1
|
Diaz-Ramirez J, Basasoro S, Torresi S, Eceiza A, Retegi A, Gabilondo N. Bacterial cellulose/thiolated chitosan nanoparticles hybrid antimicrobial dressing for curcumin delivery. Int J Biol Macromol 2024; 289:138836. [PMID: 39694349 DOI: 10.1016/j.ijbiomac.2024.138836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Thiolated chitosan (Cs-SH) nanoparticles were synthesized and incorporated into bacterial cellulose (BC) membranes through vacuum-assisted confinement. Thiolation significantly enhanced the intrinsic adhesion capacity of chitosan (Cs) as well as its solubility in neutral aqueous solutions. Subsequently, Cs-SH nanoparticles were successfully loaded with curcumin (Cur-Cs-SH), with nanoparticle sizes of 121 ± 2 nm for Cs-SH and 152 ± 6 nm for Cur-Cs-SH. Stability assessments revealed improved pH tolerance and colloidal stability due to the introduction of thiol groups and curcumin encapsulation. Notably, the retention yield of nanoparticles in BC was calculated to be 99 % (w/v) within 45 min. Nanoparticle and curcumin in vitro release studies demonstrated pH-dependent profiles, indicating controlled release kinetics influenced by initial loading and environmental acidity. Moreover, the enhanced adhesive properties of the developed BC membranes, verified by mucin disks and porcine skin adhesion tests, suggested their potential for targeted drug delivery to human tissue. Additionally, antimicrobial assays suggested a synergistic effect between Cs-SH and encapsulated curcumin, exhibiting antibacterial activity against S. aureus and E. coli. In this research, the bioavailability of curcumin was increased by encapsulating it in Cur-Cs-SH nanoparticles, which enhanced its antimicrobial properties and improved the adhesion of BC membranes, thereby expanding their applications in biomedicine.
Collapse
Affiliation(s)
- Julen Diaz-Ramirez
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Senda Basasoro
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain
| | - Stefano Torresi
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Arantxa Eceiza
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Aloña Retegi
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Nagore Gabilondo
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| |
Collapse
|
2
|
Long S, Yu MJ, Feng R, Tao H, Zhang B. Novel self-assembled micelles of dual-modified dextrin with pH responsiveness via grafted octenyl succinic anhydride and cysteamine for curcumin delivery. Food Chem 2024; 460:140748. [PMID: 39142209 DOI: 10.1016/j.foodchem.2024.140748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
In this study, a novel dextrin-based micelle (OSAD-SH), dual-modified with octenyl succinic anhydride (OSA) and cysteamine, was developed to address the acid instability issues of micelle modified only by OSA and designed for curcumin delivery. Three amphiphilic OSAD-SH polymers with different free sulfhydryl content were first synthesized. The study demonstrated that OSAD-SH micelles exhibited strong self-assembly properties, appearing as spheres with diameters ranging from 92.41 to 194.20 nm. Blank micelles showed good dilution resistance, as well as stability against acid, thermal, and ionic strength. The curcumin encapsulated by the micelles was in an amorphous state. In vitro release experiment demonstrated that curcumin released from OSAD-SH micelles exhibited pH responsiveness. The Ritger-Peppas model effectively predicted the release behavior of curcumin, which followed a super case-II transport. The OSAD-SH micelle will be a promising nanocarrier for improving the physicochemical properties of curcumin in food fields.
Collapse
Affiliation(s)
- Shen Long
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Meng-Jie Yu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China..
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China..
| |
Collapse
|
3
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
4
|
Li D, Li B, Li Y, Liu S, Jafari SM. Micellar delivery systems of bioactive compounds for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:89-145. [PMID: 39218509 DOI: 10.1016/bs.afnr.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rapid changes in lifestyle and the increasingly hectic pace of life have led to a rise in chronic diseases, such as obesity, inflammatory bowel disease, liver disease, and cancer, posing significant threats to public health. In response to these challenges, precision nutrition (PN) has emerged as a secure and effective intervention aiming at human health and well-being. Bioactive compounds (bioactives), including carotenoids, polyphenols, vitamins, and polyunsaturated fatty acids, exhibit a range of beneficial properties, e.g., antioxidant and anti-inflammatory effects. These properties make them promising candidates for preventing or treating chronic diseases and promoting human health. However, bioactives might have different challenges when incorporated into food matrices and oral administration, including low water solubility, poor physiochemical stability, and low absorption efficiency. This limits them to achieve the health benefits in the body. Numerous strategies have been developed and utilized to encapsulate and deliver bioactives. Micellar delivery systems, due to their unique core-shell structure, play a pivotal role in improving the stability, solubility, and bioavailability of these bioactives. Moreover, through innovative design strategies, micellar delivery systems can be tailored to offer targeted and controlled release, thus maximizing the potential of bioactives in PN applications. This chapter reveals details about the preparation methods and properties of micelles and highlights the strategies to modulate the properties of polymeric micelles. Afterwards, the application of polymeric micelles in the delivery of bioactives and the corresponding PN, including controlled release, organ-targeting ability, and nutritional intervention for chronic disease are summarized.
Collapse
Affiliation(s)
- Donghui Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, P.R. China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, P.R. China.
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, P.R. China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
5
|
Mascarenhas R, Hegde S, Manaktala N. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer. Front Chem 2024; 12:1362482. [PMID: 38660569 PMCID: PMC11039901 DOI: 10.3389/fchem.2024.1362482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The epoch of Nano-biomaterials and their application in the field of medicine and dentistry has been long-lived. The application of nanotechnology is extensively used in diagnosis and treatment aspects of oral diseases. The nanomaterials and its structures are being widely involved in the production of medicines and drugs used for the treatment of oral diseases like periodontitis, oral carcinoma, etc. and helps in maintaining the longevity of oral health. Chitosan is a naturally occurring biopolymer derived from chitin which is seen commonly in arthropods. Chitosan nanoparticles are the latest in the trend of nanoparticles used in dentistry and are becoming the most wanted biopolymer for use toward therapeutic interventions. Literature search has also shown that chitosan nanoparticles have anti-tumor effects. This review highlights the various aspects of chitosan nanoparticles and their implications in dentistry.
Collapse
Affiliation(s)
- Roma Mascarenhas
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shreya Hegde
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Manaktala
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Namazi NI, Alrbyawi H, Alanezi AA, Almuqati AF, Shams A, Ali HSM. Nanoparticles of Thiolated Xanthan Gum for the Oral Delivery of Miconazole Nitrate: In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:225. [PMID: 38399279 PMCID: PMC10892260 DOI: 10.3390/pharmaceutics16020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this research was to develop a mucoadhesive delivery system that improves permeation for the administration of poorly absorbed oral medications. Thiolation of xanthan gum (XGM) was carried out by esterification with mercaptobutyric acid. Fourier-transformed infrared spectroscopy was used to confirm thiol-derivatization. Using Ellman's technique, it was revealed that the xanthan-mercaptobutyric acid conjugate had 4.7 mM of thiol groups in 2 mg/mL of polymeric solution. Using mucosa of sheep intestine, the mucoadhesive properties of XGM and thiolated xanthan gum (TXGM) nanoparticles were investigated and we found that TXGM had a longer bioadhesion time than XGM. The disulfide link that forms between mucus and thiolated XGM explains why it has better mucoadhesive properties than XGM. A study on in vitro miconazole (MCZ) release using phosphate buffer (pH 6.8) found that TXGM nanoparticles released MCZ more steadily than MCZ dispersion did. A 1-fold increase in the permeation of MCZ was observed from nanoparticles using albino rat intestine compared to MCZ. Albino rats were used to test the pharmacokinetics of MCZ, and the results showed a 4.5-fold increase in bioavailability. In conclusion, the thiolation of XGM enhances its bioavailability, controlled release of MCZ for a long period of time, and mucoadhesive activity.
Collapse
Affiliation(s)
- Nader I. Namazi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia; (H.A.); (H.S.M.A.)
| | - Hamad Alrbyawi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia; (H.A.); (H.S.M.A.)
| | - Abdulkareem Ali Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
| | - Afaf F Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Taif 21944, Saudi Arabia;
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21974, Saudi Arabia
- High Altitude Research Center, Taif University, Taif 21944, Saudi Arabia
| | - Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia; (H.A.); (H.S.M.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
7
|
Han M, Yang S, Song J, Gao Z. Layer-by-layer coated probiotics with chitosan and liposomes demonstrate improved stability and antioxidant properties in vitro. Int J Biol Macromol 2024; 258:128826. [PMID: 38123040 DOI: 10.1016/j.ijbiomac.2023.128826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Probiotics are of increasing interest for their potential health benefits, but their survival and adhesion in the harsh gastrointestinal environment remain a concern. This study explored a single-cell encapsulation technique to enhance probiotic survival and adhesion in the gastrointestinal tract. We encapsulated probiotics in curcumin-loaded liposomes, further coated them with polymers using layer-by-layer techniques. The coated probiotics were evaluated for survival in simulated gastrointestinal conditions, adhesion to colonic mucus, and scavenging of reactive oxygen species (ROS). The results showed that multi-layer encapsulation increased probiotic size at the nanoscale, enhancing their survival in simulated gastrointestinal conditions. Upon reaching the colon, the shedding of the coating coincided with probiotic proliferation. Additionally, the coated probiotics exhibited increased adhesion to colonic mucus. Moreover, the coating acted as a protective barrier for effectively scavenging reactive oxygen radicals, ensuring probiotic survival in inflammatory environments. This study combines the synergistic effects of probiotics and curcumin, underscoring the promise of single-cell encapsulation techniques in improving the efficacy of probiotics for addressing colitis-related diseases.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jiangling Song
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Huang Q, Chen Y, Zhang W, Xia X, Li H, Qin M, Gao H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J Control Release 2024; 366:519-534. [PMID: 38182059 DOI: 10.1016/j.jconrel.2023.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Despite the increasing global incidence of brain disorders, achieving sufficient delivery towards the central nervous system (CNS) remains a formidable challenge in terms of translating into improved clinical outcomes. The brain is highly safeguarded by physiological barriers, primarily the blood-brain barrier (BBB), which routinely excludes most therapeutics from entering the brain following systemic administration. Among various strategies investigated to circumvent this challenge, intranasal administration, a noninvasive method that bypasses the BBB to allow direct access of drugs to the CNS, has been showing promising results. Nanotechnology-based drug delivery systems, in particular, have demonstrated remarkable capacities in overcoming the challenges posed by nose-to-brain drug delivery and facilitating targeted drug accumulation within the brain while minimizing side effects of systemic distribution. This review comprehensively summarizes the barriers of nose-to-brain drug delivery, aiming to enhance our understanding of potential physiological obstacles and improve the efficacy of nasal delivery in future trials. We then highlight cutting-edge nanotechnology-based studies that enhance nose-to-brain drug delivery in three key aspects, demonstrating substantial potential for improved treatment of brain diseases. Furthermore, the attention towards clinical studies will ease the regulatory approval process for nasal administration of nanomedicines targeting brain disease.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yongke Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Weiwei Zhang
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan 610500, China
| | - Xue Xia
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
9
|
Azhar F, Naureen H, Shahnaz G, Hamdani SDA, Kiani MH, Khattak S, Manna MK, Babar MM, Rajadas J, Rahdar A, Díez-Pascual AM. Development of chitosan based β-carotene mucoadhesive formulation for skin cancer treatment. Int J Biol Macromol 2023; 253:126659. [PMID: 37660856 DOI: 10.1016/j.ijbiomac.2023.126659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Mucopermeating nanoformulations can enhance mucosal penetration of poorly soluble drugs at their target site. In this work, thiolated chitosan (TCS)-lithocholic acid (LA) nanomicelles loaded with β-carotene, a safe phytochemical with anticancer properties, were designed to improve the pharmaceutical and pharmacological drug profile. The TCS-LA nanomicelles were characterized by FTIR to confirm the presence of the thiol group that favors skin adhesion, and to corroborate the conjugation of hydrophobic LA with hydrophilic CS to form an amphiphilic polymer derivative. Their crystalline nature and thermal behavior were investigated by XRD and DSC analyses, respectively. According to DLS and TEM, their average size was <300 nm, and their surface charge was +27.0 mV. β-carotene entrapment and loading efficiencies were 64 % and 58 %, respectively. In vitro mucoadhesion and ex vivo mucopenetration analyses further corroborated the potential of the nanoformulation to deliver the drug in a sustained manner under conditions mimicking cancer micro-environment. Anticancer studies in mice demonstrated that the loaded nanomicelles delayed skin cancer growth, as revealed by both morphological and biochemical parameters. Based on the results obtained herein, it can be concluded that drug-loaded TCS-LA is a novel, stable, effective and safe mucoadhesive formulation of β-carotene for the potential treatment of skin cancer.
Collapse
Affiliation(s)
- Farah Azhar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan; Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Humaira Naureen
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan.
| | - Syed Damin Abbas Hamdani
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.
| | | | - Shahana Khattak
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Manoj Kumar Manna
- Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mustafeez Mujtaba Babar
- Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.
| | - Jayakumar Rajadas
- Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
10
|
Jha SK, Imran M, Jha LA, Hasan N, Panthi VK, Paudel KR, Almalki WH, Mohammed Y, Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. ENVIRONMENTAL RESEARCH 2023; 236:116823. [PMID: 37543130 DOI: 10.1016/j.envres.2023.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The lack of knowledge about the absorption, distribution, metabolism, and excretion (ADME) of vaccines makes former biopharmaceutical optimization difficult. This was shown during the COVID-19 immunization campaign, where gradual booster doses were introduced.. Thus, understanding vaccine ADME and its effects on immunization effectiveness could result in a more logical vaccine design in terms of formulation, method of administration, and dosing regimens. Herein, we will cover the information available on vaccine pharmacokinetics, impacts of delivery routes and carriers on ADME, utilization and efficiency of nanoparticulate delivery vehicles, impact of dose level and dosing schedule on the therapeutic efficacy of vaccines, intracellular and endosomal trafficking and in vivo fate, perspective on DNA and mRNA vaccines, new generation sequencing and mathematical models to improve cancer vaccination and pharmacology, and the reported toxicological study of COVID-19 vaccines. Altogether, this review will enhance the reader's understanding of the pharmacokinetics of vaccines and methods that can be implied in delivery vehicle design to improve the absorption and distribution of immunizing agents and estimate the appropriate dose to achieve better immunogenic responses and prevent toxicities.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea; Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
11
|
Wang J, Viola M, Migliorini C, Paoletti L, Arpicco S, Di Meo C, Matricardi P. Polysaccharide-Based Nanogels to Overcome Mucus, Skin, Cornea, and Blood-Brain Barriers: A Review. Pharmaceutics 2023; 15:2508. [PMID: 37896268 PMCID: PMC10610445 DOI: 10.3390/pharmaceutics15102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Nanocarriers have been extensively developed in the biomedical field to enhance the treatment of various diseases. However, to effectively deliver therapeutic agents to desired target tissues and enhance their pharmacological activity, these nanocarriers must overcome biological barriers, such as mucus gel, skin, cornea, and blood-brain barriers. Polysaccharides possess qualities such as excellent biocompatibility, biodegradability, unique biological properties, and good accessibility, making them ideal materials for constructing drug delivery carriers. Nanogels, as a novel drug delivery platform, consist of three-dimensional polymer networks at the nanoscale, offering a promising strategy for encapsulating different pharmaceutical agents, prolonging retention time, and enhancing penetration. These attractive properties offer great potential for the utilization of polysaccharide-based nanogels as drug delivery systems to overcome biological barriers. Hence, this review discusses the properties of various barriers and the associated constraints, followed by summarizing the most recent development of polysaccharide-based nanogels in drug delivery to overcome biological barriers. It is expected to provide inspiration and motivation for better design and development of polysaccharide-based drug delivery systems to enhance bioavailability and efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Ju Wang
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Marco Viola
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Claudia Migliorini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Luca Paoletti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| |
Collapse
|
12
|
Yan X, Sha X. Nanoparticle-Mediated Strategies for Enhanced Drug Penetration and Retention in the Airway Mucosa. Pharmaceutics 2023; 15:2457. [PMID: 37896217 PMCID: PMC10610050 DOI: 10.3390/pharmaceutics15102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Airway mucus is a complex viscoelastic gel composed mainly of water, glycoproteins, lipids, enzymes, minerals, etc. Among them, glycoproteins are the main factors determining mucus's gel-like rheology. Airway mucus forms a protective barrier by secreting mucin, which represents a barrier for absorption, especially for more lipophilic drugs. It rapidly removes drugs from the airway through the physiological mucus clearance mechanism so drugs cannot remain in the lungs or reach the airway epithelial tissue for a long time. Significant progress has been made in enhancing drug lung deposition recently, but strategies are still needed to help drugs break through the lung mucosal barrier. Based on the physiopathological mechanisms of airway mucus, this paper reviews and summarizes strategies to enhance drug penetration and retention in the airway mucosa mediated by nano-delivery systems, including mucosal permeation systems, mucosal adhesion systems, and enzyme-modified delivery systems. On this basis, the potential and challenges of nano-delivery systems for improving airway mucus clearance are revealed. New ideas and approaches are provided for designing novel nano-delivery systems that effectively improve drug retention and penetration in the airway mucus layer.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
- The Institutes of Integrative Medicine of Fudan University, 120 Urumqi Middle Road, Shanghai 200040, China
| |
Collapse
|
13
|
Hu S, Li W, Cai Z, Tang C, Li B, Liu S, Li Y. Research progress on chitin/chitosan-based emulsion delivery systems and their application in lipid digestion regulation. Crit Rev Food Sci Nutr 2023; 64:13275-13297. [PMID: 37811646 DOI: 10.1080/10408398.2023.2264392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Excessive lipid intake is linked to an elevated risk of health problems. However, reducing lipid contents may influence food structure and flavor. Some alternatives are needed to control the lipid absorption. Emulsions are common carriers for lipids, which can control the hydrolysis and absorption of lipids. Chitin (Ch) and chitosan (CS) are natural polysaccharides with good biodegradability, biocompatibility, and unique cationic properties. They have been reported to be able to delay lipolysis, which can be regarded as one of the most promising agents that regulates lipid digestion (LiD). The application of Ch/CS and their derivatives in emulsions are summarized in this review with a focus on their performances and mechanisms for LiD regulation, aiming to provide theoretical guidance for the development of novel Ch/CS emulsions, and the regulation of LiD. A reasonable design of emulsion interface can provide its resistance to the external environment and then control LiD. The properties of emulsion interface are the key factors affecting LiD. Therefore, systematic study on the relationship between Ch/CS-based emulsion structure and LiD can not only instruct the reasonable design of emulsion interface to accurately regulate LiD, but also provide scientific guidelines for applying Ch/CS in functional food, medicine and other fields.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenbo Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Cai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Cuie Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
14
|
Le-Vinh B, Steinbring C, Nguyen Le NM, Matuszczak B, Bernkop-Schnürch A. S-Protected Thiolated Chitosan versus Thiolated Chitosan as Cell Adhesive Biomaterials for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40304-40316. [PMID: 37594415 PMCID: PMC10472333 DOI: 10.1021/acsami.3c09337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Chitosan (Ch) and different Ch derivatives have been applied in tissue engineering (TE) because of their biocompatibility, favored mechanical properties, and cost-effectiveness. Most of them, however, lack cell adhesive properties that are crucial for TE. In this study, we aimed to design an S-protected thiolated Ch derivative exhibiting high cell adhesive properties serving as a scaffold for TE. 3-((2-Acetamido-3-methoxy-3-oxopropyl)dithio) propanoic acid was covalently attached to Ch via a carbodiimide-mediated reaction. Low-, medium-, and high-modified Chs (Ch-SS-1, Ch-SS-2, and Ch-SS-3) with 54, 107 and 140 μmol of ligand per gram of polymer, respectively, were tested. In parallel, three thiolated Chs, namely Ch-SH-1, Ch-SH-2, and Ch-SH-3, were prepared by conjugating N-acetyl cysteine to Ch at the same degree of modification to compare the effectiveness of disulfide versus thiol modification on cell adhesion. Ch-SS-1 showed better cell adhesion capability than Ch-SS-2 and Ch-SS-3. This can be explained by the more lipophilic surfaces of Ch-SS as a higher modification was made. Although Ch-SH-1, Ch-SH-2, and Ch-SH-3 were shown to be good substrates for cell adhesion, growth, and proliferation, Ch-SS polymers were superior to Ch-SH polymers in the formation of 3D cell cultures. Cryogels structured by Ch-SS-1 (SSg) resulted in homogeneous scaffolds with tunable pore size and mechanical properties by changing the mass ratio between Ch-SS-1 and heparin used as a cross-linker. SSg scaffolds possessing interconnected microporous structures showed good cell migration, adhesion, and proliferation. Therefore, Ch-SS can be used to construct tunable cryogel scaffolds that are suitable for 3D cell culture and TE.
Collapse
Affiliation(s)
- Bao Le-Vinh
- Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Department
of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh
City, Vietnam
| | - Christian Steinbring
- Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nguyet-Minh Nguyen Le
- Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Department
of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh
City, Vietnam
| | - Barbara Matuszczak
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Hashtrodylar Y, Rabbani S, Dadashzadeh S, Haeri A. Berberine-phospholipid nanoaggregate-embedded thiolated chitosan hydrogel for aphthous stomatitis treatment. Nanomedicine (Lond) 2023; 18:1227-1246. [PMID: 37712555 DOI: 10.2217/nnm-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Aim: This study aimed to develop nanoaggregates of berberine-phospholipid complex incorporated into thiolated chitosan (TCS) hydrogel for the treatment of aphthous stomatitis. Methods: The berberine-phospholipid complex was formulated through the solvent evaporation technique and assembled into nanoaggregates. TCS was synthesized through the attachment of thioglycolic acid to chitosan (CS). Nanoaggregates-TCS was prepared by the incorporation of nanoaggregates into TCS and underwent in vitro and in vivo tests. Results: Nanoaggregates-TCS exhibited prolonged release of berberine. The mucoadhesive strength of nanoaggregates-TCS increased 1.75-fold compared with CS hydrogel. In vivo studies revealed the superior therapeutic efficacy of nanoaggregates-TCS compared with that of other groups. Conclusion: Due to prolonged drug release, appropriate residence time and anti-inflammatory effects, nanoaggregates-TCS is an effective system for the treatment of aphthous stomatitis.
Collapse
Affiliation(s)
- Yasaman Hashtrodylar
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, 1313814117, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| |
Collapse
|
16
|
Niu J, Yuan M, Chen J, Wang L, Qi Y, Bai K, Fan Y, Gao P. L-Cysteine-Modified Transfersomes for Enhanced Epidermal Delivery of Podophyllotoxin. Molecules 2023; 28:5712. [PMID: 37570682 PMCID: PMC10420961 DOI: 10.3390/molecules28155712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to evaluate L-cysteine-modified transfersomes as the topical carrier for enhanced epidermal delivery of podophyllotoxin (POD). L-cysteine-deoxycholic acid (LC-DCA) conjugate was synthesized via an amidation reaction. POD-loaded L-cysteine-modified transfersomes (POD-LCTs) were prepared via a thin membrane dispersion method and characterized for their particle size, zeta potential, morphology, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and in vitro release. Subsequently, in vitro skin permeation and retention, fluorescence distribution in the skin, hematoxylin-eosin staining and in vivo skin irritation were studied. The POD-LCTs formed spherical shapes with a particle size of 172.5 ± 67.2 nm and a zeta potential of -31.3 ± 6.7 mV. Compared with the POD-Ts, the POD-LCTs provided significantly lower drug penetration through the porcine ear skin and significantly increased the skin retention (p < 0.05). Meaningfully, unlike the extensive distribution of the POD-loaded transfersomes (POD-Ts) throughout the skin tissue, the POD-LCTs were mainly located in the epidermis. Moreover, the POD-LCTs did not induce skin irritation. Therefore, the POD-LCTs provided an enhanced epidermal delivery and might be a promising carrier for the topical delivery of POD.
Collapse
Affiliation(s)
| | | | | | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (J.N.); (M.Y.); (J.C.); (K.B.); (Y.F.)
| | | | | | | | | |
Collapse
|
17
|
Ali MA, Aswathy KA, Munuswamy-Ramanujam G, Jaisankar V. Pyridine and isoxazole substituted 3-formylindole-based chitosan Schiff base polymer: Antimicrobial, antioxidant and in vitro cytotoxicity studies on THP-1 cells. Int J Biol Macromol 2023; 225:1575-1587. [PMID: 36436605 DOI: 10.1016/j.ijbiomac.2022.11.214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
This paper presents the synthesis of two new chitosan Schiff base (CSB) polymers, namely, 2PCT and 4MCT based on pyridin-2-ylmethyl-1H-indole-3-carbaldehyde and 1-(4-methyl-3,5-dimethylisoxazole)-1H-indole-3-carbaldehyde with chitosan (CT). The structural features of CSB polymers were confirmed by Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopy and their antimicrobial activity was evaluated against Staphylococcus aureus, Escherichia coli and Candida albicans. The antioxidant studies found that both 2PCT and 4MCT presented significant free radical scavenging activity with IC50 at 169.01 and 372.84 μg/mL, respectively. The cell viability results obtained from in vitro cytotoxicity studies performed using human monocyte leukemia (THP-1) cells were found to be 75.6 ± 0.25 % and 79.1 ± 1.5 % for 2PCT and 4MCT, respectively, at a concentration of 10 mg/mL. Flow cytometry analysis demonstrated the reducing ability of CSB polymers on intracellular reactive oxygen species (ROS) in THP-1 cells. The overall results of antioxidant activity, in vitro biocompatibility and ability to reduce the intracellular ROS production emphasized that the CSB polymers prepared could serve as a potential biomaterial in biomedical applications, such as wound treatment process.
Collapse
Affiliation(s)
- M Ameer Ali
- Department of Chemistry, The New College (Autonomous), Chennai 600014, Tamil Nadu, India; Department of Chemistry, Presidency College (Autonomous), Chennai 600005, Tamil Nadu, India
| | - K A Aswathy
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur, 603203, Tamil Nadu, India
| | - Ganesh Munuswamy-Ramanujam
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur, 603203, Tamil Nadu, India; Department of Chemistry, Faculty of Science & Humanities, SRM IST, Kattankulathur, 603203, Tamil Nadu, India
| | - V Jaisankar
- Department of Chemistry, Presidency College (Autonomous), Chennai 600005, Tamil Nadu, India.
| |
Collapse
|
18
|
Ren LJ, Zhou HY, Hao PY, Zheng HJ, Tong JN, Chen YW, Park HJ. Amino acids grafted‐chitosan/glycerophosphate hydrogel for controlled release of berberine hydrochloride. J Appl Polym Sci 2023. [DOI: 10.1002/app.53632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Li Jun Ren
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Hui Yun Zhou
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Pei Yan Hao
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Hui Jie Zheng
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Jia Nan Tong
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Ya Wei Chen
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Hyun Jin Park
- Graduate School of Biotechnology Korea University Seoul Korea
| |
Collapse
|
19
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
20
|
Sun Z, Zhang W, Ye Z, Yuan L, Fu M, Liu X, Liang H, Han H. NIR-II-triggered doxorubicin release for orthotopic bladder cancer chemo-photothermal therapy. NANOSCALE 2022; 14:17929-17939. [PMID: 36325926 DOI: 10.1039/d2nr04200b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intravesical instillation has been widely utilized for bladder cancer treatment in clinic. However, due to the bladder mucosal barrier, its poor penetration efficiency and drug utilization limit the clinical therapeutic effectiveness and result in a high recurrence rate. Therefore, designing an efficient and controllable drug delivery nanoplatform is of great significance for bladder cancer treatment. Non-invasive therapy based on near-infrared-II (NIR-II) photothermal therapy (PTT) conduces to overcome bladder mucosal barrier and enhance drug delivery. Also, the photothermal nanomaterials, Au Hollow Nanorods (AuHNRs), demonstrate strong photothermal properties and drug loading capacity. Herein, a quaternized chitosan N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride (HTCC)-modified nanocarrier Dox/NH4HCO3@AuHNRs-HTCC (DNAH) was designed for controlled drug release and enhanced penetration. The drug loading capacity of DNAH reached 117.20%. Also, the thermal decomposition of NH4HCO3 realized NIR-II-triggered gas-driven drug burst release, and the doxorubicin release was 2.79 times higher within 1 h after NIR-II irradiation. Also, the HTCC-modified nanocarriers significantly enhanced the bladder mucosal permeability as well as long-term drug retention, and the penetration efficiency of DNAH increased by 144%. In the orthotopic bladder cancer model, the tumor suppression rate and mouse survival time were significantly improved. DNAH showed potent inhibition of the orthotopic bladder tumor growth owing to the enhanced penetration and drug delivery. This work presents a potential drug delivery nanocarrier, which is promising for optimized bladder mucosal permeability and controlled drug burst release.
Collapse
Affiliation(s)
- Zhiduo Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China.
| | - Weiyun Zhang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| | - Zhichao Ye
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Li Yuan
- Department of Ultrasonography, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Manli Fu
- Department of Ultrasonography, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China.
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
21
|
Qaiser A, Kiani MH, Parveen R, Sarfraz M, Shahnaz G, Rahdar A, Taboada P. Design and synthesis of multifunctional polymeric micelles for targeted delivery in Helicobacter pylori infection. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Alhakamy NA, Naveen NR, Gorityala S, Kurakula M, Hosny KM, Safhi AY, Bukhary DM, Bukhary HA, Sabei FY, Mushtaq RY, Murshid SS. Development of Novel S-Protective Thiolated-Based Mucoadhesive Tablets for Repaglinide: Pharmacokinetic Study. Polymers (Basel) 2022; 14:polym14173529. [PMID: 36080604 PMCID: PMC9460926 DOI: 10.3390/polym14173529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mucoadhesive polymers have an essential role in drug localization and target-specific actions in oral delivery systems. The current work aims to develop and characterize a new mucoadhesive polysaccharide polymer (thiolated xanthan gum-TXG and S-Protected thiolated xanthan gum-STX) that was further utilized for the preparation of repaglinide mucoadhesive tablets. The thiolation of xanthan gum was carried out by ester formation through the reaction of the hydroxyl group of xanthan gum and the carboxyl group of thioglycolic acid. Synthesis of TXG was optimized using central composite design, and TXG prepared using 5.303 moles/L of TGA and 6.075 g/L of xanthan gum can accomplish the prerequisites of the optimized formulation. Consequently, TXG was further combined with aromatic 2-mercapto-nicotinic acid to synthesize STX. TXG and STX were further studied for Fourier-transform infrared spectroscopy, rheological investigations, and Ellman’s assay (to quantify the number of thiol/disulfide groups). A substantial rise in the viscosity of STX might be due to increased interactions of macromolecules liable for improving the mucosal adhesion strength of thiolated gum. STX was proven safe with the support of cytotoxic study data. Mucoadhesive formulations of repaglinide-containing STX showed the highest ex vivo mucoadhesion strength (12.78 g-RSX-1 and 17.57 g- RSX-2) and residence time (>16 h). The improved cross-linkage and cohesive nature of the matrix in the thiolated and S-protected thiolated formulations was responsible for the controlled release of repaglinide over 16 h. The pharmacokinetic study revealed the greater AUC (area under the curve) and long half-life with the RSX-2 formulation, confirming that formulations based on S-protected thiomers can be favorable drug systems for enhancing the bioavailability of low-solubility drugs.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, India
| | - Shashank Gorityala
- Bioanalytical Chemistry, Labcorp Drug Development, Madison, WI 53704, USA
| | - Mallesh Kurakula
- Product Development Department, CURE Pharmaceutical, Oxnard, CA 93033, USA
- Correspondence: (M.K.); (K.M.H.)
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.K.); (K.M.H.)
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Haitham A. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan Y. Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Immam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Prasher P, Sharma M, Singh SK, Gulati M, Jha NK, Gupta PK, Gupta G, Chellappan DK, Zacconi F, de Jesus Andreoli Pinto T, Chan Y, Liu G, Paudel K, Hansbro PM, George Oliver BG, Dua K. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem Biol Interact 2022; 365:110048. [PMID: 35932910 DOI: 10.1016/j.cbi.2022.110048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Mucus gel constitutes of heavily cross-linked mucin fibers forming a viscoelastic, dense porous network that coats all the exposed epithelia not covered with the skin. The layer provides protection to the underlying gastrointestinal, respiratory, and female reproductive tracts, in addition to the organs such as the surface of eye by trapping the pathogens, irritants, environmental fine particles, and potentially hazardous foreign matter. However, this property of mucus gel poses a substantial challenge for realizing the localized and sustained drug delivery across the mucosal surfaces. The mucus permeating particles that spare the protective properties of mucus gel improve the therapeutic potency of the drugs aimed at the management of diseases, including sexually transmitted infections, lung cancer, irritable bowel disease, degenerative eye diseases and infections, and cystic fibrosis. As such, the mucoadhesive materials conjugated with drug molecules display a prolonged retention time in the mucosal gel that imparts a sustained release of the deliberated drug molecules across the mucosa. The contemporarily developed mucus penetrating materials for drug delivery applications comprise of a finer size, appreciable hydrophilicity, and a neutral surface to escape the entrapment within the cross-inked mucus fibers. Pertaining to the mucus secretion as a first line of defence in respiratory tract in response to the invading physical, chemical, and biological pathogens, the development of mucus penetrating materials hold promise as a stalwart approach for revolutionizing the respiratory drug delivery paradigm. The present review provides an epigrammatic collation of the mucus penetrating/mucoadhesive materials for achieving a controlled/sustained release of the cargo pharmaceutics and drug molecules across the respiratory mucus barrier.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Monica Gulati
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, 201310, UP, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago, 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo, 05508-000, Brazil
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Keshav Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
24
|
Surendranath M, M R R, Parameswaran R. Recent advances in functionally modified polymers for mucoadhesive drug delivery. J Mater Chem B 2022; 10:5913-5924. [PMID: 35880449 DOI: 10.1039/d2tb00856d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel methods for the delivery of drugs other than the conventional method of oral administration have been a thrust area of research for a few decades. Mucoadhesive delivery of drugs opened up a new domain where rapid and patient-friendly delivery of drugs can be achieved. Delivery of drugs through the mucosal sites such as buccal, nasal, ocular, sublingual, rectal and vaginal facilitates bypassing the first-pass metabolism and the drug reaches the systemic circulation directly. This helps to increase the bioavailability of the drug. The study of the chemical characteristics of polymers with mucoadhesive properties and how the molecules or the pharmaceuticals are transported across the mucosa is very much needed for the advancement of research in this field. And at the same time, it is very pertinent to know about the anatomy and the physiology of the mucosal tissue and its variation in different regions of the body. In this review, we try to present a comprehensive understanding of relevant topics of mucoadhesion giving more emphasis on the mechanism of transport of drugs across mucosa, and different possible functional modifications of polymers to enhance the property of mucoadhesion.
Collapse
Affiliation(s)
- Medha Surendranath
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| | - Rekha M R
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
25
|
Recent advances of chitosan-based polymers in biomedical applications and environmental protection. JOURNAL OF POLYMER RESEARCH 2022. [PMCID: PMC9167648 DOI: 10.1007/s10965-022-03121-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in polymer-based biomaterials such as chitosan and its modifications and also the methods of their application in various fields of science is uninterruptedly growing. Owing to unique physicochemical, biological, ecological, physiological properties, such as biocompatibility, biodegradability, stability in the natural environment, non-toxicity, high biological activity, economic affordability, chelating of metal ions, high sorption properties, chitosan is used in various biomedical and industrial processes. The reactivity of the amino and hydroxyl groups in the structure makes it more interesting for diverse applications in drug delivery, tissue engineering, wound healing, regenerative medicine, blood anticoagulation and bone, tendon or blood vessel engineering, dentistry, biotechnology, biosensing, cosmetics, water treatment, agriculture. Taking into account the current situation in the world with COVID-19 and other viruses, chitosan is also active in the form of a vaccine system, it can deliver antibodies to the nasal mucosa and load gene drugs that prevent or disrupt the replication of viral DNA/RNA, and deliver them to infected cells. The presented article is an overview of the nowaday state of the application of chitosan, based on literature of recent years, showing importance of fundamental and applied studies aimed to expand application of chitosan-based polymers in many fields of science.
Collapse
|
26
|
Zhu Y, Gu Z, Liao Y, Li S, Xue Y, Firempong MA, Xu Y, Yu J, Smyth HD, Xu X. Improved intestinal absorption and oral bioavailability of astaxanthin using poly (ethylene glycol)-graft-chitosan nanoparticles: preparation, in vitro evaluation, and pharmacokinetics in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1002-1011. [PMID: 34312873 DOI: 10.1002/jsfa.11435] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Astaxanthin (ASTA) is a kind of food-derived active ingredient (FDAI) with antioxidant and antidiabetic functions. It is nontoxic but its poor solubility and low bioavailability hinder its application in the food industry. In this study, a novel carrier, polyethylene glycol-grafted chitosan (PEG-g-CS) was applied to enhance the bioavailability of astaxanthin. It encapsulated astaxanthin completely by solvent evaporation to manufacture astaxanthin using poly (ethylene glycol)-graft-chitosan nanoparticles (ASTA-PEG-g-CS) nanoparticles to improve absorption. RESULTS The ASTA-PEG-g-CS nanoparticles were spherical, with a particle size below 200 nm and a ζ potential of about -26 mV. Polyethylene glycol-grafted chitosan can encapsulate astaxanthin well, and the encapsulated astaxanthin was released rapidly - in 15 min in an in vitro release study. In a rat single-pass intestinal perfusion study, a low concentration of ASTA-PEG-g-CS nanoparticle (0.2 μg mL-1 ) was better absorbed in the intestine. In particular, the jejunum could absorb most astaxanthin without a change in the concentration. An in vivo release study also demonstrated that ASTA-PEG-g-CS nanoparticles enhanced oral bioavailability significantly. CONCLUSION This novel carrier, PEG-g-CS, provided a simple way to encapsulate food, which improved the bioavailability of hydrophobic ingredients. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Zhengqing Gu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Youwu Liao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Shuang Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Yuanyuan Xue
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Michael Adu Firempong
- Department of Applied Chemistry and Biochemistry, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Ying Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Hugh Dc Smyth
- College of Pharmacy, the University of Texas at Austin, Austin, TX, USA
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
27
|
Preparation of Drug Sustained-Release Scaffold with De-Epithelized Human Amniotic Epithelial Cells and Thiolated Chitosan Nanocarriers and Its Repair Effect on Spinal Cord Injury. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6294148. [PMID: 35070240 PMCID: PMC8767368 DOI: 10.1155/2022/6294148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
The disability rate of spinal cord injury (SCI) is extremely high, and stem cell inhibition is one of the most effective schemes in treating the spinal cord, but the survival rate is extremely low after stem cell transplantation, so it cannot be widely used in clinic. Studies have revealed that loading stem cells with biological scaffolds can effectively improve the survival rate and effect after stem cell transplantation. Therefore, this research was devised to analyze the repair effect of thiolated chitosan nanocarriers scaffold carrying de-epithelized human amniotic epithelial cells (HAECs) on SCI. And we used thiolated chitosan as nanocarriers, aiming to provide a reliable theoretical basis for future clinical practice. Through experiments, we concluded that the Tarlov and BBB scores of rats with SCI were raised under the intervention of thiolated chitosan carrying HAECs, while the inflammatory factors in serum, oxidative stress reaction in spinal cord tissue, apoptosis rate of nerve cells, and autophagy protein expression were all suppressed. Thus, the thiolated chitosan carrying HAECs may be applied to treat SCI by suppressing autophagy protein expression, oxidative stress response, and release of inflammatory factors in spinal cord tissue, which may be a new clinical therapy for SCI in the future. Even though we cannot understand exactly the therapeutic mechanism of thiolated chitosan carrying HAECs for SCI, the real clinical application of thiolated chitosan carrying HAECs needs to be confirmed by human experiments.
Collapse
|
28
|
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop‐Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102451. [PMID: 34773391 PMCID: PMC8728822 DOI: 10.1002/advs.202102451] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Advances in nanotechnology have generated a broad range of nanoparticles (NPs) for numerous biomedical applications. Among the various properties of NPs are functionalities being related to thiol substructures. Numerous biological processes that are mediated by cysteine or cystine subunits of proteins representing the workhorses of the bodies can be transferred to NPs. This review focuses on the interface between thiol chemistry and NPs. Pros and cons of different techniques for thiolation of NPs are discussed. Furthermore, the various functionalities gained by thiolation are highlighted. These include overall bio- and mucoadhesive, cellular uptake enhancing, and permeation enhancing properties. Drugs being either covalently attached to thiolated NPs via disulfide bonds or being entrapped in thiolated polymeric NPs that are stabilized via inter- and intrachain crosslinking can be released at the diseased tissue or in target cells under reducing conditions. Moreover, drugs, targeting ligands, biological analytes, and enzymes bearing thiol substructures can be immobilized on noble metal NPs and quantum dots for therapeutic, theranostic, diagnostic, biosensing, and analytical reasons. Within this review a concise summary and analysis of the current knowledge, future directions, and potential clinical use of thiolated NPs are provided.
Collapse
Affiliation(s)
- Nathalie Hock
- Thiomatrix Forschungs und Beratungs GmbHTrientlgasse 65Innsbruck6020Austria
| | | | - Sam Aspinall
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Nunzio Denora
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari “Aldo Moro”Bari70125Italy
| | - Vitaliy V. Khutoryanskiy
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology, Institute of PharmacyUniversity of InnsbruckInnrain 80/82Innsbruck6020Austria
| |
Collapse
|
29
|
Le T, Aguilar B, Mangal JL, Acharya AP. Oral drug delivery for immunoengineering. Bioeng Transl Med 2022; 7:e10243. [PMID: 35111945 PMCID: PMC8780903 DOI: 10.1002/btm2.10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022] Open
Abstract
The systemic pharmacotherapeutic efficacy of immunomodulatory drugs is heavily influenced by its route of administration. A few common routes for the systemic delivery of immunotherapeutics are intravenous, intraperitoneal, and intramuscular injections. However, the development of novel biomaterials, in adjunct to current progress in immunoengineering, is providing an exciting area of interest for oral drug delivery for systemic targeting. Oral immunotherapeutic delivery is a highly preferred route of administration due to its ease of administration, higher patient compliance, and increased ability to generate specialized immune responses. However, the harsh environment and slow systemic absorption, due to various biological barriers, reduces the immunotherapeutic bioavailability, and in turn prevents widespread use of oral delivery. Nonetheless, cutting edge biomaterials are being synthesized to combat these biological barriers within the gastrointestinal (GI) tract for the enhancement of drug bioavailability and targeting the immune system. For example, advancements in biomaterials and synthesized drug agents have provided distinctive methods to promote localized drug absorption for the modulation of local or systemic immune responses. Additionally, novel breakthroughs in the immunoengineering field show promise in the development of vaccine delivery systems for disease prevention as well as combating autoimmune diseases, inflammatory diseases, and cancer. This review will discuss current progress made within the field of biomaterials and drug delivery systems to enhance oral immunotherapeutic availability, and how these new delivery platforms can be utilized to deliver immunotherapeutics for resolution of immune-related diseases.
Collapse
Affiliation(s)
- Tien Le
- Chemical Engineering, School for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
| | - Brian Aguilar
- Biomedical Engineering, School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
| | - Joslyn L. Mangal
- Biological Design, School for Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
| | - Abhinav P. Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
- Biomedical Engineering, School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
- Biological Design, School for Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
- Materials Science and Engineering, School for the Engineering of Matter, Transport, and energyArizona State UniversityTempeArizonaUSA
- Biodesign Center for Immunotherapy, Vaccines and VirotherapyArizona State UniversityTempeArizonaUSA
| |
Collapse
|
30
|
Gao X, Liu N, Wang Z, Gao J, Zhang H, Li M, Du Y, Gao X, Zheng A. Development and Optimization of Chitosan Nanoparticle-Based Intranasal Vaccine Carrier. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010204. [PMID: 35011436 PMCID: PMC8746444 DOI: 10.3390/molecules27010204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
Chitosan is a natural polysaccharide, mainly derived from the shell of marine organisms. At present, chitosan has been widely used in the field of biomedicine due to its special characteristics of low toxicity, biocompatibility, biodegradation and low immunogenicity. Chitosan nanoparticles can be easily prepared. Chitosan nanoparticles with positive charge can enhance the adhesion of antigens in nasal mucosa and promote its absorption, which is expected to be used for intranasal vaccine delivery. In this study, we prepared chitosan nanoparticles by a gelation method, and modified the chitosan nanoparticles with mannose by hybridization. Bovine serum albumin (BSA) was used as the model antigen for development of an intranasal vaccine. The preparation technology of the chitosan nanoparticle-based intranasal vaccine delivery system was optimized by design of experiment (DoE). The DoE results showed that mannose-modified chitosan nanoparticles (Man-BSA-CS-NPs) had high modification tolerance and the mean particle size and the surface charge with optimized Man-BSA-CS-NPs were 156 nm and +33.5 mV. FTIR and DSC results confirmed the presence of Man in Man-BSA-CS-NPs. The BSA released from Man-BSA-CS-NPs had no irreversible aggregation or degradation. In addition, the analysis of fluorescence spectroscopy of BSA confirmed an appropriate binding constant between CS and BSA in this study, which could improve the stability of BSA. The cell study in vitro demonstrated the low toxicity and biocompatibility of Man-BSA-CS-NPs. Confocal results showed that the Man-modified BSA-FITC-CS-NPs promote the endocytosis and internalization of BSA-FITC in DC2.4 cells. In vivo studies of mice, Man-BSA-CS-NPs intranasally immunized showed a significantly improvement of BSA-specific serum IgG response and the highest level of BSA-specific IgA expression in nasal lavage fluid. Overall, our study provides a promising method to modify BSA-loaded CS-NPs with mannose, which is worthy of further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yimeng Du
- Correspondence: (Y.D.); (X.G.); (A.Z.); Tel.: +86-010-6693-1694 or +86-135-2046-7936 (A.Z.)
| | - Xiang Gao
- Correspondence: (Y.D.); (X.G.); (A.Z.); Tel.: +86-010-6693-1694 or +86-135-2046-7936 (A.Z.)
| | - Aiping Zheng
- Correspondence: (Y.D.); (X.G.); (A.Z.); Tel.: +86-010-6693-1694 or +86-135-2046-7936 (A.Z.)
| |
Collapse
|
31
|
Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals (Basel) 2021; 14:ph14111201. [PMID: 34832983 PMCID: PMC8621906 DOI: 10.3390/ph14111201] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.
Collapse
|
32
|
Kołodziejska M, Jankowska K, Klak M, Wszoła M. Chitosan as an Underrated Polymer in Modern Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3019. [PMID: 34835782 PMCID: PMC8625597 DOI: 10.3390/nano11113019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most well-known and characterized materials applied in tissue engineering. Due to its unique chemical, biological and physical properties chitosan is frequently used as the main component in a variety of biomaterials such as membranes, scaffolds, drug carriers, hydrogels and, lastly, as a component of bio-ink dedicated to medical applications. Chitosan's chemical structure and presence of active chemical groups allow for modification for tailoring material to meet specific requirements according to intended use such as adequate endurance, mechanical properties or biodegradability time. Chitosan can be blended with natural (gelatin, hyaluronic acid, collagen, silk, alginate, agarose, starch, cellulose, carbon nanotubes, natural rubber latex, κ-carrageenan) and synthetic (PVA, PEO, PVP, PNIPPAm PCL, PLA, PLLA, PAA) polymers as well as with other promising materials such as aloe vera, silica, MMt and many more. Chitosan has several derivates: carboxymethylated, acylated, quaternary ammonium, thiolated, and grafted chitosan. Its versatility and comprehensiveness are confirming by further chitosan utilization as a leading constituent of innovative bio-inks applied for tissue engineering. This review examines all the aspects described above, as well as is focusing on a novel application of chitosan and its modifications, including the 3D bioprinting technique which shows great potential among other techniques applied to biomaterials fabrication.
Collapse
Affiliation(s)
- Marta Kołodziejska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
| | - Kamila Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
- Polbionica Ltd., 01-793 Warsaw, Poland
| |
Collapse
|
33
|
Mukhtar M, Fényes E, Bartos C, Zeeshan M, Ambrus R. Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Patle R, Shinde S, Patel S, Maheshwari R, Jariyal H, Srivastava A, Chauhan N, Globisch C, Jain A, Tekade RK, Shard A. Discovery of boronic acid-based potent activators of tumor pyruvate kinase M2 and development of gastroretentive nanoformulation for oral dosing. Bioorg Med Chem Lett 2021; 42:128062. [PMID: 33901643 DOI: 10.1016/j.bmcl.2021.128062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Several studies have established that cancer cells explicitly over-express the less active isoform of pyruvate kinase M2 (PKM2) is critical for tumorigenesis. The activation of PKM2 towards tetramer formation may increase affinity towards phosphoenolpyruvate (PEP) and avoidance of the Warburg effect. Herein, we describe the design, synthesis, and development of boronic acid-based molecules as activators of PKM2. The designed molecules were inspired by existing anticancer scaffolds and several fragments were assembled in the derivatives. 6a-6d were synthesized using a multi-step synthetic strategy in 55-70% yields, starting from cheap and readily available materials. The compounds were selectively cytotoxic to kill the cancerous cells at 80 nM, while they were non-toxic to the normal cells. The kinetic studies established the compounds as novel activators of PKM2 and (E/Z)-(4-(3-(2-((4-chlorophenyl)amino)-4-(dimethylamino)thiazol-5-yl)-2-(ethoxycarbonyl)-3-oxoprop-1-en-1-yl) phenyl)boronic acid (6c) emerged as the most potent derivative. 6c was further evaluated using various in silico tools to understand the molecular mechanism of tetramer formation. Docking studies revealed that 6c binds to the PKM2 dimer at the dimeric interface. Further to ascertain the binding site and mechanism of action, rigorous MD (molecular dynamics) simulations were undertaken, which led to the conclusion that 6c stabilizes the center of the dimeric interface that possibly promotes tetramer formation. We further planned to make a tablet of the developed molecule for oral delivery, but it was seriously impeded owing to poor aqueous solubility of 6c. To improve aqueous solubility and retain 6c at the lower gastrointestinal tract, thiolated chitosan-based nanoparticles (TCNPs) were prepared and further developed as tablet dosage form to retain anticancer potency in the excised goat colon. Our findings may provide a valuable pharmacological mechanism for understanding metabolic underpinnings that may aid in the clinical development of new anticancer agents targeting PKM2.
Collapse
Affiliation(s)
- Rajkumar Patle
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Shital Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Rahul Maheshwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Akshay Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Neelam Chauhan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | | | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Rakesh K Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India.
| |
Collapse
|
35
|
Liu L, Tian C, Dong B, Xia M, Cai Y, Hu R, Chu X. Models to evaluate the barrier properties of mucus during drug diffusion. Int J Pharm 2021; 599:120415. [PMID: 33647411 DOI: 10.1016/j.ijpharm.2021.120415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Mucus is widely disseminated in the nasal cavity, oral cavity, respiratory tract, eyes, gastrointestinal tract, and reproductive tract to prevent the invasion of pathogenic bacteria and toxins. The mucus layer through its continuous secretion can prevent the passage of macromolecular substances such as pathogenic bacteria and toxins, thereby reducing the occurrence of inflammation. Without a doubt, mucus also hinders oral absorption. The physiological and biochemical properties of intestinal mucus and the different types of mucus barrier models need to be predominated. To find ways to increase the bioavailability of drugs in the future, this article summarizes mucus composition, barrier properties, mucus models, and mucoadhesive/mucopenetrating particles to highlight the information they can afford. Collectively, the review seeks to provide a state-of-the-art roadmap for researchers who must contend with this critical barrier to drug delivery.
Collapse
Affiliation(s)
- Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chunling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Baoqi Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengqiu Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Rongfeng Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
36
|
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332:127-147. [PMID: 33609621 DOI: 10.1016/j.jconrel.2021.02.016] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
In recent years, polymeric micelles have been extensively utilized in pre-clinical studies for delivering poorly soluble chemotherapeutic agents in cancer. Polymeric micelles are formed via self-assembly of amphiphilic polymers in facile manners. The wide availability of hydrophobic and, to some extent, hydrophilic polymeric blocks allow researchers to explore various polymeric combinations for optimum loading, stability, systemic circulation, and delivery to the target cancer tissues. Moreover, polymeric micelles could easily be tailor-made by increasing and decreasing the number of monomers in each polymeric chain. Some of the widely accepted hydrophobic polymers are poly(lactide) (PLA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), polyesters, poly(amino acids), lipids. The hydrophilic polymers used to wrap the hydrophobic core are poly(ethylene glycol), poly(oxazolines), chitosan, dextran, and hyaluronic acids. Drugs could be conjugated to polymers at the distal ends to prepare pharmacologically active polymeric systems that impart enhanced solubility and stability of the conjugates and provide an opportunity for combination drug delivery. Their nano-size enables them to accumulate to the tumor microenvironment via the Enhanced Permeability and Retention (EPR) effect. Moreover, the stimuli-sensitive breakdown provides the micelles an effective means to deliver the therapeutic cargo effectively. The tumor micro-environmental stimuli are pH, hypoxia, and upregulated enzymes. Externally applied stimuli to destroy micellar disassembly to release the payload include light, ultrasound, and temperature. This article delineates the current trend in developing polymeric micelles combining various block polymeric scaffolds. The development of stimuli-sensitive micelles to achieve enhanced therapeutic activity are also discussed.
Collapse
Affiliation(s)
- Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| |
Collapse
|
37
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
38
|
Niu J, Yuan M, Chen C, Wang L, Tang Z, Fan Y, Liu X, Ma YJ, Gan Y. Berberine-Loaded Thiolated Pluronic F127 Polymeric Micelles for Improving Skin Permeation and Retention. Int J Nanomedicine 2020; 15:9987-10005. [PMID: 33324058 PMCID: PMC7733396 DOI: 10.2147/ijn.s270336] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022] Open
Abstract
Background Challenges associated with local antibacterial and anti-inflammatory drugs include low penetration and retention of drugs at the expected action site. Additionally, improving these challenges allows for the prevention of side effects that are caused by drug absorption into the systemic circulation and helps to safely treat local skin diseases. Methods In the current study, we successfully prepared a thiolated pluronic F127 polymer micelles (BTFM), which binds to keratin through a disulphide bond, to produce skin retention. In addition, the small particle size of polymer micelles promotes the penetration of carriers into the skin. The current study was divided into two experiments: an in vitro experiment; an in vivo experiment that involved the penetration of the micelle-loaded drugs into the skin of rats, the skin irritation test and the anti-inflammatory activity of the drug-loaded micelles on dimethyl benzene-induced ear edema in mice. Results Results from our in vitro transdermal experiment revealed that the amount of drug absorbed through the skin was decreased after the drug was loaded in the BTFM. Further, results from the vivo study, which used fluorescence microscopy to identify the location of the BTFM after penetration, revealed that there was strong fluorescence in the epidermis layer, but there was no strong fluorescence in the deep skin layer. In addition, the BTFM had a very good safety profile with no potentially hazardous skin irritation and transdermal administration of BTFM could significantly suppress ear edema induced by dimethyl benzene. Therefore, these findings indicated that BTFM reduced the amount of drug that entered the systemic circulation. Our results also demonstrated that the BTFM had a certain affinity for keratin. Conclusion Our experimental results suggest that the BTFM may be an effective drug carrier for local skin therapy with good safety profile.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Ming Yuan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Chenchen Chen
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Zigui Tang
- Department of Pharmacy, Henan Medical College, Zhengzhou 451191, People's Republic of China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Xianghui Liu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Yu Jiao Ma
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Yu Gan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| |
Collapse
|
39
|
Versatile Types of Polysaccharide-Based Drug Delivery Systems: From Strategic Design to Cancer Therapy. Int J Mol Sci 2020; 21:ijms21239159. [PMID: 33271967 PMCID: PMC7729619 DOI: 10.3390/ijms21239159] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy is still the most direct and effective means of cancer therapy nowadays. The proposal of drug delivery systems (DDSs) has effectively improved many shortcomings of traditional chemotherapy drugs. The technical support of DDSs lies in their excellent material properties. Polysaccharides include a series of natural polymers, such as chitosan, hyaluronic acid, and alginic acid. These polysaccharides have good biocompatibility and degradability, and they are easily chemical modified. Therefore, polysaccharides are ideal candidate materials to construct DDSs, and their clinical application prospects have been favored by researchers. On the basis of versatile types of polysaccharides, this review elaborates their applications from strategic design to cancer therapy. The construction and modification methods of polysaccharide-based DDSs are specifically explained, and the latest research progress of polysaccharide-based DDSs in cancer therapy are also summarized. The purpose of this review is to provide a reference for the design and preparation of polysaccharide-based DDSs with excellent performance.
Collapse
|
40
|
Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, Yousefi M, Tanomand A, Yousefi B, Mahmoudi S, Kafil HS. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020; 162:956-974. [DOI: 10.1016/j.ijbiomac.2020.06.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
|
41
|
Jalil A, Asim MH, Shahzadi I, Khan M, Matuszczak B, Bernkop-Schnürch A. Thiolated PVP-Amphotericin B Complexes: An Innovative Approach toward Highly Mucoadhesive Gels for Mucosal Leishmaniasis Treatment. Biomacromolecules 2020; 21:3658-3667. [PMID: 32803961 DOI: 10.1021/acs.biomac.0c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to synthesize polymeric excipients that can form mucoadhesive hydrogels containing amphotericin B (AmB) for the treatment of mucosal leishmaniasis. 2-(2-Acryloylaminoethyldisulfanyl)-nicotinic acid (ACENA) was copolymerized with N-vinyl pyrrolidone to obtain thiolated polyvinylpyrrolidone (PVP) that was then complexed with AmB to improve its solubility. The resulting structure of thiolated PVP was evaluated by 1H nuclear magnetic resonance to confirm S-protected thiol groups, and the average molecular mass was determined by size exclusion chromatography. Moreover, variants of thiolated PVP-AmB were studied for the thiol content, amount of complexed AmB, cytotoxicity, mucoadhesive properties, and antileishmaniasis activity. The highest achieved degree of thiolation was 772 ± 24.64 μmol/g, and the amount of complexed AmB was 27.05 ± 0.31 μmol per g of polymer. Thiolated PVP and thiolated PVP-AmB variants (0.5% m/v) showed no cytotoxicity, whereas the equivalent concentration of free AmB reduced Caco-2 cell viability to 70% within 24 h. Thiol-functionalized PVP and PVP-AmB complexes displayed 7.66- and 7.20-fold higher adhesion to the mucosal surface in comparison to unmodified PVP and PVP-AmB, respectively. In addition, variants of thiolated PVP-AmB complexes displayed 100% antileishmaniasis activity in comparison to the 80% killing efficiency of Fungizone, which has been applied in the equivalent AmB concentration of 0.2 μg/mL. Thiol-functionalized PVP proved to be a promising novel excipient for the delivery of AmB providing enhanced solubility and improved mucoadhesive properties which are beneficial for the treatment of mucosal leishmaniasis.
Collapse
Affiliation(s)
- Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.,Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Momin Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
42
|
Chitosan: Structural modification, biological activity and application. Int J Biol Macromol 2020; 164:4532-4546. [PMID: 32941908 DOI: 10.1016/j.ijbiomac.2020.09.042] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Many by-products that are harmful to the environment and human health are generated during food processing. However, these wastes are often potential resources with high-added value. For example, crustacean waste contains large amounts of chitin. Chitin is one of the most abundant polysaccharides in natural macromolecules, and is a typical component of crustaceans, mollusks, insect exoskeleton and fungal cell walls. Chitosan is prepared by deacetylation of chitin and a copolymer of D-glucosamine and N-acetyl-D-glucosamine through β-(1 → 4)-glycosidic bonds. Chitosan has better solubility, biocompatibility and degradability compared with chitin. This review introduces the preparation, physicochemical properties, chemical and physical modification methods of chitosan, which could help us understand its biological activities and applications. According to the latest reports, the antibacterial activity, antioxidant, immune and antitumor activities of chitosan and its derivatives are summarized. Simultaneously, the various applications of chitosan and its derivatives are reviewed, including food, chemical, textile, medical and health, and functional materials. Finally, some insights into its future potential are provided, including novel modification methods, directional modification according to structure-activity relationship, activity and application development direction, etc.
Collapse
|
43
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
44
|
Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, Xanthopoulou E, Bikiaris DN. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020; 12:E1519. [PMID: 32650536 PMCID: PMC7407599 DOI: 10.3390/polym12071519] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| |
Collapse
|
45
|
Karava A, Lazaridou M, Nanaki S, Michailidou G, Christodoulou E, Kostoglou M, Iatrou H, Bikiaris DN. Chitosan Derivatives with Mucoadhesive and Antimicrobial Properties for Simultaneous Nanoencapsulation and Extended Ocular Release Formulations of Dexamethasone and Chloramphenicol Drugs. Pharmaceutics 2020; 12:pharmaceutics12060594. [PMID: 32604758 PMCID: PMC7356116 DOI: 10.3390/pharmaceutics12060594] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023] Open
Abstract
The aim of this work was to evaluate the effectiveness of neat chitosan (CS) and its derivatives with 2-acrylamido-2-methyl-1-propanesulfonic acid (AAMPS) and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSP) as appropriate nanocarriers for the simultaneous ocular administration of dexamethasone sodium phosphate (DxP) and chloramphenicol (CHL). The derivatives CS-AAMPS and CS-MEDSP have been synthesized by free-radical polymerization and their structure has been proved by Fourier-Transformed Infrared Spectroscopy (FT-IR) spectroscopy. Both derivatives exhibited low cytotoxicity, enhanced mucoadhesive properties and antimicrobial activity against Staphylococcus aureus (S.aureus) and Escherichia coli (E. coli). Encapsulation was performed via ionic crosslinking gelation using sodium tripolyphosphate (TPP) as the crosslinking agent. Dynamic light scattering measurements (DLS) showed that the prepared nanoparticles had bimodal distribution and sizes ranging from 50–200 nm and 300–800 nm. Drugs were encapsulated in their crystalline (CHL) or amorphous (DexSP) form inside nanoparticles and their release rate was dependent on the used polymer. The CHL dissolution rate was substantially enhanced compared to the neat drug and the release time was extended up to 7 days. The release rate of DexSP was much faster than that of CHL and was prolonged up to 3 days. Drug release modeling unveiled that diffusion is the main release mechanism for both drugs. Both prepared derivatives and their drug-loaded nanoparticles could be used for extended and simultaneous ocular release formulations of DexSP and CHL drugs.
Collapse
Affiliation(s)
- Aikaterini Karava
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
| | - Maria Lazaridou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Stavroula Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Margaritis Kostoglou
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Hermis Iatrou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
- Correspondence: (H.I.); (D.N.B.); Tel.: +30-210-7274056 (H.I.); +30-2310-997812 (D.N.B.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
- Correspondence: (H.I.); (D.N.B.); Tel.: +30-210-7274056 (H.I.); +30-2310-997812 (D.N.B.)
| |
Collapse
|
46
|
Wu Y, Rashidpour A, Almajano MP, Metón I. Chitosan-Based Drug Delivery System: Applications in Fish Biotechnology. Polymers (Basel) 2020; 12:E1177. [PMID: 32455572 PMCID: PMC7285272 DOI: 10.3390/polym12051177] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chitosan is increasingly used for safe nucleic acid delivery in gene therapy studies, due to well-known properties such as bioadhesion, low toxicity, biodegradability and biocompatibility. Furthermore, chitosan derivatization can be easily performed to improve the solubility and stability of chitosan-nucleic acid polyplexes, and enhance efficient target cell drug delivery, cell uptake, intracellular endosomal escape, unpacking and nuclear import of expression plasmids. As in other fields, chitosan is a promising drug delivery vector with great potential for the fish farming industry. This review highlights state-of-the-art assays using chitosan-based methodologies for delivering nucleic acids into cells, and focuses attention on recent advances in chitosan-mediated gene delivery for fish biotechnology applications. The efficiency of chitosan for gene therapy studies in fish biotechnology is discussed in fields such as fish vaccination against bacterial and viral infection, control of gonadal development and gene overexpression and silencing for overcoming metabolic limitations, such as dependence on protein-rich diets and the low glucose tolerance of farmed fish. Finally, challenges and perspectives on the future developments of chitosan-based gene delivery in fish are also discussed.
Collapse
Affiliation(s)
- Yuanbing Wu
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| | - Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| | - María Pilar Almajano
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain;
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| |
Collapse
|
47
|
Li R, Lin Z, Zhang Q, Zhang Y, Liu Y, Lyu Y, Li X, Zhou C, Wu G, Ao N, Li L. Injectable and In Situ-Formable Thiolated Chitosan-Coated Liposomal Hydrogels as Curcumin Carriers for Prevention of In Vivo Breast Cancer Recurrence. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17936-17948. [PMID: 32208630 DOI: 10.1021/acsami.9b21528] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To improve water solubility and bioavailability, curcumin (Cur) was encapsulated by liposomes (Cur-Lip), which was further coated with thiolated chitosan (CSSH) to form liposomal hydrogels (CSSH/Cur-Lip gel). The hydrogels were thermosensitive with in situ injectable performance, which were fluidic at room temperature and gelled quickly at 37 °C. The cumulative release ratio of the 200 μM CSSH/Cur-Lip gel was 31.57 ± 1.34% at 12 h, which could effectively delay the release of curcumin. Worthily, the resilient hydrogels were compressive even after five cycles of compression. The cytotoxicity test indicated that the liposomal hydrogels had good cytocompatibility, but after encapsulation of curcumin, MCF-7 cells were suppressed and killed dramatically after 72 h. The in vivo breast cancer recurrence experiment showed that the CSSH/Cur-Lip gel inhibited breast cancer recurrence after tumors were resected, and the tissue of defect in the CSSH/Cur-Lip gel group was repaired. The results showed that the drug-loaded liposomal hydrogels can deliver curcumin continuously and exerted an excellent tumoricidal effect in vitro and in vivo. The injectable, in situ-formable, and thermosensitive CSSH/Cur-Lip gel can be designed as a promising novel drug delivery vehicle to be used as carriers for local accurate and sustained drug delivery to minimize burst release and as tissue engineering scaffolds for tissue regeneration after tumor resection.
Collapse
Affiliation(s)
- Riwang Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
- Institute of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Zhen Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P. R. China
| | - Qian Zhang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Yuhui Zhang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Yang Lyu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Xinyang Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University Amsterdam and University of Amsterdam, MOVE Research Institute, 1081 LA Amsterdam, Nord-Holland, The Netherlands
| | - Ningjian Ao
- Institute of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Lihua Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
48
|
Maestri CA, Motta A, Moschini L, Bernkop-Schnürch A, Baus RA, Lecca P, Scarpa M. Composite nanocellulose-based hydrogels with spatially oriented degradation and retarded release of macromolecules. J Biomed Mater Res A 2020; 108:1509-1519. [PMID: 32175650 DOI: 10.1002/jbm.a.36922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
The oral delivery of macromolecular therapeutics to the intestinal tract requires novel, robust, and controlled formulations. Here, we report on fabrication by molding of composite hydrogel cylinders made of cellulose nanocrystals (CNCs) and chitosan (Cht) and their performance as delivery vehicles. CNCs provide excellent mechanical and chemical stress resistance, whereas Cht allows scaffold degradation by enzyme digestion. The release of a representative medium size protein (bovine serum albumin) dispersed in the hydrogel is slow and shows a sigmoidal profile; meanwhile, the hydrogel scaffold degrades according to a preferred route, that is the cylinder is eroded along the vertical axis. The cup-like, scarcely interconnected porous network, with a gradient of hardness along the cylinder axis, and the compact skin-like layer covering the lateral wall which stayed in contact with the mold during gelification, explain the preferred erosion direction and the long-term protein release. The possible effect of the molding process on hydrogel structure suggests that molding could be a simple and cheap way to favor surface compaction and directional scaffold degradation.
Collapse
Affiliation(s)
| | - Antonella Motta
- Department of Industrial Engineering and Biotech Centre, University of Trento, Trento, Italy
| | - Lorenzo Moschini
- Department of Industrial Engineering and Biotech Centre, University of Trento, Trento, Italy
| | | | | | - Paola Lecca
- Department of Mathematics, University of Trento, Povo-Trento, Italy
| | - Marina Scarpa
- Department of Physics, University of Trento, Povo-Trento, Italy
| |
Collapse
|
49
|
Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan Derivatives and Their Application in Biomedicine. Int J Mol Sci 2020; 21:E487. [PMID: 31940963 PMCID: PMC7014278 DOI: 10.3390/ijms21020487] [Citation(s) in RCA: 408] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a product of the deacetylation of chitin, which is widely found in nature. Chitosan is insoluble in water and most organic solvents, which seriously limits both its application scope and applicable fields. However, chitosan contains active functional groups that are liable to chemical reactions; thus, chitosan derivatives can be obtained through the chemical modification of chitosan. The modification of chitosan has been an important aspect of chitosan research, showing a better solubility, pH-sensitive targeting, an increased number of delivery systems, etc. This review summarizes the modification of chitosan by acylation, carboxylation, alkylation, and quaternization in order to improve the water solubility, pH sensitivity, and the targeting of chitosan derivatives. The applications of chitosan derivatives in the antibacterial, sustained slowly release, targeting, and delivery system fields are also described. Chitosan derivatives will have a large impact and show potential in biomedicine for the development of drugs in future.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Qiuyu Meng
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Qi Li
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Jinbao Liu
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Mo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
50
|
Lu H, Yang G, Ran F, Gao T, Sun C, Zhao Q, Wang S. Polymer-functionalized mesoporous carbon nanoparticles on overcoming multiple barriers and improving oral bioavailability of Probucol. Carbohydr Polym 2019; 229:115508. [PMID: 31826471 DOI: 10.1016/j.carbpol.2019.115508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
Abstract
Oral administration of nanoparticles is extremely limited due to the two processes of mucus permeation and epithelial absorption, which requires completely opposite surface properties of the nanocarriers. To tackle the contradiction, we developed a rational strategy to modify the surface of mesoporous carbon nanoparticles with chitosan concealed by a hydrophilic N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA) layer. Probucol (PB) with the low poor permeability and solubility was loaded in optimal nanocarriers to realize the high loading efficacy and controlled release. The pHPMA polymer is a hydrophilic "mucus-inert" material, which could be dissociable from the surface of nanoparticles in the mucus, thus promoting their mucus permeation and causing exposure of chitosan in transepithelial transport. The swelling effect of chitosan under acidic conditions allowed regulation of PB release behavior. In conclusion, the mucus-permeable nanocarrier could effectively overcome multiple gastrointestinal absorption barriers and the oral bioavailability of PB-loaded HCMCN was 2.76-fold that of commercial preparation.
Collapse
Affiliation(s)
- Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Guangzhao Yang
- General Hospital of Northern Theater Command, Wenhua Road, Shenyang 110016, PR China.
| | - Fu Ran
- Shandong Luye Pharmaceutical Co.,Ltd., Baoyuan Road, Yantai 264003, PR China
| | - Tianbin Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Changshan Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|