1
|
Zhang J, Liu Z, Sun J, Yao Z, Lu H. The formation and performance tuning mechanism of starch-based hydrogels. Carbohydr Polym 2025; 350:123048. [PMID: 39647951 DOI: 10.1016/j.carbpol.2024.123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Starch-based hydrogels, characterized by their three-dimensional network structures, are increasingly explored for their biodegradability, low cost, and abundance of modifiable hydroxyl groups. However, a comprehensive understanding of the mechanisms behind the formation and property modulation of these hydrogels has not been systematically described. Drawing from literature of the past decade, this review provides insights into designing multifunctional starch-based hydrogels through various gelation mechanism, crosslinking strategies, and second-network structure. This comprehensive review aims to establish a theoretical framework for controlling the properties of starch-based hydrogels. A crucial aspect of starch hydrogel formation is the dense, cellular structure produced by swollen particles; when these particles fully disrupt, amylose recrystallization creates "junction zones" essential for network stability. In double-network hydrogels, materials such as polyvinyl alcohol (PVA), sodium alginate (SA), and polyacrylamide (PAM) form an effective secondary network, enhancing the mechanical strength and versatility of the hydrogel. The functionalization of starch-based hydrogels is primarily achieved through the introduction of functional group, secondary networks, and ionic liquids.
Collapse
Affiliation(s)
- Jin Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Zihan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingxuan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuojun Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Hussein SA, Taha GM, Adam FA, Moghazy MA. Three different methods for ZnO-RGO nanocomposite synthesis and its adsorption capacity for methylene blue dye removal in a comparative study. BMC Chem 2025; 19:18. [PMID: 39827167 PMCID: PMC11743050 DOI: 10.1186/s13065-025-01381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Water is one of the vital needs of life. However, due to rapid industrialization, urbanization and lack of awareness, the world population now facing the threat of water shortage. To ensure that future living conditions are preserved, it is crucial to reduce water pollution and protect the ecosystem. Zinc oxide- reduced graphene oxide (ZnO-RGO) nanocomposite is used in this study as an adsorbent for the adsorption of methylene blue (MB) dye from an aqueous solution. An easy strategy was used for the synthesis of reduced graphene oxide nanoparticles (RGO), Zinc oxide nanoparticles (ZnO) and ZnO-RGO nanocomposite. The synthesis of reduced graphene oxide (RGO) was accomplished through the exothermic reaction of a modified Hummer's method. In a novel approach, zinc oxide nanoparticles (ZnO NPs) were synthesized using the green Leidenfrost technique. This study presents a comparative investigation of ZnO-RGO nanocomposite synthesis employing both green and chemical methods. Three distinct approaches were utilized to prepare the ZnO-RGO nanocomposite: (1) the innovative Leidenfrost green method for composite A1, (2) a chemical precipitation method for composite A2, and (3) a physical mixing sonication method for composite A3. This research marks the first application of the Leidenfrost technique in the synthesis of ZnO-RGO nanocomposites, contributing to the growing body of knowledge in this field. X-ray diffraction (XRD), Burnauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), Zeta potential, transmittance electron microscope (TEM) and scanning electron microscope (SEM) analyses are conducted for synthesized sample characterization. Comparing the XRD patterns of the three synthesis methods, it is notable that the intensity peaks of composite A3 were the highest when ZnO was synthesized using a green method, indicating a higher degree of crystallinity. FTIR analysis approves that combining ZnO with RGO affects the functional groups of the three nanocomposite surfaces. The SEM analysis shows ZnO NPs and RGO sheets are incorporated together. In the case of A1 composite sharp angles make a flower shape was observed due to the unique synthesizing method. The surface area for A2 composite is the highest (7.29 m2/g) compared with A1 (2.91 m2/g) and A3(1.90 m2/g). A comparison study is made among the three nanocomposites for MB dye removal. The effect of adsorbent dose, pH, contact time and initial dye concentration on dye adsorption has been studied. The results show that A1 and A2 nanocomposites removed 85.5 and 87.5% of MB at the optimum adsorbent dose of 0.15 g/100 ml at pH8 and A3 removed 95% of MB at the optimum dose of 0.1 g/100 ml at pH 2. All three composites exhibited adherence to the Langmuir isotherm model, with correlation coefficients (R2) of 0.9858, 0.9904, and 0.9959 for A1, A2, and A3, respectively. Kinetic study results demonstrated that the pseudo-second-order model best described the adsorption process for all three composites, yielding R2 values of 0.9998, 0.9988, and 1.0000 for A1, A2, and A3, respectively. The A3 nanocomposite shows the highest adsorption capacity (104.5 mg/g) compared to the other composites (87.7 and 97.5 mg/g for A1 and A2, respectively). Desorption experiments revealed that the dye removal percentages varied with the ratio of the ethanol-water mixture used. Absolute ethanol achieved a 90% removal compared with 1:1 and 1:2 aqueous ethanol solutions (87.5% and 80%, respectively).
Collapse
Affiliation(s)
- Safaa A Hussein
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Gharib M Taha
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - F A Adam
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Marwa A Moghazy
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| |
Collapse
|
3
|
Liu H, Zhang H, Ye Z, Xiong G. Efficient removal of anionic dye congo red by Chitosan/Poly (dimethyl diallyl ammonium chloride-co-acrylamide) composite hydrogel. Int J Biol Macromol 2025; 294:139462. [PMID: 39756735 DOI: 10.1016/j.ijbiomac.2025.139462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/15/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Chitosan, as a natural and environmentally friendly material, has attracted significant attention in the field of water treatment. In this study, a Chitosan/poly (dimethyl diallyl ammonium chloride-co-acrylamide) composite hydrogel (CPDA hydrogel) featuring a semi-interpenetrating network structure was synthesized via free radical copolymerization for the removal of the anionic dye Congo Red (CR) from wastewater. SEM-EDS, FTIR, XPS, TG, Zeta potential, and mercury intrusion porosimetry (MIP) were employed to analyze the physical and chemical changes in the hydrogel before and after adsorption. The results revealed that the CPDA hydrogel can selectively adsorb anionic dyes through electrostatic interactions. The study on the adsorption performance of the CPDA hydrogel demonstrated its excellent swelling capacity and stable adsorption of Congo Red over a broad pH range of 4 to 10. Subsequently, the adsorption process of Congo Red followed the Pseudo-Second-Order kinetic model and the Hill isotherm model, suggesting that Congo Red may self-assemble into ribbon-like micelles for cooperative adsorption and achieving a maximum adsorption capacity of 1803.507 mg/g. Furthermore, the CPDA hydrogel exhibited outstanding reusability over six adsorption-desorption cycles. Thus, the prepared CPDA hydrogel shows great potential as a material for the selective removal of Congo Red from mixed dye solutions.
Collapse
Affiliation(s)
- Hongyu Liu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Huiling Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ziyan Ye
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Gaohong Xiong
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
4
|
Zhang Y, Wang H, Song Z, Wang C, Hou J, Sui K, Qi P. Directed selective transport and enrichment of micropollutants by gradient hydrogels. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136929. [PMID: 39721479 DOI: 10.1016/j.jhazmat.2024.136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Selective autonomous enrichment of micropollutants in the aquatic media has attracted increasing attention because of their low concentration characteristics and diverse coexisting species. Herein, the gradient hydrogels were prepared via free redical polymerization of AA and NH2-β-CD under the induction of unilateral UV illumination (P(AA-NH2-β-CD)). The gradient hydrogels present autonomous enrichment towards Sb(III) with a higher selectivity both in single and binary solutions. The simulation calculations proved that the electrostatic potential of the gradient hydrogel is almost identical before and after enrichment of Sb(III), suggesting that the formed hydrogen bonds between carboxyl and hydroxyl groups with gradient distribution play vital voles on its higher selectivity by gradient hydrogels. Moreover, the gradient P(AA-NH2-β-CD) hydrogels showed selective self-driven enrichment performance for identically charged organic dyes based on host-guest and electrostatic interactions. For the positively charged model pollutants, the gradient hydrogels exhibited a superior selective enrichment performance for MG than X-GRL with a lower K value. The as-prepared gradient hdyrogel may have potential applications for the self-driven and selective removal of micropollutants.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textile Technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Zhichao Song
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textile Technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Caijian Wang
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textile Technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Jingwei Hou
- School of Chemical Engineering, the University of Queensland, St Lucia, QLD 4072, Australia
| | - Kunyan Sui
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textile Technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China.
| | - Pengfei Qi
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textile Technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China; College of Chemical Engineering and Technology, Yantai Nanshan University, Yantai 265713, China.
| |
Collapse
|
5
|
Gao W, Kang H, Zhong M, Han L, Guo X, Su B, Lei Z. Chitosan-Promoted TiO 2-Loaded Double-Network Hydrogels for Dye Removal and Wearable Sensors. Biomacromolecules 2024; 25:8016-8025. [PMID: 39540546 DOI: 10.1021/acs.biomac.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The loading of photocatalysts on hydrogels can significantly reduce the loss of catalysts and effectively prevent secondary contamination, thus demonstrating great application potential and advantages in the field of wastewater treatment, especially in the removal of dyes. Herein, the semiconductor TiO2 was successfully loaded into a polyacrylic acid/chitosan (PAA/CS) double-network (DN) hydrogel, which exhibited superior removal of dyes in wastewater such as MG, MB, MV, and RhB. The dye degradation process followed first-order kinetics, and the first-order rate constants for dye degradation were further calculated under UV light irradiation. Furthermore, the photocatalytic mechanism of the hydrogel was explored and analyzed. More interestingly, the PAA/CS-TiO2 DN hydrogel has excellent tensile properties and superior electrical conductivity, which can be assembled into flexible sensors for real-time monitoring of mechanical deformations and human joint motions. It is envisioned that these excellent properties make hydrogel photocatalysts promising for a wide range of applications.
Collapse
Affiliation(s)
- Wei Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Huichun Kang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ming Zhong
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Lijuan Han
- Gansu Natural Energy Research Institute, Gansu Academy of Science, Lanzhou 730046, P. R. China
| | - Xue Guo
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Bitao Su
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
6
|
Chen X, Li J, Zou W, Gong X. Regulating the Surface State of Carbon Dots as Ultrahigh-Capacity Adsorbents for Water Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404407. [PMID: 39344551 DOI: 10.1002/smll.202404407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Adsorption is one of the most widely researched and highly effective methods for mitigating the environmental threat posed by recalcitrant dyes in aqueous solutions. This paper presents a solvent-free synthesis method for the rapid and large-scale production of nitrogen (N) and phosphorus (P) co-doped carbon dots (N, P-CDs) which possess specific surface states and outstanding dye adsorption properties. Compared to the undoped CDs, the N, P-CDs not only exhibit a higher yield of solid-state luminescence but also endow them with the efficient adsorption and removal of Congo red (CR) from water. Due to the synergistic effects of π-π stacking, hydrogen bonding and electrostatic attraction, the N, P-CDs exhibit an ultra-high adsorption capacity (3118.87 mg g-1) and a removal efficiency (97.4%, at 500 mg L-1) for CR, and also display excellent selective adsorption in both single-dye and dual-dye systems. This method offers a rational strategy for synthesizing novel CDs-based adsorbents for CR, which provides a demonstration for future dye adsorption studies and practical wastewater treatment applications of CDs.
Collapse
Affiliation(s)
- Xingzhong Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wanrong Zou
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
7
|
Li S, Lee BK. Incorporation of biomass-derived carbon dots and hydrochar into electrospun polylactic acid membranes: A sustainable zero-waste approach to highly efficient methylene blue, malachite green and neutral red dye removal. Int J Biol Macromol 2024; 282:137160. [PMID: 39488319 DOI: 10.1016/j.ijbiomac.2024.137160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Recently, biomass-derived carbon dots (CDs) and hydrochar have gained widespread attention for environmental remediation. However, hydrochar is commonly regarded as carbon waste (CW) generated in the manufacture of CDs, and only a few reports have focused on the simultaneous application of CW and CDs. Herein, we propose a sustainable zero-waste approach for efficient dye removal by incorporating CDs and CW into electrospun membranes. CDs and CW were obtained via the one-step solvothermal carbonization of apple peels. The prepared CDs with an average size of 7.36 nm were first added to the electrospinning solution to obtain electrospun polylactic acid (PLA)/CDs fibers, followed by CW-integration via ultrasonication. The optimized PLA/CDs/CW composite exhibited high dye adsorption capacities of 141.99, 130.52, and 110.83 mg/g for neutral red, methylene blue, and malachite green, respectively. These dye adsorption capacities are significantly higher than those of the CD-loaded (70.15 mg/g for MB) or CW-loaded (52.34 mg/g for MB) composites, and are attributable to the rational loading of CDs and CW. Furthermore, the optimized composite exhibited remarkable chemical stability, stable reusability, and the ability to adsorb multiple dyes concurrently. This work provides new perspectives on the development of biomass-derived carbonaceous materials for environmental preservation and remediation.
Collapse
Affiliation(s)
- Shichen Li
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Bong-Kee Lee
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
8
|
Lu K, Folkersma R, Voet VSD, Loos K. Effects of the Amylose/Amylopectin Ratio of Starch on Borax-Crosslinked Hydrogels. Polymers (Basel) 2024; 16:2237. [PMID: 39204457 PMCID: PMC11360700 DOI: 10.3390/polym16162237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herein, we simultaneously prepared borax-crosslinked starch-based hydrogels with enhanced mechanical properties and self-healing ability via a simple one-pot method. The focus of this work is to study the effects of the amylose/amylopectin ratio of starch on the grafting reactions and the performance of the resulting borax-crosslinked hydrogels. An increase in the amylose/ amylopectin ratio increased the gel fraction and grafting ratio but decreased the swelling ratio and pore diameter. Compared with hydrogels prepared from low-amylose starches, hydrogels prepared from high-amylose starches showed pronouncedly increased network strength, and the maximum storage modulus increased by 8.54 times because unbranched amylose offered more hydroxyl groups to form dynamic borate ester bonds with borate ions and intermolecular hydrogen bonds, leading to an enhanced crosslink density. In addition, all the hydrogels exhibited a uniformly interconnected network structure. Furthermore, owing to the dynamic borate ester bonds and hydrogen bonds, the hydrogel exhibited excellent recovery behavior under continuous step strain, and it also showed thermal responsiveness.
Collapse
Affiliation(s)
- Kai Lu
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands;
- Circular Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands;
| | - Rudy Folkersma
- Circular Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands;
| | - Vincent S. D. Voet
- Circular Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands;
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands;
| |
Collapse
|
9
|
Liu S, Wang Z, He M, Zhu J. Preparation of 6-Amino-N-hydroxyhexanamide-Modified Porous Chelating Resin for Adsorption of Heavy Metal Ions. Polymers (Basel) 2024; 16:1966. [PMID: 39065282 PMCID: PMC11281118 DOI: 10.3390/polym16141966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
The pollution of water bodies by heavy metal ions has recently become a global concern. In this experiment, a novel chelating resin, D851-6-AHHA, was synthesized by grafting 6-amino-N-hydroxyhexanamide (6-AHHA) onto the (-CH2N-(CH2COOH)2) group of the D851 resin, which contained a hydroxamic acid group, amide group, and some carboxyl groups. This resin was developed for the purpose of removing heavy metal ions, such as Cr(III) and Pb(II), from water. The findings from static adsorption experiments demonstrated the remarkable adsorption effectiveness of D851-6-AHHA resin towards Cr(III) and Pb(II). Specifically, the maximum adsorption capacities for Cr(III) and Pb(II) were determined to be 91.50 mg/g and 611.92 mg/g, respectively. Furthermore, the adsorption kinetics of heavy metal ions by D851-6-AHHA resin followed the quasi-second-order kinetic model, while the adsorption isotherms followed the Langmuir model. These findings suggest that the adsorption process was characterized by monolayer chemisorption. The adsorption mechanism of D851-6-AHHA resin was comprehensively investigated through SEM, XRD, FT-IR, and XPS analyses, revealing a high efficiency of D851-6-AHHA resin in adsorbing Cr(III) and Pb(II). Specifically, the (-C(=O)NHOH) group exhibited a notable affinity for Cr(III) and Pb(II), forming stable multi-elemental ring structures with them. Additionally, dynamic adsorption experiments conducted using fixed-bed setups further validated the effectiveness of D851-6-AHHA resin in removing heavy metal ions from aqueous solutions. In conclusion, the experimental findings underscored the efficacy of D851-6-AHHA resin as a highly efficient adsorbent for remediating water bodies contaminated by heavy metal ions.
Collapse
Affiliation(s)
- Shaomin Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; (Z.W.); (M.H.); (J.Z.)
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
| | - Zihan Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; (Z.W.); (M.H.); (J.Z.)
| | - Mingyi He
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; (Z.W.); (M.H.); (J.Z.)
| | - Jinglin Zhu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; (Z.W.); (M.H.); (J.Z.)
| |
Collapse
|
10
|
Dong Y, Ghasemzadeh M, Khorsandi Z, Sheibani R, Nasrollahzadeh M. Starch-based hydrogels for environmental applications: A review. Int J Biol Macromol 2024; 269:131956. [PMID: 38692526 DOI: 10.1016/j.ijbiomac.2024.131956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Water sources have become extremely scarce and contaminated by organic and inorganic industrial and agricultural pollutants as well as household wastes. Poisoning water resources by dyes and metals is a problem because contaminated water can leak into subsurface and surface sources, causing serious contamination and health problems. Therefore, developing wastewater treatment technologies is valuable. Today, hydrogels have attracted considerable attention owing to their broad applications. Hydrogels are polymeric network compositions with significant water-imbibing capacity. Hydrogels have potential applications in diverse fields such as biomedical, personal care products, pharmaceuticals, cosmetics, and biosensors. They can be prepared by using natural (biopolymers) and synthetic polymers. Synthetic polymer-based hydrogels obtained from petrochemicals are not environmentally benign; thus, abundant plant-based polysaccharides are found as more suitable compounds for making biodegradable hydrogels. Polysaccharides with many advantages such as non-toxicity, biodegradability, availability, inexpensiveness, etc. are widely employed for the preparation of environmentally friendly hydrogels. Polysaccharides-based hydrogels containing chitin, chitosan, gum, starch (St), etc. are employed to remove pollutants, metals, and dyes. Among these, St has attracted a lot of attention. St can be mixed with other compounds to make hydrogels, which remove dyes and metal ions to variable degrees of efficiency. Although St has numerous advantages, it suffers from drawbacks such as low stability, low water solubility, and fast degradability in water which limit its application as an environmental adsorbent. As an effective way to overcome these weaknesses, various modification approaches to form starch-based hydrogels (SBHs) employing different compounds have been reported. The preparation methods and applications of SBH adsorbents in organic dyes, hazardous materials, and toxic ions elimination from water resources have been comprehensively discussed in this review.
Collapse
Affiliation(s)
- Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | | | - Zahra Khorsandi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | | |
Collapse
|
11
|
Feng Q, Fan B, He YC. Antibacterial, antioxidant, Cr(VI) adsorption and dye adsorption effects of biochar-based silver nanoparticles‑sodium alginate-tannic acid composite gel beads. Int J Biol Macromol 2024; 271:132453. [PMID: 38772472 DOI: 10.1016/j.ijbiomac.2024.132453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Ultrasonic extraction of Osmanthus fragrans was used for reducing Ag+ to prepare AgNPs, which were further loaded on barley distiller's grains shell biochar. By supplementary of sodium alginate and tannic acid, composite gel beads were prepared. The physical properties of biochar-based AgNPs‑sodium alginate-tannic acid composite gel beads (C-Ag/SA/TA) were characterized. SEM, FTIR, and XRD showed that biochar-based AgNPs were compatible with sodium alginate-tannic acid. CAg greatly improved the dissolution, swelling, and expansion of gel beads. Through the analysis by the agar diffusion method, C-Ag/SA/TA gel beads had high antibacterial activity (inhibition zone: 22 mm against Escherichia coli and 20 mm against Staphylococcus aureus). It was observed that C-Ag/SA/TA composite gel beads had high antioxidant capacity and the free radical scavenging rate reached 89.0 %. The dye adsorption performance of gel beads was studied by establishing a kinetic model. The maximum adsorption capacities of C-Ag/SA/TA gel beads for methylene blue and Congo red were 166.57 and 318.06 mg/g, respectively. The removal rate of Cr(VI) reached 96.4 %. These results indicated that the prepared composite gel beads had a high adsorption capacity for dyes and metal ions. Overall, C-Ag/SA/TA composite gel beads were biocompatible and had potential applications in environmental pollution treatment.
Collapse
Affiliation(s)
- Qian Feng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
12
|
Majeed F, Razzaq A, Rehmat S, Azhar I, Mohyuddin A, Rizvi NB. Enhanced dye sequestration with natural polysaccharides-based hydrogels: A review. Carbohydr Polym 2024; 330:121820. [PMID: 38368085 DOI: 10.1016/j.carbpol.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Due to the expansion of industrial activities, the concentration of dyes in water has been increasing. The dire need to remove these pollutants from water has been heavily discussed. This study focuses on the reproducible and sustainable solution for wastewater treatment and dye annihilation challenges. Adsorption has been rated the most practical way of the several decolorization procedures due to its minimal initial investment, convenient utility, and high-performance caliber. Hydrogels, which are three-dimensional polymer networks, are notable because of their potential to regenerate, biodegrade, absorb bulky amounts of water, respond to stimuli, and have unique morphologies. Natural polysaccharide hydrogels are chosen over synthetic ones because they are robust, bioresorbable, non-toxic, and cheaply accessible. This study has covered six biopolymers, including chitosan, cellulose, pectin, sodium alginate, guar gum, and starch, consisting of their chemical architecture, origins, characteristics, and uses. The next part describes these polysaccharide-based hydrogels, including their manufacturing techniques, chemical alterations, and adsorption effectiveness. It is deeply evaluated how size and shape affect the adsorption rate, which has not been addressed in any prior research. To assist the readers in identifying areas for further research in this subject, limitations of these hydrogels and future views are provided in the conclusion.
Collapse
Affiliation(s)
- Fiza Majeed
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Ammarah Razzaq
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Shabnam Rehmat
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan; School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Irfan Azhar
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | | |
Collapse
|
13
|
Stanciu MC, Teacă CA. Natural Polysaccharide-Based Hydrogels Used for Dye Removal. Gels 2024; 10:243. [PMID: 38667662 PMCID: PMC11049453 DOI: 10.3390/gels10040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Removal of contaminants from discharge water is vital and demands urgent assistance with the goal to keep clean water. Adsorption is one of the most common, efficient, and low-priced methods used in water treatment. Various polysaccharide-based gels have been used as efficient dye adsorbents from wastewater. This review summarizes cutting-edge research of the last decade of different hydrogels based on natural polysaccharides (chitin, chitosan, cellulose, starch, pullulan, and dextran) concerning their dye adsorption efficiency. Beyond their natural abundance, attributes of polysaccharides such as biocompatibility, biodegradability, and low cost make them not only efficient, but also environmentally sustainable candidates for water purification. The synthesis and dye removal performance together with the effect of diverse factors on gels retaining ability, kinetic, and isotherm models encountered in adsorption studies, are introduced. Thermodynamic parameters, sorbent recycling capacity along with conclusions and future prospects are also presented.
Collapse
Affiliation(s)
- Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
14
|
Hong F, Qiu P, Wang Y, Ren P, Liu J, Zhao J, Gou D. Chitosan-based hydrogels: From preparation to applications, a review. Food Chem X 2024; 21:101095. [PMID: 38268840 PMCID: PMC10805631 DOI: 10.1016/j.fochx.2023.101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Chitosan, derived from the deacetylation of chitin, is an abundant natural biopolymer on earth. Chitosan and its derivatives have become promising biological materials because of their unique molecular structure and excellent biological activities. The reactive functional groups of chitosan such as the amino and hydroxyl groups play a crucial role in facilitating the synthesis of three-dimensional hydrogel. Chitosan-based hydrogels have been widely used in medical, pharmaceutical, and environmental fields for years. Nowadays, chitosan-based hydrogels have been found in a wide range of applications in the food industry such as food sensors, dye adsorbents and nutrient carriers. In this review, recently developed methods for the preparation of chitosan-based hydrogels were given, and the biological activities of chitosan-based hydrogels were systematically introduced. Additionally, the recent progress in food sensors, packaging, dye adsorbents, and nutrient carriers was discussed. Finally, the challenges and prospects for the future development of chitosan-based hydrogels were discussed.
Collapse
Affiliation(s)
- Fandi Hong
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peirou Ren
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxin Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| |
Collapse
|
15
|
Zhang Y, Wei H, Hua B, Hu C, Zhang W. Preparation and application of the thermo-/pH-/ ion-sensitive semi-IPN hydrogel based on chitosan. Int J Biol Macromol 2024; 258:128968. [PMID: 38154725 DOI: 10.1016/j.ijbiomac.2023.128968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Chitosan based hydrogels with multiple stimulus responses have broad application prospects in many fields. Considering the advantages of semi interpenetrating network (IPN) technology and the special temperature and ion responsiveness of polymers containing zwitterionic groups, a semi-IPN hydrogel was prepared through in situ free radical polymerization of N,N-dimethyl acrylamide and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide with polyethylene glycol dimethacrylate as a crosslinker and carboxymethyl chitosan as filler. The gel mass fraction and swelling ratio were measured, and the preparation conditions were optimized. The result indicated that the hydrogel possessed a unique thermo-/pH-/ ion-sensitive behavior. The swelling ratio increased with the increase of temperature and ion concentration, and showed a decreasing trend with the increase in pH. In addition, the hydrogel was stable when the stimuli changed. Adsorption behavior of the hydrogel to Eosin Y (EY) was systematically investigated. The adsorption process can be described well by the pseudo-second-order kinetic model and Langmuir isotherm model, indicating that it was a chemical adsorption. The experiments indicated that the hydrogel exhibited good antifouling and reusability features. Therefore, the semi-IPN hydrogel with antifouling properties and thermo-/pH-/ion-sensitivity can be easily manufactured is expected to find applications in water treatment fields.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Bingya Hua
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
16
|
Al-Gethami W, Qamar MA, Shariq M, Alaghaz ANMA, Farhan A, Areshi AA, Alnasir MH. Emerging environmentally friendly bio-based nanocomposites for the efficient removal of dyes and micropollutants from wastewater by adsorption: a comprehensive review. RSC Adv 2024; 14:2804-2834. [PMID: 38234871 PMCID: PMC10792434 DOI: 10.1039/d3ra06501d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Water scarcity will worsen due to population growth, urbanization, and climate change. Addressing this issue requires developing energy-efficient and cost-effective water purification technologies. One approach is to use biomass to make bio-based materials (BBMs) with valuable attributes. This aligns with the goal of environmental conservation and waste management. Furthermore, the use of biomass is advantageous because it is readily available, economical, and has minimal secondary environmental impact. Biomass materials are ideal for water purification because they are abundant and contain important functional groups like hydroxyl, carboxyl, and amino groups. Functional groups are important for modifying and absorbing contaminants in water. Single-sourced biomass has limitations such as weak mechanical strength, limited adsorption capacity, and chemical instability. Investing in research and development is crucial for the development of efficient methods to produce BBMs and establish suitable water purification application models. This review covers BBM production, modification, functionalization, and their applications in wastewater treatment. These applications include oil-water separation, membrane filtration, micropollutant removal, and organic pollutant elimination. This review explores the production processes and properties of BBMs from biopolymers, highlighting their potential for water treatment applications. Furthermore, this review discusses the future prospects and challenges of developing BBMs for water treatment and usage. Finally, this review highlights the importance of BBMs in solving water purification challenges and encourages innovative solutions in this field.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University Al-Hawiah, PO Box 11099 Taif City Saudi Arabia
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University Jazan 45142 Saudi Arabia
| | | | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38040 Pakistan
| | - Ashwaq A Areshi
- Samtah General Hospital, Ministry of Health Jazan 86735 Saudi Arabia
| | - M Hisham Alnasir
- Department of Physics, RIPHAH International University Islamabad 44000 Pakistan
| |
Collapse
|
17
|
Gao Y, Cai P, Zhong L, Zhang R, Hou X, Ren X, Wang J, Chu X, Lu Y, Zhou Z. Chitosan-polyvinyl alcohol-diatomite hydrogel removes methylene blue from water. Int J Biol Macromol 2024; 254:127886. [PMID: 37926301 DOI: 10.1016/j.ijbiomac.2023.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Dye pollution in the aquatic environment can harm ecosystems and human health. Here, we developed a new green adsorbent by applying an improved drying process. Diatomite was embedded in a network structure formed between chitosan and polyvinyl alcohol without using any crosslinking agent to prepare chitosan-polyvinyl alcohol-diatomite hydrogel beads through alkali solidification. The beads were tested for removing a cationic dye (methylene blue (MB)) from water. The structure of the adsorbent beads was analysed using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The adsorption capacity was investigated, and the results indicated excellent MB adsorption properties. The adsorbents had a rough surface and high swelling capacity of 66.9 g/g. The maximum MB adsorption capacity was 414.70 mg/g, and the adsorption followed the Freundlich isothermal and quasi-second-order kinetic models. The adsorption was an endothermic spontaneous process governed by both intra-particle and external diffusion processes. The proposed adsorption mechanisms involved hydrogen bonding and electrostatic interactions. These adsorbent beads have considerable application potentials owing to their high adsorption capacity, green composition, and non-polluting nature.
Collapse
Affiliation(s)
- Yanfei Gao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Pingxiong Cai
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535000, China
| | - Lei Zhong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Ruixian Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xueyi Hou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xiuxiu Ren
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Junzhong Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xiaokun Chu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Yanyue Lu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China.
| | - Zeguang Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
18
|
Huang Y, Shen B, Zheng C, Huang B, Zhang G, Fei P. Preparation of amphoteric double network hydrogels based on low methoxy pectin: Adsorption kinetics and removal of anionic and cationic dyes. Int J Biol Macromol 2023; 252:126488. [PMID: 37643669 DOI: 10.1016/j.ijbiomac.2023.126488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The objective of this research was to devise a functional hydrogel was synthesized using pectin (PE), acrylic acid (AA), dimethyldiallyl ammonium chloride (DC), and polyvinyl alcohol (PVA), designed to adsorb both cationic and anionic dyes concurrently. The low methoxy pectin formed double network hydrogel through chemical and physical crosslinking with AA and PVA respectively. DC is combined into the hydrogel system through copolymerization reaction. Analysis of hydrogel's physicochemical properties was conducted using techniques such as infrared spectroscopy, texture analysis, thermogravimetry, and scanning electron microscopy. Dyes adsorption studies showed that the LP/AA/DC/PVA-2 hydrogel, prepared at the molar ratio of AA to DC of 1:2, exhibited higher adsorption efficiency for methylene blue (MB) and Congo red (CR). Kinetics and isotherms studies indicated that the adsorption behavior conformed to the pseudo-second-order kinetic model and Langmuir isotherm model. By the Langmuir isotherm fitting, the maximum adsorption capacities of MB and CR by LP/AA/DC/PVA-2 were recorded to be 222.65 mg/g and 316.46 mg/g, respectively. The adsorption mechanism is dominated by the hydrogen bonding and electrostatic interactions. Further, the adsorption and desorption experiments demonstrated that LP/AA/DC/PVA-2 hydrogel have excellent reusability.
Collapse
Affiliation(s)
- Yufan Huang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Bihua Shen
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Chenmin Zheng
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Bingqing Huang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Peng Fei
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
19
|
Mujtaba G, Ullah A, Khattak D, Shah MUH, Daud M, Ahmad S, Hai A, Ahmed F, Alshahrani T, Banat F. Simultaneous adsorption of methylene blue and amoxicillin by starch-impregnated MgAl layered double hydroxide: Parametric optimization, isothermal studies and thermo-kinetic analysis. ENVIRONMENTAL RESEARCH 2023; 235:116610. [PMID: 37437872 DOI: 10.1016/j.envres.2023.116610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Textile and pharmaceutical effluents contain significant amounts of dyes and antibiotics, which pose a serious threat to the ecosystem when discharged directly. Therefore, they should be treated by facile treatment techniques using low-cost materials. Layered double hydroxide (LDH) and its hybrids have emerged as robust and economic adsorbents for water treatment. Herein, magnesium/aluminum LDH and its starch-based composite were synthesized by a co-precipitation technique. The physicochemical features of the developed adsorbents were thoroughly characterized using various analytical tools. The developed materials were tested for the eradication of methylene blue (MB) and amoxicillin (AMX) in batch mode adsorption by varying operating conditions. Adsorption performance depends on the solution's pH. Under optimum adsorption conditions of pH 11, adsorbent dosage of 50 mg/L, and treatment time of 120 min, starch-impregnated MgAl-LDH exhibited maximum MB and AMX adsorption capacities of 114.94 and 48.08 mg/g, respectively. The adsorption mechanism states that hydrogen bonds and weak van der Waals forces are responsible for the removal of pollutants by the developed materials. Moreover, equilibrium and kinetic studies revealed that the removal of dye and antibiotic followed the Freundlich and Langmuir models with the pseudo-second-order reaction kinetics, respectively. The spent adsorbents were regenerated using 0.1 M HCl (for MB) and methanol (for AMX) eluent, and reusability studies ensured that the developed adsorbents retained their performance for up to four consecutive adsorption/desorption cycles. MgAl-LDH and its starch-based hybrid could thus be used to effectively remove organic contaminants from wastewater streams on a commercial scale.
Collapse
Affiliation(s)
- Ghulam Mujtaba
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Asad Ullah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Danish Khattak
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan.
| | - Muhammad Daud
- Interdisciplinary Research Center for Refining & Advanced Chemicals (IRCRAC) Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Salman Ahmad
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membrane & Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, Hofuf Al-Ahsa, 31982, Saudi Arabia
| | - Thamraa Alshahrani
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membrane & Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
20
|
Du F, Liu L, Pan Y, Wu C, Wang R, Zhao Z, Fan W, Song H, Shi Y, Wang J. A novel biochar-based composite hydrogel for removing heavy metals in water and alleviating cadmium stress in tobacco seedlings. Sci Rep 2023; 13:15656. [PMID: 37730828 PMCID: PMC10511474 DOI: 10.1038/s41598-023-41946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
A novel composite hydrogel (AM/CMC/B) synthesized from peanut shell biochar effectively adsorbs heavy metal Cd in water and reduces its toxicity to tobacco seedlings. The hydrogel, prepared via hydrothermal polymerization using acrylamide (AM), carboxymethyl cellulose (CMC), and peanut shell biochar (B), exhibited a maximum adsorption capacity of 164.83 mg g-1 for Cd2+ and followed a pseudo-second-order kinetic model. In pot experiments, the application of exogenous AM/CMC/B mitigated the inhibitory effects of Cd-contaminated soil on tobacco seedling growth. Addition of 10 mg kg-1 Cd resulted in improved phenotype, root system development, enhanced photosynthetic capacity, stomatal conductance (Gs), stomatal number, and increased antioxidant activity while reducing MDA content and leaf cell death. These findings highlight the potential of AM/CMC/B as an environmentally friendly adsorbent for Cd removal from water and for reducing Cd stress toxicity in tobacco and other plants.
Collapse
Affiliation(s)
- Fu Du
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Liping Liu
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Yong Pan
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Chuang Wu
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Ronghao Wang
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Zeyu Zhao
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Wenpeng Fan
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Hao Song
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Youzhi Shi
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China.
| | - Jian Wang
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China.
| |
Collapse
|
21
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
22
|
Khoo PS, Ilyas RA, Uda MNA, Hassan SA, Nordin AH, Norfarhana AS, Ab Hamid NH, Rani MSA, Abral H, Norrrahim MNF, Knight VF, Lee CL, Rafiqah SA. Starch-Based Polymer Materials as Advanced Adsorbents for Sustainable Water Treatment: Current Status, Challenges, and Future Perspectives. Polymers (Basel) 2023; 15:3114. [PMID: 37514503 PMCID: PMC10385024 DOI: 10.3390/polym15143114] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Over the past three decades, chemical and biological water contamination has become a major concern, particularly in the industrialized world. Heavy metals, aromatic compounds, and dyes are among the harmful substances that contribute to water pollution, which jeopardies the human health. For this reason, it is of the utmost importance to locate methods for the cleanup of wastewater that are not genuinely effective. Owing to its non-toxicity, biodegradability, and biocompatibility, starch is a naturally occurring polysaccharide that scientists are looking into as a possible environmentally friendly material for sustainable water remediation. Starch could exhibit significant adsorption capabilities towards pollutants with the substitution of amide, amino, carboxyl, and other functional groups for hydroxyl groups. Starch derivatives may effectively remove contaminants such as oil, organic solvents, pesticides, heavy metals, dyes, and pharmaceutical pollutants by employing adsorption techniques at a rate greater than 90%. The maximal adsorption capacities of starch-based adsorbents for oil and organic solvents, pesticides, heavy metal ions, dyes, and pharmaceuticals are 13,000, 66, 2000, 25,000, and 782 mg/g, respectively. Although starch-based adsorbents have demonstrated a promising future for environmental wastewater treatment, additional research is required to optimize the technique before the starch-based adsorbent can be used in large-scale in situ wastewater treatment.
Collapse
Affiliation(s)
- Pui San Khoo
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - R A Ilyas
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - M N A Uda
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Faculty of Mechanical Engineering and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Shukur Abu Hassan
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - A H Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - A S Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - N H Ab Hamid
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - M S A Rani
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia
- Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang 25163, Indonesia
| | - M N F Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - V F Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Chuan Li Lee
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - S Ayu Rafiqah
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
23
|
Geng C, Lin R, Yang P, Liu P, Guo L, Cui B, Fang Y. Highly selective adsorption of Hg (II) from aqueous solution by three-dimensional porous N-doped starch-based carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52107-52123. [PMID: 36826770 DOI: 10.1007/s11356-023-26002-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
For the first time, N-doped carbon materials with 3D porous-layered skeleton structure was synthesized through a one-step co-pyrolysis method, which was fabricated by co-pyrolysis of natural corn starch and melamine using metal catalysts (Ni (II) and Mn (II)). The 3D-NC possessed a heterogeneously meso-macroporous surface with a hierarchically connected sheet structure inside. Batch adsorption experiments suggested that highly selective adsorption of Hg (II) by the 3D-NC could be completed within 90 min and had maximum adsorption capacities as high as 403.24 mg/g at 293 K, pH = 5. The adsorption mechanism for Hg (II) was carefully evaluated and followed the physical adsorption, electrostatic attraction, chelation, and ion exchange. Besides, thermodynamic study demonstrated that the Hg (II) adsorption procedure was spontaneous, endothermic, and randomness. More importantly, the 3D-NC could be regenerated and recovered well after adsorption-desorption cycles, showing a promising prospect in the remediation of Hg (II)-contaminated wastewater.
Collapse
Affiliation(s)
- Chao Geng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ruikang Lin
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Peilin Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
24
|
Sarmah D, Borah M, Mandal M, Karak N. Swelling induced mechanically tough starch-agar based hydrogel as a control release drug vehicle for wound dressing applications. J Mater Chem B 2023; 11:2927-2936. [PMID: 36912351 DOI: 10.1039/d2tb02775e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
In recent years, polysaccharide-based hydrogels have received increased attention due to their inherent biodegradability, biocompatibility, and non-toxicity. The feasibility of using polysaccharides for the synthesis of hydrogels is dependent on their noteworthy mechanical strength and cell compatibility, which are required for practical applications, especially for biomedical uses. In this study, we demonstrate a facile synthetic route for the construction of a mechanically tough, biocompatible, and biodegradable hydrogel using polysaccharides such as starch and agar. A synthetic monomer-free hydrogel was synthesized using epichlorohydrin as a cross-linker, and a mechanical strength of 9.49 ± 1.29-6.16 ± 0.37 MPa was achieved. The introduction of agar into the hydrogel resulted in agar dose-dependent swelling-induced mechanical strength. Moreover, along with incredible mechanical strength, the hydrogel also exhibited prominent cell viability against human embryonic kidney cells. In addition, the hydrogel showed good encapsulation efficiency for antibacterial drugs like ciprofloxacin hydrochloride hydrate, with controlled releasing ability over a sustained period. The antibacterial activity of the encapsulated drug was observed against Staphylococcus aureus and Bacillus subtilis bacterial strains. Thus, the studied hydrogel with loaded drug exhibited all the required qualities to be utilized as a promising candidate in wound dressing applications.
Collapse
Affiliation(s)
- Dimpee Sarmah
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India.
| | - Munmi Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Niranjan Karak
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
25
|
Sarmah D, Rather MA, Sarkar A, Mandal M, Sankaranarayanan K, Karak N. Self-cross-linked starch/chitosan hydrogel as a biocompatible vehicle for controlled release of drug. Int J Biol Macromol 2023; 237:124206. [PMID: 36990413 DOI: 10.1016/j.ijbiomac.2023.124206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
A facile one-pot approach was adopted to prepare a polysaccharide-based hydrogel of oxidized starch (OS)-chitosan. The synthetic monomer-free, eco-friendly hydrogel was prepared in an aqueous solution and employed for controlled drug release application. The starch was first oxidized under mild conditions to prepare its bialdehydic derivative. Subsequently, the amino group-containing a modified polysaccharide, "chitosan" was introduced on the backbone of OS via a dynamic Schiff-base reaction. The bio-based hydrogel was obtained via a one-pot in-situ reaction, where functionalized starch acts as a macro-cross-linker that contributes structural stability and integrity to the hydrogel. The introduction of chitosan contributes stimuli-responsive properties and thus pH-sensitive swelling behavior was obtained. The hydrogel showed its potential as a pH-dependent controlled drug release system and a maximum of 29 h sustained release period was observed for ampicillin sodium salt drug. In vitro studies confirmed that the prepared drug-loaded hydrogels showed excellent antibacterial ability. Most importantly, the hydrogel could find potential use in the biomedical field due to its facile reaction conditions, biocompatibility along with the controlled releasing ability of the encapsulated drug.
Collapse
Affiliation(s)
- Dimpee Sarmah
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anupama Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Kamatchi Sankaranarayanan
- Biophysics-Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Niranjan Karak
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
26
|
Alfuhaid L, Al-Abbad E, Alshammari S, Alotaibi A, Malek N, Al-Ghamdi A. Preparation and Characterization of a Renewable Starch-g-(MA-DETA) Copolymer and Its Adjustment for Dye Removal Applications. Polymers (Basel) 2023; 15:polym15051197. [PMID: 36904438 PMCID: PMC10007688 DOI: 10.3390/polym15051197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Maleic anhydride-diethylenetriamine grafted on starch (st-g-(MA-DETA)) was synthesized through graft copolymerization, and the different parameters (copolymerization temperature, reaction time, concentration of initiator and monomer concentration) affecting starch graft percentage were studied to achieve the maximum grafting percentage. The maximum grafting percentage was found to be 29.17%. The starch and grafted starch copolymer were characterized using XRD, FTIR, SEM, EDS, NMR, and TGA analytical techniques to describe copolymerization. The crystallinity of starch and grafted starch was studied by XRD, confirming that grafted starch has a semicrystalline nature and indicating that the grafting reaction took place typically in the amorphous region of starch. NMR and IR spectroscopic techniques confirmed the successful synthesis of the st-g-(MA-DETA) copolymer. A TGA study revealed that grafting affects the thermal stability of starch. An SEM analysis showed the microparticles are distributed unevenly. Modified starch with the highest grafting ratio was then applied to celestine dye removal from water using different parameters. The experimental results indicated that St-g-(MA-DETA) has excellent dye removal properties in comparison to native starch.
Collapse
Affiliation(s)
- Lolwah Alfuhaid
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Eman Al-Abbad
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Renewable Energy Unit, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Shouq Alshammari
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Aljawharah Alotaibi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Naved Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Azza Al-Ghamdi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Renewable Energy Unit, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence:
| |
Collapse
|
27
|
Fan X, Wang H, Liu X, Liu J, Zhao N, Zhong C, Hu W, Lu J. Functionalized Nanocomposite Gel Polymer Electrolyte with Strong Alkaline-Tolerance and High Zinc Anode Stability for Ultralong-Life Flexible Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209290. [PMID: 36455877 DOI: 10.1002/adma.202209290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Increasing pursuit of next-generation wearable electronics has put forward the demand of reliable energy devices with high flexibility, durability, and enhanced electrochemical performances. Flexible aqueous zinc-air batteries (FAZABs) have attracted great interests owing to the high energy density, safety, and environmental benignity, for which quasi-solid-state gel polymer electrolytes (QSGPEs) are state-of-the-art electrolytes with high ionic conductivity, flexibility, and resistance to leakage problems of traditional liquid electrolytes. Compared to commonly used PVA-KOH electrolyte with poor electrolyte retention capability and cycling stability, a new type of sulfonate functionalized nanocomposite QSGPE is applied in FAZABs with high ionic conductivity, strong alkaline tolerance, and high zinc anode stability. Notably, the existence of (1) strong anionic sulfonate groups of QSGPEs, contributing to the exposure of preferred Zn (002) plane that is more resistant to zinc dendrite formation, and (2) nano-attapulgite electrolyte additives, beneficial for the enhancement of ionic conductivity, electrolyte uptake, and retention capability, endows a ultralong cycling life of 450 h for the fabricated FAZAB. Furthermore, flexible energy belts and knittable energy wires fabricated with a series/parallel unit of several FAZABs can be used to power various wearable electronics.
Collapse
Affiliation(s)
- Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haozhi Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Naiqin Zhao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| |
Collapse
|
28
|
Babu RS, Prasanna K, Kumar PS. A censorious review on the role of natural lignocellulosic fiber waste as a low-cost adsorbent for removal of diverse textile industrial pollutants. ENVIRONMENTAL RESEARCH 2022; 215:114183. [PMID: 36063910 DOI: 10.1016/j.envres.2022.114183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Textile industries produce fabricated colored products using toxic dyes and other harsh chemicals. It is the responsibility of the textile industries to treat and eliminate these hazardous pollutants. However, due to the growing population demand, the treatment of these hazardous effluents is ineffective and imposes the treatment cost over the end users. The release of partially treated effluents in the environment may cause a severe threat to the ecology and its biota. The critical objective is to treat textile effluents efficiently using agricultural natural fiber waste. Generation of agricultural lignocellulosic fibrous waste increases every year due to growing population demand. Its use in the modern world is limited due to synthetic products. An alternative has enumerated to avoid wastage of fibrous resources and its clean disposal. OBJECTIVE The main objective of this review paper discussed the feasibility of lignocellulosic fibers and other lignocellulosic materials as natural low-cost adsorbent. METHODS The literature study was performed using Web of Science and Scopus indexed journals. The main factors considered to increase the adsorption ability, including the types of lignocellulosic surface modification techniques were searched with utmost importance for quality results. Intending to summarize the literature survey and provide persuasive content, systematic review process was considered for this novel article. RESULTS Out of 230 valuable publications, 159 published articles were considered for the present study until March 2022. The articles surplus with factors affecting adsorption (pH, adsorption dosage, surface area, temperature, initial concentration, contact time, physical and chemical properties of pollutants) and surface modification techniques (physical, chemical, and biological) were considered for this manuscript. CONCLUSION Overall, the physical and chemical modification methods are widely used instead of biological methods due to various factors as discussed briefly. Furthermore, the finding of this article supports the fact that the fibrous by-product resources are wasted in various occasions due to the modern lifestyle. Even though there is evidential possibility to implement the low-cost adsorbents, the industries limit their application prospects due to existing technology and financial compromises.
Collapse
Affiliation(s)
- R Shiam Babu
- Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu Dist., Tamil Nadu, 603203, India.
| | - K Prasanna
- Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu Dist., Tamil Nadu, 603203, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India.
| |
Collapse
|
29
|
Güngör Z, Ozay H. Use of cationic p[2-(acryloyloxy)ethyl] trimethylammonium chloride in hydrogel synthesis and adsorption of methyl orange with jeffamine based crosslinker. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2129676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zeynep Güngör
- School of Graduate Studies, Department of Chemistry, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Hava Ozay
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
30
|
Synthesis and Characterization of Starch-Based Acid- and Alkali-Resistant Hydrogels Optimized by Box–Behnken Response Surface Methodology. Gels 2022; 8:gels8090585. [PMID: 36135297 PMCID: PMC9498612 DOI: 10.3390/gels8090585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/03/2022] Open
Abstract
Applying gel-type solid chlorine dioxide for the sustained release of chlorine dioxide has several shortcomings, such as no resistance to acid and alkali corrosion and poor mechanical properties. However, introducing quaternary ammonium, carboxyl, and amino groups into the hydrogel system can enhance its acid and alkali resistance. In this study, the effects of concentration of dry heat-modified starch, quaternized carboxymethyl cellulose, and chitin on the swelling behavior and mechanical properties of starch-based acid- and alkali-resistant hydrogels are investigated. The feasibility of the actual and predicted values of the tentative results is verified based on the response surface design to determine the optimal concentration ratio of acid- and alkali-resistant hydrogels. The results reveal that optimized process parameters are reliable. The maximum swelling ratio and compressive stress of the hydrogel are 5358.00% and 44.45 kPa, respectively, and its swelling behavior conforms to the pseudo second-order kinetic model. Thus, the present study can provide a new method of developing efficient starch-based chlorine dioxide hydrogels for the sustained release of chlorine dioxide.
Collapse
|
31
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
32
|
Cui C, Jia Y, Sun Q, Yu M, Ji N, Dai L, Wang Y, Qin Y, Xiong L, Sun Q. Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydr Polym 2022; 291:119624. [DOI: 10.1016/j.carbpol.2022.119624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
|
33
|
Structure and Adsorption Performance of Cationic Entermorpha prolifera Polysaccharide-Based Hydrogel for Typical Pollutants: Methylene Blue, Cefuroxime, and Cr (VI). Gels 2022; 8:gels8090546. [PMID: 36135258 PMCID: PMC9498468 DOI: 10.3390/gels8090546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogels with polysaccharides as high polymer substrates have surprising advantages in wastewater treatment with complex components. Therefore, in this study, polysaccharides named EPS were extracted from Enteromorpha prolifera, a coastal pollutant with a wide range of sources, and cationic modification was performed to obtain CAEPS, the hydrogel with a double network structure was prepared based on EPS and CAEPS. Meanwhile, the structural characteristic of EPS and CAEPS-based hydrogel were identified by HPLC, AFM, FT-IR, TGA, SEM-EDS, Pore size distribution, and WCA, which showed that the porosity, apparent (skeletal) density, and hydrophilicity of CAEPS-hydrogels. We used nonlinear isotherms to uncover the adsorption mechanism of hydrogel applied to the water environment containing three typical pollutants (Methylene blue, Cefuroxime, and Cr (VI)). The results showed that the adsorption isotherm of the two hydrogels fit the Langmuir isotherm model, which indicated the monolayer adsorption of the pollution factor onto EPS- and CAEPS-hydrogels. The maximum adsorption capacities of CAEPS-hydrogels were higher than EPS-hydrogels, which indicated the microstructure and adsorption performance of the CAEPS-hydrogel are strengthened.
Collapse
|
34
|
Tajbakhsh SF, Mohmmadipour R, Janani H. One-pot production of a graft copolymer of cationic starch and cationic polyacrylamide applicable as flocculant for wastewater treatment. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Seyed Farzan Tajbakhsh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ramin Mohmmadipour
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamed Janani
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
35
|
Zhao W, Cui Y, Zhou S, Ye J, Sun J, Liu X. Rapid adsorption of dyes from aqueous solutions by modified lignin derived superparamagnetic composites. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Sarmah D, Karak N. Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel. Carbohydr Polym 2022; 289:119428. [DOI: 10.1016/j.carbpol.2022.119428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023]
|
37
|
Nanocellulose bio-based composites for the removal of methylene blue from water: An experimental and theoretical exploration. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
A highly efficient biomass-based adsorbent fabricated by graft copolymerization: Kinetics, isotherms, mechanism and coadsorption investigations for cationic dye and heavy metal. J Colloid Interface Sci 2022; 616:12-22. [DOI: 10.1016/j.jcis.2022.02.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
|
39
|
Li Y, Wei T, Chen L, Wang K, Shi Y. Regeneration and reuse of salt-tolerant zwitterionic polymer fluids by simple salt/water system. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128203. [PMID: 34999402 DOI: 10.1016/j.jhazmat.2021.128203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Highly-efficient separation of adsorbent and pollutant from chemical sludge is urgent for the recycled materials and chemical resources and minimization of sludge production in industry. Herein, an effortless and cost-efficient salt/water system is developed for efficient zwitterionic polymer/dye separation from chemical sludge. To achieve this aim, a novel salt-tolerant zwitterionic polymer (STZP) is synthesized through etherifying 2-chloro-4,6-bis(4-carboxyphenyl amino)-1,3,5-triazine onto corn starch. It is found that "all-surface-area" adsorption of dye can be achieved by in-situ sol-gel transition of STZP. Spent polymer fluid and solid-state dye can be easily regenerated and separated from sewage sludge by a simple salt/water system. At a high NaCl concentration (225 g/L), the separation factor between zwitterionic polymer and dye is up to 50.4, which is 50 times larger than that of salt-free solution. More importantly, the regenerated polymer fluids exhibit an outstanding reusability ability and can maintain over 92.8% decoloration efficiency for dyeing effluent after multiple adsorption-desorption cycles. This study thus provides a technically feasible and economically acceptable strategy for the recycling and reuse of polymer from hazardous textile sludge waste, greatly promising to achieve zero emissions toward conventional adsorption units.
Collapse
Affiliation(s)
- Yinuo Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Tingting Wei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Long Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Kaixiang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yulin Shi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
40
|
A porous monolith polysaccharide-based adsorbent aerogel with enhanced mechanical performance and efficient adsorption capacity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Gao H, Jiang J, Huang Y, Wang H, Sun J, Jin Z, Wang J, Zhang J. Synthesis of hydrogels for adsorption of anionic and cationic dyes in water: ionic liquid as a crosslinking agent. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-04996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
AbstractIn this work, we synthesized an ionic liquid (IL)—(Dimethylamino)ethyl Methacrylate maleate ([DMAEMA]MA) as the crosslinker, through one-pot to synthesized hydrogels with high adsorption capacity for dye in water. Both anionic dyes (methylene blue, rhodamine B) and cationic dyes (congo red, eosin B) could be adsorbed by this type of hydrogel with different adsorption mechanism, and its adsorption capacity for methylene blue (MB), rhodamine B (RHB), congo red (CR), eosin B (EB) were 489.1, 463.2, 465.5 and 462 mg/g (amount of dye adsorbed per gram of hydrogel), respectively. The surface structure of the hydrogel before and after adsorption was observed and compared by scanning electron microscope (SEM). After studying the adsorption isotherms of the hydrogel adsorbent, it was found that the hydrogel adsorbent had two adsorption mechanisms. This was not found in reported literatures previously.
Collapse
|
42
|
Liu Y, Wei H, Li S, Wang G, Guo T, Han H. Facile fabrication of semi-IPN hydrogel adsorbent based on quaternary cellulose via amino-anhydride click reaction in water. Int J Biol Macromol 2022; 207:622-634. [PMID: 35283138 DOI: 10.1016/j.ijbiomac.2022.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Clean and safe water resources play a key role in environmental safety and human health. Recently, hydrogels have attracted extensive attention due to their non-toxicity, controllable performance, and high adsorption. Herein, a semi- interpenetrating network hydrogel (semi-IPN-Gel) adsorbent based on quaternary cellulose (QC) was prepared by the amino-anhydride click reaction between maleic anhydride copolymer and polyacrylamine hydrochloride (PAH), and its adsorption properties for Eosin Y were studied. First, a binary copolymer (PAM) of acrylamide and maleic anhydride was synthesized by free radical polymerization. Then, the PAM, QC and PAH were dissolved in water, and the pH of the solution was adjusted to alkaline. Semi-IPN-Gel was successfully prepared by fast anhydride-amino click reaction. The preparation conditions of hydrogels were optimized by single-factor experiments. Finally, taking Eosin Y as a model pollutant, the adsorption performance of Eosin Y was studied. The factors influencing the adsorption capacity of the absorbents such as initial concentration of the Eosin Y, temperature, the amount of absorbent, ionic strength and pH of the Eosin Y solutions were investigated. And adsorption data were analyzed via the kinetic model and the isothermal model, indicating that the adsorption process of the hydrogel is a single layer chemisorption process.
Collapse
Affiliation(s)
- Yuhua Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Songmao Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Huayun Han
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
43
|
A template synthesized strategy on bentonite-doped lignin hydrogel spheres for organic dyes removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Xie X, Zhang Y, Zhu Y, Lan Y. Preparation and Drug-Loading Properties of Amphoteric Cassava Starch Nanoparticles. NANOMATERIALS 2022; 12:nano12040598. [PMID: 35214927 PMCID: PMC8877468 DOI: 10.3390/nano12040598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
Based on the characteristics of charge reversal around the isoelectric point (pI) of amphoteric starch-containing anionic and cationic groups, amphoteric cassava starch nanoparticles (CA-CANPs) are prepared by a W/O microemulsion crosslinking method using (3-chloro-2-hydroxypropyl) trimethyl ammonium chloride as a cationic reagent and POCl3 as an anionic reagent, and the effects of preparation conditions on the particle size of the CA-CANPs are studied in detail in the present study. CA-CANPs with a smooth surface and an average diameter of 252 nm are successfully prepared at the following optimised conditions: a crosslinking agent amount of 15 wt%, an aqueous starch concentration of 6.0 wt%, an oil–water ratio of 10:1, a total surfactant amount of 0.20 g·mL−1, and a CHPTAC amount of 4.05 wt%. The pH-responsive value of the CA-CANPs can be regulated by adjusting the nitrogen–phosphorus molar ratio in the CA-CANPs. By using CA-CANPs with a pI of 6.89 as drug carriers and the paclitaxel (PTX) as a model drug, the maximum loading rate of 36.14 mg·g−1 is achieved, and the loading process is consistent with the Langmuir isotherm adsorption, with the calculated thermodynamic parameters of ΔH° = −37.91 kJ·mol−1, ΔS° = −10.96 J·mol−1·K−1 and ΔG° < 0. By testing the release rate in vitro, it is noted that the release rates of PTX in a neutral environment (37.6% after 96 h) and a slightly acidic environment (58.65% after 96 h) are quite different, suggesting that the CA-CANPs have the possibility of being a targeted controlled-release carrier with pH responsiveness for antitumor drugs.
Collapse
|
45
|
Hydrogels produced from natural polymers: a review on its use and employment in water treatment. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
Ihsanullah I, Bilal M, Jamal A. Recent Developments in the Removal of Dyes from Water by Starch-Based Adsorbents. CHEM REC 2022; 22:e202100312. [PMID: 35102677 DOI: 10.1002/tcr.202100312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Indexed: 12/24/2022]
Abstract
Starch-based adsorbents have demonstrated excellent potential for the removal of various noxious dyes from wastewater. This review critically evaluates the recent progress in applications of starch-based adsorbents for the removal of dyes from water. The synthesis methods of starch-based composites and their effects on physicochemical characteristics of produced adsorbents are discussed. The removal of various dyes by starch-based adsorbents are described in detail, with emphasis on the effect of key parameters, adsorption mechanism and their reusability potential. The key challenges related to the synthesis and applications of starch-based adsorbents in water purification are highlighted. Based on the research gaps, recommendations for future research are made. The evaluation of starch-based adsorbents would contribute to the development of sustainable water treatment options in near future.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd, University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Arshad Jamal
- Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
47
|
Abstract
The food packaging sector generates large volumes of plastic waste due to the high demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials are a promising alternative to non-renewable resins, offering a sustainable and environmentally friendly food packaging alternative for single-use products. This article provides a chronology of the development of starch-based materials for food packaging. Particular emphasis is placed on the challenges faced in processing these materials using conventional processing techniques for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The improvement of the performance of starch-based materials by blending with other biopolymers, use of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally, an overview of recent developments of these materials in smart food packaging is given.
Collapse
|
48
|
Mani SK, Bhandari R. Microwave-assisted synthesis of self-assembled network of Graphene oxide-Polyethylenimine-Polyvinyl alcohol hydrogel beads for removal of cationic and anionic dyes from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Sivakumar R, Lee NY. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. CHEMOSPHERE 2022; 286:131890. [PMID: 34426282 DOI: 10.1016/j.chemosphere.2021.131890] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Methylene blue (MB) is categorized as an organic dye (OD) released as effluents after various industrial activities and is one of the most abundant pollutants in the aquatic environment. Significantly, because of its potential toxicity, removing MB from wastewater has been a matter of necessity in recent times. Numerous analytical techniques have been applied, among which polysaccharide-based composite hydrogels appear as the most favorable for MB removal because of their large surface area, excellent mechanical properties, swelling capability, and large-scale production. In this review, the first section gives adequate information about the ODs' adverse effects on the environment and the contribution of polysaccharide-based hydrogels for OD removal, especially MB. Next, various mechanisms such as electrostatic interactions, π-π interactions, hydrogen bonding, hydrophobic interaction, van der Waals force, and coordination interaction involved in the adsorption technique are investigated. The third section extensively describes the MB removal by incorporation of various materials such as monomers, metal oxides, magnetic nanoparticles, and clay into the polysaccharide matrix to produce composite hydrogels. Finally, the current limitations and future perspectives of the polysaccharide-based composite hydrogel techniques are addressed. Overall, this review acknowledged the vital role of polysaccharide-based composite hydrogels for MB adsorption by surveying 110 research articles published in the past five years (2015-2021).
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
50
|
Yan J, Li K. A magnetically recyclable polyampholyte hydrogel adsorbent functionalized with β-cyclodextrin and graphene oxide for cationic/anionic dyes and heavy metal ion wastewater remediation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|