1
|
Nawrotek K, Chyb M, Gatkowska J, Rudnicka K, Michlewska S, Jóźwiak P. Effect of sodium L-lactate on bioactive properties of chitosan-hydroxyapatite/polycaprolactone conduits for peripheral nerve tissue engineering. Int J Biol Macromol 2024; 281:136254. [PMID: 39366606 DOI: 10.1016/j.ijbiomac.2024.136254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Biomaterials and synthetic polymers have been widely used to replicate the regenerative microenvironment of the peripheral nervous system. Chitosan-based conduits have shown promise in the regeneration of nerve injuries. However, to mimic the regenerative microenvironment, the scaffold structure should possess bioactive properties. This can be achieved by the incorporation of biomolecules (e.g., proteins, peptides) or trophic factors that should preferably be aligned and/or released with controlled kinetics to activate the process of positive axon chemotaxis. In this study, sodium L-lactate has been used to enhance the bioactive properties of chitosan-hydroxyapatite/polycaprolactone electrodeposits. Next, two methods have been developed to incorporate NGF-loaded microspheres - Method 1 involves entrapment and co-deposition of NGF-loaded microspheres, while Method 2 is based on absorption of NGF-loaded microspheres. The study shows that modification of chitosan-hydroxyapatite/polycaprolactone conduits by sodium L-lactate significantly improves their bioactive, biological, and physicochemical properties. The obtained implants are cytocompatible, enhancing the neurite regeneration process by stimulating its elongation. The absorption of NGF-loaded microspheres into the conduit structure may be considered more favorable for the stimulation of axonal elongation compared to entrapment, as it allows for trophic factor dose-dependent controlled release. The developed conduits possess properties essential for the successful treatment of peripheral nerve discontinuities.
Collapse
Affiliation(s)
- Katarzyna Nawrotek
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Environmental Engineering, Wolczanska 213, 93-005 Lodz, Poland; Lodz University of Technology, International Centre for Research on Innovative Bio-based Materials, 2/22 Stefanowskiego, 90-537, Poland; Warsaw University of Technology, Centre for Advanced Materials and Technology (CEZAMAT), 19 Poleczki, 02-822 Warsaw, Poland.
| | - Maciej Chyb
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Microbiology, 12/16 Banacha, 90-237 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences Banacha 12/16, 90-237 Lodz, Poland.
| | - Justyna Gatkowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Microbiology, 12/16 Banacha, 90-237 Lodz, Poland.
| | - Karolina Rudnicka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Immunology and Infectious Biology, 90-237 Lodz, Poland.
| | - Sylwia Michlewska
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, 90-237 Lodz, Poland.
| | - Piotr Jóźwiak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrates Zoology and Hydrobiology, Banacha 12/16, 90-324 Lodz, Poland.
| |
Collapse
|
2
|
Ferro C, Matos AI, Serpico L, Fontana F, Chiaro J, D'Amico C, Correia A, Koivula R, Kemell M, Gaspar MM, Acúrcio RC, Cerullo V, Santos HA, Florindo HF. Selenium Nanoparticles Synergize with a KRAS Nanovaccine against Breast Cancer. Adv Healthc Mater 2024:e2401523. [PMID: 39205539 DOI: 10.1002/adhm.202401523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Selenium (Se) is an element crucial for human health, known for its anticancer properties. Although selenium nanoparticles (SeNPs) have shown lower toxicity and higher biocompatibility than other Se compounds, bare SeNPs are unstable in aqueous solutions. In this study, several materials, including bovine serum albumin (BSA), chitosan, polymethyl vinyl ether-alt-maleic anhydride, and tocopherol polyethylene glycol succinate, are explored to develop stable SeNPs and further evaluate their potential as candidates for cancer treatment. All optimized SeNP are spherical, <100 nm, and with a narrow size distribution. BSA-stabilized SeNPs produced under acidic conditions present the highest stability in medium, plasma, and at physiological pH, maintaining their size ≈50-60 nm for an extended period. SeNPs demonstrate enhanced toxicity in cancer cell lines while sparing primary human dermal fibroblasts, underscoring their potential as effective anticancer agents. Moreover, the combination of BSA-SeNPs with a nanovaccine results in a strong tumor growth reduction in an EO771 breast cancer mouse model, demonstrating a three-fold decrease in tumor size. This synergistic anticancer effect not only highlights the role of SeNPs as effective anticancer agents but also offers valuable insights for developing innovative combinatorial approaches using SeNPs to improve the outcomes of cancer immunotherapy.
Collapse
Affiliation(s)
- Cláudio Ferro
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ana I Matos
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Luigia Serpico
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Jacopo Chiaro
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carmine D'Amico
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Risto Koivula
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Rita C Acúrcio
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Vincenzo Cerullo
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Helena F Florindo
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| |
Collapse
|
3
|
Gholap AD, Rojekar S, Kapare HS, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Jadhav H, Prajapati MK, Annapure U. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr Polym 2024; 323:121394. [PMID: 37940287 DOI: 10.1016/j.carbpol.2023.121394] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Chitosan, a natural polysaccharide from chitin, shows promise as a biomaterial for various biomedical applications due to its biocompatibility, biodegradability, antibacterial activity, and ease of modification. This review overviews "chitosan scaffolds" use in diverse biomedical applications. It emphasizes chitosan's structural and biological properties and explores fabrication methods like gelation, electrospinning, and 3D printing, which influence scaffold architecture and mechanical properties. The review focuses on chitosan scaffolds in tissue engineering and regenerative medicine, highlighting their role in bone, cartilage, skin, nerve, and vascular tissue regeneration, supporting cell adhesion, proliferation, and differentiation. Investigations into incorporating bioactive compounds, growth factors, and nanoparticles for improved therapeutic effects are discussed. The review also examines chitosan scaffolds in drug delivery systems, leveraging their prolonged release capabilities and ability to encapsulate medicines for targeted and controlled drug delivery. Moreover, it explores chitosan's antibacterial activity and potential for wound healing and infection management in biomedical contexts. Lastly, the review discusses challenges and future objectives, emphasizing the need for improved scaffold design, mechanical qualities, and understanding of interactions with host tissues. In summary, chitosan scaffolds hold significant potential in various biological applications, and this review underscores their promising role in advancing biomedical science.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Harsh Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur 425405, Maharashtra, India.
| | - Uday Annapure
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India; Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
4
|
Akhlaghi N, Najafpour-Darzi G. Thermosensitive injectable dual drug-loaded chitosan-based hybrid hydrogel for treatment of orthopedic implant infections. Carbohydr Polym 2023; 320:121138. [PMID: 37659783 DOI: 10.1016/j.carbpol.2023.121138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 09/04/2023]
Abstract
A myriad of therapeutic agents and drug delivery systems are available to the surgeons for treating orthopedic implant-associated infections (OIAI), but only very few have demonstrated their effectiveness in preventing bacteria colonization and biofilm formation due to challenges in the local and sustainable therapeutic release. To address this issue, in this work, a thermosensitive injectable hydrogel based on chitosan (CH)-integrated hydroxyapatite nanoparticles (HAP NPs) containing vancomycin (Van) and quercetin (QC)-loaded in F127 micelles (CH-HAP-FQ-Van hydrogel) was fabricated with potential application in the treatment of OIAI. This dual drug delivery system demonstrated a pH-sensitive drug release pattern. In addition, 100 % growth inhibition of Staphylococcus aureus for a duration of 14 days was observed. Apart from the strong antioxidant activities owing to the co-administration of QC even after 432 h, this composite hydrogel revealed 95.88 ± 2.8 % S. aureus biofilm eradication. By consideration of degradation stability (53.52 ± 4.24 %) during 60 days along with smart gelation within 10 min at 37 °C and easy injectability, CH-HAP-FQ-Van hydrogel could be used as a promising ideal local drug delivery system for implant-related infections.
Collapse
Affiliation(s)
- Neda Akhlaghi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran
| | - Ghasem Najafpour-Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran.
| |
Collapse
|
5
|
Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr Polym 2023; 315:120934. [PMID: 37230605 DOI: 10.1016/j.carbpol.2023.120934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Peripheral nerve repair following injury is one of the most serious problems in neurosurgery. Clinical outcomes are often unsatisfactory and associated with a huge socioeconomic burden. Several studies have revealed the great potential of biodegradable polysaccharides for improving nerve regeneration. We review here the promising therapeutic strategies involving different types of polysaccharides and their bio-active composites for promoting nerve regeneration. Within this context, polysaccharide materials widely used for nerve repair in different forms are highlighted, including nerve guidance conduits, hydrogels, nanofibers and films. While nerve guidance conduits and hydrogels were used as main structural scaffolds, the other forms including nanofibers and films were generally used as additional supporting materials. We also discuss the issues of ease of therapeutic implementation, drug release properties and therapeutic outcomes, together with potential future directions of research.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Carlo M Oranges
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel F Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Carvalho DN, Gelinsky M, Williams DS, Mearns-Spragg A, Reis RL, Silva TH. Marine collagen-chitosan-fucoidan/chondroitin sulfate cryo-biomaterials loaded with primary human cells envisaging cartilage tissue engineering. Int J Biol Macromol 2023; 241:124510. [PMID: 37080412 DOI: 10.1016/j.ijbiomac.2023.124510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Cartilage repair after a trauma or a degenerative disease like osteoarthritis (OA) continues to be a big challenge in current medicine due to the limited self-regenerative capacity of the articular cartilage tissues. To overcome the current limitations, tissue engineering and regenerative medicine (TERM) and adjacent areas have focused their efforts on new therapeutical procedures and materials capable of restoring normal tissue functionalities through polymeric scaffolding and stem cell engineering approaches. For this, the sustainable exploration of marine origin materials has emerged in the last years as a natural alternative to mammal sources, benefiting from their biological properties (e.g., biocompatibility, biodegradability, no toxicity, among others) for the development of several types of scaffolds. In this study, marine collagen(jCOL)-chitosan(sCHT)-fucoidan(aFUC)/chondroitin sulfate(aCS) were cryo-processed (-20 °C, -80 °C, and -196 °C) and a chemical-free crosslinking approach was explored to establish cohesive and stable cryogel materials. The cryogels were intensively characterized to assess their oscillatory behavior, thermal structural stability, thixotropic properties (around 45 % for the best formulations), injectability, and surface structural organization. Additionally, the cryogels demonstrate an interesting microenvironment in in vitro studies using human adipose-derived stem cells (hASCs), supporting their viability and proliferation. In both physic-chemical and in vitro studies, the systems that contain fucoidan in their formulations, i.e., C1 (jCOL, sCHT, aFUC) and C3 (jCOL, sCHT, aFUC, aCS), submitted at -80 °C, are those that demonstrated most promising results for future application in articular cartilage tissues.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Michael Gelinsky
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - David S Williams
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Andrew Mearns-Spragg
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
7
|
Mohite P, Shah SR, Singh S, Rajput T, Munde S, Ade N, Prajapati BG, Paliwal H, Mori DD, Dudhrejiya AV. Chitosan and chito-oligosaccharide: a versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol 2023; 11:1190879. [PMID: 37274159 PMCID: PMC10235636 DOI: 10.3389/fbioe.2023.1190879] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Chito-oligosaccharides (COS), derived from chitosan (CH), are attracting increasing attention as drug delivery carriers due to their biocompatibility, biodegradability, and mucoadhesive properties. Grafting, the process of chemically modifying CH/COS by adding side chains, has been used to improve their drug delivery performance by enhancing their stability, targeted delivery, and controlled release. In this review, we aim to provide an in-depth study on the recent advances in the grafting of CH/COS for multifarious applications. Moreover, the various strategies and techniques used for grafting, including chemical modification, enzymatic modification, and physical modification, are elaborated. The properties of grafted CH/COS, such as stability, solubility, and biocompatibility, were reported. Additionally, the review detailed the various applications of grafted CH/COS in drug delivery, including the delivery of small drug molecule, proteins, and RNA interference therapeutics. Furthermore, the effectiveness of grafted CH/COS in improving the pharmacokinetics and pharmacodynamics of drugs was included. Finally, the challenges and limitations associated with the use of grafted CH/COS for drug delivery and outline directions for future research are addressed. The insights provided in this review will be valuable for researchers and drug development professionals interested in the application of grafted CH/COS for multifarious applications.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Sunny R. Shah
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Tanavirsing Rajput
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Nitin Ade
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
| | - Himanshu Paliwal
- Drug Delivery System Excellence Centre, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Dhaval D. Mori
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Ashvin V. Dudhrejiya
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| |
Collapse
|
8
|
Panahi HKS, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, Yang Y, Peng W, Pan J, Aghbashlo M, Tabatabaei M. Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnol Adv 2023; 66:108172. [PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Even with some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically reviews the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
9
|
Minkelyte K, Li D, Li Y, Ibrahim A. Transplantation of Cryopreserved Olfactory Ensheathing Cells Restores Loss of Functions in an Experimental Model. Cell Transplant 2023; 32:9636897231199319. [PMID: 37771302 PMCID: PMC10541729 DOI: 10.1177/09636897231199319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
In the past decades, the properties of olfactory ensheathing cells (OECs) have been widely investigated. Studies have shown that transplantation of OECs cultured from the olfactory bulb mediates axonal regeneration, remyelination and restores lost functions in experimental central nervous system (CNS) injury models. Autologously sourcing the cells from the nasal mucosa or the olfactory bulb to treat patients with spinal cord injuries would be ideal, but the cell yield achieved may be inadequate to cover the surface area of the lesions typically encountered in human spinal cord contusion injuries. Therefore, banking allogenic cryopreserved olfactory bulb cells from donors or generating cell lines could provide a marked increase in cell stock available for transplantation. This study is undertaken in two control and two intervention groups. The control groups have lesions alone and lesions with collagen gel but without cells. The intervention groups have either transplantation of primary cultured olfactory bulb OECs (bOECs) encapsulated in collagen gel or cryopreserved bulb OECs (CbOECs) encapsulated in collagen gel. Here, we report that transplantation of cryopreserved rat bOECs encapsulated in collagen restored the loss of function in a vertical climbing test in a unilateral C6-T1 dorsal root injury model. The loss of function returns in 80% of rats with injuries in about 3 weeks comparable to that we observed after transplantation of primary cultured bOECs. The regeneration axons induced by the transplant are identified by neurofilament antibodies and ensheathed by OECs. Our results indicate that cryopreserved OECs retain their properties of inducing axon regeneration and restoring loss of function in the experimental model. This is a step forward to translate the research into future clinical applications.
Collapse
Affiliation(s)
- Kamile Minkelyte
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
| | - Daqing Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
| | - Ying Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
| | - Ahmed Ibrahim
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
10
|
Chopra L, Chohan JS, Sharma S, Pelc M, Kawala-Sterniuk A. Multifunctional Modified Chitosan Biopolymers for Dual Applications in Biomedical and Industrial Field: Synthesis and Evaluation of Thermal, Chemical, Morphological, Structural, In Vitro Drug-Release Rate, Swelling and Metal Uptake Studies. SENSORS (BASEL, SWITZERLAND) 2022; 22:3454. [PMID: 35591144 PMCID: PMC9103994 DOI: 10.3390/s22093454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The hydrogel materials are getting attention from the research due to their multidimensional usage in various fields. Chitosan is one of the most important hydrogels used in this regard. In this paper multifunctional binary graft copolymeric matrices of chitosan with monomer AA and various comonomers AAm and AN were prepared by performing free radical graft copolymerization in the presence of an initiator KPS. The binary grafting can be done at five different molar concentrations of binary comonomers at already optimized concentration of AA, KPS and other reaction conditions such as time, temperature, solvent amount, etc. Various optimum reaction conditions were investigated and presented in this work; the backbone as well as binary grafts Ch-graft-poly (AA-cop-AAm) and Ch-graft-poly (AA-cop-AN) were characterized via various physio-chemical techniques of analysis such as SEM analysis, Xray diffraction (XRD), TGA/DTA and FTIR. In the batch experiments, the binary grafts were investigated for the percent swelling with respect to pH (pH of 2.2, 7.0, 7.4 and 9.4) and time (contact time 1 to 24 h). Uploading and controllable in vitro release of the drug DS (anti-inflammatory) was examined with reverence to gastrointestinal pH and time. The binary grafts showed significantly better-controlled drug diffusion than the unmodified backbone. The kinetic study revealed that the diffusion of the drug occurred by the non-Fickian way. In the case of separation technologies, experiments (batch tests) were executed for the toxic bivalent metal ions Fe (II) and Pb (II) sorption from the aqueous media with respect to the parameters such as interaction period, concentration of fed metal ions in solution, pH and temperature. The binary grafted matrices showed superior results compared to chitosan. The kinetics study revealed that the matrices show pseudo-second order adsorption. The graft copolymer Ch-graft-poly (AA-cop-AAm) provided superior results in sustainable drug release as well as metal ion uptake. The study explored the potential of chitosan-based materials in the industry as well in the biomedical field. The results proved these to be excellent materials with a lot of potential as adsorbents.
Collapse
Affiliation(s)
- Lalita Chopra
- Environment Chemistry Laboratory, Department of Chemistry (UIS), Chandigarh University, Mohali 140413, India;
| | - Jasgurpreet Singh Chohan
- Mechanical Engineering Department, University Centre for Research and Development, Chandigarh University, Mohali 140413, India;
| | - Shubham Sharma
- Mechanical Engineering Department, University Centre for Research and Development, Chandigarh University, Mohali 140413, India;
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Main Campus, Kapurthala 144603, India
| | - Mariusz Pelc
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, ul. Proszkowska 76, 45-758 Opole, Poland;
- School of Computing of Mathematical Sciences, Old Royal Naval College, University of Greenwich, Park Row, London SE10 9LS, UK
| | - Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, ul. Proszkowska 76, 45-758 Opole, Poland;
| |
Collapse
|
11
|
Controlling the Spatiotemporal Release of Nerve Growth Factor by Chitosan/Polycaprolactone Conduits for Use in Peripheral Nerve Regeneration. Int J Mol Sci 2022; 23:ijms23052852. [PMID: 35269991 PMCID: PMC8911064 DOI: 10.3390/ijms23052852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Tubular polymeric structures have been recognized in the treatment of peripheral nerves as comparable to autologous grafting. The best therapeutic outcomes are obtained with conduits releasing therapeutic molecules. In this study, a new approach for the incorporation of biologically active agent-loaded microspheres into the structure of chitosan/polycaprolactone conduits was developed. The support of a polycaprolactone helix formed by 3D melt extrusion was coated with dopamine in order to adsorb nerve growth factor-loaded microspheres. The complex analysis of the influence of process factors on the coverage efficiency of polycaprolactone helix by nerve grow factor-loaded microspheres was analyzed. Thus, the PCL helix characterized with the highest adsorption of microspheres was subjected to nerve growth factor release studies, and finally incorporated into chitosan hydrogel deposit through the process of electrophoretic deposition. It was demonstrated by chemical and physical tests that the chitosan/polycaprolactone conduit meets the requirements imposed on peripheral nerve implants, particularly mimicking mechanical properties of surrounding soft tissue. Moreover, the conduit may support regrowing nerves for a prolonged period, as its structure and integrity persist upon incubation in lysozyme-contained PBS solution up to 28 days at body temperature. In vitro cytocompatibility toward mHippoE-18 embryonic hippocampal cells of the chitosan/polycaprolactone conduit was proven. Most importantly, the developed conduits stimulate axonal growth and support monocyte activation, the latter is advantageous especially at early stages of nerve regeneration. It was demonstrated that, through the described approach for controlling spatiotemporal release of nerve growth factors, these biocompatible structures adjusted to the specific peripheral nerve injury case can be manufactured.
Collapse
|
12
|
Hayat U, Raza A, Bilal M, Iqbal HM, Wang JY. Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. J Drug Deliv Sci Technol 2022; 67:103014. [DOI: 10.1016/j.jddst.2021.103014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
The Role of Dietary Nutrients in Peripheral Nerve Regeneration. Int J Mol Sci 2021; 22:ijms22147417. [PMID: 34299037 PMCID: PMC8303934 DOI: 10.3390/ijms22147417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerves are highly susceptible to injuries induced from everyday activities such as falling or work and sport accidents as well as more severe incidents such as car and motorcycle accidents. Many efforts have been made to improve nerve regeneration, but a satisfactory outcome is still unachieved, highlighting the need for easy to apply supportive strategies for stimulating nerve growth and functional recovery. Recent focus has been made on the effect of the consumed diet and its relation to healthy and well-functioning body systems. Normally, a balanced, healthy daily diet should provide our body with all the needed nutritional elements for maintaining correct function. The health of the central and peripheral nervous system is largely dependent on balanced nutrients supply. While already addressed in many reviews with different focus, we comprehensively review here the possible role of different nutrients in maintaining a healthy peripheral nervous system and their possible role in supporting the process of peripheral nerve regeneration. In fact, many dietary supplements have already demonstrated an important role in peripheral nerve development and regeneration; thus, a tailored dietary plan supplied to a patient following nerve injury could play a non-negotiable role in accelerating and promoting the process of nerve regeneration.
Collapse
|
14
|
Jureczko M, Przystaś W, Krawczyk T, Gonciarz W, Rudnicka K. White-rot fungi-mediated biodegradation of cytostatic drugs - bleomycin and vincristine. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124632. [PMID: 33359974 DOI: 10.1016/j.jhazmat.2020.124632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The contamination of the environment with anticancer drugs, which show recalcitrance to conventional wastewater treatment, has become a significant ecological threat. Fungi represent a promising non-conventional biological alternative for water conditioning. The aim of this work was to evaluate the efficacy of five white-rot fungi (Fomes fomentarius (CB13), Hypholoma fasciculare (CB15), Phyllotopsis nidulans (CB14), Pleurotus ostreatus (BWPH) and Trametes versicolor (CB8)) in the removal of bleomycin and vincristine. The removal capacity was measured at 0, 4, 9, and 14 days of incubation using SPE-UPLC-MS. The enzymatic profiles of laccase, manganese, and lignin peroxidases and wide range of eco- and cytotoxicity, assays of the post-process samples were also conducted. We observed >94% vincristine elimination by F. fomentarius, H. fasciculare and T. versicolor after only 4 days. Bleomycin removal occurred after a minimum of 9 days and only when the drug was incubated with T. versicolor (36%) and H. fasciculare (25%). The removal of both cytostatics was associated with laccase production, and the loss of eco- and cytotoxicity, especially in regard to viability of Lemna minor and Daphnia magna, as well as fibroblasts morphology.
Collapse
Affiliation(s)
- Marcelina Jureczko
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland.
| | - Wioletta Przystaś
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland; The Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| |
Collapse
|
15
|
Adamski R, Siuta D. Mechanical, Structural, and Biological Properties of Chitosan/Hydroxyapatite/Silica Composites for Bone Tissue Engineering. Molecules 2021; 26:molecules26071976. [PMID: 33807434 PMCID: PMC8037072 DOI: 10.3390/molecules26071976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of this work was to fabricate novel bioactive composites based on chitosan and non-organic silica, reinforced with calcium β-glycerophosphate (Ca-GP), sodium β-glycerophosphate pentahydrate (Na-GP), and hydroxyapatite powder (HAp) in a range of concentrations using the sol–gel method. The effect of HAp, Na-GP, and Ca-GP contents on the mechanical properties, i.e., Young’s modulus, compressive strength, and yield strain, of hybrid composites was analyzed. The microstructure of the materials obtained was visualized by SEM. Moreover, the molecular interactions according to FTIR analysis and biocompatibility of composites obtained were examined. The CS/Si/HAp/Ca-GP developed from all composites analyzed was characterized by the well-developed surface of pores of two sizes: large ones of 100 μm and many smaller pores below 10 µm, the behavior of which positively influenced cell proliferation and growth, as well as compressive strength in a range of 0.3 to 10 MPa, Young’s modulus from 5.2 to 100 MPa, and volumetric shrinkage below 60%. This proved to be a promising composite for applications in tissue engineering, e.g., filling small bone defects.
Collapse
|
16
|
Understanding Electrodeposition of Chitosan-Hydroxyapatite Structures for Regeneration of Tubular-Shaped Tissues and Organs. MATERIALS 2021; 14:ma14051288. [PMID: 33800345 PMCID: PMC7962832 DOI: 10.3390/ma14051288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/14/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022]
Abstract
Tubular-shaped hydrogel structures were obtained in the process of cathodic electrodeposition from a chitosan-hydroxyapatite solution carried out in a cylindrical geometry. The impact of the initial concentration of solution components (i.e., chitosan, hydroxyapatite, and lactic acid) and process parameters (i.e., time and voltage) on the mass and structural properties of deposit was examined. Commercially available chitosan differs in average molecular weight and deacetylation degree; therefore, these parameters were also studied. The application of Fourier-transform infrared spectroscopy, scanning electron microscopy, and time-of-flight secondary ion mass spectrometry allowed obtaining fundamental information about the type of bonds and interactions created in electrodeposited structures. Biocompatible tubular implants are highly desired in the field of regeneration or replacement of tubular-shaped tissues and organs; therefore, the possibility of obtaining deposits with the desired structural properties is highly anticipated.
Collapse
|
17
|
Nawrotek K, Mąkiewicz M, Zawadzki D. Fabrication and Characterization of Polycaprolactone/Chitosan-Hydroxyapatite Hybrid Implants for Peripheral Nerve Regeneration. Polymers (Basel) 2021; 13:775. [PMID: 33802478 PMCID: PMC7959464 DOI: 10.3390/polym13050775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/30/2023] Open
Abstract
Major efforts for the advancement of tubular-shaped implant fabrication focused recently on the development of 3D printing methods that can enable the fabrication of complete devices in a single printing process. However, the main limitation of these solutions is the use of non-biocompatible polymers. Therefore, a new technology for obtaining hybrid implants that employ polymer extrusion and electrophoretic deposition is applied. The fabricated structures are made of two layers: polycaprolactone skeleton and chitosan-hydroxyapatite electrodeposit. Both of them can be functionalized by incorporation of mechanical or biological cues that favor ingrowth, guidance, and correct targeting of axons. The electrodeposition process is conducted at different voltages in order to determine the influence of this process on the structural, chemical, and mechanical properties of implants. In addition, changes in mechanical properties of implants during their incubation in phosphate-buffered solution (pH 7.4) at 37 °C up to 28 days are examined. The presented technology, being low-cost and relatively simple, shall find a broad scope of applications in customized nerve tissue engineering.
Collapse
Affiliation(s)
- Katarzyna Nawrotek
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Street, 90-924 Lodz, Poland; (M.M.); (D.Z.)
| | | | | |
Collapse
|
18
|
Ahmadi S, Hivechi A, Bahrami SH, Milan PB, Ashraf SS. Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity. Int J Biol Macromol 2021; 173:580-590. [PMID: 33513421 DOI: 10.1016/j.ijbiomac.2021.01.156] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/11/2023]
Abstract
This study develops chitosan/gelatin nanofiber membranes with sustained release capacity to prevent infection by delivering cinnamon extract (CE) in the implanted site. The effects of the incorporation of CE content (2-6%) on the properties of the nanofibers were evaluated. Morphological studies using SEM indicated that loading the extract did not affect the average diameter of nanofiber mats, which remained around 140-170 nm. TGA and FTIR spectroscopy results confirmed successful CE loading. Furthermore, the results showed that incorporating extract into the nanofibers enhanced their degradation behavior, antibacterial activity, and biocompatibility. Cultured cells attached to and proliferate on the nanofiber membrane with high cell viability capacity until the CE content reached 4%. The extract release profile consisted of a burst release in the first 6 h, followed by a controlled release in the next 138 h. Therefore, CE loaded chitosan/gelatin nanofiber is an excellent construct for biomedical applications.
Collapse
Affiliation(s)
- Soroush Ahmadi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ahmad Hivechi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Peiman B Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Ashraf
- Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Mąkiewicz M, Wach RA, Nawrotek K. Investigation of Parameters Influencing Tubular-Shaped Chitosan-Hydroxyapatite Layer Electrodeposition. Molecules 2020; 26:E104. [PMID: 33379393 PMCID: PMC7796046 DOI: 10.3390/molecules26010104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Tubular-shaped layer electrodeposition from chitosan-hydroxyapatite colloidal solutions has found application in the field of regeneration or replacement of cylindrical tissues and organs, especially peripheral nerve tissue regeneration. Nevertheless, the quantitative and qualitative characterisation of this phenomenon has not been described. In this work, the colloidal systems are subjected to the action of an electric current initiated at different voltages. Parameters of the electrodeposition process (i.e., total charge exchanged, gas volume, and deposit thickness) are monitored over time. Deposit structures are investigated by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The value of voltage influences structural characteristics but not thickness of deposit for the process lasting at least 20 min. The calculated number of exchanged electrons for studied conditions suggests that the mechanism of deposit formation is governed not only by water electrolysis but also interactions between formed hydroxide ions and calcium ions coordinated by chitosan chains.
Collapse
Affiliation(s)
- Mariusz Mąkiewicz
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Street, 90-924 Lodz, Poland;
| | - Radosław A. Wach
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15 Street, 93-590 Lodz, Poland;
| | - Katarzyna Nawrotek
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Street, 90-924 Lodz, Poland;
| |
Collapse
|
20
|
Sharma B, Sharma S, Jain P. Leveraging advances in chemistry to design biodegradable polymeric implants using chitosan and other biomaterials. Int J Biol Macromol 2020; 169:414-427. [PMID: 33352152 DOI: 10.1016/j.ijbiomac.2020.12.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 01/28/2023]
Abstract
The metamorphosis of biodegradable polymers in biomedical applications is an auspicious myriad of indagation. The utmost challenge in clinical conditions includes trauma, organs failure, soft and hard tissues, infection, cancer and inflammation, congenital disorders which are still not medicated efficiently. To overcome this bone of contention, proliferation in the concatenation of biodegradable materials for clinical applications has emerged as a silver bullet owing to eco-friendly, nontoxicity, exorbitant mechanical properties, cost efficiency, and degradability. Several bioimplants are designed and fabricated in a way to reabsorb or degrade inside the body after performing the specific function rather than eliminating the bioimplants. The objective of this comprehensive is to unfurl the anecdote of emerging biological polymers derived implants including silk, lignin, soy, collagen, gelatin, chitosan, alginate, starch, etc. by explicating the selection, fabrication, properties, and applications. Into the bargain, emphasis on the significant characteristics of current discernment and purview of nanotechnology integrated biopolymeric implants has also been expounded. This robust contrivance shed light on recent inclinations and evolution in tissue regeneration and targeting organs followed by precedency and fly in the ointment concerning biodegradable implants evolved by employing fringe benefits provided by 3D printing technology for building tissues or organs construct for implantation.
Collapse
Affiliation(s)
- Bhasha Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India.
| | - Shreya Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India
| |
Collapse
|
21
|
The Application of Mucoadhesive Chitosan Nanoparticles in Nasal Drug Delivery. Mar Drugs 2020; 18:md18120605. [PMID: 33260406 PMCID: PMC7759871 DOI: 10.3390/md18120605] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Mucosal delivery of antigens can induce both humoral and cellular immune responses. Particularly, the nasal cavity is a strongly inductive site for mucosal immunity among several administration routes, as it is generally the first point of contact for inhaled antigens. However, the delivery of antigens to the nasal cavity has some disadvantages such as rapid clearance and disposition of inhaled materials. For these reasons, remarkable efforts have been made to develop antigen delivery systems which suit the nasal route. The use of nanoparticles as delivery vehicles enables protection of the antigen from degradation and sustains the release of the loaded antigen, eventually resulting in improved vaccine and/or drug efficacy. Chitosan, which exhibits low toxicity, biodegradability, good cost performance, and strong mucoadhesive properties, is a useful material for nanoparticles. The present review provides an overview of the mucosal immune response induced by nanoparticles, recent advances in the use of nanoparticles, and nasal delivery systems with chitosan nanoparticles.
Collapse
|
22
|
Dong X, Cheng Q, Long Y, Xu C, Fang H, Chen Y, Dai H. A chitosan based scaffold with enhanced mechanical and biocompatible performance for biomedical applications. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Dynamic imine bond based chitosan smart hydrogel with magnified mechanical strength for controlled drug delivery. Int J Biol Macromol 2020; 160:489-495. [DOI: 10.1016/j.ijbiomac.2020.05.221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 11/22/2022]
|
24
|
Kargozar S, Singh RK, Kim HW, Baino F. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity? Acta Biomater 2020; 115:1-28. [PMID: 32818612 DOI: 10.1016/j.actbio.2020.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering provides great possibilities to manage tissue damages and injuries in modern medicine. The involvement of hard biocompatible materials in tissue engineering-based therapies for the healing of soft tissue defects has impressively increased over the last few years: in this regard, different types of bioceramics were developed, examined and applied either alone or in combination with polymers to produce composites. Bioactive glasses, carbon nanostructures, and hydroxyapatite nanoparticles are among the most widely-proposed hard materials for treating a broad range of soft tissue damages, from acute and chronic skin wounds to complex injuries of nervous and cardiopulmonary systems. Although being originally developed for use in contact with bone, these substances were also shown to offer excellent key features for repair and regeneration of wounds and "delicate" structures of the body, including improved cell proliferation and differentiation, enhanced angiogenesis, and antibacterial/anti-inflammatory activities. Furthermore, when embedded in a soft matrix, these hard materials can improve the mechanical properties of the implant. They could be applied in various forms and formulations such as fine powders, granules, and micro- or nanofibers. There are some pre-clinical trials in which bioceramics are being utilized for skin wounds; however, some crucial questions should still be addressed before the extensive and safe use of bioceramics in soft tissue healing. For example, defining optimal formulations, dosages, and administration routes remain to be fixed and summarized as standard guidelines in the clinic. This review paper aims at providing a comprehensive picture of the use and potential of bioceramics in treatment, reconstruction, and preservation of soft tissues (skin, cardiovascular and pulmonary systems, peripheral nervous system, gastrointestinal tract, skeletal muscles, and ophthalmic tissues) and critically discusses their pros and cons (e.g., the risk of calcification and ectopic bone formation as well as the local and systemic toxicity) in this regard. STATEMENT OF SIGNIFICANCE: Soft tissues form a big part of the human body and play vital roles in maintaining both structure and function of various organs; however, optimal repair and regeneration of injured soft tissues (e.g., skin, peripheral nerve) still remain a grand challenge in biomedicine. Although polymers were extensively applied to restore the lost or injured soft tissues, the use of bioceramics has the potential to provides new opportunities which are still partially unexplored or at the very beginning. This reviews summarizes the state of the art of bioceramics in this field, highlighting the latest evolutions and the new horizons that can be opened by their use in the context of soft tissue engineering. Existing results and future challenges are discussed in order to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers of the biomaterials community.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 330-714, Republic of Korea.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|
25
|
Fan X, Liang Y, Cui Y, Li F, Sun Y, Yang J, Song H, Bao Z, Nian R. Development of tilapia collagen and chitosan composite hydrogels for nanobody delivery. Colloids Surf B Biointerfaces 2020; 195:111261. [PMID: 32683236 DOI: 10.1016/j.colsurfb.2020.111261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Recently, injectable hydrogels have shown great potential in cell therapy and drug delivery. They can easily fill in any irregular-shaped defects and remain in desired positions after implantation using minimally invasive strategies. Here, we developed hydrogels prepared from tilapia skin collagen and chitosan (HCC). The residual mass rate of HCC was affected by the pH at the time of preparation, which was 29.1 % at pH 7 in 36 h. By comparison, the residual mass ratios of HCC at pH values of 6 and 5 were only approximately 8.4 % and 0, respectively. In addition, the stability of HCC was also affected by the concentration of these two components. HCC10 catalyzed by 10 mg mL-1 tilapia skin collagen and 10 mg mL-1 chitosan was more stable than HCC5 catalyzed by 5 mg mL-1 tilapia skin collagen and 10 mg mL-1 chitosan; therefore, we studied that ability of HCC10 to deliver two model nanobodies: 2D5 and KPU. As the concentration of nanobodies increased, the cumulative release rate of 2D5 decreased, and the release rate of KPU increased. Meanwhile, the cumulative release rate of 2D5 was the highest (68.3 %) at pH 5.5, followed by pH 6.8 (56.4 %) and 7.4 (28.4 %). However, the cumulative release rates of KPU were similar at pH 5.5 (45.1 %), 6.8 (46.5 %), and 7.4 (44.9 %). HCC is biodegradable, and can facilitate the release nanobodies; thus, HCC could be developed into an intelligent responsive tumor treatment matrix for use in cancer therapy.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Beijing, 100049, China
| | - Yunlong Liang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Beijing, 100049, China
| | - Yuting Cui
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Fei Li
- Shenzhen Innova Nanobodi Co., Ltd., No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Yue Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Junqing Yang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd., No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Zixian Bao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|
26
|
Samadian H, Maleki H, Fathollahi A, Salehi M, Gholizadeh S, Derakhshankhah H, Allahyari Z, Jaymand M. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. Int J Biol Macromol 2020; 154:795-817. [DOI: 10.1016/j.ijbiomac.2020.03.155] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
|
27
|
Ardhani R, Ana ID, Tabata Y. Gelatin hydrogel membrane containing carbonate hydroxyapatite for nerve regeneration scaffold. J Biomed Mater Res A 2020; 108:2491-2503. [PMID: 32418269 DOI: 10.1002/jbm.a.37000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/26/2022]
Abstract
A scaffold that mimics physicochemical structure of nerve and supplies calcium ions in axonal environment is an attractive alternative for nerve regeneration, especially when applied in critical nerve defect. Various scaffold material, design, including their combination with several growth-induced substances and cells application have been being investigated and used in the area of nerve tissue engineering. However, the development remains challenges today because they are still far from ideal concerning their stability, reproducibility, including complicated handling related to the poor mechanical strength. In view of the current basis, in this study, the introduction of carbonated hydroxyapatite (CHA) as promising candidate to increase mechanical properties of nerve scaffold is reported. The incorporation of CHA was not only expected to provide better mechanical properties of the scaffold. Under physiological condition, CHA is known to be the most stable phases of calcium phosphate compound. Therefore, CHA was expected to provide controlled release calcium for better axonal environment and promote fasten nerve regeneration. This study shows that CHA incorporated gelatin membrane has ideal microstructure to prevent fibrous tissue ingrowth into the injury site, while retaining its capability to survive nerve tissue by allowing adequate glucose and specific proteins diffusion. The provided Ca2+ release to the environment promoted neuronal growth, without suppressing acetylcholine esterase release activity. Neurite elongation was dramatically higher in the gelatin membrane incorporated with CHA. Introduction of CHA into gelatin membrane represents a new generation medical device for nerve reconstruction, with CHA was considered as a promising factor.
Collapse
Affiliation(s)
- Retno Ardhani
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Boecker A, Daeschler SC, Kneser U, Harhaus L. Relevance and Recent Developments of Chitosan in Peripheral Nerve Surgery. Front Cell Neurosci 2019; 13:104. [PMID: 31019452 PMCID: PMC6458244 DOI: 10.3389/fncel.2019.00104] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Developments in tissue engineering yield biomaterials with different supporting strategies to promote nerve regeneration. One promising material is the naturally occurring chitin derivate chitosan. Chitosan has become increasingly important in various tissue engineering approaches for peripheral nerve reconstruction, as it has demonstrated its potential to interact with regeneration associated cells and the neural microenvironment, leading to improved axonal regeneration and less neuroma formation. Moreover, the physiological properties of its polysaccharide structure provide safe biodegradation behavior in the absence of negative side effects or toxic metabolites. Beneficial interactions with Schwann cells (SC), inducing differentiation of mesenchymal stromal cells to SC-like cells or creating supportive conditions during axonal recovery are only a small part of the effects of chitosan. As a result, an extensive body of literature addresses a variety of experimental strategies for the different types of nerve lesions. The different concepts include chitosan nanofibers, hydrogels, hollow nerve tubes, nerve conduits with an inner chitosan layer as well as hybrid architectures containing collagen or polyglycolic acid nerve conduits. Furthermore, various cell seeding concepts have been introduced in the preclinical setting. First translational concepts with hollow tubes following nerve surgery already transferred the promising experimental approach into clinical practice. However, conclusive analyses of the available data and the proposed impact on the recovery process following nerve surgery are currently lacking. This review aims to give an overview on the physiologic properties of chitosan, to evaluate its effect on peripheral nerve regeneration and discuss the future translation into clinical practice.
Collapse
Affiliation(s)
- A Boecker
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - S C Daeschler
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - U Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - L Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| |
Collapse
|
29
|
Blanda G, Brucato V, Carfì F, Conoscenti G, La Carrubba V, Piazza S, Sunseri C, Inguanta R. Chitosan-Coating Deposition via Galvanic Coupling. ACS Biomater Sci Eng 2019; 5:1715-1724. [DOI: 10.1021/acsbiomaterials.8b01548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Valerio Brucato
- INSTM Palermo Research Unit, Viale delle Scienze, Palermo 90128, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Manoukian OS, Arul MR, Rudraiah S, Kalajzic I, Kumbar SG. Aligned microchannel polymer-nanotube composites for peripheral nerve regeneration: Small molecule drug delivery. J Control Release 2019; 296:54-67. [PMID: 30658124 PMCID: PMC6379151 DOI: 10.1016/j.jconrel.2019.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury accounts for roughly 2.8% of all trauma patients with an annual cost of 7 billion USD in the U.S. alone. Current treatment options rely on surgical intervention with the use of an autograft, despite associated shortcomings. Engineered nerve guidance conduits, stem cell therapies, and transient electrical stimulation have reported to increase speeds of functional recovery. As an alternative to the conduction effects of electrical stimulation, we have designed and optimized a nerve guidance conduit with aligned microchannels for the sustained release of a small molecule drug that promotes nerve impulse conduction. A biodegradable chitosan structure reinforced with drug-loaded halloysite nanotubes (HNT) was formed into a foam-like conduit with interconnected, longitudinally-aligned pores with an average pore size of 59.3 ± 14.2 μm. The aligned composite with HNTs produced anisotropic mechanical behavior with a Young's modulus of 0.33 ± 0.1 MPa, very similar to that of native peripheral nerve. This manuscript reports on the sustained delivery of 4-Aminopyridine (4AP, molecular weight 94.1146 g/mol), a potassium-channel blocker as a growth factor alternative to enhance the rate of nerve regeneration. The conduit formulation released a total of 30 ± 2% of the encapsulated 4AP in the first 7 days. Human Schwann cells showed elevated expression of key proteins such as nerve growth factor, myelin protein zero, and brain derived neurotrophic factor in a 4AP dose dependent manner. Preliminary in vivo studies in a critical-sized sciatic nerve defect in Wistar rats confirmed conduit suturability and strength to withstand ambulatory forces over 4 weeks of their implantation. Histological evaluations suggest conduit biocompatibility and Schwann cell infiltration and organization within the conduit and lumen. These nerve guidance conduits and 4AP sustained delivery may serve as an attractive strategy for nerve repair and regeneration.
Collapse
Affiliation(s)
- Ohan S Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Michael R Arul
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA; Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, USA
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
31
|
Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci 2019; 263:131-194. [PMID: 30530176 DOI: 10.1016/j.cis.2018.11.008] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 01/06/2023]
Abstract
Chitosan (CS) is a linear polysaccharide which is achieved by deacetylation of chitin, which is the second most plentiful compound in nature, after cellulose. It is a linear copolymer of β-(1 → 4)-linked 2-acetamido-2-deoxy-β-d-glucopyranose and 2-amino-2-deoxy-β-d-glucopyranose. It has appreciated properties such as biocompatibility, biodegradability, hydrophilicity, nontoxicity, high bioavailability, simplicity of modification, favorable permselectivity of water, outstanding chemical resistance, capability to form films, gels, nanoparticles, microparticles and beads as well as affinity to metals, proteins and dyes. Also, the biodegradable CS is broken down in the human body to safe compounds (amino sugars) which are easily absorbed. At present, CS and its derivatives are broadly investigated in numerous pharmaceutical and medical applications including drug/gene delivery, wound dressings, implants, contact lenses, tissue engineering and cell encapsulation. Besides, CS has several OH and NH2 functional groups which allow protein binding. CS with a deacetylation degree of ~50% is soluble in aqueous acidic environment. While CS is dissolved in acidic medium, its amino groups in the polymeric chains are protonated and it becomes cationic which allows its strong interaction with different kinds of molecules. It is believed that this positive charge is responsible for the antimicrobial activity of CS through the interaction with the negatively charged cell membranes of microorganisms. This review presents properties and numerous applications of chitosan-based compounds in drug delivery, gene delivery, cell encapsulation, protein binding, tissue engineering, preparation of implants and contact lenses, wound healing, bioimaging, antimicrobial food additives, antibacterial food packaging materials and antibacterial textiles. Moreover, some recent molecular dynamics simulations accomplished on the pharmaceutical applications of chitosan were presented.
Collapse
|
32
|
Jiao J, Huang J, Zhang Z. Hydrogels based on chitosan in tissue regeneration: How do they work? A mini review. J Appl Polym Sci 2018. [DOI: 10.1002/app.47235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiao Jiao
- Neuropsychiatric Institute; Medical School of Southeast University; Nanjing Jiangsu 210009 China
- Department of Neurology; Affiliated ZhongDa Hospital; Nanjing Jiangsu 210009 China
| | - Jinjian Huang
- Lab for Trauma and Surgical Infections, Department of Surgery; Jinling Hospital; Nanjing Jiangsu 210002 China
| | - Zhijun Zhang
- Neuropsychiatric Institute; Medical School of Southeast University; Nanjing Jiangsu 210009 China
- Department of Neurology; Affiliated ZhongDa Hospital; Nanjing Jiangsu 210009 China
| |
Collapse
|
33
|
El-Fattah AA, Mansour A. Viscoelasticity, mechanical properties, and in vitro biodegradation of injectable chitosan-poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/nanohydroxyapatite composite hydrogel. BULLETIN OF MATERIALS SCIENCE 2018; 41:141. [DOI: 10.1007/s12034-018-1663-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/26/2018] [Indexed: 09/02/2023]
|
34
|
Asadian M, Onyshchenko I, Thukkaram M, Esbah Tabaei PS, Van Guyse J, Cools P, Declercq H, Hoogenboom R, Morent R, De Geyter N. Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydr Polym 2018; 201:402-415. [PMID: 30241836 DOI: 10.1016/j.carbpol.2018.08.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022]
Abstract
In this study, chitosan (CS)/polyethylene oxide (PEO) nanofibrous mats (Ø: 166 ± 43 nm) were fabricated by electrospinning and subsequently surface-modified by a dielectric barrier discharge (DBD) sustained in argon, ammonia/helium or nitrogen. The surface properties of the CS/PEO nanofibers (NFs) before and after plasma treatment were characterized using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, the mechanical properties and PEO leaching in aqueous conditions of the different NFs under study were examined by tensile tests and nuclear magnetic resonance (1H NMR) spectroscopy respectively. Finally, cell behavior and cell morphology of human foreskin fibroblasts (HFFs) on the CS/PEO NFs were evaluated via live/dead fluorescence microscopy, MTT assays and SEM. The obtained results revealed that the surface free energy of the CS/PEO NFs was significantly increased after plasma modification, which was correlated to an enrichment in surface oxygen (Ar, N2, NH3/He) and nitrogen (N2, NH3/He) functional groups. All performed plasma treatments also led to an increase in ultimate tensile strength, most likely due to an increased fiber-to-fiber friction. Additionally, it was also observed that N2 plasma treatment resulted in a decrease in PEO release, which could be attributed to more pronounced surface cross-linking. Cellular interactions on the CS/PEO NFs also significantly increased due to the performed plasma treatments. The best cellular response was noted for the Ar plasma modification although the surface hydrophilicity was the lowest in this case. These observations thus suggest that not only the wettability characteristics but also the presence of distinct functional groups on plasma-treated CS/PEO NFs have a significant influence on the observed enhanced cellular interactions.
Collapse
Affiliation(s)
- Mahtab Asadian
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Iuliia Onyshchenko
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Monica Thukkaram
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Parinaz Saadat Esbah Tabaei
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Joachim Van Guyse
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Faculty of Sciences, Ghent University, Krijgslaan 281, S4, 9000, Ghent, Belgium.
| | - Pieter Cools
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Heidi Declercq
- Department of Basic Medical Sciences, Tissue Engineering Group, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B3, 9000, Ghent, Belgium.
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Faculty of Sciences, Ghent University, Krijgslaan 281, S4, 9000, Ghent, Belgium.
| | - Rino Morent
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| |
Collapse
|
35
|
Zargar Kharazi A, Dini G, Naser R. Fabrication and evaluation of a nerve guidance conduit capable of Ca 2+ ion release to accelerate axon extension in peripheral nerve regeneration. J Biomed Mater Res A 2018; 106:2181-2189. [PMID: 29637737 DOI: 10.1002/jbm.a.36425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 11/11/2022]
Abstract
In this study, biodegradable nanocomposites consisting of poly (glycerol sebacate) (PGS) elastomeric matrix and the reinforcing phase of calcium titanate (CaTiO3 ) nanoparticles were fabricated as a nerve guidance conduit (NGC) for peripheral nerve regeneration. CaTiO3 nanoparticles were synthesized via the sol-gel method and calcined at 800°C for 60 min. PGS elastomer was synthesized via the polycondensation reaction of glycerol and sebacate (1:1) and 2.5 and 5 wt. percentages of the synthesized CaTiO3 nanoparticles were added to the PGS prepolymer solution. The composites obtained were heated in order to make crosslinks in the pre-polymer. CaTiO3 nanoparticles, PGS elastomer, and the composites fabricated were characterized in terms of their structural, chemical, physical, mechanical, and cell response properties to evaluate the feasibility of using the nanocomposite for NGC applications. The results indicated that CaTiO3 nanoparticles were 50 nm in size. When the nanoparticles were added to the PGS, the elastic modulus and tensile strength of the nanocomposite reached values of about 1 and 0.5 MPa, respectively that are near those of natural nerves. The degradation behavior and swelling of the nanocomposites, as compared with those of the PGS elastomer, were controlled by introducing CaTiO3 into the PGS, which swelling limitation could prevent nerve compression. It was observed that Ca2+ ions established chemical bonds with PGS, which led to high crosslink densities that, in turn, contribute to improved mechanical properties of the composite. The Ca2+ ions released from the nanocomposite samples were in the nontoxic range. The PC12 cell line on the surface of the nanocomposite specimens showed good cell adhesion and proliferation with improved axon outgrowth and extension. Based on the results obtained the fabricated PGS/CaTiO3 nanocomposite may be recommended as a suitable NGC with desirable effects on peripheral nerve regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2181-2189, 2018.
Collapse
Affiliation(s)
- Anousheh Zargar Kharazi
- Biomaterials Nanotechnology and Tissue Engineering faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Ghasem Dini
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Reza Naser
- Biomaterials Nanotechnology and Tissue Engineering faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| |
Collapse
|
36
|
Mohan N, Mohanan PV, Sabareeswaran A, Nair P. Chitosan-hyaluronic acid hydrogel for cartilage repair. Int J Biol Macromol 2017; 104:1936-1945. [DOI: 10.1016/j.ijbiomac.2017.03.142] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/10/2017] [Accepted: 03/25/2017] [Indexed: 12/22/2022]
|
37
|
López-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomater Sci Eng 2017; 3:3098-3122. [DOI: 10.1021/acsbiomaterials.7b00655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. López-Cebral
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. Silva-Correia
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - T. H. Silva
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| |
Collapse
|
38
|
Figueiredo P, Ferro C, Kemell M, Liu Z, Kiriazis A, Lintinen K, Florindo HF, Yli-Kauhaluoma J, Hirvonen J, Kostiainen MA, Santos HA. Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine (Lond) 2017; 12:2581-2596. [PMID: 28960138 DOI: 10.2217/nnm-2017-0219] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To carboxylate kraft lignin toward the functionalization of carboxylated lignin nanoparticles (CLNPs) with a block copolymer made of PEG, poly(histidine) and a cell-penetrating peptide and then evaluate the chemotherapeutic potential of the innovative nanoparticles. MATERIALS & METHODS The produced nanoparticles were characterized and evaluated in vitro for stability and biocompatibility and the drug release profiles and antiproliferative effect were also assessed. RESULTS The prepared CLNPs showed spherical shape and good size distribution, good stability in physiological media and low cytotoxicity in all the tested cell lines. A poorly water-soluble cytotoxic agent was successfully loaded into the CLNPs, improving its release profiles in a pH-sensitive manner and showing an enhanced antiproliferative effect in the different cancer cells compared with a normal endothelial cell line. CONCLUSION The resulting CLNPs are promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Cláudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kalle Lintinen
- Biohybrid Materials, Department of Bioproducts & Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts & Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.,Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
39
|
Iftime MM, Morariu S, Marin L. Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels. Carbohydr Polym 2017; 165:39-50. [DOI: 10.1016/j.carbpol.2017.02.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/23/2017] [Accepted: 02/08/2017] [Indexed: 12/01/2022]
|
40
|
Li P, Zhao J, Chen Y, Cheng B, Yu Z, Zhao Y, Yan X, Tong Z, Jin S. Preparation and characterization of chitosan physical hydrogels with enhanced mechanical and antibacterial properties. Carbohydr Polym 2017; 157:1383-1392. [DOI: 10.1016/j.carbpol.2016.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 02/02/2023]
|
41
|
Huang X, Wang R, Lu T, Zhou D, Zhao W, Sun S, Zhao C. Heparin-Like Chitosan Hydrogels with Tunable Swelling Behavior, Prolonged Clotting Times, and Prevented Contact Activation and Complement Activation. Biomacromolecules 2016; 17:4011-4020. [DOI: 10.1021/acs.biomac.6b01386] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xuelian Huang
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Wang
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ting Lu
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongxu Zhou
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shudong Sun
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
42
|
Nawrotek K, Tylman M, Rudnicka K, Gatkowska J, Wieczorek M. Epineurium-mimicking chitosan conduits for peripheral nervous tissue engineering. Carbohydr Polym 2016; 152:119-128. [DOI: 10.1016/j.carbpol.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/25/2016] [Accepted: 07/01/2016] [Indexed: 11/30/2022]
|
43
|
Du L, Yang X, Li W, Luo X, Wu H, Zhang J, Tu M. Construction of physical crosslink-based chitosan/liquid crystal composite hydrogel and evaluation on their cytocompatibility. Regen Biomater 2016; 4:39-45. [PMID: 28149528 PMCID: PMC5274703 DOI: 10.1093/rb/rbw035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/22/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
Abstract
In order to provide a novel biomimetic composite substrate for tissue engineering and explore the interaction between cells and this type of material, we developed chitosan/liquid crystal (CS/LC) composite hydrogel with embedded LC phases by composing of cholesterol hydroxypropyl cellulose ester liquid crystalline material and CS. The micromorphology of CS/LC composite hydrogels exhibited ‘islands-sea’ phase separation structures similar to the ‘fluid mosaic model’ of biomembrane. In vitro cell compatibility study suggested that 3T3 is fibroblasts exhibited better initial cell adhesions and higher proliferation rates on the composite hydrogel than on the polystyrene control plate and the pure LC membrane. This novel CS/LC composite hydrogel provides more favorable interface for cell growth and proliferation and may serve as potentially active substrate for engineering interfaces to live cells.
Collapse
Affiliation(s)
- Lin Du
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaohui Yang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wenqiang Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xuhui Luo
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Wu
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, People's Republic of China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jiaqing Zhang
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, People's Republic of China; School of Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Mei Tu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
44
|
Nawrotek K, Tylman M, Decherchi P, Marqueste T, Rudnicka K, Gatkowska J, Wieczorek M. Assessment of degradation and biocompatibility of electrodeposited chitosan and chitosan-carbon nanotube tubular implants. J Biomed Mater Res A 2016; 104:2701-11. [PMID: 27325550 DOI: 10.1002/jbm.a.35812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/31/2016] [Accepted: 06/16/2016] [Indexed: 12/25/2022]
Abstract
Designing three-dimensional tubular materials made of chitosan is still a challenging task. Availability of such forms is highly desired by tissue engineering, especially peripheral nerve tissue engineering. Aiming at this problem, we use an electrodeposition phenomenon in order to obtain chitosan and chitosan-carbon nanotube hydrogel tubular implants. The in vitro biocompatibility of the fabricated structures is assessed using a mouse hippocampal cell line (mHippoE-18). As both implants do not induce significant cytotoxicity, they are next subjected to in vitro degradation studies in the environment simulating in vivo conditions for specified periods of time: 7, 14, and 28 days. The mass loss of implants indicates their stability at the tested time period; therefore, the materials are subcutaneously implanted in Sprague Dawley rats. The explants are collected after 7, 14, and 28 days. The assessment of composition and changes in tissues surrounding the implanted materials is made in respect to surrounding tissue thickness as well as the number of blood vessels, macrophages, lymphocytes, and neutrophils. No symptoms of acute inflammation are noticed at any point in time. The observed regular healing process allows concluding that both chitosan and chitosan-carbon hydrogel tubular implants are biocompatible with high application potential in tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2701-2711, 2016.
Collapse
Affiliation(s)
- Katarzyna Nawrotek
- Department of Process Thermodynamics, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924, Lodz, Poland.
| | - Michał Tylman
- Department of Process Thermodynamics, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924, Lodz, Poland
| | - Patrick Decherchi
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Mouvement (UMR 7287), Equipe Plasticité des Systèmes Nerveux et Musculaire, Parc Scientifique et Technologique de Luminy, CC910 - 163, Avenue de Luminy, F-13288, Marseille cedex 09, France
| | - Tanguy Marqueste
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Mouvement (UMR 7287), Equipe Plasticité des Systèmes Nerveux et Musculaire, Parc Scientifique et Technologique de Luminy, CC910 - 163, Avenue de Luminy, F-13288, Marseille cedex 09, France
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Justyna Gatkowska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
45
|
Nawrotek K, Tylman M, Rudnicka K, Gatkowska J, Balcerzak J. Tubular electrodeposition of chitosan–carbon nanotube implants enriched with calcium ions. J Mech Behav Biomed Mater 2016; 60:256-266. [DOI: 10.1016/j.jmbbm.2016.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/30/2016] [Accepted: 02/05/2016] [Indexed: 01/20/2023]
|
46
|
Yue W, Yan F, Zhang YL, Liu SL, Hou SP, Mao GC, Liu N, Ji Y. Differentiation of Rat Bone Marrow Mesenchymal Stem Cells Into Neuron-Like Cells In Vitro and Co-Cultured with Biological Scaffold as Transplantation Carrier. Med Sci Monit 2016; 22:1766-72. [PMID: 27225035 PMCID: PMC4917310 DOI: 10.12659/msm.898441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Autograft and allograft transplantation are used to prompt the regeneration of axons after nerve injury. However, the poor self-regeneration caused by the glial scar and growth inhibitory factors after neuronal necrosis limit the efficacy of these methods. The purpose of this study was to develop a new chitosan porous scaffold for cell seeding. MATERIAL AND METHODS The bone marrow mesenchymal stem cells (BMSCs) and tissue-engineered biomaterial scaffold compound were constructed and co-cultured in vitro with the differentiated BMSCs of Wistar rats and chitosan scaffold in a 3D environment. The purity of the third-generation BMSCs culture was identified using flow cytometry and assessment of induced neuronal differentiation. The scaffolds were prepared by the freeze-drying method. The internal structure of scaffolds and the change of cells' growth and morphology were observed under a scanning electron microscope. The proliferation of cells was detected with the MTT method. RESULTS On day 5 there was a significant difference in the absorbance value of the experimental group (0.549±0.0256) and the control group (0.487±0.0357) (P>0.05); but on day 7 there was no significant difference in the proliferation of the experimental group (0.751±0.011) and the control group and (0.78±0.017) (P>0.05). CONCLUSIONS Tissue engineering technology can provide a carrier for cells seeding and is expected to become an effective method for the regeneration and repair of nerve cells. Our study showed that chitosan porous scaffolds can be used for such purposes.
Collapse
Affiliation(s)
- Wei Yue
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Feng Yan
- Department of Neurosurgery, The Third Affiliate Hospital of Xi’an Jiaotong University, Shanxi Provincial People’s Hospital, Xi’an, Shaanxi, P.R. China
| | - Yue-Lin Zhang
- Department of Neurosurgery, The Third Affiliate Hospital of Xi’an Jiaotong University, Shanxi Provincial People’s Hospital, Xi’an, Shaanxi, P.R. China
| | - Shu-Ling Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Shu-Ping Hou
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Guo-Chao Mao
- Department of Neurosurgery, The Third Affiliate Hospital of Xi’an Jiaotong University, Shanxi Provincial People’s Hospital, Xi’an, Shaanxi, P.R. China
| | - Ning Liu
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| |
Collapse
|
47
|
Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells Int 2016; 2016:6810562. [PMID: 27274738 PMCID: PMC4870368 DOI: 10.1155/2016/6810562] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is an important health issue corresponding to the second cause of mortality and first cause of severe disability with no effective treatments after the first hours of onset. Regenerative approaches such as cell therapy provide an increase in endogenous brain structural plasticity but they are not enough to promote a complete recovery. Tissue engineering has recently aroused a major interesting development of biomaterials for use into the central nervous system. Many biomaterials have been engineered based on natural compounds, synthetic compounds, or a mix of both with the aim of providing polymers with specific properties. The mechanical properties of biomaterials can be exquisitely regulated forming polymers with different stiffness, modifiable physical state that polymerizes in situ, or small particles encapsulating cells or growth factors. The choice of biomaterial compounds should be adapted for the different applications, structure target, and delay of administration. Biocompatibilities with embedded cells and with the host tissue and biodegradation rate must be considerate. In this paper, we review the different applications of biomaterials combined with cell therapy in ischemic stroke and we explore specific features such as choice of biomaterial compounds and physical and mechanical properties concerning the recent studies in experimental stroke.
Collapse
|
48
|
Yi J, Xiong F, Li B, Chen H, Yin Y, Dai H, Li S. Degradation characteristics, cell viability and host tissue responses of PDLLA-based scaffold with PRGD and β-TCP nanoparticles incorporation. Regen Biomater 2016; 3:159-66. [PMID: 27252885 PMCID: PMC4881616 DOI: 10.1093/rb/rbw017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/27/2016] [Accepted: 03/06/2016] [Indexed: 12/29/2022] Open
Abstract
This study is aimed to evaluate the degradation characteristics, cell viability and host tissue responses of PDLLA/PRGD/β-TCP (PRT) composite nerve scaffold, which was fabricated by poly(d, l-lactic acid) (PDLLA), RGD peptide(Gly-Arg-Gly-Asp-Tyr, GRGDY, abbreviated as RGD) modified poly-{(lactic acid)-co-[(glycolic acid)-alt-(l-lysine)]}(PRGD) and β-tricalcium phosphate (β-TCP). The scaffolds’ in vitro degradation behaviors were investigated in detail by analysing changes in weight loss, pH and morphology. Then, the 3-(4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2 -H-tetrazolium bromide (MTT) assay and cell live/dead assay were carried out to assess their cell viability. Moreover, in vivo degradation patterns and host inflammation responses were monitored by subcutaneous implantation of PRT scaffold in rats. Our data showed that, among the tested scaffolds, the PRT scaffold had the best buffering capacity (pH = 6.1–6.3) and fastest degradation rate (12.4%, 8 weeks) during in vitro study, which was contributed by the incorporation of β-TCP nanoparticles. After in vitro and in vivo degradation, the high porosity structure of PRT could be observed using scanning electron microscopy. Meanwhile, the PRT scaffold could significantly promote cell survival. In the PRT scaffold implantation region, less inflammatory cells (especially for neutrophil and lymphocyte) could be detected. These results indicated that the PRT composite scaffold had a good biodegradable property; it could improve cells survival and reduced the adverse host tissue inflammation responses.
Collapse
Affiliation(s)
- Jiling Yi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Feng Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Heping Chen
- School of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Yixia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shipu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|