1
|
Ahmed M, Marrez DA, Rizk R, Abdul-Hamid D, Tóth Z, Decsi K. Interventional Effect of Zinc Oxide Nanoparticles with Zea mays L. Plants When Compensating Irrigation Using Saline Water. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1341. [PMID: 39195379 DOI: 10.3390/nano14161341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
High salinity reduces agriculture production and quality, negatively affecting the global economy. Zinc oxide nanoparticles (ZnO-NPs) enhance plant metabolism and abiotic stress tolerance. This study investigated the effects of 2 g/L foliar Zinc oxide NPs on Zea mays L. plants to ameliorate 150 mM NaCl-induced salt stress. After precipitation, ZnO-NPs were examined by UV-visible spectroscopy, transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray, and particle size distribution. This study examined plant height, stem diameter (width), area of leaves, chlorophyll levels, hydrolyzable sugars, free amino acids, protein, proline, hydrogen peroxide, and malondialdehyde. Gas chromatographic analysis quantified long-chain fatty acids, and following harvest, leaves, stalks, cobs, seeds, and seeds per row were weighed. The leaves' acid and neutral detergent fibers were measured along with the seeds' starch, fat, and protein. Plant growth and chlorophyll concentration decreased under salt stress. All treatments showed significant changes in maize plant growth and development after applying zinc oxide NPs. ZnO-NPs increased chlorophyll and lowered stress. ZnO-NPs enhanced the ability of maize plants to withstand the adverse conditions of saline soils or low-quality irrigation water. This field study investigated the effect of zinc oxide nanoparticles on maize plant leaves when saline water is utilized for growth season water. This study also examined how this foliar treatment affected plant biochemistry, morphology, fatty acid synthesis, and crop production when NaCl is present and when it is not.
Collapse
Affiliation(s)
- Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Diaa Attia Marrez
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Roquia Rizk
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
| | - Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
| |
Collapse
|
2
|
Li J, Lou S, Gong J, Liang J, Zhang J, Zhou X, Li J, Wang L, Zhai M, Duan L, Lei B. Coronatine-treated seedlings increase the tolerance of cotton to low-temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108832. [PMID: 38896915 DOI: 10.1016/j.plaphy.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Coronatine, an analog of Jasmonic acid (JA), has been shown to enhance crop tolerance to abiotic stresses, including chilling stress. However, the underlying molecular mechanism remains largely unknown. In this study, we investigated the effect of Coronatine on cotton seedlings under low temperature using transcriptomic and metabolomics analysis. Twelve cDNA libraries from cotton seedlings were constructed, and pairwise comparisons revealed a total of 48,322 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified the involvement of these unigenes in various metabolic pathways, including Starch and sucrose metabolism, Sesquiterpenoid and triterpenoid biosynthesis, Phenylpropanoid biosynthesis, alpha-Linolenic acid metabolism, ABC transporters, and Plant hormone signal transduction. Additionally, substantial accumulations of jasmonates (JAs), abscisic acid and major cell wall metabolites were observed. Transcriptome analysis revealed differential expression of regulatory genes, and qRT-PCR analysis confirmed the expression patterns of 9 selected genes. Co-expression analysis showed that the JA-responsive genes might form a network module with ABA biosynthesis genes or cell wall biosynthesis genes, suggesting the existence of a COR-JA-cellulose and COR-JA-ABA-cellulose regulatory pathway in cotton seedlings. Collectively, our findings uncover new insights into the molecular basis of coronatine--associated cold tolerance in cotton seedlings.
Collapse
Affiliation(s)
- Jin Li
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Shanwei Lou
- Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; State Key Laboratory of Plant Physiology & Biochemistry, Engineering Research Center of PGR, Ministry of Education & College of Agronomy and Biotechnology, and China Agricultural University, Beijing, 100193, China
| | - Jingyun Gong
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jing Liang
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jungao Zhang
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Xiaoyun Zhou
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jie Li
- Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Li Wang
- College of Agricultural, Xinjiang Agricultural University, Urumqi, 830091, China
| | - Menghua Zhai
- College of Agricultural, Xinjiang Agricultural University, Urumqi, 830091, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology & Biochemistry, Engineering Research Center of PGR, Ministry of Education & College of Agronomy and Biotechnology, and China Agricultural University, Beijing, 100193, China.
| | - Bin Lei
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China.
| |
Collapse
|
3
|
van der Cruijsen K, Al Hassan M, van Erven G, Kollerie N, van Lent B, Dechesne A, Dolstra O, Paulo MJ, Trindade LM. Salt stress alters the cell wall components and structure in Miscanthus sinensis stems. PHYSIOLOGIA PLANTARUM 2024; 176:e14430. [PMID: 38981734 DOI: 10.1111/ppl.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.
Collapse
Affiliation(s)
| | - Mohamad Al Hassan
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Gijs van Erven
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Nicole Kollerie
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas van Lent
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Annemarie Dechesne
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Oene Dolstra
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Luisa M Trindade
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Du Y, Zhao H, Feng N, Zheng D, Khan A, Zhou H, Deng P, Wang Y, Lu X, Jiang W. Alginate Oligosaccharides Alleviate Salt Stress in Rice Seedlings by Regulating Cell Wall Metabolism to Maintain Cell Wall Structure and Improve Lodging Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1215. [PMID: 38732430 PMCID: PMC11085217 DOI: 10.3390/plants13091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Salt stress is one of the major abiotic stresses that damage the structure and composition of cell walls. Alginate oligosaccharides (AOS) have been advocated to significantly improve plant stress tolerance. The metabolic mechanism by which AOS induces salt tolerance in rice cell walls remains unclear. Here, we report the impact of AOS foliar application on the cell wall composition of rice seedlings using the salt-tolerant rice variety FL478 and the salt-sensitive variety IR29. Data revealed that salt stress decreased biomass, stem basal width, stem breaking strength, and lodging resistance; however, it increased cell wall thickness. In leaves, exogenous AOS up-regulated the expression level of OSCESA8, increased abscisic acid (ABA) and brassinosteroids (BR) content, and increased β-galacturonic activity, polygalacturonase activity, xylanase activity, laccase activity, biomass, and cellulose content. Moreover, AOS down-regulated the expression levels of OSMYB46 and OSIRX10 and decreased cell wall hemicellulose, pectin, and lignin content to maintain cell wall stability under salt stress. In stems, AOS increased phenylalamine ammonia-lyase and tyrosine ammonia-lyase activities, while decreasing cellulase, laccase, and β-glucanase activities. Furthermore, AOS improved the biomass and stem basal width and also enhanced the cellulose, pectin, and lignin content of the stem, As a result, increased resistance to stem breakage strength and alleviated salt stress-induced damage, thus enhancing the lodging resistance. Under salt stress, AOS regulates phytohormones and modifies cellulose, hemicellulose, lignin, and pectin metabolism to maintain cell wall structure and improve stem resistance to lodging. This study aims to alleviate salt stress damage to rice cell walls, enhance resistance to lodging, and improve salt tolerance in rice by exogenous application of AOS.
Collapse
Affiliation(s)
- Youwei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Huimin Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Naijie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Dianfeng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yaxing Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Xutong Lu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Wenxin Jiang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
5
|
Xiao X, Lang D, Yong J, Zhang X. Bacillus cereus G2 alleviate salt stress in Glycyrrhiza uralensis Fisch. by balancing the downstream branches of phenylpropanoids and activating flavonoid biosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116129. [PMID: 38430580 DOI: 10.1016/j.ecoenv.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 02/18/2024] [Indexed: 03/04/2024]
Abstract
The salinity environment is one of the biggest threats to Glycyrrhiza uralensis Fisch. (G. uralensis) growth, resulting from the oxidative stress caused by excess reactive oxygen species (ROS). Flavonoids are the main pharmacodynamic composition and help maintain ROS homeostasis and mitigate oxidative damage in G. uralensis in the salinity environment. To investigate whether endophytic Bacillus cereus G2 can improve the salt-tolerance of G. uralensis through controlling flavonoid biosynthesis, the transcriptomic and physiological analysis of G. uralensis treated by G2 in the saline environment was conducted, focused on flavonoid biosynthesis-related pathways. Results uncovered that salinity inhibited flavonoids synthesis by decreasing the activities of phenylalanine ammonialyase (PAL) and 4-coumarate-CoA ligase (4CL) (42% and 39%, respectively) due to down-regulated gene Glyur000910s00020578 at substrate level, and then decreasing the activities of chalcone isomerase (CHI) and chalcone synthase (CHS) activities (50% and 42%, respectively) due to down-regulated genes Glyur006062s00044203 and Glyur000051s00003431, further decreasing isoliquiritigenin content by 53%. However, salt stress increased liquiritin content by 43%, which might be a protective mechanism of salt-treated G. uralensis seedlings. Interestingly, G2 enhanced PAL activity by 27% whereas reduced trans-cinnamate 4-monooxygenase (C4H) activity by 43% which could inhibit lignin biosynthesis but promote flavonoid biosynthesis of salt-treated G. uralensis at the substrate level. G2 decreased shikimate O-hydroxycinnamoyltransferase (HCT) activity by 35%, increased CHS activity by 54% through up-regulating the gene Glyur000051s00003431 encoding CHS, and increased CHI activity by 72%, thereby decreasing lignin (34%) and liquiritin (24%) content, but increasing isoliquiritigenin content (35%), which could mitigate oxidative damage and changed salt-tolerance mechanism of G. uralensis.
Collapse
Affiliation(s)
- Xiang Xiao
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Duoyong Lang
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China.
| |
Collapse
|
6
|
Han X, Zhao Y, Chen Y, Xu J, Jiang C, Wang X, Zhuo R, Lu MZ, Zhang J. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. FORESTRY RESEARCH 2022; 2:9. [PMID: 39525415 PMCID: PMC11524291 DOI: 10.48130/fr-2022-0009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/13/2022] [Indexed: 11/16/2024]
Abstract
Woody plants have to experience various abiotic stresses due to their immobility and perennial characteristics. However, woody plants have evolved a series of specific regulation pathways in physiological and molecular mechanisms to deal with adverse environments. Compared with herbaceous plants, perennial woody plants have the advantages of developed roots and hard stems, and increased secondary xylem, which can strengthen the vascular system of the plants. The lignification process involves the lignin deposition on the cell wall by oxidation and polymerization of lignin monomer, which plays an important role in abiotic stress tolerance. This review focuses on recent progress in the biosynthesis, content, and accumulation of lignin in response to various abiotic stresses in plants. The role of transcription factors is also discussed in regulating lignin biosynthesis to enhance abiotic stress tolerance via changing cell wall lignification. Although woody plants shared similar lignin biosynthesis mechanisms with herbaceous plants, the temporal and spatial expression and stress response profiles of lignin biosynthetic genes provide the basis for the differences in stress tolerance of various species. An in-depth understanding of the role of lignin in the abiotic stress tolerance of woody plants will lay the foundation for the next step in tree resistance breeding through genetic engineering.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Yinjie Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
7
|
Martineli L, da Silva Berilli S, Amaro de Sales R, da Cunha M, Monaco PAVL, de Jesus Freitas S, Martineli M, Gabriel Berilli APC, Pireda S, da Silva Oliveira D, Louzada Pereira L. Influence of chromium and sodium on development, physiology, and anatomy of Conilon coffee seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44986-44997. [PMID: 35142998 DOI: 10.1007/s11356-022-18563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Some components found in the composition of the tannery sludge are nutrients for the plants; it can be considered an alternative source of fertilization as they have favorable agronomic characteristics. However, it is reported in some studies that the presence of chromium and sodium in this residue causes physiological and anatomical disturbances that inhibit the development of the plants. The objective of this study was to evaluate the influence of chromium and sodium on the physiology, anatomy, and development of Conilon coffee seedlings grown on substrates produced with tannery sludge and equivalent doses of chromium and sodium. The experiment was carried out in nursery using randomized block design, containing 5 treatments and 7 repetitions. The treatments consisted of the application of a 40% tannery sludge dose and equivalent doses of chromium and sodium mixed with a conventional substrate. Notably, the presence of sodium in the substrate caused greater damage to the plants, negatively influencing the physiology, anatomy, and, consequently, development of the plants, while the presence of chromium suggests that it does not influence much the evaluated characteristics. The treatment with tannery sludge, on the other hand, despite containing the same chromium and sodium contents, revealed a more pronounced negative influence on the physiology, anatomy, and development patterns of the seedlings. This shows that sodium and chromium alone are not the only factors responsible for the lowest growth indicators studied.
Collapse
Affiliation(s)
- Leonardo Martineli
- Federal Institute of Espírito Santo - Itapina Campus, Rodovia Br-259, Km 70, IFES Campus Itapina, Colatina, ES, CEP: 29.717-000, Brazil
| | - Sávio da Silva Berilli
- Federal Institute of Espírito Santo - Alegre Campus, Rodovia BR-482, Km 47, Alegre, ES, CEP: 29500-000, Brazil
| | - Ramon Amaro de Sales
- Federal University of Viçosa, Av. Peter Henry Rolfs, Campus Universitário, Viçosa, MG, CEP: 36570-900, Brazil.
| | - Maura da Cunha
- State University of the North Fluminense Darcy Ribeiro, Av. Alberto Lamego, 875 - Parque California, Campos Dos Goytacazes, RJ, CEP: 28013-600, Brazil
| | - Paola Afonsa Vieira Lo Monaco
- Federal Institute of Espírito Santo - Santa Teresa Campus, Rodovia ES-080, Km 93, Santa Teresa, ES, 29660-000, Brazil
| | - Sílvio de Jesus Freitas
- State University of the North Fluminense Darcy Ribeiro, Av. Alberto Lamego, 875 - Parque California, Campos Dos Goytacazes, RJ, CEP: 28013-600, Brazil
| | - Maristella Martineli
- Department of Agricultural Sciences of the State University of Montes Claros - Janaúba Campus, Av. Reinaldo Viana, 2630, Janaúba, MG, CEP: 39.440-000, Brazil
| | | | - Saulo Pireda
- State University of the North Fluminense Darcy Ribeiro, Av. Alberto Lamego, 875 - Parque California, Campos Dos Goytacazes, RJ, CEP: 28013-600, Brazil
| | - Dhiego da Silva Oliveira
- State University of the North Fluminense Darcy Ribeiro, Av. Alberto Lamego, 875 - Parque California, Campos Dos Goytacazes, RJ, CEP: 28013-600, Brazil
| | - Lucas Louzada Pereira
- Federal Institute of Espírito Santo - Venda Nova Campus, Avenida Elizabeth Minete Perim, nº 500, São Rafael, Venda Nova Do Imigrante, ES, CEP 29375-000, Brazil
| |
Collapse
|
8
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
9
|
Siddiqui SA, Agrawal S, Brahmbhatt H, Rathore MS. Metabolite expression changes in Kappaphycus alvarezii (a red alga) under hypo- and hyper-saline conditions. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|
11
|
Mariette A, Kang HS, Heazlewood JL, Persson S, Ebert B, Lampugnani ER. Not Just a Simple Sugar: Arabinose Metabolism and Function in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1791-1812. [PMID: 34129041 DOI: 10.1093/pcp/pcab087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Growth, development, structure as well as dynamic adaptations and remodeling processes in plants are largely controlled by properties of their cell walls. These intricate wall structures are mostly made up of different sugars connected through specific glycosidic linkages but also contain many glycosylated proteins. A key plant sugar that is present throughout the plantae, even before the divergence of the land plant lineage, but is not found in animals, is l-arabinose (l-Ara). Here, we summarize and discuss the processes and proteins involved in l-Ara de novo synthesis, l-Ara interconversion, and the assembly and recycling of l-Ara-containing cell wall polymers and proteins. We also discuss the biological function of l-Ara in a context-focused manner, mainly addressing cell wall-related functions that are conferred by the basic physical properties of arabinose-containing polymers/compounds. In this article we explore these processes with the goal of directing future research efforts to the many exciting yet unanswered questions in this research area.
Collapse
Affiliation(s)
- Alban Mariette
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Hee Sung Kang
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Staffan Persson
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| |
Collapse
|
12
|
Shao Y, Feng X, Nakahara H, Irshad M, Eneji AE, Zheng Y, Fujimaki H, An P. Apical-root apoplastic acidification affects cell wall extensibility in wheat under salinity stress. PHYSIOLOGIA PLANTARUM 2021; 173:1850-1861. [PMID: 34402071 DOI: 10.1111/ppl.13527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Plant salt tolerance is associated with a high rate of root growth. Although root growth is governed by cell wall and apoplastic pH, the relationship between these factors in the root elongation zone under salinity stress remains unclear. Herein, we assess apoplastic pH, pH- and expansin-dependent cell wall extensibility, and expansin expression in the root elongation zone of salt-sensitive (Yongliang-15) and -tolerant (JS-7) cultivars under salinity stress. A six-day 80 mM NaCl treatment significantly reduced apical root apoplastic pH in both cultivars. Using a pH-dependent cell wall extensibility experiment, we found that, under 0 mM NaCl treatment, the optimal pH for cell wall loosening was 6.0 in the salinity-tolerant cultivar and 4.6 in the salinity-sensitive cultivar. Under 80 mM treatment, a pH of 5.0 mitigated the cell wall stiffness caused by salinity stress in the salinity-tolerant cultivar but promoted cell wall stiffening in the salinity-sensitive cultivar. Salinity stress altered expansin expression and differentially affecting cell wall extensibility under pH 5.0 and 6.0. TaEXPA8 might be relative to cell wall loosening at pH 5.0, whereas TaEXPA5 relative to cell wall loosening at pH 6.0. These results elucidate the relationship between expansins and cell wall extensibility in the root elongation zone, with important implications for enhancing plant growth under salinity stress.
Collapse
Affiliation(s)
- Yang Shao
- Arid Land Research Center, Tottori University, Tottori City, Japan
| | - Xiaohui Feng
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Hiroki Nakahara
- Arid Land Research Center, Tottori University, Tottori City, Japan
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar, Nigeria
| | - Yuanrun Zheng
- Key Laboratory of Resource Plants, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - Ping An
- Arid Land Research Center, Tottori University, Tottori City, Japan
| |
Collapse
|
13
|
Song Y, Liu J, Wang J, Liu F. Growth, Stoichiometry, and Palatability of Suaeda salsa From Different Habitats Are Demonstrated by Differentially Expressed Proteins and Their Enriched Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:733882. [PMID: 34539722 PMCID: PMC8440984 DOI: 10.3389/fpls.2021.733882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Suaeda salsa (L.) Pall., a medicinal and edible plant, has green and red-violet ecotypes that exhibit different phenotypes, tastes, and growth characteristics. However, few studies have focused on these differences from the aspect of differentially expressed proteins under the conditions of different habitats in the field. In this study, two ecotypes of S. salsa from the intertidal (control) and supratidal (treatment) habitats of the Yellow River Delta were selected. A total of 30 individual leaves were mixed into six samples (three biological replicates for each) and subjected to protein extraction by using tandem mass tag-labeled quantitative proteomic technology. A total of 4771 proteins were quantitated. They included 317 differentially expressed proteins (2.0-fold change, p < 0.05), among which 143 were upregulated and the remaining 174 were downregulated. These differentially expressed proteins mainly participated in biological processes, such as response to stimulus, stress, and biotic stimulus; in molecular functions, such as methyltransferase activity, transferase activity, one-C group transfer, and tetrapyrrole binding; and in cell components, such as non-membrane-bound organelles, intracellular non-membrane-bound organelles, chromosomes, and photosystems. The differentially expressed proteins were mainly enriched in eight pathways, among which the ribosome, phenylpropanoid biosynthesis, and photosynthesis pathways had higher protein numbers than the other pathways. The upregulation of differentially expressed proteins related to the ribosome and photosynthesis increased the relative growth rate and reduced the N:P ratio of S. salsa from the supratidal habitat, thereby improving its palatability. By contrast, most of the differentially expressed proteins involved in phenylpropanoid biosynthesis were downregulated in S. salsa from the intertidal habitat. This result indicated that S. salsa from the intertidal habitat might accumulate flavonoids, lignin, and other secondary metabolites in its leaves that confer a bitter taste. However, these secondary metabolites might increase the medicinal value of S. salsa from the intertidal habitat. This work could provide a theoretical basis and data support for the sustainable and high-value utilization of medicinal and edible plants from coastal wetlands.
Collapse
Affiliation(s)
- Ye Song
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Co-Operatives, Jinan, China
| | - Jiayuan Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Jianzhong Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fude Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
14
|
Vago ME, Jaurena G, Estevez JM, Castro MA, Zavala JA, Ciancia M. Salt stress on Lotus tenuis triggers cell wall polysaccharide changes affecting their digestibility by ruminants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:405-415. [PMID: 34157603 DOI: 10.1016/j.plaphy.2021.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Lotus tenuis is a glycophytic forage legume (Fabaceae) used in feeding ruminants that can grow under salinity and waterlogging stresses. Plants obtained in controlled conditions were affected negatively in their growth by the effect of salt. Results from sequential extraction of plant cell wall polysaccharides and chemical characterization were related to those from nutritional parameters used to assess ruminants feedstuffs (Van Soest detergent system). Shoots and leaves were analyzed, and the most important differences were found for shoots. The salt-stressed shoots gave lower values of neutral detergent fiber and acid detergent fiber; they produced higher amounts of reserve α-glucans, and hemicelluloses (xyloglucans and glucuronoxylans from primary and secondary cell walls, respectively) and pectins, leaving less material resistant to extraction. This effect was clearly confirmed by an in vitro gas production assay. In addition, observations by light microcopy (LM) and transmission electron microscopy (TEM), showed in some tissues thicker walls and more opened cell wall structures in regard to control samples, which could allow easier access of degrading enzymes in the rumen. Although the plant biomass of Lotus tenuis produced under salt stress was lower, its quality as forage improved due to production of increased quantities of more digestible polysaccharides.
Collapse
Affiliation(s)
- María Elena Vago
- Pontificia Universidad Católica Argentina, Facultad de Ingeniería y Ciencias Agrarias, Laboratorio de Evaluación de Alimentos para Uso Animal, Av. Alicia Moreau de Justo, 1680, C1107AFF, Buenos Aires, Argentina
| | - Gustavo Jaurena
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Cátedra de Nutrición Animal, Av. San Martín, 4453, C1417DSE Buenos Aires, Argentina
| | - Jose M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET). Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de La Vida (FCsV), Universidad Andres Bello, Santiago, Chile and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Maria Agueda Castro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, DBBE, Laboratorio de Anatomía Vegetal Aplicada, Ciudad Universitaria - Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Jorge Alberto Zavala
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Av. San Martín, 4453, C1417DSE Buenos Aires, Argentina
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Cátedra de Química de Biomoléculas. Av. San Martín, 4453, C1417DSE Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Agronomía. Consejo Nacional de Investigaciones Científicas y Técnicas- Centro de Investigación de Hidratos de Carbono (CIHIDECAR-CONICET, UBA), Av. San Martín, 4453, C1417DSE Buenos Aires, Argentina.
| |
Collapse
|
15
|
Li Z, Zhang C, Zhang Y, Zeng W, Cesarino I. Coffee cell walls—composition, influence on cup quality and opportunities for coffee improvements. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The coffee beverage is the second most consumed drink worldwide after water. In coffee beans, cell wall storage polysaccharides (CWSPs) represent around 50 per cent of the seed dry mass, mainly consisting of galactomannans and arabinogalactans. These highly abundant structural components largely influence the organoleptic properties of the coffee beverage, mainly due to the complex changes they undergo during the roasting process. From a nutritional point of view, coffee CWSPs are soluble dietary fibers shown to provide numerous health benefits in reducing the risk of human diseases. Due to their influence on coffee quality and their health-promoting benefits, CWSPs have been attracting significant research attention. The importance of cell walls to the coffee industry is not restricted to beans used for beverage production, as several coffee by-products also present high concentrations of cell wall components. These by-products include cherry husks, cherry pulps, parchment skin, silver skin, and spent coffee grounds, which are currently used or have the potential to be utilized either as food ingredients or additives, or for the generation of downstream products such as enzymes, pharmaceuticals, and bioethanol. In addition to their functions during plant development, cell walls also play a role in the plant’s resistance to stresses. Here, we review several aspects of coffee cell walls, including chemical composition, biosynthesis, their function in coffee’s responses to stresses, and their influence on coffee quality. We also propose some potential cell wall–related biotechnological strategies envisaged for coffee improvements.
Collapse
Affiliation(s)
| | | | | | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Zubler AV, Yoon JY. Proximal Methods for Plant Stress Detection Using Optical Sensors and Machine Learning. BIOSENSORS 2020; 10:E193. [PMID: 33260412 PMCID: PMC7760370 DOI: 10.3390/bios10120193] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022]
Abstract
Plant stresses have been monitored using the imaging or spectrometry of plant leaves in the visible (red-green-blue or RGB), near-infrared (NIR), infrared (IR), and ultraviolet (UV) wavebands, often augmented by fluorescence imaging or fluorescence spectrometry. Imaging at multiple specific wavelengths (multi-spectral imaging) or across a wide range of wavelengths (hyperspectral imaging) can provide exceptional information on plant stress and subsequent diseases. Digital cameras, thermal cameras, and optical filters have become available at a low cost in recent years, while hyperspectral cameras have become increasingly more compact and portable. Furthermore, smartphone cameras have dramatically improved in quality, making them a viable option for rapid, on-site stress detection. Due to these developments in imaging technology, plant stresses can be monitored more easily using handheld and field-deployable methods. Recent advances in machine learning algorithms have allowed for images and spectra to be analyzed and classified in a fully automated and reproducible manner, without the need for complicated image or spectrum analysis methods. This review will highlight recent advances in portable (including smartphone-based) detection methods for biotic and abiotic stresses, discuss data processing and machine learning techniques that can produce results for stress identification and classification, and suggest future directions towards the successful translation of these methods into practical use.
Collapse
Affiliation(s)
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
17
|
Reem NT, Chambers L, Zhang N, Abdullah SF, Chen Y, Feng G, Gao S, Soto-Burgos J, Pogorelko G, Bassham DC, Anderson CT, Walley JW, Zabotina OA. Post-Synthetic Reduction of Pectin Methylesterification Causes Morphological Abnormalities and Alterations to Stress Response in Arabidopsis thaliana. PLANTS 2020; 9:plants9111558. [PMID: 33198397 PMCID: PMC7697075 DOI: 10.3390/plants9111558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Pectin is a critical component of the plant cell wall, supporting wall biomechanics and contributing to cell wall signaling in response to stress. The plant cell carefully regulates pectin methylesterification with endogenous pectin methylesterases (PMEs) and their inhibitors (PMEIs) to promote growth and protect against pathogens. We expressed Aspergillus nidulans pectin methylesterase (AnPME) in Arabidopsis thaliana plants to determine the impacts of methylesterification status on pectin function. Plants expressing AnPME had a roughly 50% reduction in methylester content compared with control plants. AnPME plants displayed a severe dwarf phenotype, including small, bushy rosettes and shorter roots. This phenotype was caused by a reduction in cell elongation. Cell wall composition was altered in AnPME plants, with significantly more arabinose and significantly less galacturonic acid, suggesting that plants actively monitor and compensate for altered pectin content. Cell walls of AnPME plants were more readily degraded by polygalacturonase (PG) alone but were less susceptible to treatment with a mixture of PG and PME. AnPME plants were insensitive to osmotic stress, and their susceptibility to Botrytis cinerea was comparable to wild type plants despite their compromised cell walls. This is likely due to upregulated expression of defense response genes observed in AnPME plants. These results demonstrate the importance of pectin in both normal growth and development, and in response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Nathan T. Reem
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
| | - Lauran Chambers
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
| | - Ning Zhang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
| | - Siti Farah Abdullah
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
| | - Yintong Chen
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; (Y.C.); (G.F.); (C.T.A.)
| | - Guanhua Feng
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; (Y.C.); (G.F.); (C.T.A.)
| | - Song Gao
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA; (S.G.); (J.W.W.)
| | - Junmarie Soto-Burgos
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA 50011, USA; (J.S.-B.); (D.C.B.)
| | - Gennady Pogorelko
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
| | - Diane C. Bassham
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA 50011, USA; (J.S.-B.); (D.C.B.)
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; (Y.C.); (G.F.); (C.T.A.)
| | - Justin W. Walley
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA; (S.G.); (J.W.W.)
| | - Olga A. Zabotina
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
- Correspondence: ; Tel.: +1-515-294-6125
| |
Collapse
|
18
|
Surówka E, Potocka I, Dziurka M, Wróbel-Marek J, Kurczyńska E, Żur I, Maksymowicz A, Gajewska E, Miszalski Z. Tocopherols mutual balance is a key player for maintaining Arabidopsis thaliana growth under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:369-383. [PMID: 33007531 DOI: 10.1016/j.plaphy.2020.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/07/2020] [Indexed: 05/26/2023]
Abstract
Enhanced channeling carbon through pathways: shikimate/chorismate, benzenoid-phenylopropanoid or 2-C-methyl-D-erythritol 4-phosphate (MEP) provides a multitude of secondary metabolites and cell wall components and allows plants response to environmental stresses. Through the biosynthetic pathways, different secondary metabolites, like tocopherols (TCs), are bind to mutual dependencies and metabolic loops, that are not yet fully understood. We compared, in parallel, the influence of α- and γ-TCs on metabolites involved in osmoprotective/antioxidative response, and physico-chemical modification of plasma membrane and cell wall. We studied Arabidopsis thaliana Columbia ecotype (WT), mutant vte1 deficient in α- and γ-TCs, mutant vte4 over-accumulating γ-TC instead of α-TC, and transgenic line tmt over-accumulating α-TC; exposed to NaCl. The results indicate that salt stress activates β-carboxylation processes in WT plants and in plants with altered TCs accumulation. In α-TC-deficient plants, NaCl causes ACC decrease, but does not change SA, whose concentration remains higher than in α-TC accumulating plants. α/γ-TCs contents influence carbohydrates, poliamines, phenolic (caffeic, ferrulic, cinnamic) acids accumulation patterns. Salinity results in increased detection of the LM5 galactan and LM19 homogalacturonan epitopes in α-TC accumulating plants, and the LM6 arabinan and MAC207 AGP epitopes in α-TC deficient mutants. Parallel, plants with altered TCs composition show decreased both the cell turgor and elastic modulus determined at the individual cell level. α-TC deficient plants reveal lower values of cell turgor and elastic modulus, but higher cell hydraulic conductivity than α-TC accumulating plants. Under salt stress, α-TC shows stronger regulatory effect than γ-TC through the impact on chloroplastic biosynthetic pathways and ROS/osmotic-modulating compounds.
Collapse
Affiliation(s)
- Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland.
| | - Izabela Potocka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Justyna Wróbel-Marek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Anna Maksymowicz
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Ewa Gajewska
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| |
Collapse
|
19
|
Liu X, Yu Y, Liu Q, Deng S, Jin X, Yin Y, Guo J, Li N, Liu Y, Han S, Wang C, Hao D. A Na 2CO 3-Responsive Chitinase Gene From Leymus chinensis Improve Pathogen Resistance and Saline-Alkali Stress Tolerance in Transgenic Tobacco and Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:504. [PMID: 32411170 PMCID: PMC7198794 DOI: 10.3389/fpls.2020.00504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Salinity and microbial pathogens are the major limiting factors for crop production. Although the manipulation of many genes could improve plant performance under either of these stresses, few genes have reported that could improve both pathogen resistance and saline-alkali stress tolerance. In this study, we identified a new chitinase gene CHITINASE 2 (LcCHI2) that encodes a class II chitinase from Leymus chinensis, which grows naturally on alkaline-sodic soil. Overexpression of LcCHI2 increased chitinase activity in transgenic plants. The transgenic tobacco and maize exhibited improved pathogen resistance and enhanced both neutral salt and alkaline salt stress tolerance. Overexpression of LcCHI2 reduced sodium (Na+) accumulation, malondialdehyde content and relative electrical conductivity in transgenic tobacco under salt stress. In addition, the transgenic tobacco showed diminished lesion against bacterial and fungal pathogen challenge, suggesting an improved disease resistance. Similar improved performance was also observed in LcCHI2-overexpressed maize under both pathogen and salt stresses. It is worth noting that this genetic manipulation does not impair the growth and yield of transgenic tobacco and maize under normal cultivation condition. Apparently, application of LcCHI2 provides a new train of thought for genetically engineering saline-alkali and pathogen resistant crops of both dicots and monocots.
Collapse
Affiliation(s)
- Xiangguo Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ying Yu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qing Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Suren Deng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Xuebo Jin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jia Guo
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yang Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Siping Han
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chuang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Dongyun Hao
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
20
|
Liu X, Yu Y, Liu Q, Deng S, Jin X, Yin Y, Guo J, Li N, Liu Y, Han S, Wang C, Hao D. A Na 2CO 3-Responsive Chitinase Gene From Leymus chinensis Improve Pathogen Resistance and Saline-Alkali Stress Tolerance in Transgenic Tobacco and Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:504. [PMID: 32411170 DOI: 10.1101/707281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/03/2020] [Indexed: 05/24/2023]
Abstract
Salinity and microbial pathogens are the major limiting factors for crop production. Although the manipulation of many genes could improve plant performance under either of these stresses, few genes have reported that could improve both pathogen resistance and saline-alkali stress tolerance. In this study, we identified a new chitinase gene CHITINASE 2 (LcCHI2) that encodes a class II chitinase from Leymus chinensis, which grows naturally on alkaline-sodic soil. Overexpression of LcCHI2 increased chitinase activity in transgenic plants. The transgenic tobacco and maize exhibited improved pathogen resistance and enhanced both neutral salt and alkaline salt stress tolerance. Overexpression of LcCHI2 reduced sodium (Na+) accumulation, malondialdehyde content and relative electrical conductivity in transgenic tobacco under salt stress. In addition, the transgenic tobacco showed diminished lesion against bacterial and fungal pathogen challenge, suggesting an improved disease resistance. Similar improved performance was also observed in LcCHI2-overexpressed maize under both pathogen and salt stresses. It is worth noting that this genetic manipulation does not impair the growth and yield of transgenic tobacco and maize under normal cultivation condition. Apparently, application of LcCHI2 provides a new train of thought for genetically engineering saline-alkali and pathogen resistant crops of both dicots and monocots.
Collapse
Affiliation(s)
- Xiangguo Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ying Yu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qing Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Suren Deng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Xuebo Jin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jia Guo
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yang Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Siping Han
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chuang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Dongyun Hao
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
21
|
Corrêa-Ferreira ML, Viudes EB, de Magalhães PM, Paixão de Santana Filho A, Sassaki GL, Pacheco AC, de Oliveira Petkowicz CL. Changes in the composition and structure of cell wall polysaccharides from Artemisia annua in response to salt stress. Carbohydr Res 2019; 483:107753. [DOI: 10.1016/j.carres.2019.107753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
|
22
|
Salinity Effects on Sugar Homeostasis and Vascular Anatomy in the Stem of the Arabidopsis Thaliana Inflorescence. Int J Mol Sci 2019; 20:ijms20133167. [PMID: 31261714 PMCID: PMC6651052 DOI: 10.3390/ijms20133167] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
The regulation of sugar metabolism and partitioning plays an essential role for a plant’s acclimation to its environment, with specific responses in autotrophic and heterotrophic organs. In this work, we analyzed the effects of high salinity on sugar partitioning and vascular anatomy within the floral stem. Stem sucrose and fructose content increased, while starch reduced, in contrast to the response observed in rosette leaves of the same plants. In the stem, the effects were associated with changes in the expression of SWEET and TMT2 genes encoding sugar transporters, SUSY1 encoding a sucrose synthase and several FRK encoding fructokinases. By contrast, the expression of SUC2, SWEET11 and SWEET12, encoding sugar transporters for phloem loading, remained unchanged in the stem. Both the anatomy of vascular tissues and the composition of xylem secondary cell walls were altered, suggesting that high salinity triggered major readjustments of sugar partitioning in this heterotrophic organ. There were changes in the composition of xylem cell walls, associated with the collapse and deformation of xylem vessels. The data are discussed regarding sugar partitioning and homeostasis of sugars in the vascular tissues of the stem.
Collapse
|
23
|
Marcheafave GG, Tormena CD, Pauli ED, Rakocevic M, Bruns RE, Scarminio IS. Experimental mixture design solvent effects on pigment extraction and antioxidant activity from Coffea arabica L. leaves. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Zheng M, Liu X, Lin J, Liu X, Wang Z, Xin M, Yao Y, Peng H, Zhou DX, Ni Z, Sun Q, Hu Z. Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:587-602. [PMID: 30394596 DOI: 10.1111/tpj.14144] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 05/22/2023]
Abstract
Excess soluble salts in soil are harmful to the growth and development of most plants. Evidence is emerging that the plant cell wall is involved in sensing and responding to salt stress, but the underlying mechanisms are not well understood. We reveal that the histone acetyltransferase General control non-repressed protein 5 (GCN5) is required for the maintenance of cell wall integrity and salt stress tolerance. The levels of GCN5 mRNA are increased in response to salt stress. The gcn5 mutants exhibited severe growth inhibition and defects in cell wall integrity under salt stress conditions. Combining RNA sequencing and chromatin immunoprecipitation assays, we identified the chitinase-like gene CTL1, polygalacturonase involved in expansion-3 (PGX3) and MYB domain protein-54 (MYB54) as direct targets of GCN5. Acetylation of H3K9 and H3K14 mediated by GCN5 is associated with activation of CTL1, PGX3 and MYB54 under salt stress. Moreover, constitutive expression of CTL1 in the gcn5 mutant restores salt tolerance and cell wall integrity. In addition, the expression of the wheat TaGCN5 gene in Arabidopsis gcn5 mutant plants complemented the salt tolerance and cell wall integrity phenotypes, suggesting that GCN5-mediated salt tolerance is conserved between Arabidopsis and wheat. Taken together, our data indicate that GCN5 plays a key role in the preservation of salt tolerance via versatile regulation in plants.
Collapse
Affiliation(s)
- Mei Zheng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xingbei Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Jingchen Lin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Zhouying Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Dao-Xiu Zhou
- Institute of Plant Science Paris-Saclay, Université Paris Sud, 91405, Orsay, France
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Wang GL, Ren XQ, Liu JX, Yang F, Wang YP, Xiong AS. Transcript profiling reveals an important role of cell wall remodeling and hormone signaling under salt stress in garlic. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:87-98. [PMID: 30529171 DOI: 10.1016/j.plaphy.2018.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Salt stress is one of the environmental factors that evidently limit plant growth and yield. Despite the fact that understanding plant response to salt stress is important to agricultural practice, the molecular mechanisms underlying salt tolerance in garlic remain unclear. In this study, garlic seedlings were exposed to 200 mM NaCl stress for 0, 1, 4, and 12 h, respectively. RNA-seq was applied to analyze the transcriptional response under salinity conditions. A total of 13,114 out of 25,530 differentially expressed unigenes were identified to have pathway annotation, which were mainly involved in purine metabolism, starch and sucrose metabolism, plant hormone signal transduction, flavone and flavonol biosynthesis, isoflavonoid biosynthesis, MAPK signaling pathway, and circadian rhythm. In addition, 272 and 295 differentially expressed genes were identified to be cell wall and hormone signaling-related, respectively, and their interactions under salinity stress were extensively discussed. The results from the current work would provide new resources for the breeding aimed at improving salt tolerance in garlic.
Collapse
Affiliation(s)
- Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Xu-Qin Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Yang
- Institute of Horticulture, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China
| | - Yun-Peng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
26
|
Qin S, Feng WW, Zhang YJ, Wang TT, Xiong YW, Xing K. Diversity of Bacterial Microbiota of Coastal Halophyte Limonium sinense and Amelioration of Salinity Stress Damage by Symbiotic Plant Growth-Promoting Actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl Environ Microbiol 2018; 84:e01533-18. [PMID: 30054358 PMCID: PMC6146988 DOI: 10.1128/aem.01533-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 11/20/2022] Open
Abstract
Plant-associated microorganisms are considered a key determinant of plant health and growth. However, little information is available regarding the composition and ecological function of the roots' and leaves' bacterial microbiota of halophytes. Here, using both culture-dependent and culture-independent techniques, we characterized the bacterial communities of the roots and leaves as well as the rhizosphere and bulk soils of the coastal halophyte Limonium sinense in Jiangsu Province, China. We identified 49 representative bacterial strains belonging to 17 genera across all samples, with Glutamicibacter as the most dominant genus. All Glutamicibacter isolates showed multiple potential plant growth promotion traits and tolerated a high concentration of NaCl and a wide pH range. Interestingly, further inoculation experiments showed that the Glutamicibacter halophytocola strain KLBMP 5180 isolated from root tissue significantly promoted host growth under NaCl stress. Indeed, KLBMP 5180 inoculation increased the concentrations of total chlorophyll, proline, antioxidative enzymes, flavonoids, K+, and Ca2+ in the leaves; the concentrations of malondialdehyde (MDA) and Na+ were reduced. A transcriptome analysis identified 1,359 and 328 differentially expressed genes (DEGs) in inoculated seedlings treated with 0 and 250 mM NaCl, respectively. We found that pathways related to phenylpropanoid and flavonoid biosynthesis and ion transport and metabolism might play more important roles in host salt stress tolerance induced by KLBMP 5180 inoculation compared to that in noninoculated leaves. Our results provide novel insights into the complex composition and function of the bacterial microbiota of the coastal halophyte L. sinense and suggest that halophytes might recruit specific bacteria to enhance their tolerance of harsh environments.IMPORTANCE Halophytes are important coastal plants often used for the remediation of saline coastal soils. Limonium sinense is well known for its medical properties and phytoremediation of saline soils. However, excessive exploitation and utilization have made the wild resource endangered. The use of endophytic and rhizosphere bacteria may be one of the suitable ways to solve the problem. This study was undertaken to develop approaches to improve the growth of L. sinense using endophytes. The application of actinobacterial endophytes ameliorated salt stress damage of the host via complex physiological and molecular mechanisms. The results also highlight the potential of using habitat-adapted, symbiotic, indigenous endophytic bacteria to enhance the growth and ameliorate abiotic stress damage of host plants growing in special habitats.
Collapse
Affiliation(s)
- Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Wei-Wei Feng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Yue-Ji Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Tian-Tian Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - You-Wei Xiong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
An YH, Zhou H, Yuan YH, Li L, Sun J, Shu S, Guo SR. 24-Epibrassinolide-induced alterations in the root cell walls of Cucumis sativus L. under Ca(NO 3) 2 stress. PROTOPLASMA 2018; 255:841-850. [PMID: 29243177 DOI: 10.1007/s00709-017-1187-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Brassinosteroids (BRs) can effectively alleviate the oxidative stress caused by Ca(NO3)2 in cucumber seedlings. The root system is an essential organ in plants due to its roles in physical anchorage, water and nutrient uptake, and metabolite synthesis and storage. In this study, 24-epibrassinolide (EBL) was applied to the cucumber seedling roots under Ca(NO3)2 stress, and the resulting chemical and anatomical changes were characterized to investigate the roles of BRs in alleviating salinity stress. Ca(NO3)2 alone significantly induced changes in the components of cell wall, anatomical structure, and expression profiles of several lignin biosynthetic genes. Salt stress damaged several metabolic pathways, leading to cell wall reassemble. However, EBL promoted cell expansion and maintained optimum length of root system, alleviating the oxidative stress caused by Ca(NO3)2. The continuous transduction of EBL signal thickened the secondary cell wall of casparian band cells, thus resisting against ion toxicity and maintaining water transport.
Collapse
Affiliation(s)
- Ya-Hong An
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Heng Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Ying-Hui Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Lin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
| | - Shi-Rong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China.
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China.
| |
Collapse
|
28
|
Harding SA, Hu H, Nyamdari B, Xue LJ, Naran R, Tsai CJ. Tubulins, rhythms and cell walls in poplar leaves: it's all in the timing. TREE PHYSIOLOGY 2018; 38:397-408. [PMID: 28927239 DOI: 10.1093/treephys/tpx104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Plant cell walls exhibit architectural and compositional changes throughout their development and in response to external cues. While tubulins are involved in cell wall biogenesis, much remains unknown about the scope of their involvement during the orchestration of this resource-demanding process. A transgenic approach coupled with cell wall compositional analysis, RNA-seq and mining of publicly available diurnal gene expression data was used to assess the involvement of tubulins in poplar leaf cell wall biogenesis. Leaf cell walls of transgenic poplar lines with constitutive overexpression of α-tubulin (TUA) exhibited an increased abundance of homogalacturonan, along with a reduction in xylose. These changes were traced to altered expression of UDP-glucuronic acid decarboxylase (GADC) in the transgenic leaves. A model is postulated by which altered diurnal control of TUA through its constitutive overexpression led to a metabolic tradeoff affecting cellular utilization of GADC substrate UDP-glucuronic acid. While there were no effects on cellulose, hemicellulose or lignin abundance, subtle effects on hemicellulose composition and associated gene expression were noted. In addition, expression and enzymatic activity of pectin methylesterase (PME) decreased in the transgenic leaves. The change is discussed in a context of increased levels of PME substrate homogalacturonan, slow stomatal kinetics and the fate of PME product methanol. Since stomatal opening and closing depend on fundamentally contrasting microtubule dynamics, the slowing of both processes in the transgenic lines as previously reported appears to be directly related to underlying cell wall compositional changes that were caused by tubulin manipulation.
Collapse
Affiliation(s)
- Scott A Harding
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Hao Hu
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Ecology & Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Batbayar Nyamdari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Radnaa Naran
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
29
|
Skolik P, McAinsh MR, Martin FL. Biospectroscopy for Plant and Crop Science. VIBRATIONAL SPECTROSCOPY FOR PLANT VARIETIES AND CULTIVARS CHARACTERIZATION 2018. [DOI: 10.1016/bs.coac.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Relationship observed between salinity-tolerant callus cell lines and anatomical structure of Line 2 ( Oryza sativa L.) indica under salinity stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Bilska-Kos A, Solecka D, Dziewulska A, Ochodzki P, Jończyk M, Bilski H, Sowiński P. Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves (Zea mays L.). PROTOPLASMA 2017; 254:713-724. [PMID: 27193139 PMCID: PMC5309300 DOI: 10.1007/s00709-016-0982-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/06/2016] [Indexed: 05/17/2023]
Abstract
The cell wall emerged as one of the important structures in plant stress responses. To investigate the effect of cold on the cell wall properties, the content and localization of pectins and pectin methylesterase (PME) activity, were studied in two maize inbred lines characterized by different sensitivity to cold. Low temperature (14/12 °C) caused a reduction of pectin content and PME activity in leaves of chilling-sensitive maize line, especially after prolonged treatment (28 h and 7 days). Furthermore, immunocytohistological studies, using JIM5 and JIM7 antibodies, revealed a decrease of labeling of both low- and high-methylesterified pectins in this maize line. The osmotic potential, quantified by means of incipient plasmolysis was lower in several types of cells of chilling-sensitive maize line which was correlated with the accumulation of sucrose. These studies present new finding on the effect of cold stress on the cell wall properties in conjunction with changes in the osmotic potential of maize leaf cells.
Collapse
Affiliation(s)
- Anna Bilska-Kos
- Department of Plant Biochemistry and Physiology, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland.
- Department of Plant Physiology, Institute of Applied Biotechnology and Basic Science, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.
| | - Danuta Solecka
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Aleksandra Dziewulska
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
- Biomedical Sciences Research Complex North Haugh, University of St. Andrews, KY16 9ST, St. Andrews, Fife, Scotland, UK
| | - Piotr Ochodzki
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Maciej Jończyk
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Henryk Bilski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, PAS, Pasteura 3, 02-093, Warsaw, Poland
| | - Paweł Sowiński
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
32
|
DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response. Sci Rep 2017; 7:41010. [PMID: 28176760 PMCID: PMC5296857 DOI: 10.1038/srep41010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
GDP-mannose pyrophosphorylase (GMP) catalyzed the formation of GDP-mannose, which serves as a donor for the biosynthesis of mannose-containing polysaccharides. In this study, three GMP genes from Dendrobium officinale (i.e., DoGMPs) were cloned and analyzed. The putative 1000 bp upstream regulatory region of these DoGMPs was isolated and cis-elements were identified, which indicates their possible role in responses to abiotic stresses. The DoGMP1 protein was shown to be localized in the cytoplasm. To further study the function of the DoGMP1 gene, 35S:DoGMP1 transgenic A. thaliana plants with an enhanced expression level of DoGMP1 were generated. Transgenic plants were indistinguishable from wild-type (WT) plants in tissue culture or in soil. However, the mannose content of the extracted water-soluble polysaccharides increased 67%, 96% and 92% in transgenic lines #1, #2 and #3, respectively more than WT levels. Germination percentage of seeds from transgenic lines was higher than WT seeds and the growth of seedlings from transgenic lines was better than WT seedlings under salinity stress (150 mM NaCl). Our results provide genetic evidence for the involvement of GMP genes in the biosynthesis of mannose-containing polysaccharides and the mediation of GMP genes in the response to salt stress during seed germination and seedling growth.
Collapse
|
33
|
Abdelrahman M, Abdel-Motaal F, El-Sayed M, Jogaiah S, Shigyo M, Ito SI, Tran LSP. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:128-138. [PMID: 26993243 DOI: 10.1016/j.plantsci.2016.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 05/09/2023]
Abstract
Trichoderma spp. are versatile opportunistic plant symbionts that can cause substantial changes in the metabolism of host plants, thereby increasing plant growth and activating plant defense to various diseases. Target metabolite profiling approach was selected to demonstrate that Trichoderma longibrachiatum isolated from desert soil can confer beneficial agronomic traits to onion and induce defense mechanism against Fusarium oxysporum f. sp. cepa (FOC), through triggering a number of primary and secondary metabolite pathways. Onion seeds primed with Trichoderma T1 strain displayed early seedling emergence and enhanced growth compared with Trichoderma T2-treatment and untreated control. Therefore, T1 was selected for further investigations under greenhouse conditions, which revealed remarkable improvement in the onion bulb growth parameters and resistance against FOC. The metabolite platform of T1-primed onion (T1) and T1-primed onion challenged with FOC (T1+FOC) displayed significant accumulation of 25 abiotic and biotic stress-responsive metabolites, representing carbohydrate, phenylpropanoid and sulfur assimilation metabolic pathways. In addition, T1- and T1+FOC-treated onion plants showed discrete antioxidant capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) compared with control. Our findings demonstrated the contribution of T. longibrachiatum to the accumulation of key metabolites, which subsequently leads to the improvement of onion growth, as well as its resistance to oxidative stress and FOC.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; Botany Department Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Fatma Abdel-Motaal
- Botany Department Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Magdi El-Sayed
- Botany Department Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Masayoshi Shigyo
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Shin-Ichi Ito
- Laboratory of Molecular Plant Pathology, Department of Biological and Environmental Sciences, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumiku, Yokohama 230-0045, Japan.
| |
Collapse
|
34
|
Gao L, Li Y, Han R. Cell wall reconstruction and DNA damage repair play a key role in the improved salt tolerance effects of He-Ne laser irradiation in tall fescue seedlings. Biosci Biotechnol Biochem 2016; 80:682-93. [DOI: 10.1080/09168451.2015.1101335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
The improved salt tolerance effects of He–Ne laser were further studied through the estimation of ROS levels, cell viability, DNA damage phenomena, physicochemical properties, and monosaccharide compositions of cell wall polysaccharides in tall fescue seedlings. Salt stress produced deleterious effects on seedlings growth and development. ROS levels and genomic DNA damage were markedly increased compared with controls. Physicochemical activities and monosaccharide proportions of cell wall polysaccharide were also pronouncedly altered. He–Ne laser irradiation improved plant growth retardation via increasing cell viability and reverting physicochemical parameters. According to the results of Fourier transform infrared (FTIR) scanning spectra and DNA apopladder analysis, He–Ne laser was showed to efficiently ameliorate cell wall polysaccharide damage and DNA fragmentation phenomena. The treatment with DNA synthesis inhibitor further demonstrated that DNA damage repair was correlated with the improvement effects of the laser. Therefore, our data illustrated that He–Ne laser irradiation resulted in cell wall reconstruction and genomic DNA injury repair in vivo in salt-stressed seedlings, then enhanced salt tolerance probably via interactions between plant cell wall and related resistance gene expression pattern.
Collapse
Affiliation(s)
- Limei Gao
- College of Life Science, Shanxi Normal University, Linfen, P. R. China
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen, P. R. China
| | - Yongfeng Li
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen, P. R. China
- Analysis and Testing Center, Shanxi Normal University, Linfen, P. R. China
| | - Rong Han
- College of Life Science, Shanxi Normal University, Linfen, P. R. China
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen, P. R. China
| |
Collapse
|
35
|
Uarrota VG, Moresco R, Schmidt EC, Bouzon ZL, da Costa Nunes E, de Oliveira Neubert E, Peruch LAM, Rocha M, Maraschin M. The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava ( Manihot esculenta Crantz) roots under postharvest physiological deterioration. Food Chem 2016; 197:737-46. [DOI: 10.1016/j.foodchem.2015.11.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
|
36
|
Gao LM, Li YF, Han R. He-Ne laser preillumination improves the resistance of tall fescue (Festuca arundinacea Schreb.) seedlings to high saline conditions. PROTOPLASMA 2015; 252:1135-1148. [PMID: 25547962 DOI: 10.1007/s00709-014-0748-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
In this paper, we explored the protective effect and physiochemical mechanism of He-Ne laser preillumination in enhancement of tall fescue seedlings tolerance to high salt stress. The results showed that salt stress greatly reduced plant growth, plant height, biomass, leaf development, ascorbate acid (AsA) and glutathione (GSH) concentration, the enzymatic activities, and gene expression levels of antioxidant enzymes such as catalase (CAT) and glutathione reductase (GR) and enhanced hydrogen peroxide (H2O2) content, superoxide radical (O2 (·-)) generation rates, membrane lipid peroxidation, relative electrolyte leakage, the enzymatic activities, and gene expression levels of superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD), compared with controls. However, He-Ne laser preillumination significantly reversed plant growth retardation, biomass loss, and leaves development decay induced by salt stress. And the values of the physiochemical parameters observed in salt-stressed plants were partially reverted or further increased by He-Ne laser. Salt stress had no obvious effect on the transcriptional activity of phytochromeB, whereas He-Ne laser markedly enhanced its transcriptional level. Preillumination with white fluorescent lamps (W), red light (RL) of the same wavelength, or RL, then far-red light (FRL) had not alleviated the inhibitory effect of salt stress on plant growth and antioxidant enzymes activities, suggesting that the effect of He-Ne laser on improved salt tolerance was most likely attributed to the induction of phytochromeB transcription activities by the laser preillumination, but not RL, FRL or other light sources. In addition, we also utilized sodium nitroprusside (SNP) as NO donor to pre-treat tall fescue seedlings at the same conditions, and further evaluated the differences of physiological effects between He-Ne laser and NO in increasing salt resistance of tall fescue. Taken together, our data illustrated that He-Ne laser preillumination contributed to conferring an increased tolerance to salt stress in tall fescue seedlings due to alleviating oxidative damage through scavenging free radicals and inducing transcriptional activities of some genes involved in plant antioxidant system, and the induction of phytochromeB transcriptional level by He-Ne laser was probably correlated with these processes. Moreover, this positive physiochemical effect seemed more effective with He-Ne laser than NO molecule.
Collapse
Affiliation(s)
- Li-Mei Gao
- College of Life Science, Shanxi Normal University, Linfen, 041004, China,
| | | | | |
Collapse
|
37
|
He C, Zhang J, Liu X, Zeng S, Wu K, Yu Z, Wang X, Teixeira da Silva JA, Lin Z, Duan J. Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. PLANT MOLECULAR BIOLOGY 2015; 88:219-31. [PMID: 25924595 DOI: 10.1007/s11103-015-0316-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/01/2015] [Indexed: 05/21/2023]
Abstract
Dendrobium officinale is a traditional Chinese medicinal plant. The stems of D. officinale contain mannan polysaccharides, which are promising bioactive polysaccharides for use as drugs. However, the genes involved in the biosynthesis of mannan polysaccharides in D. officinale have not yet been identified. In this study, four digital gene expression profiling analyses were performed on developing stems of greenhouse-grown D. officinale to identify such genes. Based on the accumulation of mannose and on gene expression levels, eight CELLULOSE SYNTHASE-LIKE A genes (CSLA), which are highly likely to be related to the biosynthesis of bioactive mannan polysaccharides, were identified from the differentially expressed genes database. In order to further analyze these DoCSLA genes, a full-length cDNA of each was obtained by RACE. The eight genes, belonging to the CSLA family of the CesA superfamily, contain conserved domains of the CesA superfamily. Most of the genes, which were highly expressed in the stems of D. officinale, were related to abiotic stress. Our results suggest that the CSLA family genes from D. officinale are involved in the biosynthesis of bioactive mannan polysaccharides.
Collapse
Affiliation(s)
- Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2015; 4:112-66. [PMID: 27135320 PMCID: PMC4844334 DOI: 10.3390/plants4010112] [Citation(s) in RCA: 589] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.
Collapse
Affiliation(s)
- Hyacinthe Le Gall
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Florian Philippe
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jean-Marc Domon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Françoise Gillet
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jérôme Pelloux
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| |
Collapse
|