1
|
Jogaiah S, Mujtaba AG, Mujtaba M, Archana, De Britto S, Geetha N, Belorkar SA, Shetty HS. Chitosan-metal and metal oxide nanocomposites for active and intelligent food packaging; a comprehensive review of emerging trends and associated challenges. Carbohydr Polym 2025; 357:123459. [PMID: 40158990 DOI: 10.1016/j.carbpol.2025.123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
In recent years, significant advancements in biopolymer-based packaging have emerged as a response to the environmental challenges posed by traditional petroleum-based materials. The drive for sustainable, renewable, and degradable alternatives to fossil-based components in the packaging industry has led to an increased focus on chitosan, the second most abundant biopolymer after cellulose. Chitosan offers intrinsic properties such as biodegradability, biocompatibility, antimicrobial activity, excellent barrier and film-forming capabilities, positioning it as an ideal candidate for food packaging applications. However, limitations including inferior mechanical, thermal, barrier properties, and brittleness compared to conventional plastics have limiting its widespread adoption in the food packaging industry. Chitosan has been extensively utilized in various forms, particularly as nanocomposites incorporating metal nanoparticles, leading to chitosan-based nanocomposite films/coatings that synergistically combine the advantageous properties of both chitosan and metal nanoparticles. Through an in-depth analysis of the current research (primarily the last 5 years), this review delves into the physicochemical, mechanical, sensing, and antimicrobial properties of chitosan nanocomposite as an innovative food packaging material. This review will provide insights into the potential toxicity and environmental impact of nanoparticle migration, as well as the prospects and challenges associated with chitosan-metal/metal oxide nanocomposite films in the development of sustainable packaging solutions.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO) - 671316, Kasaragod (DT), Kerala, India.
| | | | - Muhammad Mujtaba
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Archana
- Nanobiotechnology laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka 441, Papua New Guinea
| | - Nagaraja Geetha
- Nanobiotechnology laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Seema A Belorkar
- Microbiology and Bioinformatics Department, Atal Bihari Vajpayee University, Bilaspur (C.G), India
| | - Hunthrike Shekar Shetty
- Nanobiotechnology laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| |
Collapse
|
2
|
Russo A, D'Alessandro A, Di Paola M, Cerasuolo B, Renzi S, Meriggi N, Conti L, Costa J, Pogni R, Martellini T, Cincinelli A, Ugolini A, Cavalieri D. On the role of bacterial gut microbiota from supralittoral amphipod Talitrus saltator (Montagu, 1808) in bioplastic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179109. [PMID: 40086306 DOI: 10.1016/j.scitotenv.2025.179109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Despite the promise of a reduced environmental impact, bioplastics are subjected to dispersion and accumulation similarly to traditional plastics, especially in marine and coastal environments. The environmental impact of bioplastics is attracting increasing attention due to the growing market demand. The ability of the supralittoral amphipod Talitrus saltator to ingest and survive on pristine starch-based bioplastic has already been assessed. However, the involvement of the gut microbiota of this key coastal species in making bioplastics a dietary supplement, remains unknown. In this study, we investigated the modification of T. saltator gut microbiota following bioplastic ingestion and the effect of this change on the modification of their chemical composition. Groups of adult amphipods were fed with: 1 - two different kinds of starch-based bioplastic; 2 - a 50 %/50 % chitosan-starch mixture; and 3 - paper and dry-fish-food. Freshly collected, unfed individuals were used as control group. Faecal pellets from the amphipods were collected and characterized using ATR-FTIR spectroscopy. DNA was extracted from gut samples for metagenomic analysis. Spectroscopic investigation suggested a partial digestion of polysaccharide components in the experimental polymeric materials. The analysis of the gut microbiota revealed that bioplastic feeding induced modification of sandhopper's gut microbial communities, shifting the abundance of specific microbial genera already present in the gut, towards bacterial genera associated with plastic/bioplastic degradation, especially in groups fed with starch-based bioplastics. Overall, our results highlight the involvement of T. saltator's gut microbiota in bioplastic modification, providing new insights into the potential role of microbial consortia associated to sandhoppers in bioplastic management.
Collapse
Affiliation(s)
- Alessandro Russo
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Aldo D'Alessandro
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Monica Di Paola
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Benedetta Cerasuolo
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Renzi
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Niccolò Meriggi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Luca Conti
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Jessica Costa
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Via A. Moro 2, 53100 Siena, Italy
| | - Rebecca Pogni
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Via A. Moro 2, 53100 Siena, Italy
| | - Tania Martellini
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessandra Cincinelli
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Alberto Ugolini
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Duccio Cavalieri
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy; CIB-Interuniversity Consortium for Biotechnologies, Via Flavia 23/1, 34148 Trieste, Italy.
| |
Collapse
|
3
|
Xu X, Gao C, Feng X, Meng L, Wang Z, Zhang Y, Tang X. Effects of keto acid crosslinking on the structure and properties of chitosan based casted and hot-pressed films. Int J Biol Macromol 2025; 308:142751. [PMID: 40180067 DOI: 10.1016/j.ijbiomac.2025.142751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/02/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Crosslinking is one of the most effective ways to enhance the performance of bio-based films, and suitable crosslinking agents are crucial for the enhancement. In this study, four α-ketoacids, namely glyoxylate, pyruvate, oxaloacetate, and α-ketoglutarate were used to crosslink chitosan at room temperature. The effects of crosslinking on the structure and properties of chitosan films were studied, and the reaction mechanism was explored. Fourier Transform Infrared spectroscopy and X-ray Photoelectron Spectroscopy indicated that ion attraction and Schiff base reactions occurred between keto acids and chitosan. Glyoxylate developed the most effective covalent crosslinking with chitosan, whereas α-ketoglutarate had the highest ionic crosslinking ratio. Keto acid crosslinking reduced the orderliness of chitosan, improved the uniformity of the film matrix and increased its UV-blocking capacity. Glyoxylate-crosslinked chitosan film demonstrated excellent tensile strength (160 MPa), water stability (water solubility about 11.71 %), and extremely low oxygen permeability (2.65 × 10-16 cm3·cm/cm-2·s-1· Pa-1). Despite the weakened thermal stability and water barrier property, glyoxylate crosslinking shows great potential for the preparation of high-strength and high‑oxygen-resistance chitosan films. Furthermore, the glyoxylate-crosslinked chitosan film could be produced by hot pressing and performed satisfactorily.
Collapse
Affiliation(s)
- Xuyue Xu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
4
|
Guzmán-Pincheira C, Moeini A, Oliveira PE, Abril D, Paredes-Padilla YA, Benavides-Valenzuela S. Development of Alginate-Chitosan Bioactive Films Containing Essential Oils for Use in Food Packaging. Foods 2025; 14:256. [PMID: 39856921 PMCID: PMC11764708 DOI: 10.3390/foods14020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The effect on the physical, mechanical, and antibacterial properties of films composed of alginate-chitosan with the incorporation of oregano (EOO) or thyme (EOT) essential oils was evaluated. These films showed a thickness between 37.7 and 38.2 µm, with no significant differences for essential oil content. Water vapor permeability decreased from 4.03 (oil-free film) to 1.65 (g/msPa) × 10-9 in 3% EO. Mechanical properties reflected a reduction in tensile strength (TS) from 73 (oil-free films) to values between 34 and 38 MPa with 3% EO, while elongation (E%) increased from 4.8% to 10.4-11.8%. Regarding antibacterial capacity, as the concentration of essential oil increases, the antibacterial capacity also increases. On average, the increase from 1.0% to 3.0% of EOO increased the antimicrobial capacity against Gram-negative and Gram-positive bacteria. EOO outperformed EOT against E. coli and L. monocytogenes. In addition, films with 2-3% EOT showed a significant dark yellow color compared to the control. These results suggest that films with the addition of oregano and thyme essential oils can be promising for food packaging applications with the ability to improve food safety and increase product shelf life by achieving functional packaging characteristics.
Collapse
Affiliation(s)
- Carla Guzmán-Pincheira
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción 4030000, Chile; (C.G.-P.); (Y.A.P.-P.)
| | - Arash Moeini
- Research Group of Fluid Dynamics, Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Patricia E. Oliveira
- Departamento de Ingeniería de Procesos Industriales, Núcleo de Investigación en Bioproductos y Materiales Avanzados, Universidad Católica de Temuco, Temuco 4810399, Chile;
| | - Diana Abril
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad del Maule, Talca 3460000, Chile;
| | - Yeni A. Paredes-Padilla
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción 4030000, Chile; (C.G.-P.); (Y.A.P.-P.)
| | - Sergio Benavides-Valenzuela
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción 4030000, Chile; (C.G.-P.); (Y.A.P.-P.)
| |
Collapse
|
5
|
Jiang G, He K, Chen M, Yang Y, Tang T, Tian Y. Development of multifunctional chitosan packaging film by plasticizing novel essential oil-based hydrophobic deep eutectic solvent: Structure, properties, and application. Carbohydr Polym 2025; 347:122701. [PMID: 39486942 DOI: 10.1016/j.carbpol.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
To improve the limited mechanical and water barrier properties of chitosan film while granting extra functionalities simultaneously, present study pioneered the incorporation of chitosan film with newly developed essential oil (EO)-based hydrophobic deep eutectic solvents (HDES, EO:octanoic acid (OA), EO:menthol (ME) and OA:ME:EO). The highest tensile strength (66.22 MPa) and elongation at break (45.99 %) were obtained in OA:ME:EO-40 and OA:ME:EO-80 films, respectively. The OA:EO-based films showed excellent and stable hydrophobicity. HDESs also endowed film with additional functionalities including thermal stability, bio-compatibility, controlled release, antioxidant, and antibacterial capacity. The extension of the storage period of strawberry treated with OA:EO-containing films confirmed their preservation ability. Compared with ME:EO and OA:ME:EO, OA:EO had better compatibility with chitosan matrix and could serve as a promising plasticizer for strengthening functionalities of chitosan film. These results also promote application of HDESs as emerging plasticizers in manufacture of other polymer-based packaging film.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Kaiwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China.
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Tingting Tang
- College of agriculture and forestry science and technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
6
|
Merijs-Meri R, Zicans J, Ivanova T, Mezule L, Ivanickins A, Bockovs I, Bitenieks J, Berzina R, Lebedeva A. Melt-Processed Polybutylene-Succinate Biocomposites with Chitosan: Development and Characterization of Rheological, Thermal, Mechanical and Antimicrobial Properties. Polymers (Basel) 2024; 16:2808. [PMID: 39408518 PMCID: PMC11478647 DOI: 10.3390/polym16192808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The current research is devoted to the development and characterization of green antimicrobial polymer biocomposites for food packaging applications. The biocomposites were developed by melt compounding on the basis of two different succinate polymer matrices with varying chain stiffness-polybutylene succinate (PBS) or its copolymer with 20 mol.% of polybutylene adipate (PBSA). Fungi chitosan oligosaccharide (C98) and crustacean chitosan (C95) were used as antimicrobial additives. The rheological properties of the developed biocomposites were determined to clear out the most suitable temperature for melt processing. In addition, mechanical, thermal, barrier and antimicrobial properties of the developed biocomposites were determined. The results of the investigation revealed that PBSA composites with 7 wt% and 10 wt% of the C98 additive were more suitable for the development of green packaging films because of their higher ultimate elongation values, better damping properties as well as their superior anti-microbial behavior. However, due to the lower thermal stability of the C98 additive as well as PBSA, the melt processing temperatures of the composites desirably should not exceed 120 °C. Additionally, by considering decreased moisture vapor barrier properties, it is recommended to perform further modifications of the PBSA-C98 composites through an addition of a nanoclay additive due to its excellent barrier properties and thermal stability.
Collapse
Affiliation(s)
- Remo Merijs-Meri
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Janis Zicans
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Tatjana Ivanova
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Linda Mezule
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (L.M.); (A.I.)
| | - Aleksandrs Ivanickins
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (L.M.); (A.I.)
| | - Ivan Bockovs
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Juris Bitenieks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Rita Berzina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Alina Lebedeva
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| |
Collapse
|
7
|
Verma R, Verma C, Gupta B, Mukhopadhyay S. Preparation and characterization of structural and antifouling properties of chitosan/polyethylene oxide membranes. Int J Biol Macromol 2024; 278:134693. [PMID: 39142485 DOI: 10.1016/j.ijbiomac.2024.134693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
It aims to prepare the chitosan (CS) and polyethylene oxide (PEO) hydrogel membranes with different CS/PEO blend ratios (100:0, 95:5, 90:10, 80:20 and 70:30) via solvent casting. The physicochemical properties of these membranes were investigated using various characterization techniques: Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), contact angle, and tensile testing. The interaction of PEO and chitosan was investigated by DSC in terms of freezing bound, freezing free, and non-freezing PEO fraction. The cross-sectional surface morphology of membranes displayed a smoother surface with increasing PEO content up to 20 %, beyond which nonhomogeneity on the surface was visible. The antifouling behavior of membranes was investigated by bacterial adherence study, which showed an enhanced antifouling nature of membranes with the increase in the PEO content. The peeling strength of the membranes was measured using a 90° angle peeling test, and it was found that 20 % and more PEO content promotes easy removal from the gelatin slab. In addition to this, live/ dead assay of the CS was performed to visualize the presence of live and dead bacteria on the surface. The CS/PEO blend with 20 % PEO content has properties makes it suitable for use as a protective layer on wound dressings to prevent bacterial growth. It's use in wound dressings has the potential to reduce the pain during the time of dressing removal and improve patient outcomes. The present investigation leads to the development of a CS hydrogel matrix which exhibits very interesting interaction with the PEO moiety along with its innovative feature of antifouling and antimicrobial nature.
Collapse
Affiliation(s)
- Rohini Verma
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India.
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
8
|
He C, Yuan L, Bi S, Zhou C, Yang Q, Gu J, Yan B, He J. Modified Chitosan-Based Coating/Packaging Composites with Enhanced Antibacterial, Antioxidant, and UV-Resistant Properties for Fresh Food Preservation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48352-48362. [PMID: 39221854 DOI: 10.1021/acsami.4c10643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chitosan-based biomass packaging materials are a promising material for food preservation, but their limited solubility, antioxidant capacity, UV resistance, and mechanical properties severely restrict their application. In this study, we developed a novel chitosan-based coating/packaging composite (QCTO) using quaternary ammonium salt and tannic acid (TA)-modified chitosan (QCS-TA) and oxidized chitosan (OCS). The introduction of quaternary ammonium salt and TA effectively improves the water solubility and antibacterial, antioxidant, and UV-resistant properties of chitosan. The Schiff-base bond formed between OCS and QCS-TA, along with the TA-mediated multiple interactions, conferred the prepared composite film with good mechanical properties (69.9 MPa tensile strength) and gas barrier performance to water (14.3 g·h-1·m-2) and oxygen (3.5 g·mm·m-2·h-1). Meanwhile, the prepared QCTO composites demonstrate excellent biocompatibility and safety and are applied as coatings for strawberries and bananas as well as packaging films for mushrooms. These preservation experiments demonstrated that the prepared composites are able to effectively reduce weight loss, prevent microbial growth, maintain color, and significantly prolong the shelf life of fresh products (bananas, strawberries, and mushrooms extended shelf life by 6, 5, and 6 days, respectively). Therefore, the developed QCTO coating/packaging film shows great potential for applications in the field of food preservation and packaging.
Collapse
Affiliation(s)
- Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Liubo Yuan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chaomei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jin He
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
9
|
Wang J, Gao W, Jin Y, Tian W, Zhang Y, Hu C, Wang B, Dong S, Yuan L. Water-dispersible macromolecular antioxidants for toughening and strengthening cellulose membranes. Carbohydr Polym 2024; 339:122246. [PMID: 38823914 DOI: 10.1016/j.carbpol.2024.122246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Biodegradable packaging materials from cellulose are eco-friendly alternatives to traditional petroleum-based plastics. Balancing its mechanical properties as well as protective values (antioxidation, oxygen barrier, etc.) is critical. However, most studies to improve its antioxidation performance were accompanied by sacrificed mechanical properties. In the current work, a series of linear -COOH functionalized phenolic polymers were prepared from phenolic compounds (vanillin, 3,4-dihydroxy benzaldehyde) through a facile tri-component thiol-aldehyde polycondensation. While circumventing the cumbersome protection-deprotection of phenol groups, the one-pot strategy also affords water dispersible polymers for fabricating composites with cellulose nanofibers in an aqueous medium. After introducing 5-10 wt% of the copolymers, a minor soft phase was formed inside the composites, contributing to enhanced mechanical strength, toughness, antioxidation capability, and ultra-violet blocking performance, while its oxygen barrier property was well maintained.
Collapse
Affiliation(s)
- Jie Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wei Gao
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yu Jin
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wangmao Tian
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yutao Zhang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Chengcheng Hu
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Baoxia Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Shuqi Dong
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
10
|
Dardeer HM, Gad AN, Mahgoub MY. Promising superabsorbent hydrogel based on carboxymethyl cellulose and polyacrylic acid: synthesis, characterization, and applications in fertilizer engineering. BMC Chem 2024; 18:144. [PMID: 39103926 DOI: 10.1186/s13065-024-01244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
The combination of hydrogel and fertilizer as slow release fertilizer hydrogel (SRFH) has become one of the most promising materials to overcome the shortcomings of conventional fertilizer by decreasing fertilizer loss rate, supplying nutrients sustainably, and lowering the frequency of irrigation. The hydrogel based on carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) (CMC/PAA) was synthesized. All materials, Vinasse, hydrogel (CMC/PAA) and (Vinasse/CMC-PAA) were characterized by FTIR, XRD, and SEM. The formed hydrogel was applied to control the salinity of Vinasse to use it as a cheap and economical fertilizer. The results showed that using the prepared hydrogel with Vinasse (V/CMC-PAA) as a slow-release organic fertilizer decreased the EC value through the first six hours from 1.77 to 0.35 mmohs/cm. Also, using V/CMC-PAA can control and keep the potassium as fertilizer for 50 days. The productivity per feddan from the sugar cane crop increased by about 15%, and the number of irrigations decreased from 5 to 4 times.
Collapse
Affiliation(s)
- Hemat M Dardeer
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Ahmed N Gad
- Research and Development Center, Egyptian Sugar & Integrated Industries Company 'ESIIC', Cairo, Egypt
| | - Mohamed Y Mahgoub
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
11
|
Yang J, Punia Bangar S, Rizwan Khan M, Hammouda GA, Alam P, Zhang W. Biopolymer-based packaging films/edible coatings functionalized with ε-polylysine: New options for food preservation. Food Res Int 2024; 187:114390. [PMID: 38763652 DOI: 10.1016/j.foodres.2024.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
In light of the commendable advantages inherent in natural polymers such as biocompatibility, biodegradability, and cost-effectiveness, researchers are actively engaged in the development of biopolymer-based biodegradable food packaging films (BFPF). However, a notable limitation is that most biopolymers lack intrinsic antimicrobial activity, thereby restricting their efficacy in food preservation. To address this challenge, various active substances with antibacterial properties have been explored as additives to BFPF. Among these, ε-polylysine has garnered significant attention in BFPF applications owing to its outstanding antibacterial properties. This study provides a brief overview of the synthesis method and chemical properties of ε-polylysine, and comprehensively examines its impact as an additive on the properties of BFPF derived from diverse biopolymers, including polysaccharides, proteins, aliphatic polyesters, etc. Furthermore, the practical applications of various BFPF functionalized with ε-polylysine in different food preservation scenarios are summarized. The findings underscore that ε-polylysine, functioning as an antibacterial agent, not only directly enhances the antimicrobial activity of BFPF but also serves as a cross-linking agent, interacting with biopolymer molecules to influence the physical and mechanical properties of BFPF, thereby enhancing their efficacy in food preservation.
Collapse
Affiliation(s)
- Jun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gehan A Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
12
|
Noumani A, Verma D, Kaushik A, Khosla A, Solanki PR. Electrochemically microplastic detection using chitosan-magnesium oxide nanosheet. ENVIRONMENTAL RESEARCH 2024; 252:118894. [PMID: 38599449 DOI: 10.1016/j.envres.2024.118894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Microplastics, an invisible threat, are emerging as serious pollutants that continuously affect health by interrupting/contaminating the human cycle, mainly involving food, water, and air. Such serious scenarios raised the demand for developing efficient sensing systems to detect them at an early stage efficiently and selectively. In this direction, the proposed research reports an electrochemical hexamethylenetetramine (HMT) sensing utilizing a sensing platform fabricated using chitosan-magnesium oxide nanosheets (CHIT-MgO NS) nanocomposite. HMT is considered as a hazardous microplastic, which is used as an additive in plastic manufacturers and has been selected as a target analyte. To fabricate sensing electrodes, a facile co-precipitation technique was employed to synthesize MgO NS, which was further mixed with 1% CHIT solution to form a CHIT_MgO NS composite. Such prepared nanocomposite solution was then drop casted to an indium tin oxide (ITO) to fabricate CHIT_MgO NS/ITO sensing electrode to detect HMT electrochemically using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. To determine the limit of detection (LOD) and sensitivity, DPV was performed. The resulting calibrated curve for HMT, ranging from 0.5 μM to 4.0 μM, exhibited a sensitivity of 12.908 μA (μM)-1 cm-2 with a detection limit of 0.03 μM and a limit of quantitation (LOQ) of 0.10 μM. Further, the CHIT_MgO NS/ITO modified electrode was applied to analyze HMT in various real samples, including river water, drain water, packaged water, and tertiary processed food. The results demonstrated the method's high sensitivity and suggested its potential applications in the field of microplastic surveillance, with a focus on health management.
Collapse
Affiliation(s)
- Ashab Noumani
- Nano-Bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Damini Verma
- Nano-Bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, 33805, FL, USA; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Ajit Khosla
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an Province, 710071, China
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
13
|
Zhang W, Khan A, Ezati P, Priyadarshi R, Sani MA, Rathod NB, Goksen G, Rhim JW. Advances in sustainable food packaging applications of chitosan/polyvinyl alcohol blend films. Food Chem 2024; 443:138506. [PMID: 38306905 DOI: 10.1016/j.foodchem.2024.138506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Researchers are addressing environmental concerns related to petroleum-based plastic packaging by exploring biopolymers from natural sources, chemical synthesis, and microbial fermentation. Despite the potential of individual biopolymers, they often exhibit limitations like low water resistance and poor mechanical properties. Blending polymers emerges as a promising strategy to overcome these challenges, creating films with enhanced performance. This review focuses on recent advancements in chitosan/polyvinyl alcohol (PVA) blend food packaging films. It covers molecular structure, properties, strategies for performance improvement, and applications in food preservation. The blend's excellent compatibility and intermolecular interactions make it a promising candidate for biodegradable films. Future research should explore large-scale thermoplastic technologies and investigate the incorporation of additives like natural extracts and nanoparticles to enhance film properties. Chitosan/PVA blend films offer a sustainable alternative to petroleum-based plastic packaging, with potential applications in practical food preservation.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Ajahar Khan
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Parya Ezati
- Department of Food Science, University of Guelph, ON N1G2W1, Canada
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra State 402 116, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Jong-Whan Rhim
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
14
|
Najar IN, Sharma P, Das R, Tamang S, Mondal K, Thakur N, Gandhi SG, Kumar V. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121136. [PMID: 38759555 DOI: 10.1016/j.jenvman.2024.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Waste of any origin is one of the most serious global and man-made concerns of our day. It causes climate change, environmental degradation, and human health problems. Proper waste management practices, including waste reduction, safe handling, and appropriate treatment, are essential to mitigate these consequences. It is thus essential to implement effective waste management strategies that reduce waste at the source, promote recycling and reuse, and safely dispose of waste. Transitioning to a circular economy with policies involving governments, industries, and individuals is essential for sustainable growth and waste management. The review focuses on diverse kinds of environmental waste sources around the world, such as residential, industrial, commercial, municipal services, electronic wastes, wastewater sewerage, and agricultural wastes, and their challenges in efficiently valorizing them into useful products. It highlights the need for rational waste management, circularity, and sustainable growth, and the potential of a circular economy to address these challenges. The article has explored the role of thermophilic microbes in the bioremediation of waste. Thermophiles known for their thermostability and thermostable enzymes, have emerged to have diverse applications in biotechnology and various industrial processes. Several approaches have been explored to unlock the potential of thermophiles in achieving the objective of establishing a zero-carbon sustainable bio-economy and minimizing waste generation. Various thermophiles have demonstrated substantial potential in addressing different waste challenges. The review findings affirm that thermophilic microbes have emerged as pivotal and indispensable candidates for harnessing and valorizing a range of environmental wastes into valuable products, thereby fostering the bio-circular economy.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Rohit Das
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India.
| |
Collapse
|
15
|
Parveen S, Nazeer S, Chotana GA, Kanwal A, Batool B, Bukhari N, Yaqoob A, Talib F. Designing of chitosan/gelatin based nanocomposite films integrated with Vachellia nilotica gum carbon dots for smart food packaging applications. Int J Biol Macromol 2024; 264:130208. [PMID: 38403229 DOI: 10.1016/j.ijbiomac.2024.130208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Microbial growth and exposure to UV light is a persistent global concern resulting in food spoilage, therefore, smart packaging is crucial for the availability of safer and quality food. Present work describes fabrication of chitosan (CH) and gelatin (GL) based nanocomposite films by introducing green source, highly fluorescent Vachillia nilotica gum-derived carbon dots (VNG-CDs). The VNG-CDs and incorporated CH/GL nanocomposite films were characterized by UV-Visible, FTIR, XRD, SEM and TGA analysis. The FTIR and XRD data revealed that VNG-CDs, chitosan, gelatin, and glycerol are combined/interlinked to form homogeneous nanocomposite films. The inclusion of VNG-CDs to CS/GL-CDs nanocomposite film efficiently enhanced the thermal stability and improved mechanical properties. VNG-CDs added to films markedly blocked the ultraviolet light and their effectiveness improved as concentration of CDs increases, being >90 % in UVC (200-280 nm) region. The prepared CS/GL-CDs nanocomposite films manifested radical scavenging activity, reducing capability and also excellently inhibited growth of E. coli, K. pneumonia and S. aureus bacteria. The viability of CS/GL-CDs nanocomposite films examined using banana as a model fruit extending the storage time by two weeks. In conclusion, CH/GL films containing VNG-CDs can be developed into smart packaging materials with enhanced protection and antimicrobial properties.
Collapse
Affiliation(s)
- Shehla Parveen
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Sadia Nazeer
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ghayoor Abbas Chotana
- Department of Chemistry, Sayyed Babar Ali School of science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Benish Batool
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Naeema Bukhari
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asma Yaqoob
- Department of Biohemistry, Institute of biochemistry biotechnology and bio-informatics, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Faiza Talib
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
16
|
Li X, Li F, Zhang X, Tang W, Huang M, Huang Q, Tu Z. Interaction mechanisms of edible film ingredients and their effects on food quality. Curr Res Food Sci 2024; 8:100696. [PMID: 38444731 PMCID: PMC10912050 DOI: 10.1016/j.crfs.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Traditional food packaging has problems such as nondegradable and poor food safety. Edible films play an important role in food packaging, transportation and storage, having become a focus of research due to their low cost, renewable, degradable, safe and non-toxic characteristics. According to the different materials of edible films substrate, edible films are usually categorized into proteins, polysaccharides and composite edible films. Functional properties of edible films prepared from different substrate materials also vary, single substrate edible films are defective in some aspects. Functional ingredients such as proteins, polysaccharides, essential oils, natural products, nanomaterials, emulsifiers, and so on are commonly added to edible films to improve their functional properties, extend the shelf life of foods, improve the preservation of sensory properties of foods, and make them widely used in the field of food preservation. This paper introduced the classification, characteristics, and modification methods of common edible films, discussed the interactions among the substrate ingredients of composite edible films, the influence of functional ingredients on the properties of edible films, and the effects of modified edible films on the quality of food, aiming to provide new research ideas for the wide application and further study of edible films.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Fenghong Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xuan Zhang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Weiyuan Tang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
17
|
Chen Y, Wang S, Yang C, Zhang L, Li Z, Jiang S, Bai R, Ye X, Ding W. Chitosan/konjac glucomannan bilayer films: Physical, structural, and thermal properties. Int J Biol Macromol 2024; 257:128660. [PMID: 38065457 DOI: 10.1016/j.ijbiomac.2023.128660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
To overcome the limitations of chitosan (CS) and konjac glucomannan (KGM), the bilayer films of CS and KGM were prepared by layer-by-layer (LBL) casting method, and the effects of different mass ratios (i.e., C5: K0, C4:K1, C3:K2, C1:K1, C2:K3, C1:K4, and C0:K5) on the microstructures and physicochemical properties of bilayer films were examined to evaluate their applicability in food packaging. The results revealed that the bilayer films had uniform microstructures. When compared with pure films, the bilayer films displayed lower swelling degrees and water vapor permeability. However, the tensile tests revealed a reduction in the mechanical properties of the bilayer films, which was nonetheless superior to that of the pure KGM film. In addition, the intermolecular interactions between the CS and KGM layers were observed through FTIR and XRD analyses. Finally, TGA and DSC analyses demonstrated a decrease in the thermal stability of the bilayer films. Our cumulative results verified that CS-KGM bilayer films may be a promising material for use in food packaging and further properties of the bilayer films can be supplemented in the future through layer-by-layer modification and the addition of active ingredients.
Collapse
Affiliation(s)
- Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunjie Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Fernando SS, Jo C, Mudannayake DC, Jayasena DD. An overview of the potential application of chitosan in meat and meat products. Carbohydr Polym 2024; 324:121477. [PMID: 37985042 DOI: 10.1016/j.carbpol.2023.121477] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Chitosan is considered the second most ubiquitous polysaccharide next to cellulose. It has gained prominence in various industries including biomedicine, textile, pharmaceutical, cosmetic, and notably, the food industry over the last few decades. The polymer's continual attention within the food industry can be attributed to the increasing popularity of greener means of packaging and demand for foods incorporated with natural alternatives instead of synthetic additives. Its antioxidant, antimicrobial, and film-forming abilities reinforced by the polymer's biocompatible, biodegradable, and nontoxic nature have fostered its usage in food packaging and preservation. Microbial activity and lipid oxidation significantly influence the shelf-life of meat, resulting in unfavorable changes in nutritional and sensory properties during storage. In this review, the scientific studies published in recent years regarding potential applications of chitosan in meat products; and their effects on shelf-life extension and sensory properties are discussed. The utilization of chitosan in the form of films, coatings, and additives in meat products has supported the extension of shelf-life while inducing a positive impact on their organoleptic properties. The nature of chitosan and its compatibility with various materials make it an ideal biopolymer to be used in novel arenas of food technology.
Collapse
Affiliation(s)
- Sandithi S Fernando
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea.
| | - Deshani C Mudannayake
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Dinesh D Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| |
Collapse
|
19
|
Muhammed AP, Thangarasu S, Oh TH. Green interconnected network structure of chitosan-microcrystalline cellulose-lignin biopolymer film for active packaging applications. Int J Biol Macromol 2023; 253:127471. [PMID: 37863142 DOI: 10.1016/j.ijbiomac.2023.127471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
As an excellent alternative to petroleum-based food packaging materials, a novel green hybrid composite film with an excellent interconnected network structure was successfully fabricated by integrating chitosan (chi), microcrystalline cellulose (MCC), and lignin nanoparticles (LNP), including the desired amount of plasticizer glycerol (gly). Overall, 36 combinations were developed and investigated for superior biocomposite film formation. Among the various concentration ratios, the 40:35:25 chi-MCC-gly film provided well-organized film formation, good physicochemical properties, mechanical stability, efficient water contact angle, reduced water solubility, and lower water vapor permeability (11.43 ± 0.55 × 10-11 g.m-1.s-1.Pa-1). The performance of the chi-MCC-gly film further enhanced by the homogeneous incorporation of ∼100 nm LNP. With 1 % LNP addition, the tensile strength of the film increased (28.09 MPa, 47.10 % increase) and the water vapor permeability reached a minimum of 11.43 × 10-11 g.m-1.s-1.Pa-1, which proved the impact of LNP in composite films. Moreover, the films showed excellent resistance to thermal shrinkage even at 100 °C and exhibited nearly 100 % UV blocking efficiency at higher LNP concentrations. Interestingly, the green composite films extended the shelf life of freshly cut cherry tomatoes to seven days without spoilage. Overall, the facile synthesis of strong, insoluble, UV-blocking, and thermally stable green composite films realized for food packaging applications.
Collapse
Affiliation(s)
- Ajmal P Muhammed
- School of Chemical engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sadhasivam Thangarasu
- School of Chemical engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Tae Hwan Oh
- School of Chemical engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
20
|
Li F, Zhang F, Chen R, Ma Z, Wu H, Zhang Z, Yin S, Zhou M. Effects of High-Pressure Homogenization Treatment on the Development of Antioxidant Zanthoxylum bungeanum Leaf Powder Films for Preservation of Fresh-Cut Apple. Foods 2023; 13:22. [PMID: 38201049 PMCID: PMC10778247 DOI: 10.3390/foods13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
This study determined that Zanthoxylum bungeanum leaves (ZBLs) are rich in functional components such as cellulose, protein, flavone, and polyphenols. Therefore, they were used as the main raw material, with sodium alginate as a thickener and glycerol as a plasticizer, to investigate the preparation of active films from ZBL powder through high-pressure homogenization (HPH). The physical, optical, mechanical, and antioxidant properties of the films were evaluated, and their application in preserving fresh-cut apples was examined. The results showed that the optimal concentration of ZBL powder was 1.5% under a 30 MPa HPH treatment. The resulting HPH-treated films exhibited a denser microstructure and improved water vapor barrier properties and mechanical strength. Compared to the films without HPH treatment, the tensile strength increased from 4.61 MPa to 12.13 MPa, the elongation at break increased from 21.25% to 42.86%, the water vapor permeability decreased from 9.9 × 10-9 g/m·s·Pa to 8.0 × 10-9 g/m·s·Pa, and the transparency increased from 25.36% to 38.5%. Compared to the control group, the fresh-cut apples packaged with the HPH-treated ZBL active films exhibited effective preservation of apple quality during a five-day period at 4 °C and 70% humidity, showing better preservation effects than the other groups. In conclusion, the use of HPH treatment in developing novel biopolymer active films from ZBL powders with enhanced properties holds potential for various applications.
Collapse
Affiliation(s)
- Fuli Li
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Ya’an 625014, China (R.C.); (Z.Z.)
| | - Fan Zhang
- Institute of Modern Agricultural Industry, China Agricultural University, Chengdu 611430, China (Z.M.)
| | - Ruixian Chen
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Ya’an 625014, China (R.C.); (Z.Z.)
| | - Zexiang Ma
- Institute of Modern Agricultural Industry, China Agricultural University, Chengdu 611430, China (Z.M.)
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Ya’an 625014, China;
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Ya’an 625014, China (R.C.); (Z.Z.)
| | - Shutao Yin
- Institute of Modern Agricultural Industry, China Agricultural University, Chengdu 611430, China (Z.M.)
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Ya’an 625014, China (R.C.); (Z.Z.)
| |
Collapse
|
21
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
22
|
Cejudo C, Ferreiro M, Romera I, Casas L, Mantell C. Functional, Physical, and Volatile Characterization of Chitosan/Starch Food Films Functionalized with Mango Leaf Extract. Foods 2023; 12:2977. [PMID: 37569246 PMCID: PMC10418412 DOI: 10.3390/foods12152977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
Active packaging is one of the currently thriving methods to preserve highly perishable foods. Nonetheless, the integration of active substances into the formulation of the packaging may alter their properties-particularly mass transfer properties-and therefore, the active compounds acting. Different formulations of chitosan (CH), starch (ST), and their blends (CH-ST), with the addition of mango leaf extract (MLE) have been polymerized by casting to evaluate their food preservation efficiency. A CH-ST blend with 3% MLE using 7.5 mL of the filmogenic solution proved to be the most effective formulation because of its high bioactivity (ca. 80% and 74% of inhibition growth of S. aureus and E. coli, respectively, and 40% antioxidant capacity). The formulation reduced the water solubility and water vapor permeability while increasing UV protection, properties that provide a better preservation of raspberry fruit after 13 days than the control. Moreover, a novel method of Headspace-Gas Chromatography-Ion Mobility Spectrometry to analyze the volatile profiles of the films is employed, to study the potential modification of the food in contact with the active film. These migrated compounds were shown to be closely related to both the mango extract additions and the film's formulation themselves, showing different fingerprints depending on the film.
Collapse
Affiliation(s)
- Cristina Cejudo
- Chemical Engineering and Food Technology Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Cadiz, Spain; (C.C.); (I.R.); (C.M.)
| | - Marta Ferreiro
- Analytical Chemistry Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Cadiz, Spain
| | - Irene Romera
- Chemical Engineering and Food Technology Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Cadiz, Spain; (C.C.); (I.R.); (C.M.)
| | - Lourdes Casas
- Chemical Engineering and Food Technology Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Cadiz, Spain; (C.C.); (I.R.); (C.M.)
| | - Casimiro Mantell
- Chemical Engineering and Food Technology Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Cadiz, Spain; (C.C.); (I.R.); (C.M.)
| |
Collapse
|
23
|
Azadi A, Rafieian F, Sami M, Rezaei A. Fabrication, characterization and antimicrobial activity of chitosan/tragacanth gum/polyvinyl alcohol composite films incorporated with cinnamon essential oil nanoemulsion. Int J Biol Macromol 2023; 245:125225. [PMID: 37285892 DOI: 10.1016/j.ijbiomac.2023.125225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The aim of this investigation was to prepare and characterize active composite films made of chitosan (CS), tragacanth gum (TG), polyvinyl alcohol (PVA) and loaded with different concentrations of cinnamon essential oil (CEO) nanoemulsion (CEO, 2 and 4 % v/v). For this purpose, the amount of CS was fixed and the ratio of TG to PVA (90:10, 80:20, 70:30, and 60:40) was considered variable. The physical (thickness and opacity), mechanical, antibacterial and water-resistance properties of the composite films were evaluated. According to the microbial tests, the optimal sample was determined and evaluated with several analytical instruments. CEO loading increased the thickness and EAB of composite films, while decreasing light transmission, tensile strength, and water vapor permeability. All the films containing CEO nanoemulsion had antimicrobial properties, but this activity was higher against Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) than Gram-negative types (Escherichia coli (O157:H7) and Salmonella typhimurium). According to the results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD), the interaction between the components of the composite film was confirmed. It can be concluded that the CEO nanoemulsion can be incorporated in CS/TG/PVA composite films and successfully used as active and environmentally friendly packaging.
Collapse
Affiliation(s)
- Aidin Azadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Rafieian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sami
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
24
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydr Polym 2023; 309:120666. [PMID: 36906369 DOI: 10.1016/j.carbpol.2023.120666] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The perishability nature of harvested fruits and vegetables, along with the effect of environmental factors, storage conditions, and transportation, reduce the products' quality and shelf-life. Considerable efforts have been allocated to alternate conventional coatings based on new edible biopolymers for packaging. Chitosan is an attractive alternative to synthetic plastic polymers due to its biodegradability, antimicrobial activity, and film-forming properties. However, its conservative properties can be improved by adding active compounds, limiting microbial agents' growth and biochemical and physical damages, and enhancing the stored products' quality, shelf-life, and consumer acceptability. Most of the research on chitosan-based coatings focuses on antimicrobial or antioxidant properties. Along with the advancement of polymer science and nanotechnology, novel chitosan blends with multiple functionalities are required and should be fabricated using numerous strategies, especially for application during storage. This review discusses recent developments in using chitosan as a matrix to fabricate bioactive edible coatings and their positive impacts on increasing the quality and shelf-life of fruits and vegetables.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
25
|
Adımcılar V, Kalaycıoğlu Z, Akın-Evingür G, Torlak E, Erim FB. Comparative physical, antioxidant, and antimicrobial properties of films prepared by dissolving chitosan in bioactive vinegar varieties. Int J Biol Macromol 2023; 242:124735. [PMID: 37169044 DOI: 10.1016/j.ijbiomac.2023.124735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Solvent casting following the dissolution of chitosan in aqueous acetic acid is the most widely used method for preparing chitosan films. In this study, an economical and practical way is proposed to improve the physicochemical properties of chitosan films by using vinegar varieties both as solvents and as bioactive additives to improve the properties of the films. Chitosan films were prepared by dissolving chitosan in pomegranate, grape, apple, and hawthorn vinegar. Vinegar contains bioactive phenolics and different organic acids together with acetic acid, depending on the main raw material from which it is obtained. The films' mechanical, optical properties, antioxidant and antimicrobial activities were compared with each other and with the chitosan film prepared by dissolving chitosan in acetic acid. The antioxidant and antimicrobial properties of chitosan films prepared with vinegar increased. The use of vinegar as a solvent increased the UV light barrier properties of the films. Improved antimicrobial, antioxidant, optical, and elastic properties of films prepared by dissolving chitosan in vinegar varieties are promising in applications of these films as potential and economic food packaging materials.
Collapse
Affiliation(s)
- Veselina Adımcılar
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Zeynep Kalaycıoğlu
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Gülşen Akın-Evingür
- Piri Reis University, Department of Industrial Engineering, Tuzla, Istanbul, Turkey
| | - Emrah Torlak
- Necmettin Erbakan University, Department of Molecular Biology and Genetics, Konya, Turkey
| | - F Bedia Erim
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey.
| |
Collapse
|
26
|
Daza LD, Montealegre MÁ, Sandoval Aldana A, Obando M, Váquiro HA, Eim VS, Simal S. Effect of Essential Oils from Lemongrass and Tahiti Lime Residues on the Physicochemical Properties of Chitosan-Based Biodegradable Films. Foods 2023; 12:foods12091824. [PMID: 37174362 PMCID: PMC10178476 DOI: 10.3390/foods12091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
This work aimed to evaluate the impact of adding two essential oils (EO) from lemongrass (LEO) and Tahiti lime (TLEO) on the physical, mechanical, and thermal properties of chitosan-based biodegradable films. Six film formulations were prepared: two controls with chitosan concentrations of 1% and 1.5% v/w, two formulations combining the two chitosan concentrations with 1% LEO v/v, and two formulations combining the two chitosan concentrations with 1% TLEO v/v. The films' morphological, water affinity, barrier, mechanical, and thermal properties were evaluated. The films' surface showed a heterogeneous morphology without cracks, whereas the cross-section showed a porous-like structure. Adding EO to the films promoted a 35-50% decrease in crystallinity, which was associated with an increase in the elasticity (16-35%) and a decrease in the tensile strength (9.3-29.2 MPa) and Young's modulus (190-1555 MPa) on the films. Regarding the optical properties, the opacity of the films with TLEO increased up to 500% and 439% for chitosan concentrations of 1% and 1.5%, respectively. While the increase in opacity for the films prepared with LEO was 357% and 187%, the reduction in crystallinity also reduced the resistance of the films to thermal processes, which could be explained by the reduction in the enthalpy of fusion. The thermal degradation of the films using TLEO was higher than those where LEO was used. These results were indicative of the great potential of using TLEO and LEO in biodegradable films. Likewise, this work showed an alternative for adding value to the cultivation of Tahiti lime due to the use of its residues, which is in accordance with the circular economy model. However, it was necessary to deepen the study and the use of these essential oils in the preparation of biodegradable films.
Collapse
Affiliation(s)
- Luis Daniel Daza
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
| | - Miguel Ángel Montealegre
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
| | - Angélica Sandoval Aldana
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
| | - Mónica Obando
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
| | - Henry Alexander Váquiro
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
| | - Valeria Soledad Eim
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - Susana Simal
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
27
|
Eelager MP, Masti SP, Chougale RB, Hiremani VD, Narasgoudar SS, Dalbanjan NP, S K PK. Evaluation of mechanical, antimicrobial, and antioxidant properties of vanillic acid induced chitosan/poly (vinyl alcohol) active films to prolong the shelf life of green chilli. Int J Biol Macromol 2023; 232:123499. [PMID: 36736522 DOI: 10.1016/j.ijbiomac.2023.123499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Vanillic acid incorporated chitosan/poly(vinyl alcohol) active films were prepared by employing a cost-effective solvent casting technique. FTIR investigation validated the intermolecular interaction and formation of Schiff's base (C=N) between functional groups of vanillic acid, chitosan, and poly(vinyl alcohol). The addition of vanillic acid resulted in homogenous and dense morphology, as confirmed by SEM micrographs. The tensile strength of active films increased from 32 to 59 MPa as the amount of vanillic acid increased and the obtained values are more significant than reported polyethylene (2231 MPa) and polypropylene (31-38 MPa) films, widely utilized in food packaging. Active film's UV, water, and oxygen barrier properties exhibited excellent results with the incorporation of vanillic acid. Around 40 % of degradation commences within 15 days. Synergistic impact against S. aureus, E. coli, and C. albicans pathogens caused the expansion of the inhibition zone, evidenced by the excellent antimicrobial activity. The highest antioxidant capacity, 73.65 % of CPV-4 active film, proved that active films could prevent the spoilage of food from oxidation. Green chillies packaging was carried out to examine the potential of prepared active films as packaging material results in successfully sustaining carotenoid accumulation and prolonging the shelf life compared to conventional polyethylene (PE) packaging.
Collapse
Affiliation(s)
- Manjunath P Eelager
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India
| | - Saraswati P Masti
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India.
| | - Ravindra B Chougale
- PG Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Vishram D Hiremani
- Department of Chemistry, Tungal School of Basic and Applied Sciences, Jamkhandi 587301, Karnataka, India
| | | | | | - Praveen Kumar S K
- PG Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| |
Collapse
|
28
|
Novikov VY, Derkach SR, Konovalova IN, Dolgopyatova NV, Kuchina YA. Mechanism of Heterogeneous Alkaline Deacetylation of Chitin: A Review. Polymers (Basel) 2023; 15:polym15071729. [PMID: 37050343 PMCID: PMC10097213 DOI: 10.3390/polym15071729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
This review provides an analysis of experimental results on the study of alkaline heterogeneous deacetylation of chitin obtained by the authors and also published in the literature. A detailed analysis of the reaction kinetics was carried out considering the influence of numerous factors: reaction reversibility, crystallinity and porosity of chitin, changes in chitin morphology during washing, alkali concentration, diffusion of hydroxide ions, and hydration of reacting particles. A mechanism for the chitin deacetylation reaction is proposed, taking into account its kinetic features in which the decisive role is assigned to the effects of hydration. It has been shown that the rate of chitin deacetylation increases with a decrease in the degree of hydration of hydroxide ions in a concentrated alkali solution. When the alkali concentration is less than the limit of complete hydration, the reaction practically does not occur. Hypotheses have been put forward to explain the decrease in the rate of the reaction in the second flat portion of the kinetic curve. The first hypothesis is the formation of “free” water, leading to the hydration of chitin molecules and a decrease in the reaction rate. The second hypothesis postulates the formation of a stable amide anion of chitosan, which prevents the nucleophilic attack of the chitin macromolecule by hydroxide ions.
Collapse
|
29
|
Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, Vigneswaran S. Recent Advances in Chitosan-Based Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2073. [PMID: 36903188 PMCID: PMC10004736 DOI: 10.3390/ma16052073] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
30
|
Electrospun gelatin/chitosan nanofibers containing curcumin for multifunctional food packaging. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 2023; 313:120851. [PMID: 37182951 DOI: 10.1016/j.carbpol.2023.120851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
|
32
|
Stefanowska K, Woźniak M, Dobrucka R, Ratajczak I. Chitosan with Natural Additives as a Potential Food Packaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1579. [PMID: 36837209 PMCID: PMC9962944 DOI: 10.3390/ma16041579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, the development of materials based on natural polymers have been observed. This is the result of increasing environmental degradation, as well as increased awareness and consumer expectations. Many industries, especially the packaging industry, face challenges resulting from legal regulations. Chitin is the most common biopolymer right after cellulose and is used to produce chitosan. Due to the properties of chitosan, such as non-toxicity, biocompatibility, as well as antimicrobial properties, chitosan-based materials are used in many industries. Many studies have been conducted to determine the suitability of chitosan materials as food packaging, and their advantages and limitations have been identified. Thanks to the possibility of modifying the chitosan matrix by using natural additives, it is possible to strengthen the antioxidant and antimicrobial activity of chitosan films, which means that, in the near future, chitosan-based materials will be a more environmentally friendly alternative to the plastic packaging used so far. The article presents literature data on the most commonly used natural additives, such as essential oils, plant extracts, or polysaccharides, and their effects on antimicrobial, antioxidant, mechanical, barrier, and optical properties. The application of chitosan as a natural biopolymer in food packaging extends the shelf-life of various food products while simultaneously reducing the use of synthetic plastics, which in turn will have a positive impact on the natural environment. However, further research on chitosan and its combinations with various materials is still needed to extent the application of chitosan in food packaging and bring its application to industrial levels.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
33
|
Casalini S, Giacinti Baschetti M. The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1021-1041. [PMID: 35396735 PMCID: PMC10084250 DOI: 10.1002/jsfa.11918] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, interest in sustainable food packaging systems with additional functionality, able to increase the shelf life of products, has grown steadily. Following this trend, the present review analyzes the state of the art of this active renewable packaging. The focus is on antimicrobial systems containing nanocellulose and chitosan, as support for the incorporation of essential oils. These are the most sustainable and readily available options to produce completely natural active packaging materials. After a brief overview of the different active packaging technologies, the main features of nanocellulose, chitosan, and of the different essential oils used in the field of active packaging are introduced and described. The latest findings about the nanocellulose- and chitosan-based active packaging are then presented. The antimicrobial effectiveness of the different solutions is discussed, focusing on their effect on other material properties. The effect of the different inclusion strategies is also reviewed considering both in vivo and in vitro studies, in an attempt to understand more promising solutions and possible pathways for further development. In general, essential oils are very successful in exerting antimicrobial effects against the most diffused gram-positive and gram-negative bacteria, and affecting other material properties (tensile strength, water vapor transmission rate) positively. Due to the wide variety of biopolymer matrices and essential oils available, it is difficult to create general guidelines for the development of active packaging systems. However, more attention should be dedicated to sensory analysis, release kinetics, and synergetic action of different essential oils to optimize the active packaging on different food products. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Casalini
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| |
Collapse
|
34
|
Fernandes EM, Lobo FCM, Faria SI, Gomes LC, Silva TH, Mergulhão FJM, Reis RL. Development of Cork Biocomposites Enriched with Chitosan Targeting Antibacterial and Antifouling Properties. Molecules 2023; 28:990. [PMID: 36770658 PMCID: PMC9921838 DOI: 10.3390/molecules28030990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The demand for bio-based and safer composite materials is increasing due to the growth of the industry, human population, and environmental concerns. In this framework, sustainable and safer cork-polymer composites (CPC), based on green low-density polyethylene (LDPE) were developed using melt-based technologies. Chitosan and polyethylene-graft-maleic anhydride (PE-g-MA) were employed to enhance the CPC's properties. The morphology, wettability, mechanical, thermal, and antibacterial properties of the CPC against Pseudomonas putida (P. putida) and Staphylococcus aureus (S. aureus) were examined. The CPC showed improved stiffness when compared with that of the LDPE matrix, preferably when combined with chitosan and PE-g-MA (5 wt. %), reinforcing the stiffness (58.8%) and the strength (66.7%). Chitosan also increased the composite stiffness and strength, as well as reduced the surface hydrophilicity. The CPCs' antibacterial activity revealed that cork significantly reduces the biofilm on the polymer matrix. The highest biofilm reduction was found with CPC containing cork and 5 wt. % chitosan for both P. putida (54% reduction) and S. aureus (36% reduction), confirming their potential to extend the lifespan of products for packaging and healthcare, among other applications. This work leads to the understanding of the factors that influence biofilm formation in cork composites and provides a strategy to reinforce their behavior using chitosan.
Collapse
Affiliation(s)
- Emanuel M. Fernandes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Flávia C. M. Lobo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Sara I. Faria
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Filipe J. M. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| |
Collapse
|
35
|
Wu Y, Li C. A smart film incorporating anthocyanins and tea polyphenols into sodium carboxymethyl cellulose/polyvinyl alcohol for application in mirror carp. Int J Biol Macromol 2022; 223:404-417. [PMID: 36347377 DOI: 10.1016/j.ijbiomac.2022.10.282] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Multifunctional food packaging films were developed based on polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), tea polyphenol (TP) and black carrot anthocyanin (CA). Results of Zeta potential, scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction showed that CA enhanced the stability of the particle dispersion system through hydrogen bonding and electrostatic interactions, promoted the compatibility between TP and PVA-CMC (PC) substrates, and enhanced the binding between the components of the films. Because of the interaction of TP and CA, PC-TP-CA films had better water resistance and water vapor barrier properties, thermal stability, antioxidant and antimicrobial properties. PC-CA and PC-TP-CA films exhibited excellent UV-blocking properties. They also showed distinct color responsiveness in the pH range of 2-13, significant sensitivity to ammonia vapor in a short period of time and excellent color stability over 20 days of storage under different conditions. When the film was applied to fish, it was found that PC-TP-CA film could extend the shelf life of fish by 1-2 days and successfully monitor the freshness of the fish in real-time. Considering all the physical and functional properties, the non-toxic and biodegradable PC-TP-CA film has excellent potential as a new multifunctional food packaging material in the future.
Collapse
Affiliation(s)
- Yanglin Wu
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
36
|
Koczoń P, Bartyzel B, Iuliano A, Klensporf-Pawlik D, Kowalska D, Majewska E, Tarnowska K, Zieniuk B, Gruczyńska-Sękowska E. Chemical Structures, Properties, and Applications of Selected Crude Oil-Based and Bio-Based Polymers. Polymers (Basel) 2022; 14:5551. [PMID: 36559918 PMCID: PMC9783367 DOI: 10.3390/polym14245551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The growing perspective of running out of crude oil followed by increasing prices for all crude oil-based materials, e.g., crude oil-based polymers, which have a huge number of practical applications but are usually neither biodegradable nor environmentally friendly, has resulted in searching for their substitutes-namely, bio-based polymers. Currently, both these types of polymers are used in practice worldwide. Owing to the advantages and disadvantages occurring among plastics with different origin, in this current review data on selected popular crude oil-based and bio-based polymers has been collected in order to compare their practical applications resulting from their composition, chemical structure, and related physical and chemical properties. The main goal is to compare polymers in pairs, which have the same or similar practical applications, regardless of different origin and composition. It has been proven that many crude oil-based polymers can be effectively replaced by bio-based polymers without significant loss of properties that ensure practical applications. Additionally, biopolymers have higher potential than crude oil-based polymers in many modern applications. It is concluded that the future of polymers will belong to bio-based rather than crude oil-based polymers.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Bartłomiej Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Anna Iuliano
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Dorota Klensporf-Pawlik
- Department of Food Quality and Safety, Poznan University of Economics and Business, 61-875 Poznan, Poland
| | - Dorota Kowalska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ewa Majewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Katarzyna Tarnowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
37
|
Xie Q, Liu G, Zhang Y. Edible films/coatings containing bioactive ingredients with micro/nano encapsulation: A comprehensive review of their fabrications, formulas, multifunctionality and applications in food packaging. Crit Rev Food Sci Nutr 2022; 64:5341-5378. [PMID: 36503369 DOI: 10.1080/10408398.2022.2153794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the consumer's pursuit of safe, nontoxic and nutritious foods, edible and/or biodegradable materials have stood out in food packaging and preservation. In this context, the preparation and application of micro/nano encapsulated active ingredients (M/N-E-BAIs) represent a step toward reinforcing the properties of sustainable and controllable food packaging, particularly for the successful incorporation of new substances and functionalities into traditional edible films/coatings. This review, from the preparation of M/N-E-BAIs, the fabrication of edible film/coating containing M/N-E-BAIs to their characterization of multifunction and the application in food, makes a systematic summary and in-depth discussion. Food-grade polymers can encapsulate bioactive ingredients (BAIs) by chemical, physicochemical and mechanical methods, thereby forming M/N-E-BAIs with suitable sustained-release and unique biological activities. Furthermore, M/N-E-BAIs is incorporated into biopolymer substrates by solvent casting, 3D printing or electrostatic spinning to obtain novel edible films/coatings. This advanced packaging material exhibits superior physicochemical and functional properties over traditional food films/coatings. Besides, their applications in foods as active and intelligent packaging can improve food quality, prolong shelf life and monitor food corruption. Even so, there are still many challenges and limitations in formulation, preparation and application of this new packaging technology that need to be addressed in the future.
Collapse
Affiliation(s)
- Qiwen Xie
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yuanlv Zhang
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
38
|
Mujtaba M, Lipponen J, Ojanen M, Puttonen S, Vaittinen H. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158328. [PMID: 36037892 DOI: 10.1016/j.scitotenv.2022.158328] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, petroleum-based synthetic plastics are used as a key barrier material in the paper-based packaging of several food and nonfood goods. This widespread usage of plastic as a barrier lining is not only harmful to human and marine health, but it is also polluting the ecosystem. Researchers and food manufacturers are focused on biobased alternatives because of its numerous advantages, including biodegradability, biocompatibility, non-toxicity, and structural flexibility. When used alone or in composites/multilayers, these biobased alternatives provide strong barrier qualities against grease, oxygen, microbes, air, and water. According to the most recent literature reports, biobased polymers for barrier coatings are having difficulty breaking into the business. Technological breakthroughs in the field of bioplastic production and application are rapidly evolving, proffering new options for academics and industry to collaborate and develop sustainable packaging solutions. Existing techniques, such as multilayer coating of nanocomposites, can be improved further by designing them in a more systematic manner to attain the best barrier qualities. Modified nanocellulose, lignin nanoparticles, and bio-polyester are among the most promising future candidates for nanocomposite-based packaging films with high barrier qualities. In this review, the state-of-art and research advancements made in biobased polymeric alternatives such as paper and board barrier coating are summarized. Finally, the existing limitations and potential future development prospects for these biobased polymers as barrier materials are reviewed.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland; VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Juha Lipponen
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland
| | - Mari Ojanen
- Kemira Oyj, Energiakatu 4, 00101 Helsinki, Finland
| | | | - Henri Vaittinen
- Valmet Technologies, Wärtsilänkatu 100, 04440 Järvenpää, Finland
| |
Collapse
|
39
|
Lim BKH, Thian ES. Effects of molecular weight of chitosan in a blend with polycaprolactone and grapefruit seed extract for active packaging and biodegradation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Preparation of robust and fully bio-based modified paper via mussel-inspired layer-by-layer assembly of chitosan and carboxymethyl cellulose for food packaging. Int J Biol Macromol 2022; 222:1238-1249. [PMID: 36181888 DOI: 10.1016/j.ijbiomac.2022.09.243] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
A green and facile method was proposed to prepare robust and fully bio-based modified paper in this study, which involved in layer-by-layer deposition of chitosan (CS) and mussel adhesive protein-mimetic polymer (dopamine-grafted carboxymethyl cellulose, CMC-g-DA) on paper surface and subsequent oxidative cross-linking by sodium periodate. The mechanical, barrier and antibacterial properties of the cross-linked multilayer-modified paper significantly improved with the increased bilayer numbers. Compared with unmodified paper, cross-linked (CS/CMC-g-DA)6 multilayer-modified paper exhibited 71.6 % improvement in tensile strength, 69.2 % and 56.3 % decline in air and water vapor permeability, as well as above 90 % antibacterial efficiency against S. aureus and E. coli. Particularly, the cross-linked multilayer-modified paper maintained outstanding functional stability even after suffering from vigorously corrosive treatment. The obtained functional paper effectively extended the shelf-life of Agaricus bisporus to 6 days under ambient conditions. We believed that the prepared robust functional paper in this study will have promising application prospect in food packaging field.
Collapse
|
42
|
Quintão WSC, Silva-Carvalho AE, Hilgert LA, Gratieri T, Cunha-Filho M, Saldanha-Araújo F, Gelfuso GM. Anti-inflammatory effect evaluation of naringenin and its incorporation into a chitosan-based film for transdermal delivery. Int J Pharm 2022; 627:122231. [PMID: 36167188 DOI: 10.1016/j.ijpharm.2022.122231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Naringenin is a bioflavonoid mainly found in citrus fruits. It presents many pharmacological benefits, including a remarkable anti-inflammatory activity, but its oral bioavailability is poor. To overcome this drawback, this work proposes a transdermal administration of such bioflavonoid, considering its use in the chronic treatment of inflammatory conditions. For this, it aims to develop a chitosan-based film that guarantees a consistent transdermal delivery of the drug. First, naringenin's in vitro anti-inflammatory effect on T-cell proliferation was evaluated, followed by research on the modulation of gene expression for inflammatory factors in peripheral blood mononuclear cells. Chitosan films were then prepared and characterized. Afterward, naringenin release profile from a selected film was determined as well as the drug permeation across porcine skin provided by the film. Naringenin induced the expression of the anti-inflammatory factors IL-10 and TGF-β1 while inhibiting the expression of the pro-inflammatory cytokine IL-1β and limiting T-cell proliferation. The chitosan film was successfully developed, and the drug was progressively released to the physiological media following both first order and Korsmeyer-Peppas kinetics. When topically applied, the chitosan film guaranteed a constant and continuous diffusion of naringenin across the skin over 72 h. Indeed, the permeation flux of naringenin was 0.30 ± 0.01 µg/cm2/h, which means a concentration in the receptor solution 14-fold (p < 0.05) higher than that provided by the drug solution. Thus, the chitosan film represents a promising transdermal alternative for the long-term treatment of inflammatory conditions using naringenin.
Collapse
Affiliation(s)
- Wanessa S C Quintão
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil
| | - Amandda E Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, School of Health Sciences, University of Brasília, 70910-900 Brasília, DF, Brazil
| | - Leandro A Hilgert
- Department of Dentistry, School of Health Sciences, University of Brasilia, 70.910-900 Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil
| | - Felipe Saldanha-Araújo
- Laboratório de Hematologia e Células-Tronco, School of Health Sciences, University of Brasília, 70910-900 Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil.
| |
Collapse
|
43
|
Nian L, Wang M, Sun X, Zeng Y, Xie Y, Cheng S, Cao C. Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Crit Rev Food Sci Nutr 2022; 64:2304-2339. [PMID: 36123805 DOI: 10.1080/10408398.2022.2122924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The consumption of fresh fruits and vegetables is restricted by the susceptibility of fresh produce to deterioration caused by postharvest physiological and metabolic activities. Developing efficient preservation strategies is thus among the most important scientific issues to be urgently addressed in the field of food science. The incorporation of active agents into a polymer matrix to prepare biodegradable active packaging is being increasingly explored to mitigate the postharvest spoilage of fruits and vegetables during storage. This paper reviews the composition of biodegradable polymers and the methods used to prepare biodegradable active packaging. In addition, the interactions between bioactive ingredients and biodegradable polymers that can lead to plasticizing or cross-linking effects are summarized. Furthermore, the applications of biodegradable active (i.e., antibacterial, antioxidant, ethylene removing, barrier, and modified atmosphere) packaging in the preservation of fruits and vegetables are illustrated. These films may increase sensory acceptability, improve quality, and prolong the shelf life of postharvest products. Finally, the challenges and trends of biodegradable active packaging in the preservation of fruits and vegetables are discussed. This review aims to provide new ideas and insights for developing novel biodegradable active packaging materials and their practical application in the preservation of postharvest fruits and vegetables.
Collapse
Affiliation(s)
- Linyu Nian
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Mengjun Wang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoyang Sun
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yan Zeng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yao Xie
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
44
|
Kumari SVG, Pakshirajan K, Pugazhenthi G. Recent advances and future prospects of cellulose, starch, chitosan, polylactic acid and polyhydroxyalkanoates for sustainable food packaging applications. Int J Biol Macromol 2022; 221:163-182. [PMID: 36067847 DOI: 10.1016/j.ijbiomac.2022.08.203] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 12/26/2022]
Abstract
Cellulose, starch, chitosan, polylactic acid, and polyhydroxyalkanoates are seen as promising alternatives to conventional plastics in food packaging. However, the application of these biopolymers in the food packaging industry on a commercial scale is limited due to their poor performance and processing characteristics and high production cost. This review aims to provide an insight into the recent advances in research that address these limitations. Loading of nanofillers into polymer matrix could improve thermal, mechanical, and barrier properties of biopolymers. Blending of biopolymers also offers the possibility of acquiring newer materials with desired characteristics. However, nanofillers tend to agglomerate when loaded above an optimum level in the polymer matrix. This article throws light on different methods adopted by researchers to achieve uniform dispersion of nanofillers in bionanocomposites. Furthermore, different processing methods available for converting biopolymers into different packaging forms are discussed. In addition, the potential utilization of agricultural, brewery, and industrial wastes as feedstock for the production of biopolymers, and integrated biorefinery concept that not only keep the total production cost of biopolymers low but are also environment-friendly, are discussed. Finally, future research prospects in this field and the possible contribution of biopolymers to sustainable development are presented. This review will certainly be helpful to researchers working on sustainable food packaging, and companies exploring pilot projects to scale up biopolymer production for industrial applications.
Collapse
Affiliation(s)
- Satti Venu Gopala Kumari
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
45
|
Zhang K, Ren T, Harper D, Li M. Development of antimicrobial films with cinnamaldehyde stabilized by ethyl lauroyl arginate and cellulose nanocrystals. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Advances in the Formation and Control Methods of Undesirable Flavors in Fish. Foods 2022; 11:foods11162504. [PMID: 36010504 PMCID: PMC9407384 DOI: 10.3390/foods11162504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Undesirable flavor formation in fish is a dynamic biological process, decreasing the overall flavor quality of fish products and impeding the sale of fresh fish. This review extensively summarizes chemical compounds contributing to undesirable flavors and their sources or formation. Specifically, hexanal, heptanal, nonanal, 1−octen−3−ol, 1−penten−3−ol, (E,E)−2,4−heptadienal, (E,E)−2,4−decadienal, trimethylamine, dimethyl sulfide, 2−methyl−butanol, etc., are characteristic compounds causing off−odors. These volatile compounds are mainly generated via enzymatic reactions, lipid autoxidation, environmentally derived reactions, and microbial actions. A brief description of progress in existing deodorization methods for controlling undesirable flavors in fish, e.g., proper fermenting, defatting, appropriate use of food additives, and packaging, is also presented. Lastly, we propose a developmental method regarding the multifunctional natural active substances made available during fish processing or packaging, which hold great potential in controlling undesirable flavors in fish due to their safety and efficiency in deodorization.
Collapse
|
47
|
Sutharsan J, Zhao J. Physicochemical and Biological Properties of Chitosan Based Edible Films. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jenani Sutharsan
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| | - Jian Zhao
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| |
Collapse
|
48
|
Yao Y, Deng Y, Liang Y, Li X, Tang X, Lin M, Xu C, Fu L, Lin B. Convenient, nondestructive monitoring and sustained-release of ethephon/chitosan film for on-demand of fruit ripening. Int J Biol Macromol 2022; 214:338-347. [PMID: 35716789 DOI: 10.1016/j.ijbiomac.2022.06.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
The microstructure changes (such as micro defects and free volume, etc.) is a deep factor that determines the sustained release behavior of polymer film. However, there are few reports exploring the micro defects of sustained-release materials. Herein, we develop a facile method to non-destructive monitoring and sustained-release ethylene within chitosan. The comprehensive means of positron annihilation lifetime spectroscopy, atomic force microscopy and Raman spectrums are performed together to study the microstructures change of ethylene sustained-release and its mechanism. When ethylene is in chitosan film, it shows good ripening performance and mechanical properties. The sustained-release ethylene improves its bioavailability and can control the fruit-ripening on-demand. More importantly, the microstructural changes of cavities have a significant impact on the sustained release of ethylene, due to the creation of cavities, the free volume of positrons undergoes a process of increasing from less to more and then gradually decreasing, reaching a maximum at 120 h. Furthermore, the ethephon/chitosan film could on-demand control the ripening time of mangoes and bananas. Therefore, this research presents a comprehensive means to study of microstructure change monitoring and controllable sustained release, and provides the possibility to solve the problem of on-demand ripening of fruit and reducing pesticide residue.
Collapse
Affiliation(s)
- Yuan Yao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuntong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaoxing Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiuzhen Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Minjie Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
49
|
Salazar R, Salas-Gomez V, Alvarado AA, Baykara H. Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films. Polymers (Basel) 2022; 14:polym14112266. [PMID: 35683938 PMCID: PMC9183075 DOI: 10.3390/polym14112266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chitin is a natural biopolymer obtained from the exoskeleton of crustaceans. Chitosan is a derivative of chitin, which has antimicrobial properties and potential applications in several industries. Moreover, the composites of chitosan with other biodegradable polymers, such as polylactide (PLA) as packaging film, have shown promising results. In this study, chitosan was obtained and characterized from shrimp shells. Then, polylactide-chitosan composite films were prepared by a solvent casting technique using various amounts of chitosan (0.5–2% w/w) and polyethylene glycol as plasticizer (10% w/w). Thermal, mechanical properties, Fourier-transform infrared, scanning electron microscopy, as well as antibacterial properties of composite films were determined. It was found that adding chitosan (CH) into PLA films has a significant effect on tensile strength and no effect on thermal properties. The results showed a reduction on average of 1 log of colony-forming units against Staphylococcus aureus, while there is no antibacterial effect against Salmonella typhimurium. The study proved the antibacterial effect of CH in films of PLA against Gram-positive bacteria and appropriate mechanical properties. These films could be used for the development of biodegradable/eco-friendly food packaging prototypes, as a potential solution to replace conventional non-degradable packaging materials.
Collapse
Affiliation(s)
- Rómulo Salazar
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador;
- Correspondence: (R.S.); (H.B.)
| | - Veronica Salas-Gomez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador;
| | - Adriana A. Alvarado
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador;
| | - Haci Baykara
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador;
- Escuela Superior Politécnica del Litoral, ESPOL, Center of Nanotechnology Research and Development (CIDNA), Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador
- Correspondence: (R.S.); (H.B.)
| |
Collapse
|
50
|
Preparation of chitosan-cellulose-benzyl isothiocyanate nanocomposite film for food packaging applications. Carbohydr Polym 2022; 285:119234. [DOI: 10.1016/j.carbpol.2022.119234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 01/20/2023]
|