM 1-745) and baker's (S. cerevisiae 102) intensified the ratio of mannoproteins in the structure of cell walls cultivated in mediums supplemented with above 15% of glycerol what point out the protective action of glycoprotein's under osmotic stress conditions. The study confirms at the first time the possibility of using agro-industrial waste in biosynthesis of functional polysaccharides of S. cerevisiae cell wall. It could be an new advantage in production of yeast biomass with therapeutic properties or β-glucan preparation as a novel food ingredient.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland.
| | - Stanisław Błażejak
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Marek Kieliszek
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Katarzyna Pobiega
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Katarzyna Falana
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Monika Janowicz
- Faculty of Food Science, Department of Food Engineering and Process Management, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| |
Collapse
|
37
|
Musco N, Calabrò S, Roberti F, Grazioli R, Tudisco R, Lombardi P, Cutrignelli MI. In vitro evaluation ofSaccharomyces cerevisiaecell wall fermentability using a dog model. J Anim Physiol Anim Nutr (Berl) 2018; 102 Suppl 1:24-30. [DOI: 10.1111/jpn.12864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/27/2017] [Indexed: 11/30/2022]
Affiliation(s)
- N. Musco
- Department of Veterinary Medicine and Animal Production; University of Napoli Federico II; Napoli Italy
| | - S. Calabrò
- Department of Veterinary Medicine and Animal Production; University of Napoli Federico II; Napoli Italy
| | | | - R. Grazioli
- Department of Veterinary Medicine and Animal Production; University of Napoli Federico II; Napoli Italy
| | - R. Tudisco
- Department of Veterinary Medicine and Animal Production; University of Napoli Federico II; Napoli Italy
| | - P. Lombardi
- Department of Veterinary Medicine and Animal Production; University of Napoli Federico II; Napoli Italy
| | - M. I. Cutrignelli
- Department of Veterinary Medicine and Animal Production; University of Napoli Federico II; Napoli Italy
| |
Collapse
|
38
|
Xing Y, Chen C, Sun W, Zhang B, Sang Y, Xiu Z, Dong Y. An environment-friendly approach to isolate and purify glucan from spent cells of recombinant Pichia pastoris and the bioactivity characterization of the purified glucan. Eng Life Sci 2018; 18:227-235. [PMID: 32624901 DOI: 10.1002/elsc.201700125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/11/2017] [Accepted: 12/27/2017] [Indexed: 11/09/2022] Open
Abstract
While the methylotrophic yeast Pichia pastoris enables the industrial-scale biosynthesis of many recombinant products, large amount of nutrient-rich biomass emerged along this process. Polysaccharides, especially glucans that are abundant in the cell wall of P. pastoris, are yet to be better utilized owing to their various biological activities. However, the isolation and purification of cell wall glucan from P. pastoris has not been reported. In this study, we established an environment-friendly approach, including induced autolysis, hot-water treatment, ultrasonication, isopropanol extraction, and protease treatment, to isolate and purify glucan from the cell wall of P. pastoris. We achieved a purity of 85.3% and a yield of 11.7% for the purified glucan. Proteins, nucleic acids, lipids, and ash were efficiently removed during the purification. The activities of the purified glucan were investigated in mice fed with a high-fat diet. The purified glucan decreased the level of total cholesterol and triglycerides by 30.3 and 29.7%, respectively. This result suggested that the cell wall glucan of P. pastoris could be developed to a therapeutic agent for dyslipidemia. Our study proposed an environment-friendly and effective method to isolate and purify the glucan from P. pastoris, providing solid foundation for the high-value utilization of this yeast.
Collapse
Affiliation(s)
- Yan Xing
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Chaonan Chen
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Wenlong Sun
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Bowei Zhang
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Yuanbin Sang
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Zhilong Xiu
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Yuesheng Dong
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| |
Collapse
|
39
|
Impact of Glucose Concentration and NaCl Osmotic Stress on Yeast Cell Wall β-d-Glucan Formation during Anaerobic Fermentation Process. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3030044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Wang Q, Sheng X, Shi A, Hu H, Yang Y, Liu L, Fei L, Liu H. β-Glucans: Relationships between Modification, Conformation and Functional Activities. Molecules 2017; 22:E257. [PMID: 28208790 PMCID: PMC6155770 DOI: 10.3390/molecules22020257] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/17/2017] [Indexed: 11/27/2022] Open
Abstract
β-glucan is a type of polysaccharide which widely exists in bacteria, fungi, algae, and plants, and has been well known for its biological activities such as enhancing immunity, antitumor, antibacterial, antiviral, and wound healing activities. The conformation of β-glucan plays a crucial role on its biological activities. Therefore, β-glucans obtained from different sources, while sharing the same basic structures, often show different bioactivities. The basic structure and inter-molecular forces of polysaccharides can be changed by modification, which leads to the conformational transformation in solution that can directly affect bioactivity. In this review, we will first determine different ways to modify β-glucan molecules including physical methods, chemical methods, and biological methods, and then reveal the relationship of the flexible helix form of the molecule chain and the helix conformation to their bioactivities. Last, we summarize the scientific challenges to modifying β-glucan's conformation and functional activity, and discuss its potential future development.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Xiaojing Sheng
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Ying Yang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Li Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Ling Fei
- Cornell University, Robert Frederick Smith School of Chemical and Biomolecular Engineering, Ithaca, NY 14850, USA.
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| |
Collapse
|
41
|
Modulation of vascular function and anti-aggregation effect induced by (1→3) (1→6)-β-d-glucan of Saccharomyces cerevisiae and its carboxymethylated derivative in rats. Pharmacol Rep 2017; 69:448-455. [PMID: 28319748 DOI: 10.1016/j.pharep.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND β-d-Glucans are polysaccharides found in the cell walls of yeasts, such as Saccharomyces cerevisiae, and they have been studied because of their beneficial effects on health, mainly in terms of immunomodulation. However, information on the action of these polymers on vascular and platelet function is still scarce. This study evaluate the effect of (1→3) (1→6) β-d-glucan (βG-Sc) and its carboxymethylated derivative (CM-G) on vascular and platelet function in rats. METHODS The animals received daily oral treatments with βG-Sc (20mg/kg) and CM-G (20mg/kg) for eight days. Next, cytokine quantification, vascular reactivity and adenosine diphosphate (ADP)- and collagen-induced platelet aggregation studies were performed. In vitro platelet aggregation and P-selectin exposition assays were conducted using 100 and 300μg/mL CM-G. RESULTS The CM-G-treated group had less IL-8 than did the control. In reactivity experiments, CM-G and βG-Sc treatments did not change the contractile response of the vessel induced by PHE. Moreover, only CM-G improved the vasorelaxation response to Nitroprusside (SPN, a nitric oxide donor). The in vitro aggregation studies showed that at the highest concentration (300μg/mL), CM-G inhibited the agonist-induced platelet aggregation with an effect similar to that of acetylsalicylic acid and without affecting P-selectin exposition. The treatments with βG-Sc or CM-G inhibited the platelet aggregation stimulated by ADP, but only βG-Sc treatment was effective in affect the collagen-stimulated aggregation. CONCLUSIONS These findings suggest that CM-G modulate positively the vascular function, mainly in responses NO-dependent. CM-G and βG-Sc have an anti-aggregation effect, being CM-G more selective to ADP-induced platelet aggregation.
Collapse
|
42
|
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016; 21:E1705. [PMID: 27983593 PMCID: PMC6273901 DOI: 10.3390/molecules21121705] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Liu D, Ding L, Sun J, Boussetta N, Vorobiev E. Yeast cell disruption strategies for recovery of intracellular bio-active compounds — A review. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.06.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety Assessment of Microbial Polysaccharide Gums as Used in Cosmetics. Int J Toxicol 2016; 35:5S-49S. [DOI: 10.1177/1091581816651606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Cosmetic Ingredient Review Expert Panel assessed the safety of 34 microbial polysaccharide gums for use in cosmetics, finding that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. The microbial polysaccharide gums named in this report have a variety of reported functions in cosmetics, including emulsion stabilizer, film former, binder, viscosity-increasing agent, and skin-conditioning agent. The Panel reviewed available animal and clinical data in making its determination of safety.
Collapse
Affiliation(s)
- Monice M. Fiume
- Cosmetic Ingredient Review Scientific Analyst/Writer, Cosmetic Ingredient Review, Washington, DC, USA
| | - Bart Heldreth
- Cosmetic Ingredient Review Chemist, Cosmetic Ingredient Review, Washington, DC, USA
| | - Wilma F. Bergfeld
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Donald V. Belsito
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald A. Hill
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Curtis D. Klaassen
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Daniel C. Liebler
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - James G. Marks
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald C. Shank
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Thomas J. Slaga
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Paul W. Snyder
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - F. Alan Andersen
- Former Director, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
45
|
Borchani C, Fonteyn F, Jamin G, Paquot M, Thonart P, Blecker C. Physical, functional and structural characterization of the cell wall fractions from baker’s yeast Saccharomyces cerevisiae. Food Chem 2016; 194:1149-55. [DOI: 10.1016/j.foodchem.2015.08.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/28/2015] [Accepted: 08/26/2015] [Indexed: 02/03/2023]
|
46
|
Shao Y, Wang Z, Tian X, Guo Y, Zhang H. Yeast β-d-glucans induced antimicrobial peptide expressions against Salmonella infection in broiler chickens. Int J Biol Macromol 2016; 85:573-84. [PMID: 26794312 DOI: 10.1016/j.ijbiomac.2016.01.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 11/26/2022]
Abstract
The present study was designed to investigate the effects of yeast β-d-glucans (YG) on gene expression of endogenous β-defensins (AvBDs), cathelicidins (Cath) and liver-expressed antimicrobial peptide-2 (LEAP-2) in broilers challenged with Salmonella enteritidis (SE). 240 day-old Cobb male broilers were randomly assigned to 2×2 factorial arrangements of treatments with two levels of dietary YG (0 or 200mg/kg in diet) and two levels of SE challenge (0 or 1×10(9) SE at 7-9 days of age). The results showed SE infection reduced growth performance,and increased salmonella cecal colonization and internal organs invasion, increased concentration of intestinal specific IgA and serum specific IgG antibody, as compared to uninfected birds. SE challenge differentially regulated AvBDs, Caths and LEAP-2 gene expression in the jejunum and spleen of broiler chickens during the infection period. However, YG supplementation inhibited the growth depression by SE challenge, and further increased level of serum specific IgG and intestinal specific IgA antibody. Higher level of salmonella colonization and internal organs invasion in the SE-infected birds were reduced by YG. SE-induced differentially expression patterns of AMPs genes was inhibited or changed by YG. Results indicated YG enhance chicken's resistance to salmonella infection.
Collapse
Affiliation(s)
- Yujing Shao
- College of Biology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Xiangyu Tian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haibo Zhang
- Angel Yeast Co., Ltd., Yichang City, Hubei, China
| |
Collapse
|
47
|
Oral Intake of Carboxymethyl-Glucan (CM-G) from Yeast (Saccharomyces uvarum) Reduces Malondialdehyde Levels in Healthy Men. Molecules 2015; 20:14950-8. [PMID: 26287149 PMCID: PMC6332209 DOI: 10.3390/molecules200814950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/12/2022] Open
Abstract
Carboxymethyl-glucan (CM-G) is a water-soluble derivative of β(1→3)(1→6) glucan, a well-known immunostimulant and antioxidant compound. In this experimental, randomized and placebo-controlled study, the effects of oral CM-G intake over a 60-day period on the peripheral blood, cholesterol, glycemic index and malondialdehyde (MDA) levels of healthy men was assessed. The CM-G was obtained from spent brewer’s yeast (S. uvarum) with DS 0.8 and molecular weight of 2.2 × 105 Da. Following CM-G administration, no changes were observed in red and white blood cell, hematocrit, hemoglobin and platelet counts, or in cholesterol and glycemic indices. After 30 days of CM-G administration, the MDA levels decreased significantly (p ≤ 0.05) in men receiving CM-G. The results showed for the first time that CM-G may act as an adjuvant in preventing oxidative damage in healthy humans.
Collapse
|
48
|
Varelas V, Liouni M, Calokerinos AC, Nerantzis ET. An evaluation study of different methods for the production of β-D-glucan from yeast biomass. Drug Test Anal 2015; 8:46-55. [PMID: 26190751 DOI: 10.1002/dta.1833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 11/10/2022]
Abstract
β-Glucan is a proven beneficial and valuable molecule for human and animal health systems. It can be incorporated as an ingredient in various functional foods and beverages. β-Glucan has been isolated from various biological sources, fungi, mushrooms, algae, plants, and bacteria. The yeast cell wall comprises a suitable target for the extraction and purification of β-glucan. Although there are various extraction techniques, significant differences are observed as the technique used affects the final yield and purity, molecular weight, biological activity, solubility, quality, and other biological and functional properties of the extracted β-glucan. The aim of this review is the evaluation of different extraction methods for the production of β-glucan from yeast biomass. Furthermore, the use of industrial spent yeast waste from breweries and the wine industry for biotechnological β-glucan production and the concept of green wineries and breweries are discussed.
Collapse
Affiliation(s)
- Vassileios Varelas
- University of Athens, School of Science, Department of Chemistry, Greece Laboratory of Industrial Chemistry, Zografou, 157 71, Greece
| | - Maria Liouni
- University of Athens, School of Science, Department of Chemistry, Greece Laboratory of Industrial Chemistry, Zografou, 157 71, Greece
| | - Antony C Calokerinos
- University of Athens, School of Science, Department of Chemistry, Laboratory of Analytical Chemistry, Zografou, 157 71, Greece
| | - Elias T Nerantzis
- TEI of Athens, School of Food Science and Nutrition, Department of Oenology and Beverage Technology, Laboratory of Biotechnology & Industrial Fermentations, Agiou Spiridonos, Egaleo, 122 10, Athens, Greece
| |
Collapse
|
49
|
Borchani C, Fonteyn F, Jamin G, Destain J, Willems L, Paquot M, Blecker C, Thonart P. Structural Characterization, Technological Functionality, and Physiological Aspects of Fungal β-D-glucans: A Review. Crit Rev Food Sci Nutr 2015; 56:1746-52. [DOI: 10.1080/10408398.2013.854733] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
Bzducha-Wróbel A, Błażejak S, Kawarska A, Stasiak-Różańska L, Gientka I, Majewska E. Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for β-glucan isolation. Molecules 2014; 19:20941-61. [PMID: 25517337 PMCID: PMC6271764 DOI: 10.3390/molecules191220941] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022] Open
Abstract
Selected methods for yeast cell disruption were evaluated to establish their suitability for cell wall preparation in the process of β-glucan isolation. The effect of different disruption methods on contents of total saccharides, β-glucans and proteins in the produced cell walls preparations was analyzed. The degree of cell wall purification from intracellular components was established on the basis of the ratio of solubilised material. The investigated methods included: cell exposure to hot water (autoclaving), thermally-induced autolysis, homogenization in a bead mill, sonication and their combinations. Experimental systems were prepared in water (pH 5.0 and pH 7.0) and Tris-HCl buffer (pH 8.0). The Saccharomyces cerevisiae yeast cell wall preparations with the highest degree of cytosol component release and purification of β-glucans were produced by 30 min of cell homogenization with zirconium-glass beads (0.5 mm in diameter). This was confirmed by the highest ratio of solubilised material (approx. 64%–67%). The thus-produced preparations contained ca. 60% of total saccharides, 13%–14% of β(1,3)/(1,6)-glucans, and approx. 35% of crude proteins. Similar results were obtained after autolysis coupled with bead milling as well as with sonication, but the time required for these processes was more than 24 h. Homogenization in a bead mill could be valuable for general isolation procedures because allows one to eliminate the different autolytic activity of various yeast strains.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Anna Kawarska
- Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Lidia Stasiak-Różańska
- Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Iwona Gientka
- Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Ewa Majewska
- Department of Chemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| |
Collapse
|