1
|
Liang Y, He J, Li M, Li Z, Wang J, Li J, Guo B. Polymer Applied in Hydrogel Wound Dressing for Wound Healing: Modification/Functionalization Method and Design Strategies. ACS Biomater Sci Eng 2025. [PMID: 40169450 DOI: 10.1021/acsbiomaterials.4c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Hydrogel wound dressings have emerged as a promising solution for wound healing due to their excellent mechanical and biochemical properties. Over recent years, there has been significant progress in expanding the variety of raw materials used for hydrogel formulation along with the development of advanced modification techniques and design approaches that enhance their performance. However, a comprehensive review encompassing diverse polymer modification strategies and design innovations for hydrogel dressings is still lacking in the literature. This review summarizes the use of natural polymers (e.g., chitosan, gelatin, sodium alginate, hyaluronic acid, and dextran) and synthetic polymers (e.g., poly(vinyl alcohol), polyethylene glycol, Pluronic F-127, poly(N-isopropylacrylamide), polyacrylamide, and polypeptides) in hydrogel wound dressings. We further explore the advantages and limitations of these polymers and discuss various modification strategies, including cationic modification, oxidative modification, double-bond modification, catechol modification, etc. The review also addresses design principles and synthesis methods, aligning polymer modifications with specific requirements in wound healing. Finally, we discuss future challenges and opportunities in the development of advanced hydrogel-based wound dressings.
Collapse
Affiliation(s)
- Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahui He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenlong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Juntang Li
- Research Centre of Immunity, Trauma and Environment Medicine, Collaborative Innovation Centre of Medical Equipment, PLA Key Laboratory of Biological Damage Effect and Protection, Luoyang, Henan 471031, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Wang Y, Ye L, Yan R, Tang C, Zhou H, Zhao G. Development of high-strength, 3D-printable, and biocompatible gelatin/κ-carrageenan dual-network hydrogels for wound healing. Int J Biol Macromol 2025; 301:140380. [PMID: 39880232 DOI: 10.1016/j.ijbiomac.2025.140380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Gelatin/κ-carrageenan (Gel/KC) hydrogel has exhibited a significant potential in tissue engineering, however, there is still a need to further enhance its structural properties. This study developed a Gel/KC dual-network hydrogel with superior mechanical properties and structural stability, which was integrated with 3D printing to evaluate its ability to promote wound healing. The hydrogels with seven different Gel and KC ratios were prepared and characterized using rheological testing, thermal analysis, spectral analysis, micromorphology observation, and X-ray diffraction. The results indicated that the Gel/KC hydrogel at a ratio of 25:15 (G25/K15) exhibited optimal thermostability, shear-thinning behavior, and recovery characteristics. Further texture profile analysis and 3D printing tests revealed that G25/K15 also exhibited superior mechanical strength (1800 g) and favorable printing properties. Furthermore, in vitro studies demonstrated that the cell culture scaffold printed with G25/K15 hydrogel could integrate with skin fibroblasts and promote the generation of new myofibrillar proteins, with cell viability remaining above 80 %. In vivo studies showed that the G25/K15 hydrogel accelerated wound healing in rats with full-thickness skin defects, without observed systemic toxicity. These results suggest that the G25/K15 hydrogel may serve as an ideal material for promoting wound healing.
Collapse
Affiliation(s)
- Yao Wang
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Lijing Ye
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Ruikun Yan
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, China
| | - Haibo Zhou
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China.
| | - Guojun Zhao
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China.
| |
Collapse
|
3
|
Xie X, Zhu C, Zhao J, Fan Y, Lei H, Fan D. Combined treatment strategy of hydrogel dressing and physiotherapy for rapid wound healing. Adv Colloid Interface Sci 2025; 341:103477. [PMID: 40139070 DOI: 10.1016/j.cis.2025.103477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Wound care for open wounds is essential for reducing pain, protecting open wounds, speeding up the healing process and avoiding scar formation. Among the various three-dimensional (3D) carrier biomaterials such as films, sponges, and hydrogels, hydrogels are chemically and physically most similar to the natural extracellular matrix (ECM). Meanwhile, hydrogels are also common 3D carriers that can be efficiently loaded with drugs or cells. In addition, it forms a protective barrier on the wound surface to prevent secondary external infections and has the effect of directing skin cell expansion, tissue infiltration, and wound closure. However, the role of functional drugs in wound healing also faces a number of issues such as resistance, dosage, activity, and stability; therefore, a richer array of therapies is needed for wound repair and other areas of development. Physiotherapy, also known as nonpharmacological therapy, is a commonly used clinical treatment. Recently, more and more physiotherapy have been used for wound repair due to their high efficiency and low irritation. In recent reports, many researchers have tended to use hydrogel dressings in combination with physiotherapy, and this combination therapy is beneficial because it can both protect the wound microenvironment and accelerates wound healing. Therefore, this paper reviews the combined use of hydrogel dressings and physiotherapy in wound healing. We present the characteristics of hydrogel and physiotherapy and focus on the progress and problems of these two combined therapies in recent years.
Collapse
Affiliation(s)
- Xiaofei Xie
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Jing Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Yanru Fan
- The College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| |
Collapse
|
4
|
Li D, He J, Ding G, Xin Y, Feng F, Ma S, Lin L, Wang E, Wang J. Advancements in NADH Oxidase Nanozymes: Bridging Nanotechnology and Biomedical Applications. Adv Healthc Mater 2025; 14:e2402785. [PMID: 39344219 DOI: 10.1002/adhm.202402785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Nicotinamide adenine dinucleotide (NADH) oxidase (NOX) is key in converting NADH to NAD+, crucial for various biochemical pathways. However, natural NOXs are costly and unstable. NOX nanozymes offer a promising alternative with potential applications in bio-sensing, antibacterial treatments, anti-aging, and anticancer therapies. This review provides a comprehensive overview of the types, functional mechanisms, biomedical applications, and future research perspectives of NOX nanozymes. It also addresses the primary challenges and future directions in the research and development of NOX nanozymes, underscoring the critical need for continued investigation in this promising area. These challenges include optimizing the catalytic efficiency, ensuring biocompatibility, and achieving targeted delivery and controlled activity within biological systems. Additionally, the exploration of novel materials and hybrid structures holds great potential for enhancing the functional capabilities of NOX nanozymes. Future research directions can involve integrating advanced computational modeling with experimental techniques to better understand the underlying mechanisms and to design more effective nanozyme candidates. Collaborative efforts across disciplines such as nanotechnology, biochemistry, and medicine will be essential to unlock the full potential of NOX nanozymes in future biomedical applications.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, Jilin, 130022, P. R. China
| | - Juyang He
- Department of Gynecological Oncology, the First Hospital of Jilin University (J. He) and School of Pharmaceutical Sciences (F. Fan), Jilin University, Changchun, Jilin, 130000, P. R. China
| | - Guanyu Ding
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, Jilin, 130022, P. R. China
| | - Yan Xin
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Fan Feng
- Department of Gynecological Oncology, the First Hospital of Jilin University (J. He) and School of Pharmaceutical Sciences (F. Fan), Jilin University, Changchun, Jilin, 130000, P. R. China
| | - Shuaining Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, Jilin, 130022, P. R. China
| | - Lu Lin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, Jilin, 130022, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, Jilin, 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Science, Wenzhou Institute, University of Chinese Academy of Sciences, Beijing, 325001, P. R. China
- Department of Chemistry of Physics & Astronomy, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| |
Collapse
|
5
|
Lopez-Vidal L, Juskaite K, Ramöller IK, Real DA, McKenna PE, Priotti J, Donnelly RF, Paredes AJ. Advanced drug delivery systems for the management of local conditions. Ther Deliv 2025; 16:285-303. [PMID: 40020739 PMCID: PMC11875478 DOI: 10.1080/20415990.2024.2437978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025] Open
Abstract
Localized disorders, even though originally confined to a specific body part, can progress into potentially life-threatening systemic disorders if treated inappropriately. Local treatment is often highly challenging due to poor penetration of therapeutic agents from their vehicles into the affected body site. Systemic treatment on the other hand often comes with unspecific side effects. The skin is the largest organ of the body, and conditions such as wounds and bacterial or fungal infections disrupt its natural barrier properties, important for the homeostasis of the human body. Advanced drug delivery systems for treating these conditions could greatly improve the treatment outcome and patient compliance. Other parts of the body that are of interest regarding localized treatment are, for example, the eyes along with mucosal tissues which are present in the vagina and lungs. Rather than focusing on specific diseases or parts of the body, this review provides an overview of the different drug delivery platforms that have been employed for enhanced local treatment. The following systems will be discussed: nanoparticle-based systems, such as nanocrystals, polymeric, lipidic, and inorganic nanoparticles, and nanogels; cyclodextrin inclusion complexes; and several devices like microarray patches, wound dressings, and films.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Kornelija Juskaite
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Inken K. Ramöller
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Daniel A. Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de investigaciones Científicas y Tecnológicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Córdoba, Argentina
- Pill.AR Apotheke Revolution S.A, Córdoba, Argentina
| | - Peter E. McKenna
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Alejandro J. Paredes
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| |
Collapse
|
6
|
Yu M, Wang S, Lin D. Mechanism and Application of Biomaterials Targeting Reactive Oxygen Species and Macrophages in Inflammation. Int J Mol Sci 2024; 26:245. [PMID: 39796102 PMCID: PMC11720555 DOI: 10.3390/ijms26010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation, an adaptive reaction to harmful stimuli, is a necessary immune system response and can be either acute or chronic. Since acute inflammation tends to eliminate harmful stimuli and restore equilibrium, it is generally advantageous to the organism. Chronic inflammation, however, is caused by either increased inflammatory signaling or decreased pro-anti-inflammatory signaling. According to current studies, inflammation is thought to be a major factor in a number of chronic diseases, including diabetes, cancer, arthritis, inflammatory bowel disease, and obesity. Consequently, reducing inflammation is essential for both preventing and delaying diseases. The application of biomaterials in the treatment of inflammatory illnesses has grown in recent years. A variety of biomaterials can be implanted either by themselves or in conjunction with other bioactive ingredients and therapeutic agents. The mechanisms of action and therapeutic applications of well-known anti-inflammatory biomaterials are the main topics of this article.
Collapse
|
7
|
Chen S, Xia J, Hou Z, Wu P, Yang Y, Cui L, Xiang Z, Sun S, Yang L. Natural polysaccharides combined with mussel-inspired adhesion for multifunctional hydrogels in wound hemostasis and healing: A review. Int J Biol Macromol 2024; 282:136965. [PMID: 39476886 DOI: 10.1016/j.ijbiomac.2024.136965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
As naturally derived macromolecular polymers, polysaccharides have garnered significant attention in recent years as promising candidates for fabricating multifunctional hydrogels, particularly for wound healing applications, owing to their inherent biocompatibility, biodegradability, and structural diversity. However, the inherently weak skin adhesion of natural polysaccharide hydrogels has motivated the exploration of mussel-inspired catechol-based adhesion strategies to overcome this limitation. Incorporating mussel-inspired modifications into natural polysaccharides can imbue them with unique properties such as enhanced adhesion, antioxidant activity, antibacterial properties, and chelation capabilities, considerably broadening their potential for wound hemostasis and healing applications. This review comprehensively overviews recent advances in mussel-inspired polysaccharide hydrogels, focusing on the combination of natural polysaccharides, including chitosan, alginate, hyaluronic acid, cellulose, and dextran, with mussel-inspired catechol. We delve into their fabrication strategies and highlight their promising biomedical applications, with a particular emphasis on wound hemostasis and diverse wound healing processes. Mussel-inspired modification strategies for polysaccharide hydrogels are expected to remain a focal point within the fields of wound hemostasis and healing, paving the way for more impactful research endeavors.
Collapse
Affiliation(s)
- Siwen Chen
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Jiangli Xia
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Longwei Cui
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, PR China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China.
| | - Siyu Sun
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
8
|
Lv X, Li H, Chen Y, Wang Y, Chi J, Wang S, Yang Y, Han B, Jiang Z. Crocin-1 laden thermosensitive chitosan-based hydrogel with smart anti-inflammatory performance for severe full-thickness burn wound therapeutics. Carbohydr Polym 2024; 345:122603. [PMID: 39227115 DOI: 10.1016/j.carbpol.2024.122603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Burns are the fourth most common type of civilian trauma worldwide, and the management of severe irregular scald wounds remains a significant challenge. Herein, crocin-1 laden hydroxybutyl chitosan (CRO-HBC) thermosensitive hydrogel with smart anti-inflammatory performance was developed for accelerating full-thickness burn healing. The injectable and shape adaptability of the CRO-HBC gel make it a promising candidate for effectively filling scald wounds with irregular shapes, while simultaneously providing protection against external pathogens. The CRO-HBC gel network formed by hydrophobic interactions exhibited an initial burst release of crocin-1, followed by a gradual and sustained release over time. The excessive release of ROS and pro-inflammatory cytokines should be effectively regulated in the early stage of wound healing. The controlled release of crocin-1 from the CRO-HBC gel adequately addresses this requirement for wound healing. The CRO-HBC hydrogel also exhibited an excellent biocompatibility, an appropriate biodegradability, keratinocyte migration facilitation properties, and a reactive oxygen species scavenging capability. The composite CRO-HBC hydrogel intelligently mitigated inflammatory responses, promoted angiogenesis, and exhibited a commendable efficacy for tissue regeneration in a full-thickness scalding model. Overall, this innovative temperature-sensitive CRO-HBC injectable hydrogel dressing with smart anti-inflammatory performance has enormous potential for managing severe scald wounds.
Collapse
Affiliation(s)
- Xiansen Lv
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Hui Li
- Qingdao Institute of Preventive Medicine, Qingdao Municipal Center for Disease Control & Prevention, Qingdao 266033, PR China
| | - Ya Chen
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanting Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yan Yang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
9
|
Hao H, Hu J, Kuai Z, Hao F, Jiang W, Ran N, He Y, Zhang Y, Huang Y, Qi Y, Luo Q. Enzyme-mediated multifunctional self-healing lysozyme hydrogel for synergistic treatment of chronic diabetic wounds. Int J Biol Macromol 2024; 282:136719. [PMID: 39437956 DOI: 10.1016/j.ijbiomac.2024.136719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Self-healing hydrogels have attracted significant attention in chronic diabetic wound healing due to their potential to minimize the risk of secondary infections caused by joint movement or dressing rupture. Herein, a multifunctional self-healing hydrogel mediated utilizing an enzyme-triggered cascade reaction based on dynamic imine bonds was designed. The hydrogel employs three enzymes: lysozyme (LYZ), glucose oxidase (GOx), and catalase (CAT), as building blocks. GOx catalyzes the conversion of glucose and 1-thio-β-d-glucose (β-GlcSH) into hydrogen peroxide (H2O2), gluconic acid (GA), and hydrogen sulfide (H2S). Subsequently, CAT eliminates H2O2, protecting the imine bonds from oxidative damage. The acidic environment created by GA decreases the pH and regulates the crosslinking density of imine bonds, enhancing the self-healing capability and porosity of the hydrogel. This feature enables the sustained release of the drug rosuvastatin calcium (RCa) to promote endothelial cell migration and vascular regeneration. Combined with the antioxidative and anti-inflammatory effects of released H2S gas and the antibacterial properties of lysozyme, this hydrogel exhibits promising therapeutic efficacy for the synergistic treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Hao Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Juntao Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Ziyu Kuai
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Fengjie Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wantong Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Nana Ran
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuting He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanping Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Camperdown, NSW 2050, Australia.
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD. Cellular and molecular roles of reactive oxygen species in wound healing. Commun Biol 2024; 7:1534. [PMID: 39562800 DOI: 10.1038/s42003-024-07219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Wound healing is a highly coordinated spatiotemporal sequence of events involving several cell types and tissues. The process of wound healing requires strict regulation, and its disruption can lead to the formation of chronic wounds, which can have a significant impact on an individual's health as well as on worldwide healthcare expenditure. One essential aspect within the cellular and molecular regulation of wound healing pathogenesis is that of reactive oxygen species (ROS) and oxidative stress. Wounding significantly elevates levels of ROS, and an array of various reactive species are involved in modulating the wound healing process, such as through antimicrobial activities and signal transduction. However, as in many pathologies, ROS play an antagonistic pleiotropic role in wound healing, and can be a pathogenic factor in the formation of chronic wounds. Whilst advances in targeting ROS and oxidative stress have led to the development of novel pre-clinical therapeutic methods, due to the complex nature of ROS in wound healing, gaps in knowledge remain concerning the specific cellular and molecular functions of ROS in wound healing. In this review, we highlight current knowledge of these functions, and discuss the potential future direction of new studies, and how these pathways may be targeted in future pre-clinical studies.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
Zhang W, Li Y, Wei Y, Jiang Y, Hu Z, Wei Q. Antibacterial carboxymethyl chitosan hydrogel loaded with antioxidant cascade enzymatic system for immunoregulating the diabetic wound microenvironment. Int J Biol Macromol 2024; 282:137539. [PMID: 39537053 DOI: 10.1016/j.ijbiomac.2024.137539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Diabetic wound healing faces several complex challenges, such as hypoxia, oxidative stress, and bacterial infections, which severely inhibit the wound-healing process. Herein, a quaternary ammonium salt-crosslinked carboxymethyl chitosan hydrogel (TPC) with excellent antioxidant and antibacterial properties was developed to immunoregulate the diabetic wound microenvironment. The TPC hydrogel was prepared by first mixing carboxymethyl chitosan (CMCS) and protocatechualdehyde (PA), followed by the addition of a quaternary ammonium cross-linker (TSPBA) and a superoxide dismutase (SOD)-catalase (CAT) cascade system. The immobilized SOD and CAT retained their activity, continuously converting endogenous ·O2- and H2O2 to O2 and H2O. PA also provided the TPC hydrogel excellent oxygen and nitrogen radical scavenging capacity. The quaternary ammonium groups in TSPBA significantly enhanced the inherent antibacterial ability of CMCS-based hydrogels. In diabetic wound-healing experiments, this porous and adhesive TPC hydrogel effectively closed wounds and regenerated skin tissue, resulting in shorter wound edges, thicker granulation, and higher collagen deposition levels compared with other groups. The TPC hydrogel also promoted macrophage polarization toward the M2 phenotype, accelerating wound healing by upregulating IL-10 expression, downregulating IL-6 expression, and enhancing angiogenesis. These results demonstrate the great potential of TPC hydrogel as a promising therapeutic dressing for treating diabetic wounds.
Collapse
Affiliation(s)
- Weiwei Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuxi Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yixing Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Qingcong Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
12
|
Mahmoud NN, Hamad S, Shraim S. Inflammation-Modulating Biomedical Interventions for Diabetic Wound Healing: An Overview of Preclinical and Clinical Studies. ACS OMEGA 2024; 9:44860-44875. [PMID: 39554458 PMCID: PMC11561615 DOI: 10.1021/acsomega.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 11/19/2024]
Abstract
A diabetic wound exemplifies the challenge of chronic, nonhealing wounds. Elevated blood sugar levels in diabetes profoundly disrupt macrophage function, impairing crucial activities such as phagocytosis, immune response, cell migration, and blood vessel formation, all essential for effective wound healing. Moreover, the persistent presence of pro-inflammatory cytokines and reactive oxygen species, coupled with a decrease in anti-inflammatory factors, exacerbates the delay in wound healing associated with diabetes. This review emphasizes the dysfunctional inflammatory responses underlying diabetic wounds and explores preclinical studies of inflammation-modulating bioactives and biomaterials that show promise in expediting diabetic wound healing. Additionally, this review provides an overview of selected clinical studies employing biomaterials and bioactive molecules, shedding light on the gap between extensive preclinical research and limited clinical studies in this field.
Collapse
Affiliation(s)
- Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Salma Hamad
- International
School of London Qatar, Doha 18511, Qatar
| | - Sawsan Shraim
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| |
Collapse
|
13
|
Hejazi S, Carpentieri A, Marotta A, Restaino OF, AntonellaGiarra, Solimeno I, Zannini D, Mariniello L, Giosafatto CVL, Porta R. Chitosan/poly-γ-glutamic acid crosslinked hydrogels: Characterization and application as bio-glues. Int J Biol Macromol 2024; 277:133653. [PMID: 38992534 DOI: 10.1016/j.ijbiomac.2024.133653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Ecofriendly hydrogels were prepared using chitosan (CH, 285 kDa) and two fractions of low molecular weight microbial poly-γ-glutamic acid (γ-PGA) (R1 and R2 of 59 kDa and 20 kDa, respectively). The hydrogels were synthesized through sustainable physical blending, employing three CH/γ-PGA mass ratios (1/9, 2/8, and 3/7), resulting in the formation of physically crosslinked materials. The six resulting CH/R1 and CH/R2 hydrogels were physico-chemically characterized and the ones with the highest yields (CH/R1 and CH/R2 ratio of 3/7), analyzed for rheological and morphological properties, showed to act as bio-glues on wood and aluminum compared to commercial vinyl- (V1) and acetovinyl (V2) glues. Lap shear analyses of CH/R1 and CH/R2 blends exhibited adhesive strength on wood, as well as adhesive/cohesive failure like that of V1 and V2. Conversely, CH/R2 had higher adhesive strength and adhesive/cohesive failure on aluminum, while CH/R1 showed an adhesion strength with adhesive failure on the metal similar to that of V1 and V2. Scanning electron microscopy revealed the formation of strong physical bonds between the hydrogels and both substrates. Beyond their use as bio-adhesives, the unique properties of the resulting crosslinked materials make them potentially suitable for various applications in paint, coatings, heritage preservation, and medical sector.
Collapse
Affiliation(s)
- Sondos Hejazi
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Angela Marotta
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples "Federico II", 80126 Naples, Italy
| | | | - AntonellaGiarra
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Ilaria Solimeno
- University Suor Orsola Benincasa, Department of Humanities, Via Santa Caterina da Siena, 32, Naples 80132, Italy
| | - Domenico Zannini
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy; Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy; Institute of Chemical Sciences and Technologies "G. Natta" (SCITEC), National Council of Research, Via De Marini 6, 16149, Genova (GE), Italy
| | - Loredana Mariniello
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - C Valeria L Giosafatto
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy.
| | - Raffaele Porta
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| |
Collapse
|
14
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
15
|
Dai S, Jiang L, Liu L, Su Z, Yao L, Yang P, Huang N. MOF-encapsulated copper-doped carbon dots nanozymes with excellent biological activity promote diabetes wound healing. Regen Biomater 2024; 11:rbae119. [PMID: 39575300 PMCID: PMC11580684 DOI: 10.1093/rb/rbae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 11/24/2024] Open
Abstract
Poor wound healing in diabetics is primarily caused by persistently high levels of inflammation and recurrent bacterial infections. The catalytic therapy technique based on nanozyme medicine has emerged as a beacon of hope for patients with diabetic wounds. However, the use of a single-atom nanozyme may still have limitations, including nanozyme burst release, immunological clearance and insufficient antibacterial activity. To address the aforementioned problems, we provide a new nano-catalytic therapeutic agent for diabetic skin ulcers that incorporates a single-atom nanozyme with high antioxidant activity into a metal-organic framework (ZIF-Cu/C-dots). First, a Cu single-atom nanozyme supported by ultra-small carbon dots (Cu/C-dots) with high antioxidant activity was created. A nanozyme-integrated metal-organic framework was then created, utilizing Cu/C-dots as ligands and Zn2+ as the core metal. Cu/C-dots have good oxidase-like activity, shielding the biological system from ROS damage and reducing the expression of TNF-α and IL-1β. Zn2+ also has good antibacterial activity (the antibacterial rate was more than 90%). This integrated technique prevents nanozyme aggregation, improves nanozyme biocompatibility, slows down the breakdown of ZIF and allows for the regulated release of Cu/C-dots and Zn2+ as needed. Finally, in vivo studies have shown that ZIF-Cu/C-dots can effectively alleviate inflammation at the site of diabetic wounds, accelerate vascular regeneration, promote collagen deposition and enhance tissue remodeling, serving as a novel nano-catalytic platform for the treatment of wounds that are difficult to heal.
Collapse
Affiliation(s)
- Sheng Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Lang Jiang
- Air Force Medical Center, PLA, Beijing 100074, China
| | - Luying Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Zhaogui Su
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Li Yao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Ping Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Nan Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
16
|
Sang F, Liu C, Yan J, Su J, Niu S, Wang S, Zhao Y, Dang Q. Polysaccharide- and protein-based hydrogel dressings that enhance wound healing: A review. Int J Biol Macromol 2024; 280:135482. [PMID: 39278437 DOI: 10.1016/j.ijbiomac.2024.135482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Hydrogels can possess desired biochemical and mechanical properties, excellent biocompatibility, satisfactory biodegradability, and biological capabilities that promote skin repair, making them ideal candidates for skin healing dressings. Polysaccharides, such as chitosan, hyaluronic acid and sodium alginate as well as proteins, including gelatin, collagen and fibroin proteins, are biological macromolecules celebrated for their biocompatibility and biodegradability, are at the forefront of innovative hydrogel dressing development. This work first summarizes the skin wound healing process and its influencing factors, and then systematically articulates the multifunctional roles of hydrogels based on biological macromolecules (polysaccharides and proteins) as dressing in addressing bacterial infection, hemorrhage and inflammation during wound healing. Furthermore, this review explores the potential of these hydrogels as vehicles for combination therapy, by incorporating growth factors or stem cells. Finally, the article offers insights into future directions of such hydrogels in wound repair field.
Collapse
Affiliation(s)
- Feng Sang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jingquan Yan
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Jieyu Su
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Siyu Niu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shiyun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
17
|
Guo J, Yang Y, Xiang Y, Zhang S, Guo X. Application of smart hydrogel materials in cartilage injury repair: A systematic review and meta-analysis. J Biomater Appl 2024; 39:96-116. [PMID: 38708775 DOI: 10.1177/08853282241248779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Cartilage injury is a common clinical condition, and treatment approaches have evolved over time from traditional conservative and surgical methods to regenerative repair. In this context, hydrogels, as widely used biomaterials in the field of cartilage repair, have garnered significant attention. Particularly, responsive hydrogels (also known as "smart hydrogels") have shown immense potential due to their ability to respond to various physicochemical properties and environmental changes. This paper aims to review the latest research developments of hydrogels in cartilage repair, utilizing a more systematic and comprehensive meta-analysis approach to evaluate the research status and application value of responsive hydrogels. The goal is to determine whether these materials demonstrate favorable therapeutic effects for subsequent clinical applications, thereby offering improved treatment methods for patients with cartilage injuries. METHOD This study employed a systematic literature search method to summarize the research progress of responsive hydrogels by retrieving literature on the subject and review studies. The search terms included "hydrogel" and "cartilage," covering data from database inception up to October 2023. The quality of the literature was independently evaluated using Review Manager v5.4 software. Quantifiable data was statistically analyzed using the R language. RESULTS A total of 7 articles were retrieved for further meta-analysis. In the quality assessment, the studies demonstrated reliability and accuracy. The results of the meta-analysis indicated that responsive hydrogels exhibit unique advantages and effective therapeutic outcomes in the field of cartilage repair. Subgroup analysis revealed potential influences of factors such as different types of hydrogels and animal models on treatment effects. CONCLUSION Responsive hydrogels show significant therapeutic effects and substantial application potential in the field of cartilage repair. This study provides strong scientific evidence for their further clinical applications and research, with the hope of promoting advancements in the treatment of cartilage injuries.
Collapse
Affiliation(s)
- Juncheng Guo
- Central Laboratory of Haikou People's Hospital, Haikou Affiliated Hospital of Xiangya Medical College, Central South University, Haikou, P. R. China
| | - Yijun Yang
- Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Yang Xiang
- Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Shufang Zhang
- Central Laboratory, Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Xueyi Guo
- Central South University, Changsha, P. R. China
| |
Collapse
|
18
|
Hu XQ, Zhu JZ, Hao Z, Tang L, Sun J, Sun WR, Hu J, Wang PY, Basmadji NP, Pedraz JL, Vairo C, Lafuente EG, Ramalingam M, Xie S, Wang R. Renewable Electroconductive Hydrogels for Accelerated Diabetic Wound Healing and Motion Monitoring. Biomacromolecules 2024; 25:3566-3582. [PMID: 38780026 DOI: 10.1021/acs.biomac.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Diabetic foot ulcers (DFUs), a prevalent complication of diabetes mellitus, may result in an amputation. Natural and renewable hydrogels are desirable materials for DFU dressings due to their outstanding biosafety and degradability. However, most hydrogels are usually only used for wound repair and cannot be employed to monitor motion because of their inherent poor mechanical properties and electrical conductivity. Given that proper wound stretching is beneficial for wound healing, the development of natural hydrogel patches integrated with wound repair properties and motion monitoring was expected to achieve efficient and accurate wound healing. Here, we designed a dual-network (chitosan and sodium alginate) hydrogel embedded with lignin-Ag and quercetin-melanin nanoparticles to achieve efficient wound healing and motion monitoring. The double network formed by the covalent bond and electrostatic interaction confers the hydrogel with superior mechanical properties. Instead of the usual chemical reagents, genipin extracted from Gardenia was used as a cross-linking agent for the hydrogel and consequently improved its biosafety. Furthermore, the incorporation of lignin-Ag nanoparticles greatly enhanced the mechanical strength, antibacterial efficacy, and conductivity of the hydrogel. The electrical conductivity of hydrogels gives them the capability of motion monitoring. The motion sensing mechanism is that stretching of the hydrogel induced by motion changes the conductivity of the hydrogel, thus converting the motion into an electrical signal. Meanwhile, quercetin-melanin nanoparticles confer exceptional adhesion, antioxidant, and anti-inflammatory properties to the hydrogels. The system ultimately achieved excellent wound repair and motion monitoring performance and was expected to be used for stretch-assisted safe and accurate wound repair in the future.
Collapse
Affiliation(s)
- Xiao Qian Hu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jia Zhi Zhu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Letian Tang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jian Sun
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wan Ru Sun
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jiaxiang Hu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ping Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Nicola Paccione Basmadji
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Claudia Vairo
- BIOSASUN S.A., Ctra. Allo-Arroniz Km1, Navarra 31263, Spain
| | | | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| |
Collapse
|
19
|
Zubair M, Hussain A, Shahzad S, Arshad M, Ullah A. Emerging trends and challenges in polysaccharide derived materials for wound care applications: A review. Int J Biol Macromol 2024; 270:132048. [PMID: 38704062 DOI: 10.1016/j.ijbiomac.2024.132048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Polysaccharides are favourable and promising biopolymers for wound care applications due to their abundant natural availability, low cost and excellent biocompatibility. They possess different functional groups, such as carboxylic, hydroxyl and amino, and can easily be modified to obtain the desirable properties and various forms. This review systematically analyses the recent progress in polysaccharides derived materials for wound care applications, emphasizing the most commonly used cellulose, chitosan, alginate, starch, dextran and hyaluronic acid derived materials. The distinctive attributes of each polysaccharide derived wound care material are discussed in detail, along with their different forms, i.e., films, membranes, sponges, nanoemulsions, nanofibers, scaffolds, nanocomposites and hydrogels. The processing methods to develop polysaccharides derived wound care materials are also summarized. In the end, challenges related to polysaccharides derived materials in wound care management are listed, and suggestions are given to expand their utilization in the future to compete with conventional wound healing materials.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Muhammad Arshad
- Clean Technologies and Applied Research, Northern Alberta Institute of Technology, Edmonton, Alberta T5G 2R1, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
20
|
Zhu Z, Ding J, Qin M, Wang L, Jiang D, Zhao J, Wang D, Jia W. Enhanced ·OH-Scavenging Activity of Cu-CeO x Nanozyme via Resurrecting Macrophage Nrf2 Transcriptional Activity Facilitates Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2303229. [PMID: 38298062 DOI: 10.1002/adhm.202303229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Diabetic wounds are a prevalent and devastating complication of diabetes, which may impede their healing and regeneration. In diabetic wounds, excess reactive oxygen species (ROS) activate the nuclear factor kappa-B pathway, leading to transcriptional silencing of nuclear factor erythroid 2-related factor 2 (Nrf2), resulting in a vicious cycle of oxidative stress and inflammation. Conventional nanozymes have limitations in preventing the continuous production of ROS, including the most oxidizing reactive hydroxyl radical (·OH), although they can remove pre-existing ROS. Herein, a novel antioxidant nanoplatform addresses this challenge by incorporating JSH-23 into the mesoporous of cupric-doped cerium oxide nanozymes. Additionally, for rapid wound adaptability and durable tissue adhesion, a nanozyme hydrogel spray consisting of oxidized sodium alginate and methacrylate gelatin is constructed, named OG@CCJs. This platform resurrects Nrf2 transcriptional activity of macrophages in vitro, curbing the production of ROS at its source, particularly ·OH, while enabling the nanozymes to scavenge previously generated ROS. OG@CCJs significantly alleviate oxidative stress in diabetic wounds in vivo, promoting wound healing. Overall, the proposed nanozyme-hydrogel spray with enhanced ·OH-scavenging activity uses a "two-track" antioxidant strategy to rebuild the antioxidant defense barrier of macrophages. This pioneering approach highlights the tremendous potential of OG@CCJs for facilitating diabetic wound healing.
Collapse
Affiliation(s)
- Ziyang Zhu
- Postgraduate Training Base of Jinzhou Medical University in Shanghai Sixth People's Hospital, Jinzhou Medical University, Jinzhou, 121001, China
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jingxin Ding
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Muyan Qin
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Lingtian Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Dajun Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Weitao Jia
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
21
|
Li Y, Leng Y, Liu Y, Zhong J, Li J, Zhang S, Li Z, Yang K, Kong X, Lao W, Bi C, Zhai A. Advanced multifunctional hydrogels for diabetic foot ulcer healing: Active substances and biological functions. J Diabetes 2024; 16:e13537. [PMID: 38599855 PMCID: PMC11006623 DOI: 10.1111/1753-0407.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 04/12/2024] Open
Abstract
AIM Hydrogels with excellent biocompatibility and biodegradability can be used as the desirable dressings for the therapy of diabetic foot ulcer (DFU). This review aimed to summarize the biological functions of hydrogels, combining with the pathogenesis of DFU. METHODS The studies in the last 10 years were searched and summarized from the online database PubMed using a combination of keywords such as hydrogel and diabetes. The biological functions of hydrogels and their healing mechanism on DFU were elaborated. RESULTS In this review, hydrogels were classified by their active substances such as drugs, cytokines, photosensitizers, and biomimetic peptide. Based on this, the biological functions of hydrogels were summarized by associating the pathogenesis of DFU, including oxidative stress, chronic inflammation, cell phenotype change, vasculopathy, and infection. This review also pointed out some of the shortcomings of hydrogels in present researches. CONCLUSIONS Hydrogels were classified into carrier hydrogels and self-functioning hydrogels in this review. Besides, the functions and components of existing hydrogels were clarified to provide assistance for future researches and clinical applications.
Collapse
Affiliation(s)
- Yuetong Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yuxin Leng
- Department of Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jianhua Zhong
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jiaxin Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shitong Zhang
- Department of General Practice, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
22
|
Perez-Araluce M, Jüngst T, Sanmartin C, Prosper F, Plano D, Mazo MM. Biomaterials-Based Antioxidant Strategies for the Treatment of Oxidative Stress Diseases. Biomimetics (Basel) 2024; 9:23. [PMID: 38248597 PMCID: PMC10813727 DOI: 10.3390/biomimetics9010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress is characterized by an increase in reactive oxygen species or a decrease in antioxidants in the body. This imbalance leads to detrimental effects, including inflammation and multiple chronic diseases, ranging from impaired wound healing to highly impacting pathologies in the neural and cardiovascular systems, or the bone, amongst others. However, supplying compounds with antioxidant activity is hampered by their low bioavailability. The development of biomaterials with antioxidant capacity is poised to overcome this roadblock. Moreover, in the treatment of chronic inflammation, material-based strategies would allow the controlled and targeted release of antioxidants into the affected tissue. In this review, we revise the main causes and effects of oxidative stress, and survey antioxidant biomaterials used for the treatment of chronic wounds, neurodegenerative diseases, cardiovascular diseases (focusing on cardiac infarction, myocardial ischemia-reperfusion injury and atherosclerosis) and osteoporosis. We anticipate that these developments will lead to the emergence of new technologies for tissue engineering, control of oxidative stress and prevention of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Maria Perez-Araluce
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
| | - Tomasz Jüngst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, D-97070 Würzburg, Germany
- Bavarian Polymer Institute, University of Bayreuth, 95447 Bayreuth, Germany
| | - Carmen Sanmartin
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Felipe Prosper
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC) CB16/12/00489, 28029 Madrid, Spain
- Hemato-Oncology Program, Cancer Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Manuel M. Mazo
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| |
Collapse
|
23
|
Zhuo S, Liang Y, Wu Z, Zhao X, Han Y, Guo B. Supramolecular hydrogels for wound repair and hemostasis. MATERIALS HORIZONS 2024; 11:37-101. [PMID: 38018225 DOI: 10.1039/d3mh01403g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The unique network characteristics and stimuli responsiveness of supramolecular hydrogels have rendered them highly advantageous in the field of wound dressings, showcasing unprecedented potential. However, there are few reports on a comprehensive review of supramolecular hydrogel dressings for wound repair and hemostasis. This review first introduces the major cross-linking methods for supramolecular hydrogels, which includes hydrogen bonding, electrostatic interactions, hydrophobic interactions, host-guest interactions, metal ligand coordination and some other interactions. Then, we review the advanced materials reported in recent years and then summarize the basic principles of each cross-linking method. Next, we classify the network structures of supramolecular hydrogels before outlining their forming process and propose their potential future directions. Furthermore, we also discuss the raw materials, structural design principles, and material characteristics used to achieve the advanced functions of supramolecular hydrogels, such as antibacterial function, tissue adhesion, substance delivery, anti-inflammatory and antioxidant functions, cell behavior regulation, angiogenesis promotion, hemostasis and other innovative functions in recent years. Finally, the existing problems as well as future development directions of the cross-linking strategy, network design, and functions in wound repair and hemostasis of supramolecular hydrogels are discussed. This review is proposed to stimulate further exploration of supramolecular hydrogels on wound repair and hemostasis by researchers in the future.
Collapse
Affiliation(s)
- Shaowen Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhengying Wu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
24
|
Badwaik HR, Sakure K, Giri TK. Hydrogels based on heparin and its conjugates. POLYSACCHARIDE HYDROGELS FOR DRUG DELIVERY AND REGENERATIVE MEDICINE 2024:69-87. [DOI: 10.1016/b978-0-323-95351-1.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Huang X, Zheng Y, Ming J, Ning X, Bai S. Natural polymer-based bioadhesives as hemostatic platforms for wound healing. Int J Biol Macromol 2024; 256:128275. [PMID: 38000608 DOI: 10.1016/j.ijbiomac.2023.128275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Medical adhesives are advanced but challenging alternatives to wound closure and repair, especially in mitigating uncontrolled hemorrhage. Ideal hemostatic adhesives need to meet good biocompatibility and biodegradability, adequate mechanical strength, and strong tissue adhesion functionality under wet and dynamic conditions. Considering these requirements, natural polymers such as polysaccharide, protein and DNA, attract great attention as candidates for making bioadhesives because of their distinctive physicochemical performances and biological properties. This review systematically summarizes the advances of bioadhesives based on natural polysaccharide, protein and DNA. Various physical and chemical cross-linking strategies have been introduced for adhesive synthesis and their hemostatic applications are introduced from the aspect of versatility. Furthermore, the possible challenges and future opportunities of bioadhesives are discussed, providing insights into the development of high-performance hemostatic materials.
Collapse
Affiliation(s)
- Xiaowei Huang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yankun Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jinfa Ming
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China.
| | - Xin Ning
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
26
|
Zhang L, Dong Y, Liu Y, Liu X, Wang Z, Wan J, Yu X, Wang S. Multifunctional hydrogel/platelet-rich fibrin/nanofibers scaffolds with cell barrier and osteogenesis for guided tissue regeneration/guided bone regeneration applications. Int J Biol Macromol 2023; 253:126960. [PMID: 37741482 DOI: 10.1016/j.ijbiomac.2023.126960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Periodontal defect seriously affects people's life health and quality. Guided tissue regeneration (GTR) and guided bone regeneration (GBR) have made great progress in periodontal disease treatment, but some deficiencies existed in commercial materials of GTR and GBR. For obtaining better therapeutic effects, multifunctional composite scaffolds containing different biological macromolecules were developed in this study. Chitosan/poly (γ-glutamic acid)/nano-hydroxyapatite hydrogels (CP/nHA) made by electrostatic interactions and lyophilization were filled in the bone defects to achieve osteogenesis. Platelet-rich fibrin (PRF) extracted from blood could accelerate bone formation by releasing various bioactive substances as middle layer of composite scaffolds. Polycaprolactone/gelatin nanofibers (PG) prepared by electrospinning were attached to the junction of soft and hard tissue, which could prevent fibrous tissue from infiltrating into bone defects. The composite scaffolds showed good morphology, biocompatibility, cell barriers and osteogenic differentiation in vitro. The excellent ability of bone formation was verified by implantation of triple-layered composite scaffolds into alveolar bone defects in rabbit in vivo. The hierarchical structure was conducive to personalized customization to meet the needs of different defects. All in all, the multifunctional scaffolds could play important roles of GTR and GBR in alveolar bone regeneration and provide good application prospect for bone repair in clinic.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangsheng Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhitao Wang
- Department of Periodontid, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral Function Reconstruction, Tianjin 300041, China
| | - Jinpeng Wan
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Yu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253:127331. [PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
28
|
Tang L, Zhang Z, Lei S, Zhou J, Liu Y, Yu X, Wang J, Wan D, Shi J, Wang S. A temperature and pH dual-responsive injectable self-healing hydrogel prepared by chitosan oligosaccharide and aldehyde hyaluronic acid for promoting diabetic foot ulcer healing. Int J Biol Macromol 2023; 253:127213. [PMID: 37793511 DOI: 10.1016/j.ijbiomac.2023.127213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Chronic wound, such as skin defect after burn, pressure ulcer, and diabetic foot ulcer is very difficult to cure. Its pathological process is often accompanied with local temperature rise, pH decrease, and other phenomena. Owing to their outstanding hydrophilic, biocompatibility, and responsive properties, hydrogels could accelerate the healing process. In this study, we chose chitosan oligosaccharide (COS) grafted with Pluronic F127 (F127-COS). Aldehyde hyaluronic acid (A-HA) oxidized by NaIO4. And added boric acid (BA) to prepare a thermosensitive and pH-responsive injectable self-healing F127-COS/A-HA/COS/BA (FCAB) hydrogel, loaded with drug deferoxamine (DFO) in order to have an accurate release and promote angiogenesis of diabetic foot ulcer. In vitro experiments had verified that the FCAB hydrogel system loaded with DFO (FCAB/D) could promote migration and angiogenesis of HUVEC. A diabetes rat back wound model further confirmed its role in promoting angiogenesis in wound repair process. The results showed that the FCAB/D hydrogel exhibited unique physicochemical properties, excellent biocompatibility, and significantly enhanced therapeutic effects for diabetic foot ulcer.
Collapse
Affiliation(s)
- Lizong Tang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute of Disaster and Emergency Medicine, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Zeyu Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Yu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dongdong Wan
- Department of Orthopedic Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 3000192, China.
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Weijin Road 92, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China.
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
29
|
Cai M, Han Y, Zheng X, Xue B, Zhang X, Mahmut Z, Wang Y, Dong B, Zhang C, Gao D, Sun J. Synthesis of Poly-γ-Glutamic Acid and Its Application in Biomedical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:15. [PMID: 38203869 PMCID: PMC10779536 DOI: 10.3390/ma17010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer composed of glutamic acid monomer and it has garnered substantial attention in both the fields of material science and biomedicine. Its remarkable cell compatibility, degradability, and other advantageous characteristics have made it a vital component in the medical field. In this comprehensive review, we delve into the production methods, primary application forms, and medical applications of γ-PGA, drawing from numerous prior studies. Among the four production methods for PGA, microbial fermentation currently stands as the most widely employed. This method has seen various optimization strategies, which we summarize here. From drug delivery systems to tissue engineering and wound healing, γ-PGA's versatility and unique properties have facilitated its successful integration into diverse medical applications, underlining its potential to enhance healthcare outcomes. The objective of this review is to establish a foundational knowledge base for further research in this field.
Collapse
Affiliation(s)
- Minjian Cai
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yumin Han
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xianhong Zheng
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Baigong Xue
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xinyao Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Zulpya Mahmut
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yuda Wang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Chunmei Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Donghui Gao
- Department of Anesthesiology and Operating Room, School and Hospital of Stomatology, Jilin University, Changchun 130012, China
| | - Jiao Sun
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| |
Collapse
|
30
|
Dong Y, Wang Z. ROS-scavenging materials for skin wound healing: advancements and applications. Front Bioeng Biotechnol 2023; 11:1304835. [PMID: 38149175 PMCID: PMC10749972 DOI: 10.3389/fbioe.2023.1304835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
The intricate healing process of skin wounds includes a variety of cellular and molecular events. Wound healing heavily relies on reactive oxygen species (ROS), which are essential for controlling various processes, including inflammation, cell growth, angiogenesis, granulation, and the formation of extracellular matrix. Nevertheless, an overabundance of reactive oxygen species (ROS) caused by extended oxidative pressure may result in the postponement or failure of wound healing. It is crucial to comprehend the function of reactive oxygen species (ROS) and create biomaterials that efficiently eliminate ROS to enhance the healing process of skin wounds. In this study, a thorough examination is presented on the role of reactive oxygen species (ROS) in the process of wound healing, along with an exploration of the existing knowledge regarding biomaterials employed for ROS elimination. In addition, the article covers different techniques and substances used in the management of skin wound. The future prospects and clinical applications of enhanced biomaterials are also emphasized, highlighting the potential of biomaterials that scavenge active oxygen to promote skin repair. This article seeks to enhance the understanding of the complex processes of ROS in the healing of wounds and the application of ROS-scavenging materials. Its objective is to create novel strategies for effective treatment skin wounds.
Collapse
Affiliation(s)
- Yongkang Dong
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zheng Wang
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Lee H, Jung Y, Lee N, Lee I, Lee JH. Nature-Derived Polysaccharide-Based Composite Hydrogels for Promoting Wound Healing. Int J Mol Sci 2023; 24:16714. [PMID: 38069035 PMCID: PMC10706343 DOI: 10.3390/ijms242316714] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Numerous innovative advancements in dressing technology for wound healing have emerged. Among the various types of wound dressings available, hydrogel dressings, structured with a three-dimensional network and composed of predominantly hydrophilic components, are widely used for wound care due to their remarkable capacity to absorb abundant wound exudate, maintain a moisture environment, provide soothing and cooling effects, and mimic the extracellular matrix. Composite hydrogel dressings, one of the evolved dressings, address the limitations of traditional hydrogel dressings by incorporating additional components, including particles, fibers, fabrics, or foams, within the hydrogels, effectively promoting wound treatment and healing. The added elements enhance the features or add specific functionalities of the dressings, such as sensitivity to external factors, adhesiveness, mechanical strength, control over the release of therapeutic agents, antioxidant and antimicrobial properties, and tissue regeneration behavior. They can be categorized as natural or synthetic based on the origin of the main components of the hydrogel network. This review focuses on recent research on developing natural polysaccharide-based composite hydrogel wound dressings. It explores their preparation and composition, the reinforcement materials integrated into hydrogels, and therapeutic agents. Furthermore, it discusses their features and the specific types of wounds where applied.
Collapse
Affiliation(s)
| | | | | | | | - Jin Hyun Lee
- School of Bio-Convergence Science, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
32
|
Shu QH, Zuo RT, Chu M, Shi JJ, Ke QF, Guan JJ, Guo YP. Fiber-reinforced gelatin/β-cyclodextrin hydrogels loaded with platelet-rich plasma-derived exosomes for diabetic wound healing. BIOMATERIALS ADVANCES 2023; 154:213640. [PMID: 37804684 DOI: 10.1016/j.bioadv.2023.213640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
Diabetic complications with high-glucose status (HGS) cause the dysregulated autophagy and excessive apoptosis of multiple-type cells, leading to the difficulty in wound self-healing. Herein, we firstly developed fiber-reinforced gelatin (GEL)/β-cyclodextrin (β-CD) therapeutic hydrogels by the modification of platelet-rich plasma exosomes (PRP-EXOs). The GEL fibers that were uniformly dispersed within the GEL/β-CD hydrogels remarkably enhanced the compression strengths and viscoelasticity. The PRP-EXOs were encapsulated in the hydrogels via the covalent crosslinking between the PRP-EXOs and genipin. The diabetic rat models demonstrated that the GEL/β-CD hydrogels and PRP-EXOs cooperatively promoted diabetic wound healing. On the one hand, the GEL/β-CD hydrogels provided the biocompatible microenvironments and active components for cell adhesion, proliferation and skin tissue regeneration. On the other hand, the PRP-EXOs in the therapeutic hydrogels significantly activated the autophagy and inhibited the apoptosis of human umbilical vein endothelial cells (HUVECs) and human skin fibroblasts (HSFs). The activation of autophagy and inhibition of apoptosis in HUVECs and HSFs induced the blood vessel creation, collagen formation and re-epithelialization. Taken together, this work proved that the incorporation of PRP-EXOs in a wound dressing was an effective strategy to regulate autophagy and apoptosis, and provide a novel therapeutic platform for diabetic wound healing.
Collapse
Affiliation(s)
- Qiu-Hao Shu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Rong-Tai Zuo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Min Chu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Jing-Jing Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Jun-Jie Guan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
33
|
Li M, Xia W, Khoong YM, Huang L, Huang X, Liang H, Zhao Y, Mao J, Yu H, Zan T. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res 2023; 27:87. [PMID: 37717028 PMCID: PMC10504797 DOI: 10.1186/s40824-023-00426-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
34
|
Pan S, Zhu C, Wu Y, Tao L. Chitosan-Based Self-Healing Hydrogel: From Fabrication to Biomedical Application. Polymers (Basel) 2023; 15:3768. [PMID: 37765622 PMCID: PMC10535505 DOI: 10.3390/polym15183768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Biocompatible self-healing hydrogels are new-generation smart soft materials that hold great promise in biomedical fields. Chitosan-based self-healing hydrogels, mainly prepared via dynamic imine bonds, have attracted broad attention due to their mild preparation conditions, excellent biocompatibility, and self-recovery ability under a physiological environment. In this review, we present a comprehensive overview of the design and fabrication of chitosan-based self-healing hydrogels, and summarize their biomedical applications in tissue regeneration, customized drug delivery, smart biosensors, and three/four dimensional (3D/4D) printing. Finally, we will discuss the challenges and future perspectives for the development of chitosan-based self-healing hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Chongyu Zhu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China;
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
35
|
Laganà A, Facciolà A, Iannazzo D, Celesti C, Polimeni E, Biondo C, Di Pietro A, Visalli G. Promising Materials in the Fight against Healthcare-Associated Infections: Antibacterial Properties of Chitosan-Polyhedral Oligomeric Silsesquioxanes Hybrid Hydrogels. J Funct Biomater 2023; 14:428. [PMID: 37623672 PMCID: PMC10456118 DOI: 10.3390/jfb14080428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
New technologies and materials could help in this fight against healthcare-associated infections. As the majority of these infections are caused by antibiotic-resistant bacteria, the development of materials with intrinsic antibacterial properties is a promising field of research. We combined chitosan (CS), with antibacterial properties, with polyhedral oligomeric silsesquioxanes (POSS), a biocompatible polymer with physico-chemical, mechanical, and rheological properties, creating a hydrogel using cross-linking agent genipin. The antibacterial properties of CS and CS-POSS hydrogels were investigated against nosocomial Gram-positive and Gram-negative bacteria both in terms of membrane damage and surface charge variations, and finally, the anti-biofilm property was studied through confocal microscopy. Both materials showed a good antibacterial capacity against all analyzed strains, both in suspension, with % decreases between 36.36 and 73.58 for CS and 29.86 and 66.04 for CS-POSS, and in plates with % decreases between 55.29 and 78.32 and 17.00 and 53.99 for CS and CS-POSS, respectively. The treated strains compared to the baseline condition showed an important membrane damage, which also determined a variation of surface charges, and finally, for both hydrogels, a remarkable anti-biofilm property was highlighted. Our findings showed a possible future use of these biocompatible materials in the manufacture of medical and surgical devices with intrinsic antibacterial and anti-biofilm properties.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche s.p.a., 98124 Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
| | - Daniela Iannazzo
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98166 Messina, Italy; (D.I.); (C.C.)
| | - Consuelo Celesti
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98166 Messina, Italy; (D.I.); (C.C.)
| | - Evelina Polimeni
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (E.P.); (C.B.)
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (E.P.); (C.B.)
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
| |
Collapse
|
36
|
Taheriazam A, Entezari M, Firouz ZM, Hajimazdarany S, Hossein Heydargoy M, Amin Moghadassi AH, Moghadaci A, Sadrani A, Motahhary M, Harif Nashtifani A, Zabolian A, Tabari T, Hashemi M, Raesi R, Jiang M, Zhang X, Salimimoghadam S, Ertas YN, Sun D. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives. ENVIRONMENTAL RESEARCH 2023; 228:115912. [PMID: 37068723 DOI: 10.1016/j.envres.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Hossein Amin Moghadassi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amin Sadrani
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
37
|
Berradi A, Aziz F, Achaby ME, Ouazzani N, Mandi L. A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials. Polymers (Basel) 2023; 15:2908. [PMID: 37447553 DOI: 10.3390/polym15132908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Polysaccharides have emerged as a promising material for hydrogel preparation due to their biocompatibility, biodegradability, and low cost. This review focuses on polysaccharide-based hydrogels' synthesis, characterization, and applications. The various synthetic methods used to prepare polysaccharide-based hydrogels are discussed. The characterization techniques are also highlighted to evaluate the physical and chemical properties of polysaccharide-based hydrogels. Finally, the applications of SAPs in various fields are discussed, along with their potential benefits and limitations. Due to environmental concerns, this review shows a growing interest in developing bio-sourced hydrogels made from natural materials such as polysaccharides. SAPs have many beneficial properties, including good mechanical and morphological properties, thermal stability, biocompatibility, biodegradability, non-toxicity, abundance, economic viability, and good swelling ability. However, some challenges remain to be overcome, such as limiting the formulation complexity of some SAPs and establishing a general protocol for calculating their water absorption and retention capacity. Furthermore, the development of SAPs requires a multidisciplinary approach and research should focus on improving their synthesis, modification, and characterization as well as exploring their potential applications. Biocompatibility, biodegradation, and the regulatory approval pathway of SAPs should be carefully evaluated to ensure their safety and efficacy.
Collapse
Affiliation(s)
- Achraf Berradi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Mounir El Achaby
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| |
Collapse
|
38
|
Li Y, Chen Z, Zhang P, Gao F, Wang J, Lin L, Zhang H. Characterization of a Novel Superoxide Dismutase from a Deep-sea Sea Cucumber ( Psychoropotes verruciaudatus). Antioxidants (Basel) 2023; 12:1227. [PMID: 37371957 DOI: 10.3390/antiox12061227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
At present, deep-sea enzymes are a research hotspot. In this study, a novel copper-zinc superoxide dismutase (CuZnSOD) was successfully cloned and characterized from a new species of sea cucumber Psychropotes verruciaudatus (PVCuZnSOD). The relative molecular weight of the PVCuZnSOD monomer is 15 kDa. The optimum temperature of PVCuZnSOD is 20 °C, and it maintains high activity in the range of 0-60 °C. It also has high thermal stability when incubated at 37 °C. PVCuZnSOD has a maximum activity of more than 50% in the pH range of 4-11 and a high activity at pH 11. In addition, PVCuZnSOD has strong tolerance to Ni2+, Mg2+, Ba2+, and Ca2+, and it can withstand chemical reagents, such as Tween20, TritonX-100, ethanol, glycerol, isopropanol, DMSO, urea, and GuHCl. PVCuZnSOD also shows great stability to gastrointestinal fluid compared with bovine SOD. These characteristics show that PVCuZnSOD has great application potential in medicine, food, and other products.
Collapse
Affiliation(s)
- Yanan Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510222, China
| | - Zongfu Chen
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510222, China
| | - Peng Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Feng Gao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510222, China
| | - Junfeng Wang
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510222, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
39
|
Panahi HKS, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, Yang Y, Peng W, Pan J, Aghbashlo M, Tabatabaei M. Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnol Adv 2023; 66:108172. [PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Even with some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically reviews the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
40
|
Xu Y, Hu Q, Wei Z, Ou Y, Cao Y, Zhou H, Wang M, Yu K, Liang B. Advanced polymer hydrogels that promote diabetic ulcer healing: mechanisms, classifications, and medical applications. Biomater Res 2023; 27:36. [PMID: 37101201 PMCID: PMC10134570 DOI: 10.1186/s40824-023-00379-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Diabetic ulcers (DUs) are one of the most serious complications of diabetes mellitus. The application of a functional dressing is a crucial step in DU treatment and is associated with the patient's recovery and prognosis. However, traditional dressings with a simple structure and a single function cannot meet clinical requirements. Therefore, researchers have turned their attention to advanced polymer dressings and hydrogels to solve the therapeutic bottleneck of DU treatment. Hydrogels are a class of gels with a three-dimensional network structure that have good moisturizing properties and permeability and promote autolytic debridement and material exchange. Moreover, hydrogels mimic the natural environment of the extracellular matrix, providing suitable surroundings for cell proliferation. Thus, hydrogels with different mechanical strengths and biological properties have been extensively explored as DU dressing platforms. In this review, we define different types of hydrogels and elaborate the mechanisms by which they repair DUs. Moreover, we summarize the pathological process of DUs and review various additives used for their treatment. Finally, we examine the limitations and obstacles that exist in the development of the clinically relevant applications of these appealing technologies. This review defines different types of hydrogels and carefully elaborate the mechanisms by which they repair diabetic ulcers (DUs), summarizes the pathological process of DUs, and reviews various bioactivators used for their treatment.
Collapse
Affiliation(s)
- Yamei Xu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Qiyuan Hu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Zongyun Wei
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Yi Ou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China
| | - Hang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Mengna Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, P.R. China.
- Institute of Ultrasound Imaging of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China.
| |
Collapse
|
41
|
Zhang H, Shao L, Wang L, Gao Y, Cui W, Chu D, Zhang Y. Chitosan combined with intrauterine device prevents intrauterine adhesions after hysteroscopic adhesiolysis: A target trial emulation study. J Obstet Gynaecol Res 2023. [PMID: 36869641 DOI: 10.1111/jog.15629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
AIM To compare the efficacy of chitosan and intrauterine device (IUD) combination with an IUD alone in patients with intrauterine adhesions (IUAs) who underwent hysteroscopic adhesiolysis. METHODS This retrospective study assessed 303 patients with moderate-to-severe IUA (American Fertility Society [AFS] score ≥5) who underwent hysteroscopic adhesiolysis between January 2018 and December 2020. Using observational data under a cohort design, we emulated a target trial with two treatment arms: chitosan plus IUD and IUD alone groups. Second-look hysteroscopy was performed in all patients 3 months after the initial hysteroscopy. The primary outcome was improved adhesion assessed using the AFS scoring system. RESULTS The baseline characteristics were balanced between the two groups. The second hysteroscopy revealed significantly better AFS scores in group A than in group B (values: 3 [1-4] vs. 4 [2-6], p < 0.001; change: 63% [50%-80%] vs. 44% [33%-67%], p < 0.001, respectively). Significantly better menstruation conditions (improved rate: 66% vs. 49%, p = 0.004) and endometrial thickness (mean: 7.0 mm vs. 6.0 mm, p < 0.001) were also observed in group A than in group B. Moreover, group A showed a significantly higher 1-year clinical pregnancy rate (40% vs. 28%, p = 0.037) and better quality of life (p < 0.001) than group B. CONCLUSIONS Chitosan and IUD combination showed better efficacy in reducing adhesions and improving clinical outcomes in patients with moderate-to-severe IUA after hysteroscopic adhesiolysis.
Collapse
Affiliation(s)
- Hongjuan Zhang
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lijin Shao
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lina Wang
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yu Gao
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Wei Cui
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Dongmei Chu
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Ying Zhang
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
42
|
Canatar İ, Zenger O, Özdaş S, Baydemir Peşint G. Pterostilbene loaded poly(vinyl alcohol)-gelatin cryogels as potential bioactive wound dressing material. J Biomed Mater Res B Appl Biomater 2023; 111:1259-1270. [PMID: 36863724 DOI: 10.1002/jbm.b.35230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
Cryogels are support materials which are good at mimicking extracellular matrix due to their excellent hydrophilicity, biocompatibility, and macroporous structure, thus they are useful in facilitating cell activities during healing process. In this study, polyvinyl alcohol-gelatin (PVA-Gel) based cryogel membranes loaded with pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene; PTS) (PVA-Gel/PTS) was synthesized as wound dressing materials. PVA-Gel and PVA-Gel/PTS were synthesized with the polymerization yields of 96% ± 0.23% and 98% ± 0.18%, respectively, and characterized by swelling tests, Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) analysis. The swelling ratios were calculated as 98.6% ± 4.93% and 102% ± 5.1%, macroporosities were determined as 85% ± 2.13% and 88% ± 2.2%, for PVA-Gel and PVA-Gel/PTS, respectively. It was determined that PVA-Gel and PVA-Gel/PTS have 17 m2 /g ± 0.76 m2 /g and 20 m2 /g ± 0.92 m2 /g surface areas, respectively. SEM studies were demonstrated that they have ~100 μm pore sizes. According to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), trypan blue exclusion and live-dead assay results, it was observed that cell proliferation, cell number and cell viability were higher in PVA-Gel/PTS cryogel at 24, 48, and 72 h compared to PVA-Gel. A strong and transparent fluorescent light intensity was observed indicating higher cell population in PVA-Gel/PTS in comparison with PVA-Gel, according to 4',6-diamidino-2-phenylindole (DAPI) staining. SEM, F-Actin, Giemsa staining and inverted-phase microscope image of fibroblasts in PVA-Gel/PTS cryogels revealed that dense fibroblast proliferation and spindle-shaped morphology of cells were preserved. Moreover, DNA agarose gel data demonstrated that PVA-Gel/PTS cryogels had no effect on DNA integrity. Consequently, produced PVA-Gel/PTS cryogel can be used as wound dressing material to promote wound therapies, inducing cell viability and proliferation.
Collapse
Affiliation(s)
- İpek Canatar
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Okan Zenger
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Sibel Özdaş
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Gözde Baydemir Peşint
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| |
Collapse
|
43
|
Tan W, Long T, Wan Y, Li B, Xu Z, Zhao L, Mu C, Ge L, Li D. Dual-drug loaded polysaccharide-based self-healing hydrogels with multifunctionality for promoting diabetic wound healing. Carbohydr Polym 2023; 312:120824. [PMID: 37059551 DOI: 10.1016/j.carbpol.2023.120824] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Diabetic chronic wound healing still faces huge clinical challenge. The arrangement and coordination of healing processes are disordered in diabetic wound caused by the persistent inflammatory response, microbial infection, impaired angiogenesis, resulting in the delayed and even non-healing wounds. Here, the dual-drug loaded nanocomposite polysaccharide-based self-healing hydrogels (OCM@P) with multifunctionality were developed to promote diabetic wound healing. Curcumin (Cur) loaded mesoporous polydopamine nanoparticles (MPDA@Cur NPs) and metformin (Met) were introduced into the polymer matrix formed by the dynamic imine bonds and electrostatic interactions between carboxymethyl chitosan and oxidized hyaluronic acid to fabricate OCM@P hydrogels. OCM@P hydrogels show homogeneous and interconnected porous microstructure, which possess good tissue adhesiveness, enhanced compression strength, great anti-fatigue behavior, excellent self-recovery capacity, low cytotoxicity, rapid hemostatic ability and robust broad-spectrum antibacterial activity. Interestingly, OCM@P hydrogels exhibit rapid release of Met and long-term sustained release of Cur, thereby to effectively scavenge extracellular and intracellular free radicals. Significantly, OCM@P hydrogels remarkably promote re-epithelization, granulation tissue formation, collagen deposition and arrangement, angiogenesis as well as wound contraction in diabetic wound healing. Overall, the multifunctional synergy of OCM@P hydrogels greatly contributes to accelerating diabetic wound healing, which demonstrate promising application as scaffolds in regenerative medicine.
Collapse
Affiliation(s)
- Weiwei Tan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Tao Long
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yanzhuo Wan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Bingchen Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, 610041, PR China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
44
|
Therapeutic Efficacy of Polymeric Biomaterials in Treating Diabetic Wounds-An Upcoming Wound Healing Technology. Polymers (Basel) 2023; 15:polym15051205. [PMID: 36904445 PMCID: PMC10007618 DOI: 10.3390/polym15051205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic wounds are one of the serious, non-healing, chronic health issues faced by individuals suffering from diabetic mellitus. The distinct phases of wound healing are either prolonged or obstructed, resulting in the improper healing of diabetic wounds. These injuries require persistent wound care and appropriate treatment to prevent deleterious effects such as lower limb amputation. Although there are several treatment strategies, diabetic wounds continue to be a major threat for healthcare professionals and patients. The different types of diabetic wound dressings that are currently used differ in their properties of absorbing wound exudates and may also cause maceration to surrounding tissues. Current research is focused on developing novel wound dressings incorporated with biological agents that aid in a faster rate of wound closure. An ideal wound dressing material must absorb wound exudates, aid in the appropriate exchange of gas, and protect from microbial infections. It must support the synthesis of biochemical mediators such as cytokines, and growth factors that are crucial for faster healing of wounds. This review highlights the recent advances in polymeric biomaterial-based wound dressings, novel therapeutic regimes, and their efficacy in treating diabetic wounds. The role of polymeric wound dressings loaded with bioactive compounds, and their in vitro and in vivo performance in diabetic wound treatment are also reviewed.
Collapse
|
45
|
Guo J, Jiang G, Chen J, Zhang M, Xiang K, Wang C, Jiang T, Kang Y, Sun Y, Xu X, Yang X, Chen Z. Tumor tissue derived extracellular vesicles promote diabetic wound healing. J Diabetes Complications 2023; 37:108435. [PMID: 36933279 DOI: 10.1016/j.jdiacomp.2023.108435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
The diabetic wound nowadays remains a major public health challenge, which is characterized by overproduced reactive oxygen species (ROS). However, the current therapy for diabetic wounds is limited for reliable data in the general application. The growth of tumors has been revealed to share parallels with wound healing. Extracellular vesicles (EVs) derived from breast cancer have been reported to promote cell proliferation, migration and angiogenesis. The tumor tissue-derived EVs (tTi-EVs) of breast cancer performance a feature inheritance from original tissue and might accelerate the diabetic wound healing. We wonder whether the tumor-derived EVs are able to accelerate diabetic wound healing. In this study, tTi-EVs were extracted from breast cancer tissue via ultracentrifugation and size exclusion. Subsequently, tTi-EVs reversed the H2O2-induced inhibition of fibroblast proliferation and migration. Moreover, tTi-EVs significantly accelerated wound closure, collagen deposition and neovascularization, and finally promoted wound healing in diabetic mice. The tTi-EVs also reduced the level of oxidative stress in vitro and in vivo. Besides, the biosafety of tTi-EVs were preliminarily confirmed by blood tests and morphological analysis of major organs. Collectively, the present study proves that tTi-EVs can suppress oxidative stress and facilitate diabetic wound healing, which puts forward a novel function of tTi-EVs and provides potential treatment for diabetic wounds.
Collapse
Affiliation(s)
- Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
46
|
Thirupathi K, Raorane CJ, Ramkumar V, Ulagesan S, Santhamoorthy M, Raj V, Krishnakumar GS, Phan TTV, Kim SC. Update on Chitosan-Based Hydrogels: Preparation, Characterization, and Its Antimicrobial and Antibiofilm Applications. Gels 2022; 9:35. [PMID: 36661802 PMCID: PMC9858335 DOI: 10.3390/gels9010035] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Chitosan is a prominent biopolymer in research for of its physicochemical properties and uses. Each year, the number of publications based on chitosan and its derivatives increases. Because of its comprehensive biological properties, including antibacterial, antioxidant, and tissue regeneration activities, chitosan and its derivatives can be used to prevent and treat soft tissue diseases. Furthermore, chitosan can be employed as a nanocarrier for therapeutic drug delivery. In this review, we will first discuss chitosan and chitosan-based hydrogel polymers. The structure, functionality, and physicochemical characteristics of chitosan-based hydrogels are addressed. Second, a variety of characterization approaches were used to analyze and validate the physicochemical characteristics of chitosan-based hydrogel materials. Finally, we discuss the antibacterial, antibiofilm, and antifungal uses of supramolecular chitosan-based hydrogels. This review study can be used as a base for future research into the production of various types of chitosan-based hydrogels in the antibacterial and antifungal fields.
Collapse
Affiliation(s)
- Kokila Thirupathi
- Department of Physics, Sri Moogambigai College of Arts and Science for Women, Palacode 636808, India
| | | | - Vanaraj Ramkumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | | | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Gopal Shankar Krishnakumar
- Department of Biotechnology, Applied Biomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
47
|
Chao D, Dong Q, Yu Z, Qi D, Li M, Xu L, Liu L, Fang Y, Dong S. Specific Nanodrug for Diabetic Chronic Wounds Based on Antioxidase-Mimicking MOF-818 Nanozymes. J Am Chem Soc 2022; 144:23438-23447. [PMID: 36512736 DOI: 10.1021/jacs.2c09663] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic wound is a common complication for diabetic patients, which entails substantial inconvenience, persistent pain, and significant economic burden to patients. However, current clinical treatments for diabetic chronic wounds remain unsatisfactory. A prolonged but ineffective inflammation phase in chronic wounds is the primary difference between diabetic chronic wounds and normal wounds. Herein, we present an effective antioxidative system (MOF/Gel) for chronic wound healing of diabetic rats through integrating a metal organic framework (MOF) nanozyme with antioxidant enzyme-like activity with a hydrogel (Gel). MOF/Gel can continuously scavenge reactive oxygen species to modulate the oxidative stress microenvironment in diabetic chronic wounds, which leads to a natural transition from the inflammation phase to the proliferation phase. Impressively, the efficacy of one-time-applied MOF/Gel was comparable to that of the human epidermal growth factor Gel, a widely used clinical drug for various wound treatments. Such an effective, safe, and convenient MOF/Gel system can meet complex clinical demands.
Collapse
Affiliation(s)
- Daiyong Chao
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qing Dong
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhixuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Desheng Qi
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Minghua Li
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Lili Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Shaojun Dong
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
48
|
Wang Q, Luo Z, Wu YL, Li Z. Recent Advances in Enzyme‐Based Biomaterials Toward Diabetic Wound Healing. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 Singapore 138634 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 Singapore 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| |
Collapse
|
49
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
50
|
Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol 2022; 10:1060026. [PMID: 36507270 PMCID: PMC9732485 DOI: 10.3389/fbioe.2022.1060026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.
Collapse
Affiliation(s)
- Sihang Ren
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuaichen Guo
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|