1
|
Fang X, Wang Z, Chen Q, Du Y, Sun H, Liu H, Feng Y, Li Z, Teng T, Shi B. Protective effect of the branched short-chain fatty acid isobutyrate on intestinal damage in weaned piglets through intestinal microbiota remodeling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1556-1568. [PMID: 39412364 DOI: 10.1002/jsfa.13930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 01/14/2025]
Abstract
BACKGROUND Postweaning intestinal damage in piglets is a challenging issue in the livestock industry. Short-chain fatty acids (SCFAs) are important metabolic products of the gut microbiota and are widely recognized for their role in maintaining normal colonic function and regulating the intestinal immune system. However, the effects of branched short-chain fatty acid (BSCFA) isobutyrate on intestinal health remain largely unknown. This study aims to explore the potential of isobutyrate for alleviating postweaning intestinal damage. RESULTS This study indicates that isobutyrate can alleviate diarrhea in weaned piglets, enhance their growth performance, and optimize the gut microbiota. This is mainly achieved through increasing the relative abundance of probiotic bacteria such as Lactobacillus, Megasphaera, and Prevotellaceae_UCG-003, while concurrently reducing the relative abundance of potentially harmful bacteria such as Clostridium_sensu_stricto-1 and Escherichia-Shigella. It promotes the production of SCFAs, including acetate, isobutyrate, and butyrate. Furthermore, it activates G-protein-coupled receptors (GPR43/109A), inhibits the TLR4/MyD88 signaling pathway, strengthens the intestinal barrier function, and regulates the expression of related cytokines. CONCLUSION In summary, exogenous isobutyrate can be considered a promising feed additive for improving the intestinal microbiota and regulating intestinal health in piglets. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuyu Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhengyi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Qinrui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yongqing Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Haowen Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Haiyang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ye Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
2
|
Zhou P, Xu HJ, Wang L. Cardiovascular protective effects of natural flavonoids on intestinal barrier injury. Mol Cell Biochem 2025:10.1007/s11010-025-05213-2. [PMID: 39820766 DOI: 10.1007/s11010-025-05213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Natural flavonoids may be utilized as an important therapy for cardiovascular diseases (CVDs) caused by intestinal barrier damage. More research is being conducted on the protective properties of natural flavonoids against intestinal barrier injury, although the underlying processes remain unknown. Thus, the purpose of this article is to present current research on natural flavonoids to reduce the incidence of CVDs by protecting intestinal barrier injury, with a particular emphasis on intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression). Furthermore, the mechanisms driving intestinal barrier injury development are briefly explored, as well as natural flavonoids having CVD-protective actions on the intestinal barrier. In addition, natural flavonoids with myocardial protective effects were docked with ZO-1 targets to find natural products with higher activity. These natural flavonoids can improve intestinal mechanical barrier function through anti-oxidant or anti-inflammatory mechanism, and then prevent the occurrence and development of CVDs.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hui-Juan Xu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
3
|
Zhang M, Sun J, Zhao H, Liu Y, Tang Z, Wen Y, Ma Q, Zhang L, Zhang Y. Alginate oligosaccharides relieve estrogen-deprived osteosarcopenia by affecting intestinal Th17 differentiation and systemic inflammation through the manipulation of bile acid metabolism. Int J Biol Macromol 2025; 295:139581. [PMID: 39788237 DOI: 10.1016/j.ijbiomac.2025.139581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alginate oligosaccharides (AOS) have gained attention for their capacity to regulate human health as prebiotics. Osteosarcopenia is a progressive disease of the musculoskeletal system and result in heavy burden of patients. Studies suggest that gut microbiota is involved in the pathogenesis of osteosarcopenia, whether AOS can improve the symptoms of osteosarcopenia by modulating gut microbiota remains to be elucidated. In this study, we proved that 200 mg/kg body weight AOS (MW = 4.9 kDa, G/M = 1.88) treatment significantly increased bone mass, boosted muscle function, and promoted gut barrier integrity in ovariectomized (OVX) mice. After AOS treatment, a marked reduction in the proportion of intestinal Th17 subsets and in peripheral levels of relevant inflammatory cytokines was observed compared to the OVX group. 16S rRNA sequencing indicated that AOS treatment could restore the imbalance of gut microbiota caused by estrogen deficiency. Additionally, the impact of AOS on bile acid changes was revealed according to metabolomics. In particular, the Th17 differentiation inhibitor, such as isoLCA, were significantly upregulated after AOS treatment. In conclusion, AOS can alleviate the symptoms of osteoporosis by modulating the relative abundance of gut microbiota and bile acid metabolism, thereby reducing the proportion of intestinal Th17 cells and peripheral Inflammation.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Jin Sun
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Heping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Yingxiang Liu
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zhen Tang
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yanhua Wen
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Qiong Ma
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lijuan Zhang
- American Institute of Translational Medicine and Therapeutics, St. Charles 63301, MO, USA
| | - Yiran Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China.
| |
Collapse
|
4
|
Yi D, Liu X, Wang M, Zhao L, Liu Y, Xu Z, Peng Y, Zhang R, Wei Q, Liang Z, He J. Rosmarinic acid alleviated intestinal barrier damage caused by Escherichia coli by regulating the gut microbiota and inhibiting the NF-κB signalling pathway in mice. Food Funct 2024; 15:11740-11756. [PMID: 39540591 DOI: 10.1039/d4fo02654c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Escherichia coli (E. coli) is a common zoonotic foodborne pathogen that poses a major threat to public health and economic development. Rosmarinic acid (RA) can inhibit intestinal inflammation; however, the protective effect of RA against the intestinal barrier damage induced by E. coli in mice and the underlying mechanism have not been elucidated. In this study, mice were orally administered with RA (20 mg kg-1) by gavage for one week and then were intraperitoneally challenged with E. coli. Mouse colonic epithelial cells (MCECs) were pretreated with RA for 6 h and challenged with E. coli (MOI = 1000) for 3 h. The results revealed that RA alleviated E. coli-induced weight loss in mice; reduced the increase in the levels of TNF-α, IL-6 and IL-1β in the serum; alleviated the decrease in ZO-1 protein expression; and increased intestinal permeability by inhibiting the NF-κB signalling pathway both in vivo and in vitro. Moreover, RA relieved the increase in intestinal permeability, reversed the structural damage to the mouse gut microbiota caused by E. coli, and increased the abundance of beneficial bacteria, including Lachnospiraceae_NK4136_group. Additionally, RA lost its protective function against E. coli infection in a pseudosterile mouse model, suggesting that the protection induced by RA was dependent on the gut microbiota. In conclusion, these results indicate that RA alleviates E. coli-induced inflammatory damage to the intestinal barrier by inhibiting the NF-κB signalling pathway and maintaining gut microbiota homeostasis. These findings provide new ideas and foundations for the application of RA as protection against E. coli.
Collapse
Affiliation(s)
- Dandan Yi
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Xia Liu
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Menghui Wang
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Linyi Zhao
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Yu Liu
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Zhiran Xu
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Ying Peng
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Rui Zhang
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Qianyin Wei
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, Room 307, 100 Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, P. R. China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China
| |
Collapse
|
5
|
Ma WW, Huang ZQ, Liu K, Li DZ, Mo TL, Liu Q. The role of intestinal microbiota and metabolites in intestinal inflammation. Microbiol Res 2024; 288:127838. [PMID: 39153466 DOI: 10.1016/j.micres.2024.127838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 08/19/2024]
Abstract
With the imbalance of intestinal microbiota, the body will then face an inflammatory response, which has serious implications for human health. Bodily allergies, injury or pathogens infections can trigger or promote inflammation and alter the intestinal environment. Meanwhile, excessive changes in the intestinal environment cause the imbalance of microbial homeostasis, which leads to the proliferation and colonization of opportunistic pathogens, invasion of the body's immune system, and the intensification of inflammation. Some natural compounds and gut microbiota and metabolites can reduce inflammation; however, the details of how they interact with the gut immune system and reduce the gut inflammatory response still need to be fully understood. The review focuses on inflammation and intestinal microbiota imbalance caused by pathogens. The body reacts differently to different types of pathogenic bacteria, and the ingestion of pathogens leads to inflamed gastrointestinal tract disorders or intestinal inflammation. In this paper, unraveling the interactions between the inflammation, pathogenic bacteria, and intestinal microbiota based on inflammation caused by several common pathogens. Finally, we summarize the effects of intestinal metabolites and natural anti-inflammatory substances on inflammation to provide help for related research of intestinal inflammation caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Wen-Wen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhi-Qiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - De-Zhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Tian-Lu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
6
|
Wang J, Zhang Z, Dai T, Zhang Z, Zhang Q, Yao J, Wang L, He N, Li S. The therapeutic effect and possible mechanisms of alginate oligosaccharide on metabolic syndrome by regulating gut microbiota. Food Funct 2024; 15:9632-9661. [PMID: 39239698 DOI: 10.1039/d4fo02802c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Metabolic syndrome (MetS) is a disease condition incorporating the abnormal accumulation of various metabolic components, including overweight or abdominal obesity, insulin resistance and abnormal glucose tolerance, hypertension, atherosclerosis, or dyslipidemia. It has been proved that the gut microbiota and microbial-derived products play an important role in regulating lipid metabolism and thus the onset and development of MetS. Previous studies have demonstrated that oligosaccharides with prebiotic effects, such as chitosan oligosaccharides, can regulate the structure of the microbial community and its derived products to control weight and reduce MetS associated with obesity. Alginate oligosaccharides (AOS), natural products extracted from degraded alginate salts with high solubility and extensive biological activity, have also been found to modulate gut microbiota. This review aims to summarize experimental evidence on the positive effects of AOS on different types of MetS while providing insights into mechanisms through which AOS regulates gut microbiota for preventing and treating MetS.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Tong Dai
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Ziheng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Qingfeng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Lijing Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| |
Collapse
|
7
|
Zhou Y, Wei Z, Tan J, Sun H, Jiang H, Gao Y, Zhang H, Schroyen M. Alginate oligosaccharide supplementation improves boar semen quality under heat stress. STRESS BIOLOGY 2024; 4:37. [PMID: 39251532 PMCID: PMC11383898 DOI: 10.1007/s44154-024-00177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/23/2024] [Indexed: 09/11/2024]
Abstract
Heat stress is a serious problem that affects animal husbandry by reducing growth and reproductive performance of animals. Adding plant extracts to the diet is an effective way to help overcome this problem. Alginate oligosaccharide (AOS) is a natural non-toxic antioxidant with multiple biological activities. This study analyzed the potential mechanism of AOS in alleviating heat stress and improving semen quality in boars through a combination of multiple omics tools. The results indicated that AOS could significantly increase sperm motility (P < 0.001) and sperm concentration (P < 0.05). At the same time, AOS improved the antioxidant capacity of blood and semen, and increased blood testosterone (P < 0.05) level. AOS could improve the metabolites in sperm, change the composition of gut microbiota, increase the relative abundance of beneficial bacteria such as Pseudomonas (P < 0.01), Escherichia-Shigella (P < 0.05), Bifidobacterium (P < 0.01), reduce the relative abundance of harmful bacteria such as Prevotella_9 (P < 0.05), Prevotellaceae_UCG-001 (P < 0.01), and increase the content of short chain fatty acids. Proteomic results showed that AOS increased proteins related to spermatogenesis, while decreasing heat shock protein 70 (P < 0.05) and heat shock protein 90 (P < 0.01). These results were verified using immunofluorescence staining technology. There was a good correlation among sperm quality, sperm metabolome, sperm proteome, and gut microbiota. In conclusion, AOS can be used as a feed additive to increase the semen quality of boars to enhance reproductive performance under heat stress.
Collapse
Affiliation(s)
- Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- School of Agriculture and Food Science, University College Dublin, Belfeld, Dublin 4, Ireland
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Haidi Jiang
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, 137000, Jilin, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
8
|
Liu M, Deng X, Zhao Y, Everaert N, Zhang H, Xia B, Schroyen M. Alginate Oligosaccharides Enhance Antioxidant Status and Intestinal Health by Modulating the Gut Microbiota in Weaned Piglets. Int J Mol Sci 2024; 25:8029. [PMID: 39125598 PMCID: PMC11311613 DOI: 10.3390/ijms25158029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Alginate oligosaccharides (AOSs), which are an attractive feed additive for animal production, exhibit pleiotropic bioactivities. In the present study, we investigated graded doses of AOS-mediated alterations in the physiological responses of piglets by determining the intestinal architecture, barrier function, and microbiota. A total of 144 weaned piglets were allocated into four dietary treatments in a completely random design, which included a control diet (CON) and three treated diets formulated with 250 mg/kg (AOS250), 500 mg/kg (AOS500), and 1000 mg/kg AOS (AOS1000), respectively. The trial was carried out for 28 days. Our results showed that AOS treatment reinforced the intestinal barrier function by increasing the ileal villus height, density, and fold, as well as the expression of tight junction proteins, especially at the dose of 500 mg/kg AOS. Meanwhile, supplementations with AOSs showed positive effects on enhancing antioxidant capacity and alleviating intestinal inflammation by elevating the levels of antioxidant enzymes and inhibiting excessive inflammatory cytokines. The DESeq2 analysis showed that AOS supplementation inhibited the growth of harmful bacteria Helicobacter and Escherichia_Shigella and enhanced the relative abundance of Faecalibacterium and Veillonella. Collectively, these findings suggested that AOSs have beneficial effects on growth performance, antioxidant capacity, and gut health in piglets.
Collapse
Affiliation(s)
- Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Xiong Deng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Bing Xia
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
9
|
Qiu X, Yin F, Du C, Ma J, Gan S. Alginate Oligosaccharide Alleviates Lipopolysaccharide-Induced Apoptosis and Inflammatory Response of Rumen Epithelial Cells through NF-κB Signaling Pathway. Animals (Basel) 2024; 14:1298. [PMID: 38731302 PMCID: PMC11083401 DOI: 10.3390/ani14091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
AOS alleviates inflammatory responses; however, whether it exerts an effect on the rumen or regulates rumen inflammatory reaction remains unknown. In this study, firstly, the ovine ruminal epithelial cells (ORECs) were treated with 0, 200, 400, 600, and 800 µg/mL AOS, hoping to explore whether AOS hurt cell health. The results showed that compared with the AOS-0 group, the AOS-400 group could significantly increase (p < 0.05) cell viability, reduce (p < 0.05) reactive oxygen species (ROS) and interleukin (IL)-6 content, and have no adverse effect on cells. Secondly, we used LPS to construct an in vitro inflammatory model of rumen epithelial cells and then explored the protective role of AOS on rumen epithelial cells. The study was divided into three groups: the control group (CON), LPS, and LPS + AOS. The results demonstrated that the LPS + AOS group significantly increased the cell viability and reduced the ROS level in comparison with the LPS group (p < 0.05). Pretreatment with AOS also repressed (p < 0.05) the secretion of IL-1β, IL-6, IL-8, and immunoglobulin (Ig)A from ORECs in the culture medium following LPS. In terms of tight junction (TJ) proteins, AOS treatment also significantly increased (p < 0.05) the zonula occludens 1 (ZO-1) and Occludin expression. The apoptosis rate, Caspase3, Caspase9, BAD, and BCL-2/BAX were decreased (p < 0.05) after AOS treatment, and the expression of BCL-2 was increased (p < 0.05). In addition, the expressions of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) were inhibited (p < 0.05) with the addition of AOS. At the protein level, pretreatment of AOS decreased (p < 0.05) the expression of MyD88 and the phosphorylation level of inhibitor κB α (IκBα) after the LPS challenge. Taken together, our results indicated that AOS could alleviate the LPS-induced apoptosis and inflammatory response of rumen epithelial cells through the NF-κB signaling pathway, which may be a promising strategy for treating apoptosis and inflammation in sheep breeding.
Collapse
Affiliation(s)
| | | | | | | | - Shangquan Gan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (X.Q.); (F.Y.); (C.D.); (J.M.)
| |
Collapse
|
10
|
Mavrogeni ME, Asadpoor M, Judernatz JH, van Ark I, Wösten MMSM, Strijbis K, Pieters RJ, Folkerts G, Braber S. Protective Effects of Alginate and Chitosan Oligosaccharides against Clostridioides difficile Bacteria and Toxin. Toxins (Basel) 2023; 15:586. [PMID: 37888617 PMCID: PMC10610568 DOI: 10.3390/toxins15100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Clostridioides difficile infection is expected to become the most common healthcare-associated infection worldwide. C. difficile-induced pathogenicity is significantly attributed to its enterotoxin, TcdA, which primarily targets Rho-GTPases involved in regulating cytoskeletal and tight junction (TJ) dynamics, thus leading to cytoskeleton breakdown and ultimately increased intestinal permeability. This study investigated whether two non-digestible oligosaccharides (NDOs), alginate (AOS) and chitosan (COS) oligosaccharides, possess antipathogenic and barrier-protective properties against C. difficile bacteria and TcdA toxin, respectively. Both NDOs significantly reduced C. difficile growth, while cell cytotoxicity assays demonstrated that neither COS nor AOS significantly attenuated the TcdA-induced cell death 24 h post-exposure. The challenge of Caco-2 monolayers with increasing TcdA concentrations increased paracellular permeability, as measured by TEER and LY flux assays. In this experimental setup, COS completely abolished, and AOS mitigated, the deleterious effects of TcdA on the monolayer's integrity. These events were not accompanied by alterations in ZO-1 and occludin protein levels; however, immunofluorescence microscopy revealed that both AOS and COS prevented the TcdA-induced occludin mislocalization. Finally, both NDOs accelerated TJ reassembly upon a calcium-switch assay. Overall, this study established the antipathogenic and barrier-protective capacity of AOS and COS against C. difficile and its toxin, TcdA, while revealing their ability to promote TJ reassembly in Caco-2 cells.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jo H Judernatz
- Structural Biochemistry Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Marc M S M Wösten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Karin Strijbis
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Roland J Pieters
- Division of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Wang Y, Ren K, Tan J, Mao Y. Alginate oligosaccharide alleviates aging-related intestinal mucosal barrier dysfunction by blocking FGF1-mediated TLR4/NF-κB p65 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154806. [PMID: 37236046 DOI: 10.1016/j.phymed.2023.154806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Alginate oligosaccharide (AOS) has been reported to exert a crucial role in maintaining the intestinal mucosal barrier (IMB) function. The current study aimed at ascertaining the protective effects of AOS on aging-induced IMB dysfunction and to elucidate the underlying molecular mechanisms. METHODS An aging mouse model and a senescent NCM460 cell model were established using d-galactose. AOS was administered to aging mice and senescent cells, and IMB permeability, inflammatory response and tight junction proteins were assessed. In silico analysis was conducted to identify factors regulated by AOS. Using gain- and loss-of-function approaches, we evaluated the roles of FGF1, TLR4 and NF-κB p65 in the aging-induced IMB dysfunction and NCM460 cell senescence. RESULTS AOS protected the IMB function of aging mice and NCM460 cells by reducing permeability and increasing tight junction proteins. In addition, AOS up-regulated FGF1, which blocked the TLR4/NF-κB p65 pathway, and identified as the mechanism responsible for the protective effect of AOS. CONCLUSION AOS blocks the TLR4/NF-κB p65 pathway via inducing FGF1, ultimately reducing the risk of IMB dysfunction in aging mice. This study highlights the potential of AOS as a protective agent against aging-induced IMB disorder and provides insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yanting Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Keyu Ren
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Junying Tan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
12
|
Lu S, Na K, Wei J, Tao T, Zhang L, Fang Y, Li X, Guo X. Alginate oligosaccharide structures differentially affect DSS-induced colitis in mice by modulating gut microbiota. Carbohydr Polym 2023; 312:120806. [PMID: 37059538 DOI: 10.1016/j.carbpol.2023.120806] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Alginate oligosaccharides (AOS) are divided by their monomer sequences into three types: oligomannuronate (MAOS), oligoguluronate (GAOS), and heterogeneous AOS (HAOS). However, how these AOS structures differentially regulate health and modulate gut microbiota is unclear. We explored the structure-function relationship of AOS both in an in vivo colitis model and an in vitro enterotoxigenic Escherichia coli (ETEC)-challenged cell model. We found that MAOS administration significantly alleviated the symptom of experimental colitis and improved the gut barrier function in vivo and in vivo. Nevertheless, HAOS and GAOS were less effective than MAOS. The abundance and diversity of gut microbiota are obviously increased by MAOS intervention, but not by HAOS or GAOS. Importantly, microbiota from MAOS-dosed mice through FMT decreased the disease index level, alleviated histopathological changes, and improved gut barrier function in the colitis model. Super FMT donors induced by MAOS but not by HAOS or GAOS, seemed to exert potential in colitis bacteriotherapy. These findings may aid in establishing precise pharmaceutical applications based on the targeted production of AOS.
Collapse
|
13
|
The Protective Role of Scorias spongiosa Polysaccharide-Based Microcapsules on Intestinal Barrier Integrity in DSS-Induced Colitis in Mice. Foods 2023; 12:foods12030669. [PMID: 36766197 PMCID: PMC9914818 DOI: 10.3390/foods12030669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Scorias spongiosa, a type of edible fungus, is beneficial for intestinal health. However, the mechanisms by which polysaccharides derived from S. spongiosa contribute to the integrity of the intestinal barrier have been little investigated. In the present study, 40 C57BL/6J mice were assigned into five groups: (1) Normal; (2) Dextran sulfate sodium (DSS)Administration; (3) DSS + Uncapped polysaccharides; (4) DSS + Low microcapsules; (5) DSS + High microcapsules. After one week of administration of S. spongiosa polysaccharides, all mice, excluding the Normal group, had free access to the drinking water of 3.5% DSS for seven days. Serum and feces were then taken for analysis. Scanning electron microscopy analysis indicated the structure of the micro-capped polysaccharides with curcumin was completed with a rough surface, which differs from the uncapped polysaccharides. Noticeably, S. spongiosa polysaccharides enhanced intestinal barrier integrity as evidenced by increasing the protein levels of Claudin-1, ZO-1 and ZO-2. Low-capped polysaccharides mitigated the DSS-induced oxidative stress by increasing catalase (CAT) concentration and decreasing malondialdehyde (MDA) and myeloperoxidase (MPO) concentrations. Besides, DSS treatment caused a disturbance of inflammation and the contents of IL-1β, IL-6, TNF-α and CRP were downregulated and the contents of IL-4, IL-10 and IFN-γ were upregulated by S. spongiosa polysaccharides. Research on the potential mechanisms indicated that S. spongiosa polysaccharides inhibited the DSS-triggered activation of NF-κB signaling. Moreover, the JAK/STAT1 and MAPK pathways were suppressed by S. spongiosa polysaccharides in DSS-challenged mice, with Lcap showing the strongest efficacy. 16S rDNA amplicon sequencing revealed that the richness and diversity of the microbial community were reshaped by S. spongiosa polysaccharide ingestion. Therefore, our study substantiated that S. spongiosa polysaccharides exhibited protective effects against colitis mice by reshaping the intestinal microbiome and maintaining the balance of intestinal barrier integrity, antioxidant capacity and colonic inflammation through regulation of the NF-κB-STAT1-MAPK axis.
Collapse
|
14
|
Zhang Z, Wang X, Li F. An exploration of alginate oligosaccharides modulating intestinal inflammatory networks via gut microbiota. Front Microbiol 2023; 14:1072151. [PMID: 36778853 PMCID: PMC9909292 DOI: 10.3389/fmicb.2023.1072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alginate oligosaccharides (AOS) can be obtained by acidolysis and enzymatic hydrolysis. The products obtained by different methods have different structures and physiological functions. AOS have received increasing interest because of their many health-promoting properties. AOS have been reported to exert protective roles for intestinal homeostasis by modulating gut microbiota, which is closely associated with intestinal inflammation, gut barrier strength, bacterial infection, tissue injury, and biological activities. However, the roles of AOS in intestinal inflammation network remain not well understood. A review of published reports may help us to establish the linkage that AOS may improve intestinal inflammation network by affecting T helper type 1 (Th1) Th2, Th9, Th17, Th22 and regulatory T (Treg) cells, and their secreted cytokines [the hub genes of protein-protein interaction networks include interleukin-1 beta (IL-1β), IL-2, IL-4, IL-6, IL-10 and tumor necrosis factor alpha (TNF-α)] via the regulation of probiotics. The potential functional roles of molecular mechanisms are explored in this study. However, the exact mechanism for the direct interaction between AOS and probiotics or pathogenic bacteria is not yet fully understood. AOS receptors may be located on the plasma membrane of gut microbiota and will be a key solution to address such an important issue. The present paper provides a better understanding of the protecting functions of AOS on intestinal inflammation and immunity.
Collapse
Affiliation(s)
- Zhikai Zhang
- Wuzhoufeng Agricultural Science and Technology Co., Ltd., Yantai, China
| | | | | |
Collapse
|
15
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
16
|
Deng C, Zhao M, Zhao Q, Zhao L. Advances in green bioproduction of marine and glycosaminoglycan oligosaccharides. Carbohydr Polym 2022; 300:120254. [DOI: 10.1016/j.carbpol.2022.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
17
|
The Effects and Cell Barrier Mechanism of Main Dietary Nutrients on Intestinal Barrier. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Alginate Oligosaccharides Ameliorate DSS-Induced Colitis through Modulation of AMPK/NF-κB Pathway and Intestinal Microbiota. Nutrients 2022; 14:nu14142864. [PMID: 35889822 PMCID: PMC9321948 DOI: 10.3390/nu14142864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alginate oligosaccharides (AOS) are shown to have various biological activities of great value to medicine, food, and agriculture. However, little information is available about their beneficial effects and mechanisms on ulcerative colitis. In this study, AOS with a polymerization degree between 2 and 4 were found to possess anti-inflammatory effects in vitro and in vivo. AOS could decrease the levels of nitric oxide (NO), IL-1β, IL-6, and TNFα, and upregulate the levels of IL-10 in both RAW 264.7 and bone-marrow-derived macrophage (BMDM) cells under lipopolysaccharide (LPS) stimulation. Additionally, oral AOS administration could significantly prevent bodyweight loss, colonic shortening, and rectal bleeding in dextran sodium sulfate (DSS)-induced colitis mice. AOS pretreatment could also reduce disease activity index scores and histopathologic scores and downregulate proinflammatory cytokine levels. Importantly, AOS administration could reverse DSS-induced AMPK deactivation and NF-κB activation in colonic tissues, as evidenced by enhanced AMPK phosphorylation and p65 phosphorylation inhibition. AOS could also upregulate AMPK phosphorylation and inhibit NF-κB activation in vitro. Moreover, 16S rRNA gene sequencing of gut microbiota indicated that supplemental doses of AOS could affect overall gut microbiota structure to a varying extent and specifically change the abundance of some bacteria. Medium-dose AOS could be superior to low- or high-dose AOS in maintaining remission in DSS-induced colitis mice. In conclusion, AOS can play a protective role in colitis through modulation of gut microbiota and the AMPK/NF-kB pathway.
Collapse
|
19
|
Luo X, Wu S, Jia H, Si X, Song Z, Zhai Z, Bai J, Li J, Yang Y, Wu Z. Resveratrol alleviates enterotoxigenic Escherichia coli K88-induced damage by regulating SIRT-1 signaling in intestinal porcine epithelial cells. Food Funct 2022; 13:7346-7360. [PMID: 35730460 DOI: 10.1039/d1fo03854k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study found that resveratrol pretreatment attenuated porcine intestinal epithelial cell damage caused by enterotoxigenic Escherichia coli (ETEC) K88 in vitro and the protective effects of resveratrol were associated with SIRT-1 signaling. ETEC K88 is a main intestinal pathogen for post-weaning diarrhea (PWD) in piglets. With the strict ban on antibiotics in animal feed, people are seeking effective antibiotic substitutes to protect the intestinal system against harmful pathogenic bacteria. This study was conducted to evaluate the effects of resveratrol, a natural plant polyphenol, on ETEC K88-induced cellular damage in porcine enterocytes and underlying mechanisms. Intestinal porcine epithelial cell line 1 (IPEC-1) cells, pretreated with or without resveratrol (30 μM, 4 h), were challenged with ETEC K88 (MOI = 1 : 10) for 3 h. The results showed that ETEC K88 infection induced severe damage and dysfunction in IPEC-1 cells, as evidenced by a reduced cell viability, decreased tight junctions, mitochondrial dysfunction, and autophagy. It is noteworthy that IPEC-1 cells pre-treated with resveratrol improved their capacity for resistance to most of these abnormal phenotypes caused by ETEC K88 infection. Furthermore, we found that the activation of SIRT-1 signaling was associated with the benefits of resveratrol, as demonstrated by EX-527, an inhibitor of SIRT-1, which reversed most of the protective effects of resveratrol. In conclusion, these results indicated that resveratrol could protect intestinal epithelial cells against ETEC K88 infection by activating SIRT-1 signaling. These findings provide new insights into the role of resveratrol in maintaining intestinal physiological functions.
Collapse
Affiliation(s)
- Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Shizhe Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhian Zhai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Lu S, Na K, Wei J, Zhang L, Guo X. Alginate oligosaccharides: The structure-function relationships and the directional preparation for application. Carbohydr Polym 2022; 284:119225. [PMID: 35287920 DOI: 10.1016/j.carbpol.2022.119225] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/02/2023]
Abstract
Alginate oligosaccharides (AOS) are degradation products of alginate extracted from brown algae. With low molecular weight, high water solubility, and good biological activity, AOS present anti-inflammatory, antimicrobial, antioxidant, and antitumor properties. They also exert growth-promoting effects in animals and plants. Three types of AOS, mannuronate oligosaccharides (MAOS), guluronate oligosaccharides (GAOS), and heterozygous mannuronate and guluronate oligosaccharides (HAOS), can be produced from alginate by enzymatic hydrolysis. Thus far, most studies on the applications and biological activities of AOS have been based mainly on a hybrid form of HAOS. To improve the directional production of AOS for practical applications, systematic studies on the structures and related biological activities of AOS are needed. This review provides a summary of current understanding of structure-function relationships and advances in the production of AOS. The current challenges and opportunities in the application of AOS is suggested to guide the precise application of AOS in practice.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Kai Na
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Jiani Wei
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China.
| |
Collapse
|
21
|
Xia B, Zhong R, Meng Q, Wu W, Chen L, Zhao X, Zhang H. Multi-omics unravel the compromised mucosal barrier function linked to aberrant mucin O-glycans in a pig model. Int J Biol Macromol 2022; 207:952-964. [PMID: 35364208 DOI: 10.1016/j.ijbiomac.2022.03.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Early weaning stress (EWS) in piglets is associated with intestinal dysfunction. Here, utilizing a pig EWS model to mimic early-life stress (ELS) in humans, we investigated the mechanism of ELS-induced intestinal diseases through integrated multi-omics analyses of proteome, glycome, and microbiome. Our results demonstrated that EWS resulted in disrupted the ileal barrier integrity by reducing tight junction-related gene expression and interfering with cell-cell adhesion paralleled the increased proportion of pathogens such as Escherichia_Shigella and Helicobacter. Furthermore, Proteome data revealed that the accumulation of unfolded proteins and insufficient unfolded protein response (UPR) process caused by EWS led to ER stress. Data from proteome and glycome found that EWS induced aberrant mucin O-glycans, including truncated glycans, reduction in acidic glycans, and increased in fucosylated glycans. In addition, correlation test by taking fucose and inflammatory response into account suggested that enhancement of fucose expression might be a compensatory host response. Taken together, these results extend the comprehensive knowledge of the detrimental impacts and pathogenesis of EWS and help to provide intervention targets for ELS-induced intestinal diseases in the future.
Collapse
Affiliation(s)
- Bing Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Animal Science, McGill University, Montreal, Quebec H9X3V9, Canada.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
22
|
Bi D, Yang X, Lu J, Xu X. Preparation and potential applications of alginate oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:10130-10147. [PMID: 35471191 DOI: 10.1080/10408398.2022.2067832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate, a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages and comprising 40% of the dry weight of algae, possesses various applications in the food and nutraceutical industries. However, the potential applications of alginate are restricted in some fields because of its low water solubility and high solution viscosity. Alginate oligosaccharides (AOS) on the other hand, have low molecular weight which result in better water solubility. Hence, it becomes a more popular target to be researched in recent years for its use in foods and nutraceuticals. AOS can be obtained by multiple degradation methods, including enzymatic degradation, from alginate or alginate-derived poly G and poly M. AOS have unique bioactivity and can bring human health benefits, which render them potentials to be developed/incorporated into functional food. This review comprehensively covers methods of the preparation and analysis of AOS, and discussed the potential applications of AOS in foods and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
23
|
Effect of β-Glucan Supplementation on Growth Performance and Intestinal Epithelium Functions in Weaned Pigs Challenged by Enterotoxigenic Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11040519. [PMID: 35453270 PMCID: PMC9029716 DOI: 10.3390/antibiotics11040519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: To examine the effect of β-glucan (BGL) supplementation on growth performance and intestinal epithelium functions in weaned pigs upon Enterotoxigenic Escherichia coli (ETEC) challenge. Methods: Thirty-two weaned pigs (Duroc × Landrace × Yorkshire) were assigned into four groups. Pigs fed with a basal diet or basal diet containing 500 mg/kg BGL were orally infused with ETEC or culture medium. Results: Results showed BGL tended to increase the average daily gain (ADG) in ETEC-challenged pigs (0.05 < p < 0.1). Dietary BGL supplementation had no significant influence on nutrient digestibility (p > 0.05). However, BGL improved the serum concentrations of immunoglobulin (Ig) A and IgG, and was beneficial to relieve the increasement of the concentrations of inflammatory cytokines such as the TNF-α and IL-6 upon ETEC-challenge (p < 0.05). Interestingly, BGL significantly increased the duodenal, jejunal and ileal villus height, and increased the jejunal ratio of villus height to crypt depth (V/C) upon ETEC challenge (p < 0.05). BGL also increased the activities of mucosal, sucrase and maltase in the ETEC-challenged pigs (p < 0.05). Moreover, BGL elevated the abundance of Lactobacillus and the concentration of propanoic acid in colon in the ETEC-challenged pigs (p < 0.05). Importantly, BGL elevated the expression levels of zonula occludins-1 (ZO-1) and mucin-2 (MUC-2) in the small intestinal mucosa upon ETEC challenge (p < 0.05). BGL also upregulated the expressions of functional genes such as the claudin-1, cationic amino acid transporter-1 (CAT-1), LAT-1, L amino acid transporter-1 (LAT1), fatty acid transport proteins (FATP1), FATP4, and sodium/glucose cotransporter-1 (SGLT-1) in the duodenum, and the occludin-1 and CAT-1 in the jejunum upon ETEC challenge (p < 0.05). Conclusions: These results suggested that BGL can attenuate intestinal damage in weaned pigs upon ETEC challenge, which was connected with the suppressed secretion of inflammatory cytokines and enhanced serum immunoglobulins, as well as improved intestinal epithelium functions and microbiota.
Collapse
|
24
|
Zhang Y, Qin S, Song Y, Yuan J, Hu S, Chen M, Li L. Alginate Oligosaccharide Alleviated Cisplatin-Induced Kidney Oxidative Stress via Lactobacillus Genus-FAHFAs-Nrf2 Axis in Mice. Front Immunol 2022; 13:857242. [PMID: 35432359 PMCID: PMC9010505 DOI: 10.3389/fimmu.2022.857242] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Alginate oligosaccharide is the depolymerized product of alginate, a natural extract of brown algae, which is associated with beneficial health effects. Here, we aimed to investigate the mechanism via which alginate oligosaccharides improve kidney oxidative damage and liver inflammation induced by cisplatin chemotherapy via the gut microbiota. C57BL/6J mice were treated with cisplatin were administered alginate oligosaccharide via gavage for 3 weeks. Compared to that observed in the cisplatin chemotherapy group without intragastric administration of alginate oligosaccharide, liver inflammation improved in the alginate oligosaccharide group, indicated by reduction in lipopolysaccharide and interleukin-1β (IL-1β) levels. This was accompanied by improvement in the oxidative stress of mice kidneys, indicated by the increase in the levels of superoxide dismutase (SOD), catalase (CAT) and nuclear NF-E2-related factor 2 (Nrf2) in renal tissue, and reduction in the levels of malondialdehyde (MDA) in renal tissue and serum creatinine (Cr) to the levels of the normal control group. Alginate oligosaccharide intervention increased the concentration of fatty acid esters of hydroxy fatty acids (FAHFAs). Alginate oligosaccharide regulated the composition of the intestinal microbial community and promoted Lactobacillus stains, such as Lactobacillus johnsonii and Lactobacillus reuteri. Spearman analysis showed that 5 members of FAHFAs concentrations were positively correlated with Lactobacillus johnsonii and Lactobacillus reuteri abundance. We observed that alginate oligosaccharide increased FAHFAs producing-related bacterial abundance and FAHFAs levels, enhanced the levels of SOD and CAT in kidney tissue, and reduced the levels of MDA via activating Nrf2, thereby ameliorating the renal redox injury caused by cisplatin chemotherapy.
Collapse
Affiliation(s)
- Yubing Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- College of Life Sciences, Yantai University, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Jingyi Yuan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shanliang Hu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Min Chen
- College of Life Sciences, Yantai University, Yantai, China
| | - Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Lili Li,
| |
Collapse
|
25
|
Xu Q, Shen M, Han Y, Diao H. Effects of Ellagic Acid Supplementation on Jejunal Morphology, Digestive Enzyme Activities, Antioxidant Capacity, and Microbiota in Mice. Front Microbiol 2021; 12:793576. [PMID: 34956161 PMCID: PMC8692252 DOI: 10.3389/fmicb.2021.793576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Ellagic acid (EA), a plant polyphenol mainly found in nuts and fruits, exhibits various biological effects. However, the effects of EA on intestinal health remain poorly understood. Hence, the present study aimed to assess the effects of EA supplementation on jejunal morphology, digestive enzyme activities, antioxidant capacity, and microbiota in C57BL/6J mice. A total of 144 mice were randomly assigned to three treatments groups: the control (CON) group received a standard pellet diet, the 0.1% EA group received a standard pellet diet plus 0.1% EA, and the 0.3% EA group received a standard pellet diet plus 0.3% EA. The mice were killed at the end of the experimental period, and jejunal samples were collected. The results revealed that the mice in the 0.3% EA group had higher (P < 0.05) average daily gain and greater (P < 0.05) jejunal villus height than those in the CON group. In addition, the jejunal lactase and sucrase activities were higher (P < 0.05) in the 0.1% EA and 0.3% EA groups, and the alkaline phosphatase activity was higher (P < 0.05) in the 0.3% EA group than in the CON group. Compared with the CON group, the administration of EA increased (P < 0.05) the superoxide dismutase and catalase activities but decreased (P < 0.05) the malonaldehyde content in the jejunum. Moreover, the jejunal messenger RNA expression levels of nuclear factor-E2-related factor 2 (Nrf2) and haem oxygenase-1 (HO-1) were higher (P < 0.05) in the 0.3% EA group than in the CON group. Furthermore, compared with the CON group, the count of Escherichia coli decreased (P < 0.05), and that of Lactobacillus species increased (P < 0.05) in the 0.3% EA group. In general, our findings indicate that the administration of EA can enhance the growth of mice, promote intestinal development, increase the antioxidant capacity, and regulate the intestinal microbiota.
Collapse
Affiliation(s)
- Qiuying Xu
- Sichuan Nursing Vocational College, Chengdu, China
| | - Mingkang Shen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxin Han
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China
| |
Collapse
|