1
|
Li Z, Zhang Y, Balle T, Eser BE, Fang Y, Guo Z. Preparation of Cello-Oligosaccharides by Precise-Controlled Enzymatic Depolymerization and Its Amphiphilic Functionalization for High-Oil Load Emulsification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39757467 DOI: 10.1021/acs.jafc.4c08886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Cello-oligosaccharides (COS) are gaining great attention for their prebiotic-like properties, e.g., boosting gut health by promoting beneficial bacteria and improving digestion. This study produced COS, consisting predominantly of 4-10 glucose units (>80% of total COS) through enzymatic selective hydrolysis of cellulose using Ultimase BWL 40 (endoglucanase and xylanase) and Celluclast 1.5 L (cellobiohydrolases and endoglucanase). Celluclast 1.5 L mediated hydrolysis of cellulose for 7 h, yielding 22% COS, and Ultimase BWL 40 for 24 h afforded 32% COS to a large extent governed by the patterns of composed hydrolytes associated with the components and specificity of the enzyme recipe. Moreover, a novel kind of amphiphilic COS product was developed through (2-dodecen-1-yl succinyl) alkylsuccinylation of COS, confirmed by Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (1HNMR) spectroscopy; thereby, COS was endowed with the amphiphilic property. Not surprisingly, alkylsuccinylated COS (SAC12) stabilized cosurfactant-free emulsions of high oil-load, e.g., 70 wt % fish oil-in-water emulsions, achieving remarkably homogeneous nano-/microdroplets (500-540 nm), extremely narrow polydispersity index (PDI < 0.1), and strongly negative zeta potential (-45 to -48 mV), thus demonstrating exceptional stability. Overall, alkylsuccinylated COS (SAC12) offers superior emulsifying capabilities without a cosurfactant while maintaining prebiotic benefits, thus providing a versatile sustainable solution for various nutraceutical/pharmaceutical applications.
Collapse
Affiliation(s)
- Ziqian Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Yan Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Thomas Balle
- Novozymes A/S (Part of Novonesis Group), Biologiens Vej 2 , 2800 Kgs.Lyngby, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| |
Collapse
|
2
|
Feng Y, Chang Y, Wang L, Liu X, Chen L, Yan X, Zhang Q. Ultrahigh-strength cellulose nanofiber foams via the synergy of freeze-casting and solvent exchange. Carbohydr Polym 2025; 347:122671. [PMID: 39486927 DOI: 10.1016/j.carbpol.2024.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 11/04/2024]
Abstract
Ultrahigh-strength and lightweight materials have found wide use. However, it is difficult for artificial materials to maintain high strength while being lightweight, as the mechanical properties of most materials are strongly dependent on density. In this study, we combined the methods of freeze casting and solvent exchange to prepare cellulose nanofiber foams with lightweight and ultrahigh strength. Freeze casting created the continuous 3D network at the microscale while solvent exchange promoted the reconstruction of cellulose nanofibers via the alkali-induced mercerization effect. The foams thus possessed an ordered hierarchical structure that contained lamellar layers at the microscale and a high density of pores at the nanoscale. A quadratic exponential positive correlation between relative modulus and relative density was identified for the foams. The maximum compressive and bending moduli of the foams were 26.09 and 42.10 MPa, respectively, while its density was 210.16 mg/cm3. The study provides a robust method for the preparation of lightweight and high-strength cellulose foams.
Collapse
Affiliation(s)
- Yuwei Feng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yuqing Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Li Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xiaodi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Lei Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xiaofei Yan
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
3
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
4
|
He P, Wang D, Zheng R, Wang H, Fu L, Tang G, Shi Z, Wu Y, Yang G. An antibacterial biologic patch based on bacterial cellulose for repair of infected hernias. Carbohydr Polym 2024; 333:121942. [PMID: 38494213 DOI: 10.1016/j.carbpol.2024.121942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Infection-associated complications and repair failures and antibiotic resistance have emerged as a formidable challenge in hernia repair surgery. Consequently, the development of antibiotic-free antibacterial patches for hernia repair has become an exigent clinical necessity. Herein, a GBC/Gel/LL37 biological patch (biopatch) with exceptional antibacterial properties is fabricated by grafting 2-Methacryloyloxyethyl trimethylammonium chloride (METAC), a unique quaternary ammonium salt with vinyl, onto bacterial cellulose (GBC), followed by compounding with gelatin (Gel) and LL37. The GBC/Gel/LL37 biopatch exhibits stable swelling capacity, remarkable mechanical properties, flexibility, and favorable biocompatibility. The synergistic effect of METAC and LL37 confers upon the GBC/Gel/LL37 biopatch excellent antibacterial efficacy against Staphylococcus aureus and Escherichia coli, effectively eliminating invading bacteria without the aid of exogenous antibiotics in vivo while significantly reducing local acute inflammation caused by infection. Furthermore, the practical efficacy of the GBC/Gel/LL37 biopatch is evaluated in an infected ventral hernia model, revealing that the GBC/Gel/LL37 biopatch can prevent the formation of visceral adhesions, facilitate the repair of infected ventral hernia, and effectively mitigate chronic inflammation. The prepared antibacterial GBC/Gel/LL37 biopatch is very effective in dealing with the risk of infection in hernia repair surgery and offers potential clinical opportunities for other soft injuries, exhibiting considerable clinical application prospects.
Collapse
Affiliation(s)
- Pengyu He
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dawei Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lina Fu
- College of Medicine, Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Central Hospital, Zhumadian, Henan 463000, China
| | - Guoliang Tang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
5
|
Wang F, Sun Q, Li Y, Xu R, Li R, Wu D, Huang R, Yang Z, Li Y. Hydrogel Encapsulating Wormwood Essential Oil with Broad-spectrum Antibacterial and Immunomodulatory Properties for Infected Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305078. [PMID: 38030556 PMCID: PMC10797468 DOI: 10.1002/advs.202305078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Indexed: 12/01/2023]
Abstract
The integration of hydrogels with bio-friendly functional components through simple and efficient strategies to construct wound dressings with broad-spectrum antibacterial and immunomodulatory properties to promote the healing of infected diabetic wounds is highly desirable but remains a major challenge. Here, wormwood essential oil (WEO) is effectively encapsulated in the hydrogel via an O/W-Pickering emulsion during the polymerization of methacrylic anhydride gelatin (GelMA), acrylamide (AM), and acrylic acid N-hydroxysuccinimide ester (AAc-NHS) to form a multifunctional hydrogel dressing (HD-WEO). Compared with conventional emulsions, Pickering emulsions not only improve the encapsulation stability of the WEO, but also enhance the tensile and swelling properties of hydrogel. The synergistic interaction of WEO's diverse bioactive components provides a broad-spectrum antibacterial activity against S. aureus, E. coli, and MRSA. In addition, the HD-WEO can induce the polarization of macrophages from M1 to M2 phenotype. With these advantages, the broad-spectrum antibacterial and immunomodulatory HD-WEO effectively promotes the collagen deposition and neovascularization, thereby accelerating the healing of MRSA-infected diabetic wounds.
Collapse
Affiliation(s)
- Feng Wang
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Key Laboratory of Biowaste Resources for Selenium‐Enriched Functional Utilization, College of Petroleum and Chemical EngineeringBeibu Gulf UniversityQinzhou535011China
| | - Qi Sun
- School of MedicineSouth China University of TechnologyGuangzhou510006China
| | - Yang Li
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhou510006China
| | - Ruijun Xu
- School of MedicineSouth China University of TechnologyGuangzhou510006China
| | - Renjie Li
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Dingcai Wu
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006China
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Rongkang Huang
- Department of General Surgery (Colorectal Surgery)Guangdong Institute of GastroenterologyBiomedical Innovation CenterGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Zifeng Yang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yong Li
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| |
Collapse
|
6
|
Diaz-Ramirez J, Basasoro S, González K, Eceiza A, Retegi A, Gabilondo N. Integral Valorization of Grape Pomace for Antioxidant Pickering Emulsions. Antioxidants (Basel) 2023; 12:antiox12051064. [PMID: 37237930 DOI: 10.3390/antiox12051064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Full harnessing of grape pomace (GP) agricultural waste for the preparation of antioxidant Pickering emulsions is presented herein. Bacterial cellulose (BC) and polyphenolic extract (GPPE) were both prepared from GP. Rod-like BC nanocrystals up to 1.5 µm in length and 5-30 nm in width were obtained through enzymatic hydrolysis (EH). The GPPE obtained through ultrasound-assisted hydroalcoholic solvent extraction presented excellent antioxidant properties assessed using DPPH, ABTS and TPC assays. The BCNC-GPPE complex formation improved the colloidal stability of BCNC aqueous dispersions by decreasing the Z potential value up to -35 mV and prolonged the antioxidant half-life of GPPE up to 2.5 times. The antioxidant activity of the complex was demonstrated by the decrease in conjugate diene (CD) formation in olive oil-in-water emulsions, whereas the measured emulsification ratio (ER) and droplet mean size of hexadecane-in-water emulsions confirmed the physical stability improvement in all cases. The synergistic effect between nanocellulose and GPPE resulted in promising novel emulsions with prolonged physical and oxidative stability.
Collapse
Affiliation(s)
- Julen Diaz-Ramirez
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Senda Basasoro
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Kizkitza González
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Arantxa Eceiza
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Aloña Retegi
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Nagore Gabilondo
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
7
|
Lin SP, Singajaya S, Lo TY, Santoso SP, Hsu HY, Cheng KC. Evaluation of porous bacterial cellulose produced from foam templating with different additives and its application in 3D cell culture. Int J Biol Macromol 2023; 234:123680. [PMID: 36801225 DOI: 10.1016/j.ijbiomac.2023.123680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Bacterial cellulose (BC) is used in biomedical applications due to its unique material properties such as mechanical strength with a high water-absorbing capacity and biocompatibility. Nevertheless, native BC lacks porosity control which is crucial for regenerative medicine. Hence, developing a simple technique to change the pore sizes of BC has become an important issue. This study combined current foaming BC (FBC) production with incorporation of different additives (avicel, carboxymethylcellulose, and chitosan) to form novel porous additive-altered FBC. Results demonstrated that the FBC samples provided greater reswelling rates (91.57 % ~ 93.67 %) compared to BC samples (44.52 % ~ 67.5 %). Moreover, the FBC samples also showed excellent cell adhesion and proliferation abilities for NIH-3T3 cells. Lastly, FBC allowed cells to penetrate to deep layers for cell adhesion due to its porous structure, providing a competitive scaffold for 3D cell culture in tissue engineering.
Collapse
Affiliation(s)
- Shin-Ping Lin
- School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Stephanie Singajaya
- Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan
| | - Tsui-Yun Lo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Sustainable and Zero Waste Industries, Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong 518057, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, Hong Kong, China.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan; Graduate Institute of Food Science and Technology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
8
|
Wang B, Zhao X, Duan C, Li J, Zeng J, Xu J, Gao W, Chen K. Novel carboxylated cellulose nanocrystals synthesized by co-oxidation of sodium periodate/Fenton as a green solid emulsifier for oil-in-water Pickering emulsion. J Colloid Interface Sci 2023; 630:604-617. [DOI: 10.1016/j.jcis.2022.09.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
|
9
|
Zhang X, Wang D, Liu S, Tang J. Bacterial Cellulose Nanofibril-Based Pickering Emulsions: Recent Trends and Applications in the Food Industry. Foods 2022; 11:foods11244064. [PMID: 36553806 PMCID: PMC9778365 DOI: 10.3390/foods11244064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Pickering emulsion stabilized by food-grade colloidal particles has developed rapidly in recent decades and attracts extensive attention for potential applications in the food industry. Bacterial cellulose nanofibrils (BCNFs), as green and sustainable colloidal nanoparticles derived from bacterial cellulose, have various advantages for Pickering emulsion stabilization and applications due to their unique properties, such as good amphiphilicity, a nanoscale fibrous network, a high aspect ratio, low toxicity, excellent biocompatibility, and sustainability. This review provides a comprehensive overview of the recent advances in the Pickering emulsion stabilized by BCNF particles, including the classification, preparation method, and physicochemical properties of diverse BCNF-based particles as Pickering stabilizers, as well as surface modifications with other substances to improve their emulsifying performance and functionality. Additionally, this paper highlights the stabilization mechanisms and provides potential food applications of BCNF-based Pickering emulsions, such as nutrient encapsulation and delivery, edible coatings and films, fat substitutes, etc. Furthermore, the safety issues and future challenges for the development and food-related applications of BCNFs-based Pickering emulsions are also outlined. This work will provide new insights and more ideas on the development and application of nanofibril-based Pickering emulsions for researchers.
Collapse
Affiliation(s)
- Xingzhong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dan Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (S.L.); (J.T.)
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Correspondence: (S.L.); (J.T.)
| |
Collapse
|
10
|
Li Z, Anankanbil S, Pedersen JN, Nadzieja M, Guo Z. Nanocellulose Fractionated from TEMPO-Mediated Oxidation of Cellulose as An Energy-free Ingredient for Stabilizing Pickering Emulsion. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Effect of surface charge density of bacterial cellulose nanofibrils on the properties of O/W Pickering emulsions co-stabilized with gelatin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Wang L, Zhang C, Zhao W, Li W, Wang G, Zhou X, Zhang Q. Water-Swellable Cellulose Nanofiber Aerogel for Control of Hemorrhage from Penetrating Wounds. ACS APPLIED BIO MATERIALS 2022; 5:4886-4895. [PMID: 36125342 DOI: 10.1021/acsabm.2c00609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Uncontrolled hemorrhage from wounds with deep and irregular cavities is short of efficient hemostats. Here we report a citric acid-cross-linked carboxymethyl cellulose nanofiber (CA-CMCNF) aerogel for the control of bleeding from penetrating wounds. The compressed CA-CMCNF aerogel could quickly swell into its original shape in water in seconds. The maximum mass and volume expansion ratios were over 6800 and 3000%, respectively. The water-swellable property allows the aerogel to self-expand and fill in the cavities of wounds. The in situ-generated expansion pressure resisted the systolic blood pressure, and the plentiful carboxyl groups triggered the active coagulation pathway, both contributing to the hemostatic capability of the aerogel. Additionally, the aerogel had good biocompatibility and excellent antibacterial capability. The animal experiments revealed that the aerogels significantly reduced both the hemostasis time and the amount of bleeding in a liver penetrating model. Therefore, this study provides a safe and robust hemostatic aerogel for controlling bleeding from penetrating wounds.
Collapse
Affiliation(s)
- Li Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Chenglin Zhang
- Department of orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Wei Zhao
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Wei Li
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Guodong Wang
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Xuhui Zhou
- Department of orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|
13
|
Properties and stability of water-in-water emulsions stabilized by microfibrillated bacterial cellulose. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Zhang Y, Yang S, Tang H, Wan S, Qin W, Zeng Q, Huang J, Yu G, Feng Y, Li J. Depletion stabilization of emulsions based on bacterial cellulose/carboxymethyl chitosan complexes. Carbohydr Polym 2022; 297:119904. [DOI: 10.1016/j.carbpol.2022.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
|
15
|
Ataeian P, Shi Q, Ioannidis M, Tam KC. Effect of hydrophobic modification of cellulose nanocrystal (CNC) and salt addition on Pickering emulsions undergoing phase-transition. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Su T, Liu N, Lei D, Wang L, Ren Z, Zhang Q, Su J, Zhang Z, Gao Y. Flexible MXene/Bacterial Cellulose Film Sound Detector Based on Piezoresistive Sensing Mechanism. ACS NANO 2022; 16:8461-8471. [PMID: 35504043 DOI: 10.1021/acsnano.2c03155] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flexible pressure sensors have aroused extensive attention in health monitoring, human-computer interaction, soft robotics, and more, as a staple member of wearable electronics. However, a majority of traditional research focuses solely on foundational mechanical sensing tests and ordinary human-motion monitoring, ignoring its other applications in daily life. In this work, a paper-based pressure sensor is prepared by using MXene/bacterial cellulose film with three-dimensional isolation layer structure, and its sensing capability as a wearable sound detector has also been studied. The as-prepared device exhibits great comprehensive mechanical sensing performance as well as accurate detection of human physiological signals. As a sound detector, not only can it recognize different voice signals and sound attributes by monitoring movement of throat muscles, but also it will distinguish a variety of natural sounds through air pressure waves caused by sound transmission (also called sound waves), like the eardrum. Besides, it plays an important role in sound visualization technology because of the ability for capturing and presenting music signals. Moreover, millimeter-scale thickness, lightweight, and degradable raw materials make the sensor convenient and easy to carry, meeting requirements of environmental protection as well.
Collapse
Affiliation(s)
- Tuoyi Su
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Nishuang Liu
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Dandan Lei
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Luoxin Wang
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Ziqi Ren
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Qixiang Zhang
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Jun Su
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Zhi Zhang
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Yihua Gao
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| |
Collapse
|
17
|
Ataeian P, Nasseri R, Tong A, Tam KC. Effect of Oil Phase Transition on the Stability of Pickering Emulsions Stabilized by Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2737-2745. [PMID: 35171615 DOI: 10.1021/acs.langmuir.2c00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Emulsifier design is one of the key strategies in interfacial engineering for emulsion stability. In this study, cellulose nanocrystals (CNCs) were used as an interfacial stabilizer to improve the stability of coconut oil (CO)-in-water emulsions. A Pickering emulsion consisting of CO and water was optimized based on four parameters using the response surface methodology and the central composite design. The droplet coverage remained stable during the crystallization of the oil phase when the temperature was reduced below the melting temperature of CO. Fluorescent-labeled CNCs were used to monitor the partitioning of CNC at the O/W interface during the crystallization of CO. The Generation 6 polyamidoamine (G6 PAMAM) dendrimer covalently grafted on the surface of CNC was used as an intrinsic fluorescent dye. Since it displayed similar properties as the emulsifier, it could be used to monitor the CNC coverage on the oil droplets at various temperatures. The fluorescence micrographs showed that the emission of PAMAM CNCs at the O/W interface remained on both the liquid and solid CO droplets, confirming that oil crystallization did not affect the fluorescent CNC coverage on the oil droplets.
Collapse
Affiliation(s)
- Parinaz Ataeian
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Rasool Nasseri
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Alice Tong
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
18
|
Wu Y, Lei C, Li J, Chen Y, Liang H, Li Y, Li B, Luo X, Pei Y, Liu S. Improvement of O/W emulsion performance by adjusting the interaction between gelatin and bacterial cellulose nanofibrils. Carbohydr Polym 2022; 276:118806. [PMID: 34823811 DOI: 10.1016/j.carbpol.2021.118806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
This study was designed to improve the stability of medium internal phase emulsion by adjusting the electrostatic interaction between gelatin (GLT) and TEMPO-oxidized bacterial cellulose nanofibrils (TOBC). The influences of polysaccharide-protein ratio (1:10, 1:5, and 1:2.5) and pH (3.0, 4.7, 7.0, and 11.0) on the emulsion properties were investigated. The droplet size of TOBC/GLT-stabilized emulsion was increased with the TOBC proportion increasing at pH 3.0-11.0. Additionally, emulsion had a larger droplet size at pH 4.7 (the electrical equivalence point pH of mixtures). However, the addition of TOBC significantly improved the emulsion stability. The emulsions prepared with TOBC/GLT mixtures (mixing ratio of 1:2.5) at pH 3.0-7.0 were stable without creaming during the storage. It was because the formation of nanofibrils network impeded the droplet mobility, and the emulsion viscosity and viscoelastic modulus were increased with the addition of TOBC. These findings were meaningful to modulate the physical properties of emulsions.
Collapse
Affiliation(s)
- Yilan Wu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chan Lei
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jing Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yijie Chen
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hongshan Liang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430073, China; School of Materials and Engineering, Zhengzhou University, No. 100. Science Avenue, Zhengzhou City, Henan 450001, China.
| | - Ying Pei
- School of Materials and Engineering, Zhengzhou University, No. 100. Science Avenue, Zhengzhou City, Henan 450001, China.
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Materials and Engineering, Zhengzhou University, No. 100. Science Avenue, Zhengzhou City, Henan 450001, China.
| |
Collapse
|
19
|
Improved water dispersion and bioavailability of coenzyme Q10 by bacterial cellulose nanofibers. Carbohydr Polym 2022; 276:118788. [PMID: 34823798 DOI: 10.1016/j.carbpol.2021.118788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/27/2022]
Abstract
The purpose of this study was to investigate the potential of bacterial cellulose nanofiber suspension (BCNs) as stabilizer in anti-solvent precipitation and its effect on improving bioavailability of coenzyme Q10. Bacterial cellulose (BC) was hydrolyzed by sulfuric acid followed by the oxidation with hydrogen peroxide to prepare BCNs. The suspension of BCNs-loaded CoQ10 (CoQ10-BCNs) were prepared by antisolvent precipitation. The zeta potential of CoQ10-BCNs was about -36.01 mV. The properties of CoQ10, BCNs and CoQ10-BCNs were studied by scanning electron microscopy, transmission electron microscope, Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermo gravimetric analysis. The crystallinity of CoQ10 decreased in CoQ10-BCNs compared with the raw CoQ10, and CoQ10-BCNs have good physicochemical stability. In oral bioavailability studies, the area under curve (AUC) of CoQ10-BCNs was about 3.62 times higher than the raw CoQ10 in rats.
Collapse
|
20
|
Wu Y, Zhang X, Qiu D, Pei Y, Li Y, Li B, Liu S. Effect of surface charge density of bacterial cellulose nanofibrils on the rheology property of O/W Pickering emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Wen Y, Liu J, Jiang L, Zhu Z, He S, He S, Shao W. Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100709] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Li Z, Chen X, Bao C, Liu C, Liu C, Li D, Yan H, Lin Q. Fabrication and Evaluation of Alginate/Bacterial Cellulose Nanocrystals-Chitosan-Gelatin Composite Scaffolds. Molecules 2021; 26:5003. [PMID: 34443588 PMCID: PMC8400783 DOI: 10.3390/molecules26165003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
It is common knowledge that pure alginate hydrogel is more likely to have weak mechanical strength, a lack of cell recognition sites, extensive swelling and uncontrolled degradation, and thus be unable to satisfy the demands of the ideal scaffold. To address these problems, we attempted to fabricate alginate/bacterial cellulose nanocrystals-chitosan-gelatin (Alg/BCNs-CS-GT) composite scaffolds using the combined method involving the incorporation of BCNs in the alginate matrix, internal gelation through the hydroxyapatite-d-glucono-δ-lactone (HAP-GDL) complex, and layer-by-layer (LBL) electrostatic assembly of polyelectrolytes. Meanwhile, the effect of various contents of BCNs on the scaffold morphology, porosity, mechanical properties, and swelling and degradation behavior was investigated. The experimental results showed that the fabricated Alg/BCNs-CS-GT composite scaffolds exhibited regular 3D morphologies and well-developed pore structures. With the increase in BCNs content, the pore size of Alg/BCNs-CS-GT composite scaffolds was gradually reduced from 200 μm to 70 μm. Furthermore, BCNs were fully embedded in the alginate matrix through the intermolecular hydrogen bond with alginate. Moreover, the addition of BCNs could effectively control the swelling and biodegradation of the Alg/BCNs-CS-GT composite scaffolds. Furthermore, the in vitro cytotoxicity studies indicated that the porous fiber network of BCNs could fully mimic the extracellular matrix structure, which promoted the adhesion and spreading of MG63 cells and MC3T3-E1 cells on the Alg/BCNs-CS-GT composite scaffolds. In addition, these cells could grow in the 3D-porous structure of composite scaffolds, which exhibited good proliferative viability. Based on the effect of BCNs on the cytocompatibility of composite scaffolds, the optimum BCNs content for the Alg/BCNs-CS-GT composite scaffolds was 0.2% (w/v). On the basis of good merits, such as regular 3D morphology, well-developed pore structure, controlled swelling and biodegradation behavior, and good cytocompatibility, the Alg/BCNs-CS-GT composite scaffolds may exhibit great potential as the ideal scaffold in the bone tissue engineering field.
Collapse
Affiliation(s)
- Zhengyue Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Z.L.); (X.C.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.B.); (C.L.); (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Z.L.); (X.C.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.B.); (C.L.); (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chaoling Bao
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.B.); (C.L.); (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chang Liu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.B.); (C.L.); (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chunyang Liu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.B.); (C.L.); (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dongze Li
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.B.); (C.L.); (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Z.L.); (X.C.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.B.); (C.L.); (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Z.L.); (X.C.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.B.); (C.L.); (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
23
|
Kedzior SA, Gabriel VA, Dubé MA, Cranston ED. Nanocellulose in Emulsions and Heterogeneous Water-Based Polymer Systems: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002404. [PMID: 32797718 DOI: 10.1002/adma.202002404] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Nanocelluloses (i.e., bacterial nanocellulose, cellulose nanocrystals, and cellulose nanofibrils) are cellulose-based materials with at least one dimension in the nanoscale. These materials have unique and useful properties and have been shown to assemble at oil-water interfaces and impart new functionality to emulsion and latex systems. Herein, the use of nanocellulose in both emulsions and heterogeneous water-based polymers is reviewed, including dispersion, suspension, and emulsion polymerization. Comprehensive tables describe past work employing nanocellulose as stabilizers or additives and the properties that can be tailored through the use of nanocellulose are highlighted. Even at low loadings, nanocellulose offers an unprecedented level of control as a property modifier for a range of emulsion and polymer applications, influencing, for example, emulsion type, stability, and stimuli-responsive behavior. Nanocellulose can tune polymer particle properties such as size, surface charge, and morphology, or be used to produce capsules and polymer nanocomposites with enhanced mechanical, thermal, and adhesive properties. The role of nanocellulose is discussed, and a perspective for future direction is presented.
Collapse
Affiliation(s)
- Stephanie A Kedzior
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Vida A Gabriel
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5, Canada
| | - Marc A Dubé
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5, Canada
| | - Emily D Cranston
- Department of Wood Science, Department of Chemical & Biological Engineering, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
24
|
Wang X, Tang S, Chai S, Wang P, Qin J, Pei W, Bian H, Jiang Q, Huang C. Preparing printable bacterial cellulose based gelatin gel to promote in vivo bone regeneration. Carbohydr Polym 2021; 270:118342. [PMID: 34364595 DOI: 10.1016/j.carbpol.2021.118342] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/22/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The naturally tight entanglement of fibers in bacterial cellulose (BC) results in low printability when BC is used as a bioink for printing scaffolds. In this study, neat BC was treated by TEMPO-mediated oxidation (TO-BC) and maleic acid (MA-BC) to prepare homogeneous BC dispersions to fabricate scaffolds for bone regeneration. Results showed that the treatments released individual fibrils in the corresponding uniform dispersions without impairing inherent crystalline properties. Compared with TO-BC, MA-BC hybridized with gelatin could endow the gel with improved rheological properties and compression modulus for 3D printing. Both TO-BC and MA-BC dispersions showed good osteoblast viability. However, MA-BC possessed more pronounced ability to express osteogenic marker genes and formation of mineralized nodules in vitro. Compared with TO-BC-based gelatin scaffolds, MA-BC-based gelatin scaffolds showed a better ability to stimulate the regeneration of rat calvaria, demonstrating a higher bone mineral density of newly formed bone and trabecular thickness in vivo.
Collapse
Affiliation(s)
- Xucai Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shijia Tang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Senlin Chai
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jianghui Qin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
25
|
Seo HM, Seo M, Shin K, Choi S, Kim JW. Bacterial cellulose nanofibrils-armored Pickering emulsions with limited influx of metal ions. Carbohydr Polym 2021; 258:117730. [DOI: 10.1016/j.carbpol.2021.117730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
|
26
|
Li Q, Wu Y, Fang R, Lei C, Li Y, Li B, Pei Y, Luo X, ShilinLiu. Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Dupont H, Maingret V, Schmitt V, Héroguez V. New Insights into the Formulation and Polymerization of Pickering Emulsions Stabilized by Natural Organic Particles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanaé Dupont
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Valentin Maingret
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| |
Collapse
|
28
|
Almeida T, Silvestre AJD, Vilela C, Freire CSR. Bacterial Nanocellulose toward Green Cosmetics: Recent Progresses and Challenges. Int J Mol Sci 2021; 22:2836. [PMID: 33799554 PMCID: PMC8000719 DOI: 10.3390/ijms22062836] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
In the skin care field, bacterial nanocellulose (BNC), a versatile polysaccharide produced by non-pathogenic acetic acid bacteria, has received increased attention as a promising candidate to replace synthetic polymers (e.g., nylon, polyethylene, polyacrylamides) commonly used in cosmetics. The applicability of BNC in cosmetics has been mainly investigated as a carrier of active ingredients or as a structuring agent of cosmetic formulations. However, with the sustainability issues that are underway in the highly innovative cosmetic industry and with the growth prospects for the market of bio-based products, a much more prominent role is envisioned for BNC in this field. Thus, this review provides a comprehensive overview of the most recent (last 5 years) and relevant developments and challenges in the research of BNC applied to cosmetic, aiming at inspiring future research to go beyond in the applicability of this exceptional biotechnological material in such a promising area.
Collapse
Affiliation(s)
| | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (T.A.); (A.J.D.S.); (C.V.)
| |
Collapse
|
29
|
Bao C, Chen X, Liu C, Liao Y, Huang Y, Hao L, Yan H, Lin Q. Extraction of cellulose nanocrystals from microcrystalline cellulose for the stabilization of cetyltrimethylammonium bromide-enhanced Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125442] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Jiang Y, Yu G, Zhou Y, Liu Y, Feng Y, Li J. Effects of sodium alginate on microstructural and properties of bacterial cellulose nanocrystal stabilized emulsions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Chitbanyong K, Pisutpiched S, Khantayanuwong S, Theeragool G, Puangsin B. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains. Int J Biol Macromol 2020; 163:1908-1914. [PMID: 32976905 DOI: 10.1016/j.ijbiomac.2020.09.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 01/19/2023]
Abstract
Bacterial cellulose (BC), prepared from two recently developed thermotolerant bacterial strains (Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9), were used as a raw material to synthesize nanofibril films. Field-emission scanning electron microscope (FE-SEM) observations confirmed the ultrafine nano-structure of BC pellicle (BCP) with average fibril widths between 50 and 60 nm. The BC was directly oxidized in a TEMPO/NaBr/NaClO system at pH of 10 for 2 h. TEMPO-oxidized bacterial cellulose nanofibrils (TOBCN) were obtained by a mild mechanical treatment and the TOBCN films were prepared through heat-drying. The oxidation yielded a recovery ratio between 70 and 80% by weight with an increase in the carboxylate content of 0.9-1.0 mmol g -1. Nanofibrillation yields were more than 90% and the resulting high aspect ratio TOBCNs were ~6 nm in average width with >800 nm in lengths, when observed under transmission electron microscope (TEM). TOBCN film of K. xylinus C30 exhibited high transparency (79%), tensile strength (142 MPa), Young's modulus (7.13 GPa), elongation around failure (3.89%), and work of fracture (2.29 MJ m-3), when compared to the TOBCN films of K. oboediens R37-9 at 23 °C and 50% RH. Coefficients of thermal expansion of both the TOBCN films were low at around 6 ppm K-1.
Collapse
Affiliation(s)
- Korawit Chitbanyong
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Sawitree Pisutpiched
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Somwang Khantayanuwong
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Gunjana Theeragool
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Buapan Puangsin
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
32
|
Zhang X, Luo X, Wang Y, Li Y, Li B, Liu S. Concentrated O/W Pickering emulsions stabilized by soy protein/cellulose nanofibrils: Influence of pH on the emulsification performance. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Paximada P, Kanavou E, Mandala IG. Effect of rheological and structural properties of bacterial cellulose fibrils and whey protein biocomposites on electrosprayed food-grade particles. Carbohydr Polym 2020; 241:116319. [DOI: 10.1016/j.carbpol.2020.116319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
|
34
|
Solomevich SO, Dmitruk EI, Bychkovsky PM, Nebytov AE, Yurkshtovich TL, Golub NV. Fabrication of oxidized bacterial cellulose by nitrogen dioxide in chloroform/cyclohexane as a highly loaded drug carrier for sustained release of cisplatin. Carbohydr Polym 2020; 248:116745. [PMID: 32919553 DOI: 10.1016/j.carbpol.2020.116745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/28/2023]
Abstract
Carboxylated bacterial cellulose (OBC) was fabricated by oxidation with nitrogen dioxide in chloroform/cyclohexane and employed as a carrier for sustained release of antitumor substance cisplatin (CDDP). The influence of removing water method, solvent used in the synthesis, concentration of N2O4, and duration of the oxidation on content of carboxyl groups in reaction products was established. Due to the possibility of nitrogen dioxide to penetrate into cellulose crystallites, the carboxyl group content of the OBC reaches high values up to 4 mmol/g. In vitro degradation of OBC was determined under simulated physiological conditions. The immobilization of CDDP on OBC was studied in detail. The initial burst release of the drug from the polymer was depressed. The cytotoxicity of CDDP-loaded OBC was evaluated with HeLa cells. The unique structure and properties of OBC make it a great candidate as drug delivery carrier.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk, 220030, Belarus.
| | - Egor I Dmitruk
- Educational-scientific-production Republican Unitary Enterprise "UNITEHPROM BSU", 1 Kurchatova, Minsk, 220045, Belarus
| | - Pavel M Bychkovsky
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk, 220030, Belarus; Educational-scientific-production Republican Unitary Enterprise "UNITEHPROM BSU", 1 Kurchatova, Minsk, 220045, Belarus
| | - Alexander E Nebytov
- Educational-scientific-production Republican Unitary Enterprise "UNITEHPROM BSU", 1 Kurchatova, Minsk, 220045, Belarus
| | - Tatiana L Yurkshtovich
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk, 220030, Belarus
| | - Natalia V Golub
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk, 220030, Belarus
| |
Collapse
|
35
|
Jia Y, Hu C, Shi P, Xu Q, Zhu W, Liu R. Effects of cellulose nanofibrils/graphene oxide hybrid nanofiller in PVA nanocomposites. Int J Biol Macromol 2020; 161:223-230. [PMID: 32512103 DOI: 10.1016/j.ijbiomac.2020.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023]
Abstract
NCF/GO hybrid nanofillers with excellent UV-shielding properties were prepared by using TEMPO-oxidized nanocellulose fibrils (NCF) and graphene oxide (GO) as raw materials; different mass ratios of NCF to GO (2: 1, 4: 1, 8: 1, and 16: 1) were used. The NCF and GO were then combined and used as a hybrid filler to study the synergistic effects on polyvinyl alcohol (PVA) nanocomposites. With 5% hybrid nanofiller, the UV-shielding performance of the PVA/NCF/GO composite film was higher than 90%. The tensile strength and Young's modulus of the PVA/CG-2 composite film increased by 74.5% and 278.0%, respectively, and the water absorption decreased by 59%. Moreover, the thermal stabilities of the nanocomposites also improved. This synergistic effect improved the performance of the hybrid nanofiller by avoiding the agglomeration of nanofillers in the polymer matrix and improving the homogeneity of the dispersion. The synergistic effect between the fillers provides a new idea for the preparation of novel multifunctional nanocomposites.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chunrui Hu
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Peidong Shi
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qianqian Xu
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenjing Zhu
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
36
|
Akhlaghi SP, da Silveira Balestrin LB, Brinatti C, Pirolt F, Loh W, Glatter O. Preparation and Characterization of Stabilizer-Free Phytantriol-Based Water-in-Oil Internally Liquid Crystalline Emulsions. J Pharm Sci 2020; 109:2024-2032. [DOI: 10.1016/j.xphs.2020.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/19/2020] [Accepted: 02/26/2020] [Indexed: 11/25/2022]
|
37
|
Li T, Zhong Q, Zhao B, Lenaghan S, Wang S, Wu T. Effect of surface charge density on the ice recrystallization inhibition activity of nanocelluloses. Carbohydr Polym 2020; 234:115863. [PMID: 32070502 DOI: 10.1016/j.carbpol.2020.115863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/26/2019] [Accepted: 01/11/2020] [Indexed: 12/26/2022]
Abstract
Recently nanocelluloses have been found to possess ice recrystallization inhibition (IRI) activity, which have several potential applications. The present study focuses on the relationship between the surface charge density (SCD) of nanocelluloses and IRI activity. Cellulose nanocrystals (CNCs) and 2, 2, 6, 6-tetramethylpiperidine-1-oxyl oxidized cellulose nanofibrils (TEMPO-CNFs) with similar degrees of polymerization (DP) or fibril lengths but with different SCDs were prepared and characterized for IRI activity. When the SCD of CNCs was progressively reduced, an initial increase of IRI activity was observed, followed by a decrease due to fibril aggregation. CNCs with a low SCD became IRI active at increased unfrozen water fractions and higher annealing temperatures. TEMPO-CNFs with a low SCD also had higher IRI activity. Additionally, lowering pH to protonate the carboxylate groups of TEMPO-CNFs enhanced the IRI activity. These research findings are important in producing nanocelluloses with enhanced IRI activity and understanding their structure-activity relationship.
Collapse
Affiliation(s)
- Teng Li
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Scott Lenaghan
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA; Center for Agricultural Synthetic Biology, 2640 Morgan Circle Drive, Knoxville, TN 37996, USA
| | - Siqun Wang
- The Center for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, TN 37996, USA
| | - Tao Wu
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
38
|
Huang C, Ji H, Yang Y, Guo B, Luo L, Meng Z, Fan L, Xu J. TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohydr Polym 2020; 230:115570. [DOI: 10.1016/j.carbpol.2019.115570] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 01/31/2023]
|
39
|
Zhang T, Wang F, Yang L, Li H, Chen J, Yang B, Lang J, Yan X. Constructing consistent pore microstructures of bacterial cellulose-derived cathode and anode materials for high energy density sodium-ion capacitors. NEW J CHEM 2020. [DOI: 10.1039/c9nj05122h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial cellulose-derived cathode and anode with similar carbon microstructure are well match in kinetic for high energy density sodium-ion capacitor.
Collapse
Affiliation(s)
- Tianyun Zhang
- School of Mechanical and Electronical Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- China
| | - Fujuan Wang
- School of Mechanical and Electronical Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- China
| | - Liang Yang
- School of Mechanical and Electronical Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- China
| | - Hongxia Li
- School of Petrochemical Engineering
- Lanzhou University of Technology
- Lanzhou
- China
| | - Jiangtao Chen
- Laboratory of Clean Energy Chemistry and Materials, and State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Bingjun Yang
- Laboratory of Clean Energy Chemistry and Materials, and State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Junwei Lang
- Laboratory of Clean Energy Chemistry and Materials, and State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Xingbin Yan
- Laboratory of Clean Energy Chemistry and Materials, and State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| |
Collapse
|
40
|
Goi Y, Fujisawa S, Saito T, Yamane K, Kuroda K, Isogai A. Dual Functions of TEMPO-Oxidized Cellulose Nanofibers in Oil-in-Water Emulsions: A Pickering Emulsifier and a Unique Dispersion Stabilizer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10920-10926. [PMID: 31340122 DOI: 10.1021/acs.langmuir.9b01977] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The emulsifying and dispersing mechanisms of oil-in-water emulsions stabilized by 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)-oxidized cellulose nanofibers (CNFs) have been investigated. The emulsifying mechanism was studied by changing the oil/water interfacial tension from 8.5 to 53.3 mN/m using various types of oils. The results showed that the higher the oil/water interfacial tension, the greater is the amount of CNFs adsorbed at the oil/water interface, making the CNF-adsorbed oil-in-water emulsions thermodynamically more stable. Moreover, the amount of CNFs adsorbed on the surfaces of the oil droplets increased with increasing interfacial area. The dispersion stability of the oil droplets was dominated by the CNF concentration in the water phase. Above the critical concentration (0.15% w/w), the CNFs formed network structures in the water phase, and the emulsion was effectively stabilized against creaming. Emulsion formation and the CNF network structures in the emulsion were visualized by cryo-scanning electron microscopy.
Collapse
Affiliation(s)
- Yohsuke Goi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo 113-8657 , Japan
- Rheocrysta R&D Group Life Sciences R&D Department , R&D Headquarters, DKS Co. Ltd. , 5 Ogawara-cho, Kisshoin , Minami-ku, Kyoto 601-8391 , Japan
| | - Shuji Fujisawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo 113-8657 , Japan
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo 113-8657 , Japan
| | - Kenichi Yamane
- Forestry and Forest Products Research Institute , Tsukuba 305-8687 , Japan
| | - Katsushi Kuroda
- Forestry and Forest Products Research Institute , Tsukuba 305-8687 , Japan
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo 113-8657 , Japan
| |
Collapse
|
41
|
Thermal and Morphology Properties of Cellulose Nanofiber from TEMPO-oxidized Lower part of Empty Fruit Bunches (LEFB). OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractCellulose nanofiber (CNF) gel has been obtained from TEMPO-oxidized differently treated lower part of empty fruit bunches (LEFB) of oil palm. Three kinds of materials were initially used: (i) α-cellulose, (ii) raw LEFB fiber two-times bleaching, and (iii) raw LEFB three-times bleaching. The obtained nanofibers (CNF1, CNF2 and CNF3, respectively) were then characterized using several methods, e.g. FT-IR, SEM, UV-Visible, TEM, XRD and TGA. The LEFB at different levels of bleaching showed that the Kappa number decreased with the increase of the bleaching levels. The decrease of lignin and hemicellulose content affected the increase of the yield of fibrillation and optical transmittance of CNF2 and CNF3 gels. The FT-IR analysis confirmed the presence of lignin and hemicellulose in the CNF2 and CNF3 film. Based on TEM analysis, the lignin and hemicellulose content significantly affected the particle structure of CNFs,i.e. CNF1 was found as a bundle of fibril, while the CNF2 and CNF3 were visualized as individual fibers and interwoven nanofibril overlapping each other, respectively. The XRD data of the CNF’s film showed that CNF2 and CNF3 have a lower crystallinity index (CI) than CNF1. The presence of lignin and hemicellulose in the CNFs decreased its decomposition temperature.
Collapse
|
42
|
Li X, Li M, Xu J, You J, Yang Z, Li C. Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat Commun 2019; 10:3514. [PMID: 31383861 PMCID: PMC6683165 DOI: 10.1038/s41467-019-11466-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/25/2019] [Indexed: 11/08/2022] Open
Abstract
Liquid metal (LM) droplets show the superiority in coalescing into integral liquid conductors applicable in flexible and deformable electronics. However, the large surface tension, oxide shells and poor compatibility with most other materials may prevent spontaneous coalescence of LM droplets and/or hybridisation into composites, unless external interventions (e.g., shear and laser) are applied. Here, we show that biological nanofibrils (NFs; including cellulose, silk fibroin and amyloid) enable evaporation-induced sintering of LM droplets under ambient conditions into conductive coating on diverse substrates and free-standing films. The resultants possess an insulating NFs-rich layer and a conductive LM-rich layer, offering flexibility, high reflectivity, stretchable conductivity, electromagnetic shielding, degradability and rapid actuating behaviours. Thus this sintering approach not only extends fundamental knowledge about sintering LM droplets, but also starts a new scenario of producing flexible coating and free-standing composites with flexibility, conductivity, sustainability and degradability, and applicable in microcircuits, wearable electronics and soft robotics.
Collapse
Affiliation(s)
- Xiankai Li
- Group of Biomimetic Smart Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266101, China
- Center of Material and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingjie Li
- Group of Biomimetic Smart Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Jie Xu
- Group of Biomimetic Smart Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266101, China
- Center of Material and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun You
- Group of Biomimetic Smart Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhiqin Yang
- School of Materials Science and Engineering Harbin Institute of Technology, Harbin, 150001, China
| | - Chaoxu Li
- Group of Biomimetic Smart Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266101, China.
- Center of Material and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
43
|
Jia Y, Zheng M, Xu Q, Zhong C. Rheological behaviors of Pickering emulsions stabilized by TEMPO-oxidized bacterial cellulose. Carbohydr Polym 2019; 215:263-271. [DOI: 10.1016/j.carbpol.2019.03.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022]
|
44
|
Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery. Colloids Surf B Biointerfaces 2019; 177:112-120. [DOI: 10.1016/j.colsurfb.2019.01.057] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/08/2019] [Accepted: 01/26/2019] [Indexed: 01/16/2023]
|
45
|
Mohammadkazemi F, Khademibarangenani R, Koosha M. The Effect of Oxidation Time and Concentration on Physicochemical, Structural, and Thermal Properties of Bacterial Nano-Cellulose. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19030088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Li Y, Zhao X, Liu Y, Yang J, Zhang Q, Wang L, Wu W, Yang Q, Liu B. Melatonin loaded with bacterial cellulose nanofiber by Pickering-emulsion solvent evaporation for enhanced dissolution and bioavailability. Int J Pharm 2019; 559:393-401. [PMID: 30731257 DOI: 10.1016/j.ijpharm.2019.01.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/02/2019] [Accepted: 01/26/2019] [Indexed: 11/26/2022]
Abstract
The objective of the present work aimed to explore the potential of bacterial cellulose (BC) for oral delivery of melatonin (MLT), a natural hormone that faces problems of low solubility and oral bioavailability. BC was hydrolyzed by sulfuric acid followed by the oxidation to prepare bacterial cellulose nanofiber suspension (BCNs). Melatonin-loaded bacterial cellulose nanofiber suspension (MLT-BCNs) was prepared by emulsion solvent evaporation method. The properties of freeze-dried BCs and MLT-BCNs were studied by Fluorescence microscopy (FM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermo gravimetric (TG). The results indicated that the fibers in BCNs became short and thin compared with BC, MLT in MLT-BCNs was uniformly distributed, both BCNs and MLT-BCNs have good thermodynamic stability. The MLT-BCNs showed more rapid dissolution MLT rates compared to the commercially available MLT in SGF and SIF, the dissolution of the cumulative release rate was about 2.1 times of the commercially available MLT. The oral bioavailability of MLT-BCNs in rat was about 2.4 times higher than the commercially available MLT. Thus, MLT-BCNs could act as promising delivery with enhanced dissolution and bioavailability for MLT after oral administration.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China.
| | - Yanjie Liu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Jianhang Yang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Qian Zhang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Lingling Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Weiwei Wu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Qilei Yang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Bingxue Liu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| |
Collapse
|
47
|
Mikulcová V, Bordes R, Minařík A, Kašpárková V. Pickering oil-in-water emulsions stabilized by carboxylated cellulose nanocrystals – Effect of the pH. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.01.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Khan A, Wen Y, Huq T, Ni Y. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8-19. [PMID: 29251504 DOI: 10.1021/acs.jafc.7b04204] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.
Collapse
Affiliation(s)
- Avik Khan
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick , Fredericton, New Brunswick E3B 5A3, Canada
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Tanzina Huq
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick , Fredericton, New Brunswick E3B 5A3, Canada
| | - Yonghao Ni
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick , Fredericton, New Brunswick E3B 5A3, Canada
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology , Tianjin 300457, China
| |
Collapse
|
49
|
Effect of carboxylic acid groups on the supercapacitive performance of functional carbon frameworks derived from bacterial cellulose. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Yan H, Chen X, Song H, Li J, Feng Y, Shi Z, Wang X, Lin Q. Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.044] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|