1
|
Bao B, Hu C, Zheng Q, Huo G, Jiang J, Zhang Y, Zheng H, Li H. Amidation modified hollow composite microspheres as a self-floating adsorbent for efficient capture of anionic dye DB86 and heavy metal nickel (II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59140-59154. [PMID: 39340606 DOI: 10.1007/s11356-024-35151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
The co-contamination of dyes and heavy metal ions often used as mordants poses potential risks to environment and public health, and is a challenging problem that needs to be solved in water treatment. Meanwhile, improving the solid-liquid separation capability of adsorbents is of great significance for the application of adsorption technology. Herein, amidation modified hollow composite microspheres were prepared using hollow glass microsphere (HGM) as matrix through hydrolysis and condensation of silane coupling agent (A-1100) and subsequent amidation reaction. The material (HGMNE) not only exhibited good adsorption performance for DB86 and Ni2+ but also had stable self-floating capability. The adsorption of DB86 by HGMNE is mainly carried out by the electrostatic interaction between positively charged quaternary amine nitrogen and negatively charged DB86, while the adsorption of Ni2+ is achieved by the carboxyl group in EDTA group through complexation interaction to adsorb Ni2+ to form Ni complex. This research not only is devoted to the utilization of HGMNE to achieve the co-removal of DB86 and Ni2+ and flexible self-floating solid-liquid separation but also verifies the feasibility and applicability of the modification method of introducing organic adsorption functional groups through amidation reaction, so as to expand the preparation path of HGM-based adsorbents.
Collapse
Affiliation(s)
- Bing Bao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Chao Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Qiquan Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Guoyou Huo
- Shenzhen Shenshui Water Resources Consulting Co., Ltd, Shenzhen, 518024, PR China
| | - Junyi Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Hong Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
2
|
Xu T, Guo Y, Zhang L, Chen Y, Li Y, He T, Liang S, Hu L, Xie H. Sulfur-containing cellulose esters for selectively anchoring gold for water catalytic decontamination. Int J Biol Macromol 2024; 280:135882. [PMID: 39317284 DOI: 10.1016/j.ijbiomac.2024.135882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The facile preparation of sustainable sulfur-containing polymer functional materials has been obtained great attention due to their chemical reactivity and metal complexing ability. In this study, taking the solution properties advantages of the newly developed cellulose solvent system of DBU/DMSO/CO2, thiol and disulfide bond functionalized cellulose ester (TDSCE) was facilely prepared via in-situ tandem transesterification and oxidation reaction by using methyl 3-mercaptopropionate, without adding any external catalyst. The synthetic protocol was featured by that the DBU not only acted as reagent for the dissolution of cellulose, but also catalysts for the transesterification of cellulose with methyl 3-mercaptopropionate to yield cellulose 3-mercaptopropionate (Cell-MP) with maximum degrees of substitution (DS) of 0.77, and an oxidant for the partial oxidation of Cell-MP to produce a cellulose methyl 3,3'-disulfanediyldipropionate (Cell-MDSP) with maximum DS of 0.36 mixed ester, respectively. With successful introduction of thiol and disulfide bond into the cellulose backbone, the TDSCEs indicated desirable selective absorption of Au3+ from mimic heavy mental ions waste water due to the sulfur-Au chemistry with maximal adsorption capacity for Au3+ of 415.2 mg/g. The subsequent reduction of Au3+ into gold nanoparticles (Au NPs) fabricated a robust TDSCE-2@Au NPs composite catalyst with high catalytic activity for the hydrogenation treatment of water pollutes, such as 4-nitrophenol (4-NP)and azo dyes.
Collapse
Affiliation(s)
- Tonghui Xu
- Department of Polymeric Materials & Engineering, Guizhou University, Guiyang 550025, China
| | - Yuanlong Guo
- Department of Polymeric Materials & Engineering, Guizhou University, Guiyang 550025, China
| | - Lihua Zhang
- Department of Polymeric Materials & Engineering, Guizhou University, Guiyang 550025, China
| | - Yumei Chen
- Department of Polymeric Materials & Engineering, Guizhou University, Guiyang 550025, China
| | - Yunqi Li
- Department of Polymeric Materials & Engineering, Guizhou University, Guiyang 550025, China
| | - Tianlong He
- Department of Polymeric Materials & Engineering, Guizhou University, Guiyang 550025, China
| | - Songmiao Liang
- Separation Membrane Materials & Technologies Joint Research Centre of Vontron-Guizhou University, Vontron Technol Co Ltd, Guiyang 550018, China
| | - Lijie Hu
- Separation Membrane Materials & Technologies Joint Research Centre of Vontron-Guizhou University, Vontron Technol Co Ltd, Guiyang 550018, China
| | - Haibo Xie
- Department of Polymeric Materials & Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Sun J, Hu R, Zhao X, Liu T, Bai Z. A novel chitosan/cellulose phosphonate composite hydrogel for ultrafast and efficient removal of Pb(II) and Cu(II) from wastewater. Carbohydr Polym 2024; 336:122104. [PMID: 38670774 DOI: 10.1016/j.carbpol.2024.122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Developing green and high-performance adsorbents to separate heavy metals from wastewater is a challenging task. Biomass hydrogel has the advantages of low cost, renewability, and biodegradability, but it has the problem of low adsorption efficiency. Herein, a novel chitosan/cellulose phosphonate composite hydrogel(CS/MCCP) is fabricated by two steps of reactions including the Phosphorylation reaction and the Mannich reaction. As an excellent chelating group, the phosphonate group greatly enhances the adsorption efficiency of the biomass hydrogel. The CS/MCCP shows ultrafast adsorption rate and excellent adsorption capacity for Pb(II) and Cu(II). The saturated adsorption capacity of Pb(II) and Cu(II) is 211.42 and 74.29 mg·g-1, respectively. The adsorption equilibration time is only 10 min. The adsorption performance of the CS/MCCP is superior to that of the reported cellulose/chitosan hydrogels. Besides, an in-depth analysis of the adsorption mechanism is conducted using X-ray photoelectron spectroscopy(XPS) combined with Density Functional Theory(DFT) calculation. The results reveal that the adsorption mechanism is electrostatic attraction and surface complexation, and there is a synergistic coordination between the phosphonate groups and the amino groups.
Collapse
Affiliation(s)
- Junhua Sun
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, PR China
| | - Riming Hu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiuxian Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China.
| | - Teng Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, PR China.
| | - Zhushuang Bai
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, PR China.
| |
Collapse
|
4
|
Santos JRD, Anjos RBD, Bezerra BGP, Sá GCDS, Araújo RMD, Castro PS. Biosorption process using Cereus jamacaru DC, Cactaceae for Pb 2+ removal from aqueous systems. ENVIRONMENTAL TECHNOLOGY 2024; 45:3428-3438. [PMID: 37223897 DOI: 10.1080/09593330.2023.2216902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Lead is a highly toxic metal associated with many human health diseases that can be caused by several environmental changes. Innovative sustainable solutions for water remediation have been recently encouraged by using renewable, low-cost and earth-abundant biomass materials to ensure public health conditions. In this article, Cereus jamacaru DC (popularly known as Mandacaru) was investigated as a biosorbent in the Pb2+ removal from aqueous solution using a two-level factorial design. The analysis of variance suggested a significant and predictive model (R2 = 0.9037). The maximum efficacy of Pb2+ removal in the experimental design was 97.26%, being the optimized conditions: pH 5.0, contact time 4 h without adding NaCl. The Mandacaru was divided into three types according to the plant structure and this parameter did not present a significant interference in the biosorption process. This result corroborates with slight differences in the total soluble proteins, carbohydrates and phenolic compounds found in the Mandacaru types investigated. FT-IR analysis revealed the presence of O-H, C-O and C = O groups that were responsible for the ion biosorption process. The optimized procedure was capable to remove 97.28% of the Pb2+ added in the Taborda river water sample. The kinetic adsorption results show the pseudo-second-order model, suggesting chemisorption process. Thus the treated water sample can be considered in accordance with technical standards issued by CONAMA Resolution Num. 430/2011 and Ordinance GM/MS Num.888/2021 of WHO. In this way, the Mandacaru proved to be an efficient, fast and easy-to-apply bioadsorbent in Pb2+ removal and has great environmental application potential.
Collapse
Affiliation(s)
- Joicy Ribeiro Dos Santos
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA) - Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, Brasil
| | - Raoni Batista Dos Anjos
- Núcleo de Processamento Primário e Reuso de Água Produzida e Resíduos (LABPROBIO-NUPPRAR), Natal, Brasil
| | | | | | - Renata Mendonça de Araújo
- Laboratório de Isolamento e Síntese de Compostos Orgânicos (LISCO), Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, Brasil
| | - Pollyana Souza Castro
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA) - Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, Brasil
| |
Collapse
|
5
|
Han D, Villanueva-Tagle ME, Peña-Icart M, López-Mesas M, Valiente M. Trace cisplatin adsorption by thiol-functionalized sponge (TFS) and Sn/SnO 2-coated TFS: Adsorption study and mechanism investigation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134442. [PMID: 38688222 DOI: 10.1016/j.jhazmat.2024.134442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
To remove trace cisplatin from aqueous solution, commercial sponges were functionalized by esterification with 3-mercaptopropionic acid, followed by reduction with Na2S·9H2O or SnCl2·2H2O. The resulting thiol-functionalized sponges (TFSs), TFS_1 and TFS_2, were tested for the removal of cisplatin (235 μg L-1) achieving maximum removal of 95.5 ± 0.8% and 99.5 ± 0.1% respectively, which were significantly higher than the non-functionalized counterpart. The successful grafting of thiol groups, verified through FTIR, elemental analysis, SEM-EDS, and XPS characterization, facilitated Pt-S complexation during adsorption. The aqua-derivatives of cisplatin, formed through hydration, complexed with thiol sites through ligand displacement. Additionally, the presence of Sn/SnO2 coating on TFS_2 further enhanced the adsorption process. The rapid adsorption process conformed to pseudo-second-order kinetic model, involving both diffusion and chemisorption. While the Langmuir isotherm model generally described the monolayer adsorption behavior of cisplatin, the aggregation of Sn/SnO2 onto TFS_2 at 343 K introduced surface heterogeneity, rendering the Freundlich model a better fit for the adsorption isotherm. Differential pH dependence and the evaluation of mean free energy, derived from the Dubinin-Radushkevich isotherm model, indicated that cisplatin adsorption onto TFS_1 involved physisorption, including electrostatic attraction, while chemisorption predominated for TFS_2. Increasing the temperature notably promoted adsorption by facilitating the thermal-favored formation of Pt-S bonds.
Collapse
Affiliation(s)
- Dong Han
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | | | - Mirella Peña-Icart
- Institute of Materials Science and Technology, University of Havana, Havana 10400, Cuba
| | - Montserrat López-Mesas
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain.
| | - Manuel Valiente
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain
| |
Collapse
|
6
|
El Jery A, Khedher KM, Mahmood Salman H, Al-Ansari N, Sammen SS, Scholz M. Thermodynamic and structural investigation of oily wastewater treatment using peach kernel and walnut shell based activated carbon. PLoS One 2024; 19:e0297024. [PMID: 38748647 PMCID: PMC11095765 DOI: 10.1371/journal.pone.0297024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 12/26/2023] [Indexed: 05/19/2024] Open
Abstract
Despite the many articles about activated carbon with different precursors in adsorption process, no in-depth research has been carried out to understand the causes of the difference in surface adsorption characteristics of activated carbon with different precursors and different activation processes. In this work, the ability of two active carbon adsorbents made of walnut shell and peach kernel by two chemical and physical methods (totally 4 different types of activated carbon) in treatment of oily wastewater including diesel, gasoline, used oil or engine lubricant has been compared. The results show that the chemical activated peach carbon active with 97% hardness has provided the highest hardness and physical activated walnut carbon active has obtained the lowest hardness value (87%). It is also found that peach activated carbon has a higher iodine number than walnut activated carbon, and this amount can be increased using chemical methods; Therefore, the highest amount of Iodine Number is related to Peach activated carbon that is made by chemical method (1230 mg/g), and the lowest amount of iodine number is seen in walnut activated carbon that is made by physical method (1020 mg/g). moreover, the pore diameter of physical activated carbon is lower than chemical activated carbon in all cases. So that the pore diameter of chemical activated peach carbon active is equal to 22.08 μm and the measured pore diameter of physical activated peach carbon active is equal to 20.42 μm. These values for walnut are obtained as 22.74 μm and 21.86 μm, respectively. Furthermore, the temperature and pH effects on the adsorption of different synthesized oily wastewater was studied and it was found that a decrease in adsorption can be seen with an increase in temperature or decreasing the pH value, which can be referred to this fact that the process of adsorption is an exothermic process. Finally, to analyze the compatibility of adsorption isotherms with experimental data and to predict the adsorption process, three different isotherms named Langmuir, Temkin, and Freundlich isotherms were applied and their parameters were correlated. The correlation results show that the Langmuir isotherm had the best correlation in all cases compared to the Freundlich and Temkin isotherms, based on the correlation coefficient, and the calculated R2 values which was greater than 0.99 in all the studied cases.
Collapse
Affiliation(s)
- Atef El Jery
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Khaled Mohamed Khedher
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus, Nabeul, Tunisia
| | - Hayder Mahmood Salman
- Department of Computer Science, Al-Turath University College, Al Mansour, Baghdad, Iraq
| | - Nadhir Al-Ansari
- Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Lulea, Sweden
| | - Saad Sh. Sammen
- Department of Civil Engineering, College of Engineering, University of Diyala, Baqubah, Diyala Governorate, Iraq
| | - Miklas Scholz
- Atene KOM, Berlin, Germany
- School of Science, Engineering and Environment, Newton Building, The University of Salford, Salford, Greater Manchester, United Kingdom
- Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, Kingsway Campus, Aukland Park, University of Johannesburg, Johannesburg, South Africa
- Department of Town Planning, Engineering Networks and Systems, South Ural State University, Chelyabinsk, Russia
- Nexus by Sweden, Västerås, Sweden
- Kunststoff-Technik Adams, Specialist Company According to Water Law, Elsfleth, Germany
| |
Collapse
|
7
|
Chen Z, Zhang X, Xu K, He X, Li J, Zhang L, Wang G. Facile fabrication of nanocellulose-supported membrane composited with modified carbon nitride and HKUST-1 for efficient photocatalytic degradation of formaldehyde. Int J Biol Macromol 2024; 268:131937. [PMID: 38685539 DOI: 10.1016/j.ijbiomac.2024.131937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
As a cellulose-derived material, nanocellulose possesses unique properties that make it an ideal substrate for various functional composite materials. In this study, we developed a novel composite membrane material capable of adsorbing and photo-catalyzing formaldehyde by immobilizing HKUST-1 (copper open framework composed of 1,3,5-benzenetricarboxylic acid) onto NFC (Nano-fibrillated cellulose) membranes and subsequently loading modified carbon nitride. The synthesized CNx@HN composite membrane (consisting of NFC membrane with anchored HKUST-1 and modified g-C3Nx nanosheets) was thoroughly characterized, and its photocatalytic degradation performance towards low concentrations of formaldehyde (3.0 mg/m3) was investigated. The results demonstrated that HKUST-1's porous nature exhibited a concentrated adsorption capacity for formaldehyde, while the modified CNx (Modified g-C3Nx nanosheets) displayed robust photocatalytic degradation of formaldehyde. The synergistic effect of HKUST-1 and modified CNx on the NFC membrane significantly enhanced the efficiency of formaldehyde degradation. Under xenon lamp irradiation, CNx@HN-5 achieved a total removal efficiency of 86.9 % for formaldehyde, with a photocatalytic degradation efficiency of 48.45 %, showcasing its exceptional ability in both adsorption and photocatalytic degradation of formaldehyde. Furthermore, after 10 cycles of recycling, the composite membrane exhibited excellent stability for the photocatalytic degradation process. Therefore, this study presents a green and facile strategy to fabricate nanocellulose-supported composite membranes with great potential for practical applications in formaldehyde degradation.
Collapse
Affiliation(s)
- Zicheng Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Xuefeng Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Kai Xu
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Xiangyang He
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Junkai Li
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China.
| | - Guanhua Wang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
8
|
Priyadarshanee M, Das S. Spectra metrology for interaction of heavy metals with extracellular polymeric substances (EPS) of Pseudomonas aeruginosa OMCS-1 reveals static quenching and complexation dynamics of EPS with heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133617. [PMID: 38306836 DOI: 10.1016/j.jhazmat.2024.133617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The adsorption behavior and interaction mechanisms of extracellular polymeric substances (EPS) of Pseudomonas aeruginosa OMCS-1 towards chromium (Cr), lead (Pb), and cadmium (Cd) were investigated. EPS-covered (EPS-C) cells exhibited significantly higher (p < 0.0001; two-way ANOVA) removal of Cr (85.58 ± 0.39%), Pb (81.98 ± 1.02%), and Cd (73.88 ± 1%) than EPS-removed (EPS-R) cells. Interactions between EPS-heavy metals were spontaneous (ΔG<0). EPS-Cr(VI) and EPS-Pb(II) binding were exothermic (ΔH<0), while EPS-Cd(II) binding was endothermic (ΔH>0) process. EPS bonded to Pb(II) via inner-sphere complexation by displacement of surrounding water molecules, while EPS-Cr(VI) and EPS-Cd(II) binding occurred through outer-sphere complexation via electrostatic interactions. Increased zeta potential of Cr (29.75%), Pb (41.46%), and Cd (46.83%) treated EPS and unchanged crystallinity (CIXRD=0.13), inferred EPS-metal binding via both electrostatic interactions and complexation mechanism. EPS-metal interaction was predominantly promoted through hydroxyl, amide, carboxyl, and phosphate groups. Metal adsorption deviated EPS protein secondary structures. Strong static quenching mechanism between tryptophan protein-like substances in EPS and heavy metals was evidenced. EPS sequestered heavy metals via complexation with C-O, C-OH, CO/O-C-O, and NH/NH2 groups and ion exchange with -COOH group. This study unveils the fate of Cr, Pb, and Cd on EPS surface and provides insight into the interactions among EPS and metal ions for metal sequestration.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
9
|
Adeleke AO, Royahu CO, Ahmad A, Dele-Afolabi TT, Alshammari MB, Imteaz M. A novel oyster shell biocomposite for the efficient adsorptive removal of cadmium and lead from aqueous solution: Synthesis, process optimization, modelling and mechanism studies. PLoS One 2024; 19:e0294286. [PMID: 38386950 PMCID: PMC10883703 DOI: 10.1371/journal.pone.0294286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/29/2023] [Indexed: 02/24/2024] Open
Abstract
This study highlights the effectiveness of oyster shell biocomposite for the biosorption of Cd(II) and Pb(II) ions from an aqueous solution. The aim of this work was to modify a novel biocomposite derived from oyster shell for the adsorption of Cd(II) and Pb(II) ions from aqueous solution. The studied revealed the specific surface BET surface area was 9.1476 m2/g. The elemental dispersive x-ray analysis (EDS) indicated that C, O, Ag, Ca were the predominant elements on the surface of the biocomposite after which metals ions of Cd and Pb were noticed after adsorption. The Fourier transform Irradiation (FT-IR) revealed the presence of carboxyl and hydroxyl groups on the surface. The effect of process variables on the adsorption capacity of the modified biocomposite was examined using the central composite design (CCD) of the response surface methodology (RSM). The process variables which include pH, adsorbent dose, the initial concentration and temperature were the most effective parameters influencing the uptake capacity. The optimal process conditions of these parameters were found to be pH, 5.57, adsorbent dose, 2.53 g/L, initial concentration, 46.76 mg/L and temperature 28.48°C for the biosorption of Cd(II) and Pb(II) ions from aqueous solution at a desirability coefficient of 1. The analysis of variance (ANOVA) revealed a high coefficient of determination (R2 > 0.91) and low probability coefficients for the responses (P < 0.05) which indicated the validity and aptness of the model for the biosorption of the metal ions. Experimental isotherm data fitted better to the Langmuir model and the kinetic data fitted better to the pseudo-second-order model. Maximun Cd(II) and Pb(II) adsorption capacities of the oyster shell biocomposite were 97.54 and 78.99 mg/g respectively and was obtained at pH 5.56 and 28.48°C. This investigation has provided the possibility of the utilization of alternative biocomposite as a sustainable approach for the biosorption of heavy metal ions from the wastewater stream.
Collapse
Affiliation(s)
- Abdulrahman Oyekanmi Adeleke
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang, Selangor, Malaysia
| | - C. O. Royahu
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang, Selangor, Malaysia
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Temitope T. Dele-Afolabi
- Institute of Power Engineering (IPE), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang, Selangor, Malaysia
| | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Monzur Imteaz
- Department of Civil and Construction Engineering, Centre for Sustainable Infrastructure and Digital Construction, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
10
|
Jiang J, Shi Y, Ma NL, Ye H, Verma M, Ng HS, Ge S. Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122830. [PMID: 37918773 DOI: 10.1016/j.envpol.2023.122830] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
The rapid development of the industrial sector has resulted in tremendous economic growth. However, this growth has also presented environmental challenges, specifically due to the substantial sewage generated and its contribution to the early warning of global water resource depletion. Large concentrations of poisonous heavy metals, including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), are found in industrial effluent. Therefore, various studies are currently underway to provide effective solutions to alleviate heavy metal ion pollution in sewage. One emerging strategy for sewage pollution remediation is adsorption using wood and its derivatives. This approach is gaining popularity due to the porous structure, excellent mechanical properties, and easy chemical modification of wood. Recent studies have focused on removing heavy metal ions from sewage, summarising and analysing different technical principles, affecting factors, and mainstream chemical modification methods on wood. Furthermore, this work provides insight into potential future development direction for enhanced adsorption of heavy metal ions using wood and its derivatives in wastewater treatment. Overall, this review aims to raise awareness of environmental pollution caused by heavy metals in sewage and promote green environmental protection, low-carbon energy-saving, and sustainable solutions for sewage heavy metal treatment.
Collapse
Affiliation(s)
- Jinxuan Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yang Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, India
| | - Haoran Ye
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
11
|
Dong W, Zhao Z, Liu F, Li P, Wang L, Zhou Y, Shen Y, Lang C, Deng B, Li H, Li D. PVDF Nanofiber Modified with ZnO Nanowires/Polydopamine for the Treatment of Sewage Containing Heavy Metals, Organic Dyes, and Bacteria. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58994-59004. [PMID: 38079597 DOI: 10.1021/acsami.3c12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
In various countries worldwide, the issue of wastewater contamination poses a significant threat due to its intricate composition of heavy metals, organic dyes, and microorganisms, thereby complicating the purification process. Consequently, researchers have expressed considerable interest in materials capable of eliminating organic, heavy metal, and microbial pollutants. This study focuses on the fabrication of a water purification membrane (PDA/ZnO-NWs/PVDF) with a hierarchical structure and the ability to remove multiple pollutants. The membrane was created by modifying poly(vinylidene fluoride) (PVDF) nanofiber with zinc oxide nanowires (ZnO-NWs) and reinforcing it with polydopamine (PDA). The experimental results demonstrate that the PDA/ZnO-NWs/PVDF membrane exhibits a range of functionalities, including long-lasting superhydrophilicity, Cu(II) adsorption, photocatalytic degradation, and antibacterial ability. The manipulation of the DA synthesis procedure allows for the adjustment of the wettability, adsorption, and photocatalytic and antibacterial activities of the PDA/ZnO-NWs/PVDF composite. According to the Langmuir isotherm, the maximum Cu(II) adsorption capacity of the PDA/ZnO-NWs/PVDF membrane is determined to be 65.75 mg/g, which is significantly higher (27.26 mg/g) than that of the ZnO-NWs/PVDF membrane (38.49 mg/g). The PDA/ZnO-NWs/PVDF composite exhibited a notable degradation capacity toward rhodamine B under natural sunlight, reaching a maximum of 5.97 mg/g. Additionally, the degradation rate achieved during daylight hours was as high as 90.42%. Furthermore, the antibacterial efficacy of the PDA/ZnO-NWs/PVDF composite against both Gram-positive and Gram-negative bacteria approached 100%. This work presents a promising approach for the treatment of wastewater containing various coexisting contaminants.
Collapse
Affiliation(s)
- Wenhao Dong
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Ziqiang Zhao
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Feng Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Peihang Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Lanlan Wang
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Yuqi Zhou
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Ying Shen
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Chenhong Lang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Dawei Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Wang X, Qi F, Xiong J, Zhao J, Zhang G, Afzal S, Gu X, Li Q, Luo S, Mo H. Synthesis of a Novel Dithiocarbamate Surfactant Derivative Adsorbent for Efficient Removal of Heavy Metal Ions. ACS OMEGA 2023; 8:41512-41522. [PMID: 37970007 PMCID: PMC10633955 DOI: 10.1021/acsomega.3c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023]
Abstract
In this work, a novel heavy metal chelating agent (DTC-SDS) containing dithiocarbamate (DTC) was synthesized using sodium dodecyl sulfate (SDS), formaldehyde, and carbon disulfide. DTC-SDS has excellent trapping performance under pH 1-7 and initial concentrations 100-500 mg/L. With the increase in adsorbent dose, the adsorption amount of DTC-SDS increases and then decreases, and the optimized dosage of DTC-SDS is 0.02 g. The DTC-SDS adsorbent exhibits superior adsorption capacity (191.01, 111.7, and 79.14 mg/g) and high removal rates (97.99%, 98.48%, and 99.91%) for Mn2+, Zn2+, and Pb2+ respectively, in wastewater. Such remarkable adsorption performance could be attributed to the strong trapping effect on heavy metal ions by the C-S bond of DTC-SDS. The liquid adsorbent was in full contact with heavy metal ions, which further enhanced the complexation of heavy metal ions. The adsorption isothermal model showed that the adsorption process was typical of Langmuir monomolecular layer adsorption. Kinetic studies showed that the pseudo-second-order kinetic model fits the experimental adsorption data better than the pseudo-first-order kinetic model. In the ternary metal species system (Mn2+, Zn2+, and Pb2+), DTC-SDS preferentially adsorbed Pb2+ due to its highest covalent index. The main controlling step is the chemical interaction between the active groups of DTC-SDS and the heavy metal ions. This work provides valuable insights into the adsorption of heavy metal ions onto dithiocarbamate, which could guide the development of other heavy metal chelating agents and be beneficial for developing novel treatments of wastewater contaminated with heavy metals.
Collapse
Affiliation(s)
- Xingmin Wang
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Feilan Qi
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Jie Xiong
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Jujiao Zhao
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Guizhi Zhang
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Shahzad Afzal
- Department
of Environmental Engineering, China Jiliang
University, Hangzhou Zhejiang 310018, P.R. China
| | - Xingxing Gu
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Qiudong Li
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Shiyang Luo
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Hongbo Mo
- Chongqing
Academy of Metrology and Quality Inspection Chongqing, Chongqing, CN 400047, China
| |
Collapse
|
13
|
He LT, Zhao LD, Sun W, Fang J, Liu XW, Qi JJ, Qian Y, Li H. 3D Wood Microfilter for Fast and Efficient Removal of Heavy Metal Ions from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15319-15327. [PMID: 37846863 DOI: 10.1021/acs.langmuir.3c02129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Adsorption is an effective method for the treatment of heavy metal ions in water; however, the existing adsorbents are complicated to prepare, and costly and difficult to recover. In this work, a 3D wood microfilter was prepared by modifying wood for the removal of heavy metal contaminants from water. First, a green deep eutectic solvent was used to remove lignin from beech wood. Then citric acid and l-cysteine were sequentially used to graft carboxyl and sulfhydryl groups (-SHs) on the surface of cellulose. Finally, a three-dimensional wood microfilter with an abundant porous structure and adsorption sites was formed. The adsorption kinetics and adsorption isotherms of heavy metal ions on the 3D wood microfilter were systematically investigated using Cu2+ and Cd2+ as model species. The results showed that the 3D wood microfilter had a fast adsorption rate and high saturation capacity for both Cu2+ and Cd2+. Based on the advantages of easy processing and multilayer assembly and stacking, a three-layer wood microfilter was designed to achieve high flux rate (1.53 × 103 L m-2 h-1) and high efficiency (>98%) for the removal of heavy metal ions in water. The enhancement mechanism of the adsorption process of Cu2+ and Cd2+ by the 3D wood microfilter was investigated using SEM and EDS, FTIR, and XPS characterization. The simple synthesis method and high adsorption efficiency of this wood microfilter provide a new strategy for the preparation of cheap, efficient, and recyclable adsorbents for heavy metal ions in water.
Collapse
Affiliation(s)
- Li-Ting He
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Liang-Dong Zhao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Wei Sun
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Xiu-Wu Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jun-Jie Qi
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yong Qian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Ryu S, Kim D, Lee H, Kim Y, Lee Y, Kim M, Lee H, Lee H. Biodegradable Nanofiber/Metal-Organic Framework/Cotton Air Filtration Membranes Enabling Simultaneous Removal of Toxic Gases and Particulate Matter. Polymers (Basel) 2023; 15:3965. [PMID: 37836014 PMCID: PMC10575390 DOI: 10.3390/polym15193965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The typical filters that protect us from harmful components, such as toxic gases and particulate matter (PM), are made from petroleum-based materials, which need to be replaced with other environmentally friendly materials. Herein, we demonstrate a route to fabricate biodegradable and dual-functional filtration membranes that effectively remove PM and toxic gases. The membrane was integrated using two layers: (i) cellulose-based nanofibers for PM filtration and (ii) metal-organic framework (MOF)-coated cotton fabric for removal of toxic gases. Zeolitic imidazolate framework (ZIF-8) was grown from the surface of the cotton fabric by the treatment of cotton fabric with an organic precursor solution and subsequent immersion in an inorganic precursor solution. Cellulose acetate nanofibers (NFs) were deposited on the MOF-coated cotton fabric via electrospinning. At the optimal thickness of the NF layer, the quality factor of 18.8 × 10-2 Pa-1 was achieved with a filtration efficiency of 93.1%, air permeability of 19.0 cm3/cm2/s, and pressure drop of 14.2 Pa. The membrane exhibits outstanding gas adsorption efficiencies (>99%) for H2S, formaldehyde, and NH3. The resulting membrane was highly biodegradable, with a weight loss of 62.5% after 45 days under standard test conditions. The proposed strategy should provide highly sustainable material platforms for practical multifunctional membranes in personal protective equipment.
Collapse
Affiliation(s)
- Sujin Ryu
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
| | - Doyeon Kim
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
- HYU-KITECH Joint Department, Hanyang University, Ansan 15588, Republic of Korea;
| | - Hyewon Lee
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
| | - Yoonjin Kim
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
| | - Youngbok Lee
- HYU-KITECH Joint Department, Hanyang University, Ansan 15588, Republic of Korea;
- Department of Applied Chemistry, Hanyang University, Ansan 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Heedong Lee
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
| | - Hoik Lee
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
- HYU-KITECH Joint Department, Hanyang University, Ansan 15588, Republic of Korea;
| |
Collapse
|
15
|
Fan L, Wang Y, Wen S, Wang T, Xu X, Wang B, Zhang Q. Interfacial Polymerization of Highly Active Thiolated Cyclodextrin for the Fabrication of a Loose Nanofiltration Membrane with a Chlorine-Resistant Poly(thioester) Linkage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43193-43204. [PMID: 37668232 DOI: 10.1021/acsami.3c09390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Cyclodextrins have been frequently used to fabricate membranes via interfacial polymerization (IP). However, the relatively low reactivity of pristine cyclodextrins often induces a lower cross-linking density and unsatisfactory separation performance. In this work, to introduce a highly active thiolated β-cyclodextrin (CD-SH) monomer into IP progress, we constructed a dense and porous poly(thioester) linkage on a commercial membrane surface with loose nanofiltration by IP of CD-SH and trimesoyl trichloride (TMC) as the monomer in an aqueous phase and organic phase separately for the first time. Furthermore, the reactivity of CD-SH has been fully demonstrated by the two-phase IP aiming at unmodified β-CD, a CD-SH/TMC freestanding membrane with a thicker interfacial layer and a smoother surface, and a PAN/CD-SH membrane with a narrow porous distribution. The composite membrane possessed superior separation performance for a high rejection (83.1-99.6%) of different anionic dyes and a low rejection (<20%) of salts, as well as a high-efficiency sieving ability of dye/dye and dye/salt mixtures. The membrane with a poly(thioester) selective layer could steadily operate in a long-term filtration test and exhibit great stability, chloride-resistance performance, and recyclability.
Collapse
Affiliation(s)
- Liyuan Fan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yan Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shaobin Wen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Tianheng Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Xiaoling Xu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Bingyu Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
16
|
An Y, Zhang W, Zhang X, Zhong Y, Ding L, Hao Y, White M, Chen Z, An Z, Wang X. Adsorption Recycling and High-Value Reutilization of Heavy-Metal Ions from Wastewater: As a High-Performance Anode Lithium Battery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12324-12335. [PMID: 37615087 DOI: 10.1021/acs.langmuir.3c01275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The dazzling adsorbent products make people overlook the harm of heavy metals adsorbed on them. Hazardous waste adsorbents cause secondary pollution. In this study, waste lignocellulose was dissolved by alkaline urea solvent and high-intensity ultrasound, then cross-linked by epichlorohydrin to make hydrogel, which was utilized to adsorb toxic heavy-metal wastewater. In situ deposition and high-temperature carbonization turn the gel that has absorbed heavy metals into carbon aerogel-loaded metal oxide energy storage materials that may be employed as anodes in lithium-ion batteries with excellent electrochemical performance. The best reversible capacity was 435.86 mAh g-1 after 100 cycles at 0.2C, indicating that the hazardous solid waste generated by the removal of heavy metals using biomass-based adsorbent has potential lithium battery applications. Thus, we provide a fresh perspective on the efficient recycling of heavy metals as well as an environmentally friendly, high-value conservation strategy for lowering the danger of heavy-metal hazardous wastes.
Collapse
Affiliation(s)
- Yuhong An
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Wanqi Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Xiaotao Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
- Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, P. R. China
- National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, Hohhot 010018, P. R. China
| | - Yuan Zhong
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Lijun Ding
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Yinan Hao
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
- Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, P. R. China
| | - Marshall White
- Department of Sustainable Biomaterials, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Zhangjing Chen
- Department of Sustainable Biomaterials, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Zhen An
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
- Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, P. R. China
- National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, Hohhot 010018, P. R. China
| |
Collapse
|
17
|
Li M, Zhang S, Zhang P, Qin K, Chen Q, Cao Q, Zhang Y, Zhang J, Yuan C, Xiao H. Dansyl-labelled cellulose as dual-functional adsorbents for elimination and detection of mercury in aqueous solution via aggregation-induced emission. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117773. [PMID: 36996568 DOI: 10.1016/j.jenvman.2023.117773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Dansyl chloride fluorophore exhibits typical aggregation induced fluorescence emission behavior in acetone/water solution. To realize the integration of detective and adsorptive functions, dansyl chloride is covalently immobilized on cellulose substrate to fabricate an efficient adsorbent for mercury ions in water. The as-prepared material exhibits excellent fluorescence sensing performance exclusively for Hg (II) with the presence of other metal ions. A sensitive and selective fluorescence quenching across the concentration range of 0.1-8.0 mg/L is observed with a detection limit of 8.33 × 10-9 M as a result of the inhibition of aggregation induced emission caused by the coordination between adsorbent and Hg (II). Besides, the adsorption properties for Hg (II) including the influence of initial concentration and contact time are investigated. Langmuir model and pseudo-second-order kinetics are demonstrated to fit well with the adsorption experiment for the uptake of Hg (II) by the functionalized adsorbent, also, intraparticle diffusion kinetic model is proved to aptly describe the Hg (II) removal in aqueous solution. In addition, the recognition mechanism is considered to originate from the Hg (II) triggered structural reversals of naphthalene ring units which are verified by the X-ray photoelectron spectroscopy and density functional theory calculation. Moreover, the synthesis method used in this work also provides a strategy for the sensing application of organic sensor molecules with AIE properties in which the aggregated behavior could be appropriately realized.
Collapse
Affiliation(s)
- Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Siqi Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Panpan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Kexin Qin
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Qian Chen
- Department of Chemistry, Nanchang University, Nanchang, 330031, PR China
| | - Qianyong Cao
- Department of Chemistry, Nanchang University, Nanchang, 330031, PR China.
| | - Yuling Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jinghong Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Chungang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, E3B 5A3, Canada.
| |
Collapse
|
18
|
Liu L, Ma H, Khan M, Hsiao BS. Highly Efficient Cationic/Anionic Cellulose Membranes for Removal of Cr(VI) and Pb(II) Ions. MEMBRANES 2023; 13:651. [PMID: 37505017 PMCID: PMC10386320 DOI: 10.3390/membranes13070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
To achieve high throughput, low-pressure drops, and high adsorption capacity of Cr(VI) and Pb(II) in industrial wastewater treatment, cellulose membranes containing cationic and anionic groups were fabricated, respectively. In this process, cost-effective cotton fabrics were oxidized using sodium periodate, followed by quaternary ammonium or sulfonation modifications. The chemical composition, surface morphology, and thermal and mechanical properties of the cellulose membranes were investigated by ATR-FTIR, solid-state NMR, SEM, TGA, and tensile experiments. Quaternary ammonium, aldehyde, and sulfonate groups were distributed on the cationic/anionic cellulose fibers as adsorption sites, which issue remarkable adsorption capability to the cellulose membranes. The highly toxic Cr(VI) and Pb(II) ions were used to challenge the adsorption capacity of the cationic and anionic cellulose membranes, respectively. The maximum adsorption capacities of Cr(VI) and Pb(II) ions were 61.7 and 63.7 mg/g, respectively, suggested by Langmuir isotherms, kinetics, and thermodynamics in the static experiments. The dynamic adsorption capability of cationic cellulose membranes against Cr(VI) ions was determined and compared with that of commercially available anionic-exchange membranes. Spiral wound filtration cartridges were fabricated by cationic and anionic cellulose membranes, respectively, and were used to adsorb Cr(VI) and Pb(II) from lab-made wastewater, respectively. The cationic cellulose cartridge can purify 4.4 L of wastewater containing 1.0 mg/L of Cr(VI) ions with a 100% removal ratio, while the pressure drop was retained at 246 Pa. Similarly, the anionic cellulose cartridge exhibited even more impressive adsorption capability; the removal ratio against Pb(II) was 99% when 8.6 L of 1.0 mg/L of Pb(II) ions containing wastewater was treated, and the pressure drop was retained at 234 Pa. A composite cartridge fabricated by the integration of cationic and anionic cellulose membranes was successfully employed to purify the wastewater containing Cr(VI) and Pb(II) simultaneously. The possible adsorption mechanism was proposed, and the recycling ability of the cellulose membranes was also discussed.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Madani Khan
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
19
|
Hama Aziz KH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv 2023; 13:17595-17610. [PMID: 37312989 PMCID: PMC10258679 DOI: 10.1039/d3ra00723e] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Medical Laboratory Analysis Department, College of health sciences, Cihan University-Sulaimaniya Sulaimaniya 46001 Kurdistan region Iraq
| | - Fryad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Sarkawt Hama
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Rebaz Fayaq Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Kaiwan Othman Rahman
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Razga Company Sulaimani City 46001 Kurdistan Region Iraq
| |
Collapse
|
20
|
Pattarith K, Nugroho D, Nanan S, Benchawattananon R. Cellulose Modified with Polyethylenimine (PEI) Using Microwave Methodology for Adsorption of Chromium from Aqueous Solutions. Molecules 2023; 28:molecules28114514. [PMID: 37298989 DOI: 10.3390/molecules28114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
A large amount of agricultural waste was used to prepare cellulose (Cel) and then the surface was modified with PEI (Cel-PEI) using the microwave method. To be used as a metal adsorbent, the adsorption of Cr (VI) from an aqueous solution by Cel-PEI was measured using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) techniques. The parameters of Cr (VI) adsorption in solution by the Cel-PEI adsorbent were as follows: the pH of the solution was 3, the concentration of the chromium solution was 100 mg/L, and the adsorption time was 180 min at 30 °C using 0.01 g of adsorbent. Cel-PEI had a Cr (VI) adsorption capacity of 106.60 mg/g, while the unadjusted Cel was 23.40 mg/g and the material recovery showed a decrease in efficiency of 22.19% and 54.27% in the second and third cycles, respectively. The absorption isotherm of chromium adsorption was also observed. The Cel-PEI material conformed to the Langmuir model with an R2 value of 0.9997. The kinetics of chromium adsorption showed that under pseudo-second-order analysis, with R2 values of 0.9909 and 0.9958 for Cel and Cel-PEI materials, respectively. The G° and H° values of the adsorption process were negative, indicating that the adsorption is spontaneous and that the adsorption process is exothermic. The efficient preparation adsorbent materials for Cr (VI) was achieved using a short microwave method that is low-cost and environmentally friendly for use in the treatment of Cr-contaminated wastewater.
Collapse
Affiliation(s)
- Kongsak Pattarith
- Department of Chemistry, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand
| | - David Nugroho
- Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suwat Nanan
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | |
Collapse
|
21
|
Tewatia P, Kaushik V, Jyoti MS, Pathania D, Singhal S, Kaushik A. Highly fluorescent composite of boron nitride quantum dots decorated on cellulose nanofibers for detection and removal of Hg(II) ions from waste water. Int J Biol Macromol 2023; 234:123728. [PMID: 36801283 DOI: 10.1016/j.ijbiomac.2023.123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
To address the challenge of heavy-metal ions in wastewater, boron nitride quantum dots (BNQDs) were synthesized in-situ on rice straw derived cellulose nanofibers (CNFs) as substrate. The composite system exhibited strong hydrophilic-hydrophobic interactions, as corroborated by FTIR, integrated the extraordinary fluorescence properties of BNQDs with fibrous-network of CNFs (BNQD@CNFs) yielding a surface of 35.147 m2 g-1 of luminescent fibers. Morphological studies revealed uniform distribution of BNQDs on CNFs due to hydrogen bonding, according high thermal stability with peak degradation occurring at 347.7 °C and quantum yield of 0.45. The nitrogen-rich surface of BNQD@CNFs exhibited strong affinity for Hg(II), quenching the fluorescence intensity due to combined inner-filter effect and photo-induced electron transfer. The limit of detection (LOD) and limit of quantification (LOQ) were 4.889 nM and 11.1 5 nM, respectively. BNQD@CNFs concomitantly exhibited adsorption of Hg(II) owing to strong electrostatic interactions, confirmed by X-ray photon spectroscopy. Presence of polar BN bonds favoured 96 % removal of Hg(II) at 10 mg L-1 with maximum adsorption capacity of 314.5 mg/ g. Parametric studies corresponded to pseudo-second order kinetics and Langmuir isotherm with R2 ≈ 0.99. BNQD@CNFs exhibited recovery rate between 101.3 %-111 % for real water samples and recyclability upto 5 cycles, demonstrating high potential in wastewater remediation.
Collapse
Affiliation(s)
- Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Vishwas Kaushik
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Manjot Singh Jyoti
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, J&K, India; Department of Chemistry, Sardar Patel University Mandi, Himachal Pradesh 175001, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India.
| | - Anupama Kaushik
- Energy Research Centre, Panjab University, Chandigarh, India; Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
22
|
Li L, Guo W, Zhang S, Guo R, Zhang L. Electrospun Nanofiber Membrane: An Efficient and Environmentally Friendly Material for the Removal of Metals and Dyes. Molecules 2023; 28:molecules28083288. [PMID: 37110521 PMCID: PMC10144585 DOI: 10.3390/molecules28083288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the rapid development of nanotechnology, electrospun nanofiber membranes (ENM) application and preparation methods have attracted attention. With many advantages such as high specific surface area, obvious interconnected structure, and high porosity, ENM has been widely used in many fields, especially in water treatment, with more advantages. ENM solves the shortcomings of traditional means, such as low efficiency, high energy consumption, and difficulty in recycling, and it is suitable for recycling and treatment of industrial wastewater. This review begins with a description of electrospinning technology, describing the structure, preparation methods, and factors of common ENMs. At the same time, the removal of heavy metal ions and dyes by ENMs is introduced. The mechanism of ENM adsorption on heavy metal ions and dyes is chelation or electrostatic attraction, which has excellent adsorption and filtration ability for heavy metal ions and dyes, and the adsorption capacity of ENMs for heavy metal ions and dyes can be improved by increasing the metal chelation sites. Therefore, this technology and mechanism can be exploited to develop new, better, and more effective separation methods for the removal of harmful pollutants to cope with the gradually increasing water scarcity and pollution. Finally, it is hoped that this review will provide some guidance and direction for research on wastewater treatment and industrial production.
Collapse
Affiliation(s)
- Li Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
23
|
Haq F, Kiran M, Chinnam S, Farid A, Khan RU, Ullah G, Aljuwayid AM, Habila MA, Mubashir M. Synthesis of bioinspired sorbent and their exploitation for methylene blue remediation. CHEMOSPHERE 2023; 321:138000. [PMID: 36724851 DOI: 10.1016/j.chemosphere.2023.138000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
In this research article, novel starch phosphate grafted polyvinyl imidazole (StP-g-PIMDZs) was synthesized. Firstly, a phosphate group was attached to starch polymer via a phosphorylation reaction. Next, 1-vinyl imidazole (VIMDZ) was grafted on the backbone of starch phosphate (StP) through a free radical polymerization reaction. The synthesis of these modified starches was confirmed by 1H NMR, 31P NMR and FT-IR techniques. The grafting of vinyl imidazole onto StP diminished the crystallinity. Due to the insertion of the aromatic imidazole ring, the StP-g-PIMDZs demonstrated greater thermal stability. The StP and StP-g-PIMDZs were used as sorbents for the adsorption of methylene blue dye (MBD) from the model solution. The maximum removal percentage for starch, StP, StP-g-PIMDZ 1, StP-g-PIMDZ 2 and StP-g-PIMDZ 3 was found to be 60.6%, 66.7%, 74.2%, 85.3 and 95.4%, respectively. The Pseudo second order kinetic model and Langmuir adsorption isotherm were best suited to the experimental data with R2 = 0.999 and 0.99, respectively. Additionally, the thermodynamic parameters showed that the adsorption process was feasible, spontaneous, endothermic and favored chemi-sorption mechanism.
Collapse
Affiliation(s)
- Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Mehwish Kiran
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan.
| | - Rizwan Ullah Khan
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Ghazanfar Ullah
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Etale A, Onyianta AJ, Turner SR, Eichhorn SJ. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chem Rev 2023; 123:2016-2048. [PMID: 36622272 PMCID: PMC9999429 DOI: 10.1021/acs.chemrev.2c00477] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellulose is known to interact well with water, but is insoluble in it. Many polysaccharides such as cellulose are known to have significant hydrogen bond networks joining the molecular chains, and yet they are recalcitrant to aqueous solvents. This review charts the interaction of cellulose with water but with emphasis on the formation of both natural and synthetic fiber composites. Covering studies concerning the interaction of water with wood, the biosynthesis of cellulose in the cell wall, to its dispersion in aqueous suspensions and ultimately in water filtration and fiber-based composite materials this review explores water-cellulose interactions and how they can be exploited for synthetic and natural composites. The suggestion that cellulose is amphiphilic is critically reviewed, with relevance to its processing. Building on this, progress made in using various charged and modified forms of nanocellulose to stabilize oil-water emulsions is addressed. The role of water in the aqueous formation of chiral nematic liquid crystals, and subsequently when dried into composite films is covered. The review will also address the use of cellulose as an aid to water filtration as one area where interactions can be used effectively to prosper human life.
Collapse
Affiliation(s)
- Anita Etale
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| | - Amaka J Onyianta
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| | - Simon R Turner
- School of Biological Science, University of Manchester, Oxford Road, ManchesterM13 9PT, U.K
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| |
Collapse
|
25
|
Elmaghraby NA, Omer AM, Kenawy ER, Gaber M, Ragab S, Nemr AE. Composite nanofiber formation using a mixture of cellulose acetate and activated carbon for oil spill treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38683-38699. [PMID: 36585580 PMCID: PMC10039825 DOI: 10.1007/s11356-022-24982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Oil and organic pollutants are significant disasters affecting the aquatic ecosystem and human health. A novel nanofiber composite from cellulose acetate/activated carbon (CA/AC) was successfully fabricated by the electrospinning technique. CA/AC nanofiber composites were prepared from 10% (w/v) polymer solutions dissolving in DMA/acetone ratio 1:3 (v/v) with adding three different percentages of AC (3.7, 5.5, and 6.7%) to the total weight of CA. The prepared CA/AC nanofiber composite morphology reveals randomly oriented bead-free fibers with submicron fiber diameter. CA/AC nanofiber composites were further characterized by TGA, DSC, and surface area analysis. Water uptake was investigated for fabricated fibers at different pH. Oil adsorption was conducted in both static (oil only) and dynamic (oil/water) systems to estimate the adsorption capacity of prepared composites to treat heavy and light machine oils. The results showed increased oil adsorption capacity incorporating activated carbon into CA nanofiber mats. The maximum sorption capacity reached 8.3 and 5.5 g/g for heavy and light machine oils obtained by CA/AC5.5 (AC, 5.5%). A higher oil uptake was reported for the CA/AC composite nanofibers and showed a constant sorption capacity after the second recycles in the reusability test. Of isotherm models, the most applicable model was the Freundlich isotherm model. The result of kinetic models proved the fit of the pseudo-second-order kinetic model to the adsorption system.
Collapse
Affiliation(s)
- Nehad A. Elmaghraby
- Environmental Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria Egypt
| | - Ahmed M. Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - El-Refaie Kenawy
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527 Egypt
| | - Mohamed Gaber
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527 Egypt
| | - Safaa Ragab
- Environmental Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria Egypt
| | - Ahmed El Nemr
- Environmental Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria Egypt
| |
Collapse
|
26
|
Wu S, Shi W, Li K, Cai J, Xu C, Gao L, Lu J, Ding F. Chitosan-based hollow nanofiber membranes with polyvinylpyrrolidone and polyvinyl alcohol for efficient removal and filtration of organic dyes and heavy metals. Int J Biol Macromol 2023; 239:124264. [PMID: 37003384 DOI: 10.1016/j.ijbiomac.2023.124264] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Due to their large specific surface area and numerous diffusion channels, hollow fibers are widely used in wastewater treatment. In this study, we successfully synthesized a chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) hollow nanofiber membrane (CS/PVP/PVA-HNM) via coaxial electrospinning. This membrane demonstrated remarkable permeability and adsorption separation. Specifically, the CS/PVP/PVA-HNM had a pure water permeability of 4367.02 L·m-2·h-1·bar-1. The hollow electrospun nanofibrous membrane exhibited a continuous interlaced nanofibrous framework structure with the extraordinary advantages of high porosity and high permeability. The rejection ratios of CS/PVP/PVA-HNM for Cu2+, Ni2+, Cd2+, Pb2+, malachite green (MG), methylene blue (MB) and crystal violet (CV) were 96.91 %, 95.29 %, 87.50 %, 85.13 %, 88.21 %, 83.91 % and 71.99 %, and the maximum adsorption capacities were 106.72, 97.46, 88.10, 87.81, 53.45, 41.43, and 30.97 mg·g-1, respectively. This work demonstrates a strategy for the synthesis of hollow nanofibers, which provides a novel concept for the design and fabrication of highly efficient adsorption separation membranes.
Collapse
|
27
|
Zhang Z, Ahmed AIS, Malik MZ, Ali N, Khan A, Ali F, Hassan MO, Mohamed BA, Zdarta J, Bilal M. Cellulose/inorganic nanoparticles-based nano-biocomposite for abatement of water and wastewater pollutants. CHEMOSPHERE 2023; 313:137483. [PMID: 36513201 DOI: 10.1016/j.chemosphere.2022.137483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Nanostructured materials offer a significant role in wastewater treatment with diminished capital and operational expense, low dose, and pollutant selectivity. Specifically, the nanocomposites of cellulose with inorganic nanoparticles (NPs) have drawn a prodigious interest because of the extraordinary cellulose properties, high specific surface area, and pollutant selectivity of NPs. Integrating inorganic NPs with cellulose biopolymers for wastewater treatment is a promising advantage for inorganic NPs, such as colloidal stability, agglomeration prevention, and easy isolation of magnetic material after use. This article presents a comprehensive overview of water treatment approaches following wastewater remediation by green and environmentally friendly cellulose/inorganic nanoparticles-based bio-nanocomposites. The functionalization of cellulose, functionalization mechanism, and engineered hybrid materials were thoroughly discussed. Moreover, we also highlighted the purification of wastewater through the composites of cellulose/inorganic nanoparticles via adsorption, photocatalytic and antibacterial approach.
Collapse
Affiliation(s)
- Zhen Zhang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Abdulrazaq Ibrahim Said Ahmed
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Muhammad Zeeshan Malik
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Mohamed Osman Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza 12613, Egypt
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| |
Collapse
|
28
|
Wijerathna WSMSK, Lindamulla LMLKB, Nanayakkara KGN, Rathnayake RMLD, Jegatheesan V, Jinadasa KBSN. Post-treatment of matured landfill leachate: Synthesis and evaluation of chitosan biomaterial based derivatives as adsorbents. ENVIRONMENTAL RESEARCH 2023; 218:115018. [PMID: 36495958 DOI: 10.1016/j.envres.2022.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Matured landfill leachate is complex in nature, hence, a single conventional treatment unit is insufficient to remove the contaminants of the leachate to achieve the discharge standards. Furthermore, high levels of organic matter, colour compounds, and iron-based materials form a dark black/brown colour in leachate which is not removed by the biological treatment units. Hence, an Anoxic-Oxic Membrane Bioreactor coupled with a tertiary adsorption unit composed of crosslinked-protonated chitosan was tested for effective removal of the colour of the permeate. Several operational parameters such a pH, contact time, and adsorbent dosage on the adsorptive removal of colour were quantified using sorption-desorption experiments. Furthermore, the biosorbent was characterized using FTIR, SEM, XRD, BET-specific surface area, and pHZPC. Response Surface analysis confirmed the optimization of operational parameters conducted through traditional batch experiments. Langmuir isotherm model fitted with equilibrium data (R2 = 0.979) indicating a monolayer homogeneous adsorption. Kinetic data followed the Pseudo-Second-Order model (R2 = 0.9861), showing that the adsorbent material has abundant active sites. The percentage removal values show that the colour removal increases with time of contact and dosage of adsorbent, but removal is mainly influenced by the solution pH levels. The experimental results manifested a colour removal efficiency of 96 ± 3.8% obtained at optimum conditions (pH = 2, adsorbent dosage = 20 g/L, contact time = 48 h) along with an adsorption capacity of 123.8 Pt-Co/g suggesting that the studied adsorbent can be used as an environmentally friendly biosorbent in a tertiary unit for colour removal in a treatment system which is used to treat matured landfill leachate.
Collapse
Affiliation(s)
- W S M S K Wijerathna
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - L M L K B Lindamulla
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia.
| | - K G N Nanayakkara
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - R M L D Rathnayake
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - V Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia.
| | - K B S N Jinadasa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
29
|
Wang Z, Liu Y, Zhang W, Wang Y, Xu H, Yang L, Feng J, Hou B, Li M, Yan W. Selective mercury adsorption and enrichment enabled by phenylic carboxyl functionalized poly(pyrrole methane)s chelating polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159870. [PMID: 36328257 DOI: 10.1016/j.scitotenv.2022.159870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Mercury decontamination from water requires highly effective and efficient methods for maintaining public health and environmental protection. Herein, based on the coordination theory between functional groups and metal ions, we proposed phenylic carboxyl group-based poly(pyrrole methane)s (PPDCBAs) as highly efficient mercury removal materials for environmental remediation applications. It was found that PPDCBAs can efficiently adsorb and remove mercury(II) from aqueous solutions by functionalizing the molecular structure with phenylic carboxyl groups. Among the as-prepared PPDCBAs, poly[pyrrole-2, 5-diyl (4-carboxybenzylidane)] (PPD4CBA) with the carboxyl group at the para position can not only adsorb mercury over 1400 mg⋅g-1 but also achieve a 92.5 % mercury(II) uptake within 100 min by a very low dosage of 0.1 g⋅L-1. In addition, PPDCBAs exhibited excellent adsorption selectivity for mercury(II) compared with copper(II), cadmium(II), zinc(II) and lead(II). Furthermore, as determined by Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and the density functional theory (DFT) calculation, the mercury removal was found to be mainly dependent on the high density of chelating sites, the phenylic carboxyl moieties, which helped us to realize an ultra-trace amount mercury removal (from 10.8 μg⋅L-1 to 0.6-0.8 μg⋅L-1) for meeting drinking water standard requirements (1.0 μg⋅L-1).
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunpeng Liu
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenlong Zhang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Yubing Wang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Xu
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liu Yang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangtao Feng
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Jiangsu Engineering Laboratory of New Materials for Sewage Treatment and Recycling, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK.
| | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
30
|
Chen B, Li L, Liu L, Cao J. Effective adsorption of heavy metal ions in water by sulfhydryl modified nano titanium dioxide. Front Chem 2023; 10:1072139. [PMID: 36778898 PMCID: PMC9911413 DOI: 10.3389/fchem.2022.1072139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/28/2023] Open
Abstract
Background: The monitoring and removal of heavy metal ions in wastewater will effectively improve the quality of water and promote the green and sustainable development of ecological environment. Using more efficient adsorption materials and more accurate detection means to treat heavy metal ions in water has always been a research focus and target of researchers. Method: A novel titania nanomaterial was modified with sulfhydryl group (nano TiO2-SH) for detection and adsorption of heavy metal ions in water, and accurately characterize the adsorption process using Surface-Enhanced Raman Spectroscopy (SERS) and other effective testing methods. Results: The maximum adsorption efficiency of nano TiO2-SH for the Hg2+, Cd2+, Pb2+ three heavy metal ions reached 98.3%, 98.4% and 98.4% respectively. And more importantly, after five cycles of adsorption and desorption, the adsorption efficiency of nano TiO2-SH for these three metal ions is still above 96%. Conclusion: These results proved the nano TiO2-SH adsorbent has great potential in practical water pollution purification.
Collapse
Affiliation(s)
- Beibei Chen
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China,Guizhou Academy of Testing and Analysis, Guiyang, China,*Correspondence: Beibei Chen, ; Jianxin Cao,
| | - Lin Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Lei Liu
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Jianxin Cao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China,*Correspondence: Beibei Chen, ; Jianxin Cao,
| |
Collapse
|
31
|
Xu X, Lv H, Zhang M, Wang M, Zhou Y, Liu Y, Yu DG. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Abedi F, Dubé MA, Emadzadeh D, Kruczek B. Improving nanofiltration performance using modified cellulose nanocrystal-based TFN membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Xiao Y, Helal AS, Mazario E, Mayoral A, Chevillot-Biraud A, Decorse P, Losno R, Maurel F, Ammar S, Lomas JS, Hémadi M. Functionalized maghemite nanoparticles for enhanced adsorption of uranium from simulated wastewater and magnetic harvesting. ENVIRONMENTAL RESEARCH 2023; 216:114569. [PMID: 36244439 DOI: 10.1016/j.envres.2022.114569] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Maghemite (γ-Fe2O3) nanoparticles (MNPs) were functionalized with 3-aminopropyltriethoxysilane (APTES) to give APTES@Fe2O3 (AMNP) which was then reacted with diethylenetriamine-pentaacetic acid (DTPA) to give a nanohybrid DTPA-APTES@Fe2O3 (DAMNP). Nano-isothermal titration calorimetry shows that DTPA complexation with uranyl ions in water is exothermic and has a stoichiometry of two DTPA to three uranyl ions. Density functional theory calculations indicate the possibility of several complexes between DTPA and UO22+ with different stoichiometries. Interactions between uranyl ions and DAMNP functional groups are revealed by X-photoelectron and Fourier transform infrared spectroscopies. Spherical aberration-corrected Scanning Transmission Electron Microscopy visualizes uranium on the particle surface. Adsorbent performance metrics were evaluated by batch adsorption studies under different conditions of pH, initial uranium concentration and contact time, and the results expressed in terms of equilibrium adsorption capacities (qe) and partition coefficients (PC). By either criterion, performance increases from MNP to AMNP to DAMNP, with the maximum uptake at pH 5.5 in all cases: MNP, qe = 63 mg g-1, PC = 127 mg g-1 mM-1; AMNP, qe = 165 mg g-1, PC = 584 mg g-1 mM-1; DAMNP, qe = 249 mg g-1, PC = 2318 mg g-1 mM-1 (at 25 °C; initial U concentration 0.63 mM; 5 mg adsorbent in 10 mL of solution; contact time, 3 h). The pH maximum is related to the predominance of mono- and di-cationic uranium species. Uptake by DAMNPs follows a pseudo-first-order or pseudo-second-order kinetic model and fits a variety of adsorption models. The maximum adsorption capacity for DAMNPs is higher than for other functionalized magnetic nanohybrids. This adsorbent can be regenerated and recycled for at least 10 cycles with less than 10% loss in activity, and shows high selectivity. These findings suggest that DAMNP could be a promising adsorbent for the recovery of uranium from nuclear wastewaters.
Collapse
Affiliation(s)
- Yawen Xiao
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Ahmed S Helal
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France; Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, USA; Nuclear Materials Authority, P.O. Box 540, El Maadi, Cairo, Egypt
| | - Eva Mazario
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Alvaro Mayoral
- Universidad de Zaragoza Instituto de Nanociencia de Aragón Zaragoza, Aragon, Spain
| | | | | | - Rémi Losno
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | | | - Souad Ammar
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - John S Lomas
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Miryana Hémadi
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France.
| |
Collapse
|
34
|
Pellenz L, de Oliveira CRS, da Silva Júnior AH, da Silva LJS, da Silva L, Ulson de Souza AA, de Souza SMDAGU, Borba FH, da Silva A. A comprehensive guide for characterization of adsorbent materials. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Jamaluddin NS, Alias NH, Jaafar J, Othman NH, Sadaki S, Marpani F, Lau WJ, Abd Aziz MH. Exploring Potential of Adsorptive-Photocatalytic Molybdenum Disulphide/Polyacrylonitrile (MoS2/PAN) Nanofiber Coated Cellulose Acetate (CA) Membranes for Treatment of Wastewater. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:5290-5300. [DOI: 10.1007/s10924-022-02619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 09/02/2023]
|
36
|
Efficient adsorption of BPA and Pb2+ by sulfhydryl-rich β-cyclodextrin polymers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Atoufi Z, Cinar Ciftci G, Reid MS, Larsson PA, Wågberg L. Green Ambient-Dried Aerogels with a Facile pH-Tunable Surface Charge for Adsorption of Cationic and Anionic Contaminants with High Selectivity. Biomacromolecules 2022; 23:4934-4947. [DOI: 10.1021/acs.biomac.2c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhaleh Atoufi
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Goksu Cinar Ciftci
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Michael S. Reid
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Per A. Larsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center (WWSC), KTH Royal Institute of Technology, SE-100 44Stockholm, Sweden
| |
Collapse
|
38
|
Preparation of Mannitol-Modified Loofah and Its High-Efficient Adsorption of Cu(II) Ions in Aqueous Solution. Polymers (Basel) 2022; 14:polym14224883. [PMID: 36433010 PMCID: PMC9698831 DOI: 10.3390/polym14224883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Adsorption is considered the most favorable method for heavy metal removal. In this paper, a low-cost, high-efficiency heavy metal adsorbent, mannitol-modified loofah (MML) was prepared. Some characterization methods are used to characterize the structure of MML, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The adsorption behavior of MML for Cu(II) ions was explored under different conditions, such as the amount of adsorbent, pH, initial concentration of Cu(II) ions, and adsorption time. The results indicated that the adsorption capacity of MML for Cu(II) ions was greatly improved. When the initial concentration of Cu(II) ions was 900 mg/L and the pH is 5.0, the adsorption capacity (Qe) was 888.9 mg/g at 298K, which was significantly higher than that of some other modified cellulose adsorbents. Isothermal adsorption results showed that the adsorption process was consistent with the Freundlich model. The adsorption kinetics conformed to the pseudo-second-order equation. Furthermore, the regeneration capability of MML indicates that MML is a cheap and excellent adsorbent for Cu(II) ions removal in wastewater treatment.
Collapse
|
39
|
Tan WB, Luo D, Song W, Lu YY, Cheng N, Zhang JB, Huang T, Wang Y. Polydopamine-assisted polyethyleneimine grafting on electrospun cellulose acetate/TiO2 fibers towards highly efficient removal of Cr(VI). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Bisla V, Kawamura I, Yoshitake H. Cross-linked cellulose acetate aminosilane (CAAS) for aqueous arsenic (V) adsorption. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Li Y, Dai Y, Tao Q, Xu L. Synthesis and characterization of amino acid-functionalized chitosan/poly(vinyl alcohol) for effective adsorption of uranium. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Zhu G, Wang Y, Tan X, Xu X, Li P, Tian D, Jiang Y, Xie J, Xiao H, Huang X, Chen Y, Su Z, Qi J, Jia S, Zhang S. Synthesis of cellulose II-based spherical nanoparticle microcluster adsorbent for removal of toxic hexavalent chromium. Int J Biol Macromol 2022; 221:224-237. [PMID: 36084868 DOI: 10.1016/j.ijbiomac.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Since natural cellulose is mostly cellulose I and has a fibrous form, most cellulose-based adsorbents are fibrous/rod-shaped and exhibit the cellulose I crystal structure. This study reports a cellulose II-based spherical nanoparticle microcluster adsorbent (SNMA), synthesized from biomass by a bottom-up approach, for removing toxic hexavalent chromium (Cr(VI)). The basic structure of SNMA was investigated. Notably, the prepared adsorbent was a microcluster composed of spherical nanoparticles, while exhibiting cellulose II crystal structure, resulting in higher thermal stability and significantly enhanced adsorption performance. The adsorption process and mechanism of SNMA on Cr(VI) were studied in detail. The SNMA achieved a high adsorption capacity (225.94 mg/g) and receptor site density. The SNMA is expected to be used as a bio-based spherical nanoparticle microcluster adsorbent platform for the adsorption of different toxic substances by changing the surface functional groups of its components, spherical nanoparticles.
Collapse
Affiliation(s)
- Gaolu Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xi Tan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueju Xu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Pan Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongze Jiang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiulong Xie
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Xiao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyan Huang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuzhu Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiping Su
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinqiu Qi
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanshan Jia
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaobo Zhang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
43
|
Abdullah, Fang J, Liu X, Javed HU, Cai J, Zhou Q, Huang Q, Xiao J. Recent advances in self-assembly behaviors of prolamins and their applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:1015-1042. [PMID: 36004584 DOI: 10.1080/10408398.2022.2113031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prolamins are a group of storage proteins (zeins, kafirins, hordeins, secalins, gliadins, glutenins, and avenins) found in the endosperm of cereal grains and characterized by high glutamine and proline content. With the high proportion of nonpolar amino acids (40-80%) and peculiar solubility (alcohol (60-90%), acetic acid, and alkaline solutions), prolamins exhibit tunable self-assembly behaviors. In recent years, research practices of utilizing prolamins as green building materials of functional delivery vehicles to improve the health benefits of bioactive compounds have surged due to their attractive advantages (e.g. sustainability, biocompatibility, fabrication potential, and cost-competitiveness). This article covers the recent advances in self-assembly behaviors leading to the fabrication of nanoparticles, fibers, and films in the bulk water phase, at the air-liquid interface, and under the electrostatic field. Different fabrication methods, including antisolvent precipitation, evaporation induced self-assembly, thermal treatment, pH-modulation, electrospinning, and solvent casting for assembling nanoarchitectures as functional delivery vehicles are highlighted. Emerging industrial applications by mapping patents, including encapsulation and delivery of bioactive compounds and probiotics, active packaging, Pickering emulsions, and as functional additives to develop safer, healthier, and sustainable food products are discussed. A future perspective concerning the fabrication of prolamins as advanced materials to promote their commercial food applications is proposed.
Collapse
Affiliation(s)
- Abdullah
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jieping Fang
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xidong Liu
- National Intellectual Property Information Service Center of Universities, Library, South China Agricultural University, Guangdong, China
| | - Hafiz Umer Javed
- School of Chemistry and Chemical Engineering, Zhongkai University of Agricultural and Engineering, Guangzhou, Guangdong, China
| | - Jiyang Cai
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qize Zhou
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Cellulose-based bio-adsorbent from TEMPO-oxidized natural loofah for effective removal of Pb(II) and methylene blue. Int J Biol Macromol 2022; 218:285-294. [PMID: 35870625 DOI: 10.1016/j.ijbiomac.2022.07.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/22/2022]
Abstract
Excessive discharge of inorganic and organic contaminants in water poses a serious threat to the ecosystems. However, most synthetic adsorbents lack cost-effectiveness in terms of preparation. Interestingly, loofah sponge (LS) was a natural absorbent that could effectively remove pollutions in wastewater, but its adsorption capacity is barely satisfactory. Herein, we present a novel strategy of TEMPO-oxidized loofah sponge (TOLS) to boost the adsorption performance of LS. The batch experiments demonstrated that the maximum removal capacity of TOLS for Pb(II) and methylene blue (MB) was 96.6 mg/g and 10.0 mg/g, respectively, which were 3.5 and 1.3 times that of pristine LS. Notably, the continuous-flow reaction testing of the mixed solution revealed that the elimination rate of Pb(II) and MB was still better than 90 % even after 16 h. Such excellent performance was benefit from the enhanced specific surface area and surface carboxyl content of TOLS. This work offers new insights into the rational development of multifunctional and inexpensive cellulose-based bio-adsorbents for wastewater remediation.
Collapse
|
45
|
Iqbal D, Zhao Y, Zhao R, Russell SJ, Ning X. A Review on Nanocellulose and Superhydrophobic Features for Advanced Water Treatment. Polymers (Basel) 2022; 14:2343. [PMID: 35745924 PMCID: PMC9229312 DOI: 10.3390/polym14122343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Globally, developing countries require access to safe drinking water to support human health and facilitate long-term sustainable development, in which waste management and control are critical tasks. As the most plentiful, renewable biopolymer on earth, cellulose has significant utility in the delivery of potable water for human consumption. Herein, recent developments in the application of nanoscale cellulose and cellulose derivatives for water treatment are reviewed, with reference to the properties and structure of the material. The potential application of nanocellulose as a primary component for water treatment is linked to its high aspect ratio, high surface area, and the high number of hydroxyl groups available for molecular interaction with heavy metals, dyes, oil-water separation, and other chemical impurities. The ability of superhydrophobic nanocellulose-based textiles as functional fabrics is particularly acknowledged as designed structures for advanced water treatment systems. This review covers the adsorption of heavy metals and chemical impurities like dyes, oil-water separation, as well as nanocellulose and nanostructured derivative membranes, and superhydrophobic coatings, suitable for adsorbing chemical and biological pollutants, including microorganisms.
Collapse
Affiliation(s)
- Danish Iqbal
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Yintao Zhao
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Renhai Zhao
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Stephen J. Russell
- Leeds Institute of Textiles and Colour (LITAC), School of Design, University of Leeds, Leeds LS2 9JT, UK;
| | - Xin Ning
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| |
Collapse
|
46
|
Synthesis and Characterization of Thiol-Functionalized Polynorbornene Dicarboximides for Heavy Metal Adsorption from Aqueous Solution. Polymers (Basel) 2022; 14:polym14122344. [PMID: 35745918 PMCID: PMC9230520 DOI: 10.3390/polym14122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
The contamination of water resources with heavy metals is a very serious concern that demands prompt and effective attention due to the serious health risks caused by these contaminants. The synthesis and ring-opening metathesis polymerization (ROMP) of norbornene dicarboximides bearing thiol pendant groups, specifically, N-4-thiophenyl-exo-norbornene-5,6-dicarboximide (1a), N-4-(methylthio)phenyl-exo-norbornene-5,6-dicarboximide (1b) and N-4-(trifluoromethylthio)phenyl-exo-norbornene-5,6-dicarboximide (1c), as well as their assessment for the removal of heavy metals from aqueous systems, is addressed in this work. The polymers were characterized by NMR, SEM and TGA, among others. Single and multicomponent aqueous solutions of Pb2+, Cd2+ and Ni2+ were employed to perform both kinetic and isothermal adsorption studies taking into account several experimental parameters, for instance, the initial metal concentration, the contact time and the mass of the polymer. In general, the adsorption kinetic data fit the pseudo-second-order model more efficiently, while the adsorption isotherms fit the Freundlich and Langmuir models. The maximum metal uptakes were 53.7 mg/g for Pb2+, 43.8 mg/g for Cd2+ and 29.1 mg/g for Ni2+ in the SH-bearing polymer 2a, 46.4 mg/g for Pb2+, 32.9 mg/g for Cd2+ and 27.1 mg/g for Ni2+ in the SCH3-bearing polymer 2b and 40.3 mg/g for Pb2+, 35.9 mg/g for Cd2+ and 27.8 mg/g for Ni2+ in the SCF3-bearing polymer 2c, correspondingly. The better performance of polymer 2a for the metal uptake was ascribed to the lower steric hindrance and higher hydrophilicity imparted by -SH groups to the polymer. The results show that these thiol-functionalized polymers are effective adsorbents of heavy metal ions from aqueous media.
Collapse
|
47
|
Zhang J, Xie F. Effects of Mn(II) addition on Cd(II) removal by hydrated manganese dioxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36295-36312. [PMID: 35064514 DOI: 10.1007/s11356-021-18381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In this study, the redox homogeneous precipitation method was applied to synthesize hydrated manganese dioxide (HMO) and to study the removal performance of Cd(II) from wastewater. Moreover, a small amount of Mn(II) could still combine with HMO without causing the desorption of Cd(II). A novel discovery was that the synergistic effect of KMnO4 and Mn(II) could directly regenerate MnO2 to deeply remove Cd(II), realizing the recycling of MnO2. The influence of Mn(II) addition on the adsorption behavior of Cd(II) was discussed in terms of pH, Mn(II) addition mode, initial concentration of Mn(II) or Cd(II), and contact time. The adsorption of Cd(II) on HMO could be better in line with the Langmuir model, while that of Mn(II) accorded with the Freundlich model. The pseudo-second-order kinetic fitting results indicated that the removal of Cd(II) and Mn(II) on HMO belonged to chemisorption. SEM, XRD, FTIR, and XPS analysis demonstrated that Cd(II) was trapped by forming an inner-sphere complex on HMO, and the added Mn(II) and KMnO4 could regenerate MnO2 through oxidation-reduction reaction, wrapping outside of Cd(II) for a purpose of deep removal of Cd(II). HIGHLIGHTS: 1)A small amount of Mn(II) can bind to HMO without causing Cd(II) desorption 2)A large amount of Mn(II) can cause partial desorption of Cd(II) 3)Large amount of Mn(II) will partially bind to the surface of HMO or Cd(II) complexes 4)Deeply remove Cd(II) without eluting and regenerating HMO.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Fencun Xie
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| |
Collapse
|
48
|
He Q, Yang Y, Liu Z, Shao D, Jiang D, Xing L, Pan Q, Shan H. Preparation and characterization of cellulose nanocrystals from spent edible fungus substrate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2761-2772. [PMID: 34719041 DOI: 10.1002/jsfa.11617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Spent edible fungus substrates were identified as potential sources to produce cellulose derivatives, namely purified cellulose and dicarboxyl cellulose nanocrystal (DCNC). Purified celluloses were obtained via chemical treatments and then oxidized by sequential periodate-chlorite without mechanical process. The structural properties of the DCNCs were characterized by transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). RESULTS XRD results showed that the cellulose I structure was maintained, however, the crystallinity index decreased after oxidation process. The initial pyrolysis temperature of DCNCs ranged from 242 to 344 °C. TEM results revealed that DCNC was rod-shaped with an average length and width of 130.88 nm and 7.3 nm, respectively. The average specific surface area (SSA) was 366.67 m2 g-1 . The carboxyl content was around 3.485 mmol g-1 . Finally, the adsorption capacity for contaminations was 76.98, 126.22, 64.44 and 9.63 mg g-1 for copper ion (Cu2+ ), lead ion (Pb2+ ), chromium (Cr3+ ) and amoxicillin (AMX), respectively. CONCLUSION This work showed a sequentially chemical oxidation for preparing nanocellulose from secondary agricultural waste with many functional applications. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang He
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Yu Yang
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Zeng Liu
- College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, China
- National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dongwei Shao
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Donghua Jiang
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Lei Xing
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Qie Pan
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Huizi Shan
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| |
Collapse
|
49
|
Electrospinning PAN/PEI/MWCNT-COOH nanocomposite fiber membrane with excellent oil-in-water separation and heavy metal ion adsorption capacity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Shi RJ, Wang T, Lang JQ, Zhou N, Ma MG. Multifunctional Cellulose and Cellulose-Based (Nano) Composite Adsorbents. Front Bioeng Biotechnol 2022; 10:891034. [PMID: 35497333 PMCID: PMC9046606 DOI: 10.3389/fbioe.2022.891034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
In recent years, faced with the improvement of environmental quality problems, cellulose and cellulose-based (nano) composites have attracted great attention as adsorbents. In this review article, we first report the recent progress of modification and functionalization of cellulose adsorbents. In addition, the adsorbents produced by the modification and functionalization of carboxymehyl cellulose are also introduced. Moreover, the cellulose-based (nano) composites as adsorbents are reviewed in detail. Finally, the development prospect of cellulose and cellulose-based (nano) composites is studied in the field of the environment. In this review article, a critical comment is given based on our knowledge. It is believed that these biomass adsorbents will play an increasingly important role in the field of the environment.
Collapse
Affiliation(s)
- Ru-Jie Shi
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- *Correspondence: Ru-Jie Shi, ; Ming-Guo Ma,
| | - Tian Wang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Jia-Qi Lang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Ming-Guo Ma
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Ru-Jie Shi, ; Ming-Guo Ma,
| |
Collapse
|