1
|
Zhou W, Chai Y, Lu S, Yang Q, Tang L, Zhou D. Advances in the study of tissue-engineered retinal pigment epithelial cell sheets. Regen Ther 2024; 27:419-433. [PMID: 38694444 PMCID: PMC11062139 DOI: 10.1016/j.reth.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Regarded as the most promising treatment modality for retinal degenerative diseases, retinal pigment epithelium cell replacement therapy holds significant potential. Common retinal degenerative diseases, including Age-related Macular Degeneration, are frequently characterized by damage to the unit comprising photoreceptors, retinal pigment epithelium, and Bruch's membrane. The selection of appropriate tissue engineering materials, in conjunction with retinal pigment epithelial cells, for graft preparation, can offer an effective treatment for retinal degenerative diseases. This article presents an overview of the research conducted on retinal pigment epithelial cell tissue engineering, outlining the challenges and future prospects.
Collapse
Affiliation(s)
- Wang Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Yujiao Chai
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Shan Lu
- National Engineering Research Center of Human Stem Cells, Changsha, China
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liying Tang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Di Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- National Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| |
Collapse
|
2
|
Dang X, Li N, Yu Z, Ji X, Yang M, Wang X. Advances in the preparation and application of cellulose-based antimicrobial materials: A review. Carbohydr Polym 2024; 342:122385. [PMID: 39048226 DOI: 10.1016/j.carbpol.2024.122385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The rise of polymer materials in modern life has drawn attention to renewable, easily biodegradable, environmentally-friendly bio-based polymers. Notably, significant research has been dedicated to creating green antimicrobial functional materials for the biomedical field using natural polymer materials. Cellulose is a rich natural biomass organic polymer material. Given its favorable attributes like film-forming capability, biodegradability, and biocompatibility, it is extensively employed to tackle a wide range of challenges confronting humanity today. However, its inherent drawbacks, such as insolubility in water and most organic solvents, hygroscopic nature, difficulty in melting, and limited antimicrobial properties, continue to pose challenges for realizing the high-value applications of cellulose. Achieving multifunctionality and more efficient application of cellulose still poses major challenges. In this regard, the current development status of cellulose materials was reviewed, covering the classification, preparation methods, and application status of cellulose-based antimicrobial materials. The application value of cellulose-based antimicrobial materials in biomedicine, textiles, food packaging, cosmetics and wastewater treatment was summarised. Finally, insights were provided into the developing prospects of cellulose-based antimicrobial materials were provided.
Collapse
Affiliation(s)
- Xugang Dang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Institute for Biomass and Function Materials & College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Nan Li
- Institute for Biomass and Function Materials & College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenfu Yu
- Institute for Biomass and Function Materials & College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Mao Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xuechuan Wang
- Institute for Biomass and Function Materials & College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández JA, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers (Basel) 2024; 16:2854. [PMID: 39458682 PMCID: PMC11511474 DOI: 10.3390/polym16202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
This review examines microbial polysaccharides' properties relevant to their use in packaging and pharmaceutical applications. Microbial polysaccharides are produced by enzymes found in the cell walls of microbes. Xanthan gum, curdlan gum, pullulan, and bacterial cellulose are high-molecular-weight substances consisting of sugar residues linked by glycoside bonds. These polysaccharides have linear or highly branched molecular structures. Packaging based on microbial polysaccharides is readily biodegradable and can be considered as a renewable energy source with the potential to reduce environmental impact. In addition, microbial polysaccharides have antioxidant and prebiotic properties. The physico-chemical properties of microbial polysaccharide-based films, including tensile strength and elongation at break, are also evaluated. These materials' potential as multifunctional packaging solutions in the food industry is demonstrated. In addition, their possible use in medicine as a drug delivery system is also considered.
Collapse
Affiliation(s)
- Aigerim Yermagambetova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Sagdat Tazhibayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Paul Takhistov
- Department of Food Science, Rutgers State University of New Jersey, New Brunswick, NJ 07102, USA;
| | - Bakyt Tyussyupova
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos (DIPA), University of Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Kuanyshbek Musabekov
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| |
Collapse
|
4
|
Dey B, Jayaraman S, Balasubramanian P. Upcycling of tea processing waste into kombucha-derived bioactive cellulosic composite for prospective wound dressing action. 3 Biotech 2024; 14:253. [PMID: 39345965 PMCID: PMC11436509 DOI: 10.1007/s13205-024-04095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
The aim of the study was to utilize kombucha-derived bacterial cellulosic sheet [KBC], formed as a by-product of fermented, sugared black tea (in the presence of a symbiotic culture of bacteria and yeast), for potential wound dressing applications. KBC was functionalized using aqueous and ethanolic extracts of different phytochemical agents using two ex-situ methods- casting and impregnation. It was observed that casted KBC functionalized with ethanolic extract of Turmeric (1.2% w/w) yielded a maximum zone of inhibition (24.37 ± 0.42 mm) against Pseudomonas aeruginosa. The hemocompatibility test confirmed the composite's biocompatible nature as the percentage hemocompatibility was found to be less than 5%. The MTT assay established its viability and anti-cancerous properties with Turmeric extract loaded KBC showing higher efficiency compared to Tulsi extract. FTIR analysis and SEM imaging confirmed the functionalization of cellulose sheets and the change in morphology. The contact angle analysis showed improved hydrophilic properties of the sheets for absorbing wound exudates, and the water absorption study revealed maximum absorptivity of up to 321.20 ± 6.23%. Thus, it can be concluded from the study that tea processing waste can be reused to produce a value-added product that can act as an efficient, cost-effective biomaterial for wound dressing applications.
Collapse
Affiliation(s)
- Baishali Dey
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769 008 India
| | - Sivaraman Jayaraman
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769 008 India
| | - Paramasivan Balasubramanian
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769 008 India
| |
Collapse
|
5
|
Lima NF, Maciel GM, Lima NP, Fernandes IDAA, Haminiuk CWI. Bacterial cellulose in cosmetic innovation: A review. Int J Biol Macromol 2024; 275:133396. [PMID: 38945719 DOI: 10.1016/j.ijbiomac.2024.133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Bacterial cellulose (BC) emerges as a versatile biomaterial with a myriad of industrial applications, particularly within the cosmetics sector. The absence of hemicellulose, lignin, and pectin in its pure cellulose structure enables favorable interactions with both hydrophilic and hydrophobic biopolymers. This enhances compatibility with active ingredients commonly employed in cosmetics, such as antioxidants, vitamins, and botanical extracts. Recent progress in BC-based materials, which encompasses membranes, films, gels, nanocrystals, and nanofibers, highlights its significant potential in cosmetics. In this context, BC not only serves as a carrier for active ingredients but also plays a crucial role as a structural agent in formulations. The sustainability of BC production and processing is a central focus, highlighting the need for innovative approaches to strengthen scalability and cost-effectiveness. Future research endeavors, including the exploration of novel cultivation strategies and functionalization techniques, aim to maximize BC's therapeutic potential while broadening its scope in personalized skincare regimes. Therefore, this review emphasizes the crucial contribution of BC to the cosmetics sector, underlining its role in fostering innovation, sustainability, and ethical skincare practices. By integrating recent research findings and industry trends, this review proposes a fresh approach to advancing both skincare science and environmental responsibility in the cosmetics industry.
Collapse
Affiliation(s)
- Nicole Folmann Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | - Nayara Pereira Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | | |
Collapse
|
6
|
Lu Y, Mehling M, Huan S, Bai L, Rojas OJ. Biofabrication with microbial cellulose: from bioadaptive designs to living materials. Chem Soc Rev 2024; 53:7363-7391. [PMID: 38864385 DOI: 10.1039/d3cs00641g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Nanocellulose is not only a renewable material but also brings functions that are opening new technological opportunities. Here we discuss a special subset of this material, in its fibrillated form, which is produced by aerobic microorganisms, namely, bacterial nanocellulose (BNC). BNC offers distinct advantages over plant-derived counterparts, including high purity and high degree of polymerization as well as crystallinity, strength, and water-holding capacity, among others. More remarkably, beyond classical fermentative protocols, it is possible to grow BNC on non-planar interfaces, opening new possibilities in the assembly of advanced bottom-up structures. In this review, we discuss the recent advances in the area of BNC-based biofabrication of three-dimensional (3D) designs by following solid- and soft-material templating. These methods are shown as suitable platforms to achieve bioadaptive constructs comprising highly interlocked biofilms that can be tailored with precise control over nanoscale morphological features. BNC-based biofabrication opens applications that are not possible by using traditional manufacturing routes, including direct ink writing of hydrogels. This review emphasizes the critical contributions of microbiology, colloid and surface science, as well as additive manufacturing in achieving bioadaptive designs from living matter. The future impact of BNC biofabrication is expected to take advantage of material and energy integration, residue utilization, circularity and social latitudes. Leveraging existing infrastructure, the scaleup of biofabrication routes will contribute to a new generation of advanced materials rooted in exciting synergies that combine biology, chemistry, engineering and material sciences.
Collapse
Affiliation(s)
- Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Marina Mehling
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Siqi Huan
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Department of Wood Science, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
7
|
Lu Y, Chun Y, Shi X, Wang D, Ahmadijokani F, Rojas OJ. Multiphase Under-Liquid Biofabrication With Living Soft Matter: A Route to Customize Functional Architectures With Microbial Nanocellulose. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400311. [PMID: 38483010 DOI: 10.1002/adma.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/04/2024] [Indexed: 03/27/2024]
Abstract
The growth of aerobic microbes at air-water interfaces typically leads to biofilm formation. Herein, a fermentative alternative that relies on oil-water interfaces to support bacterial activity and aerotaxis is introduced. The process uses under-liquid biofabrication by structuring bacterial nanocellulose (BNC) to achieve tailorable architectures. Cellulose productivity in static conditions is first evaluated using sets of oil homologues, classified in order of polarity. The oils are shown for their ability to sustain bacterial growth and BNC production according to air transfer and solubilization, both of which impact the physiochemical properties of the produced biofilms. The latter are investigated in terms of their morphological (fibril size and network density), structural (crystallinity) and physical-mechanical (surface area and strength) features. The introduced under-liquid biofabrication is demonstrated for the generation of BNC-based macroscale architectures and compartmentalized soft matter. This can be accomplished following three different routes, namely, 3D under-liquid networking (multi-layer hydrogels/composites), emulsion templating (capsules, emulgels, porous materials), and anisotropic layering (Janus membranes). Overall, the proposed platform combines living matter and multi-phase systems as a robust option for material development with relevance in biomedicine, soft robotics, and bioremediation, among others.
Collapse
Affiliation(s)
- Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Yeedo Chun
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Xuetong Shi
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Dong Wang
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Farhad Ahmadijokani
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, 02150, Finland
| |
Collapse
|
8
|
Shahaban OPS, Khasherao BY, Shams R, Dar AH, Dash KK. Recent advancements in development and application of microbial cellulose in food and non-food systems. Food Sci Biotechnol 2024; 33:1529-1540. [PMID: 38623437 PMCID: PMC11016021 DOI: 10.1007/s10068-024-01524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 04/17/2024] Open
Abstract
Microbial cellulose is a fermented form of very pure cellulose with a fibrous structure. The media rich in glucose or other carbon sources are fermented by bacteria to produce microbial cellulose. The bacteria use the carbon to produce cellulose, which grows as a dense, gel-like mat on the surface of the medium. The product was then collected, cleaned, and reused in various ways. The properties of microbial cellulose, such as water holding capacity, gas permeability, and ability to form a flexible, transparent film make it intriguing for food applications. Non-digestible microbial cellulose has been shown to improve digestive health and may have further advantages. It is also very absorbent, making it a great option for use in wound dressings. The review discusses the generation of microbial cellulose and several potential applications of microbial cellulose in fields including pharmacy, biology, materials research, and the food industry.
Collapse
Affiliation(s)
- O. P. Shemil Shahaban
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Bhosale Yuvraj Khasherao
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Awantipora, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, Maligram, West Bengal India
| |
Collapse
|
9
|
Azka MA, Adam A, Ridzuan SM, Sapuan SM, Habib A. A review on the enhancement of circular economy aspects focusing on nanocellulose composites. Int J Biol Macromol 2024; 269:132052. [PMID: 38704068 DOI: 10.1016/j.ijbiomac.2024.132052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Researchers are now focusing on using the circular economy model to manufacture nanocellulose composites due to growing environmental issues related to waste management. The circular economy model offers a sustainable solution to the problem by optimizing resource efficiency and waste management by reducing waste, maintaining value over time, minimizing the use of primary resources, and creating closed loops for goods, components, and materials. With the use of the circular economy model, waste, such as industrial, agricultural, and textile waste, is used again to produce new products, which can solve waste management issues and improve resource efficiency. In order to encourage the use of circular economy ideas with a specific focus on nanocellulose composites, this review examines the concept of using circular economy, and explores ways to make nanocellulose composites from different types of waste, such as industrial, agricultural, and textile waste. Furthermore, this review investigates the application of nanocellulose composites across multiple industries. In addition, this review provides researchers useful insights of how circular economics can be applied to the development of nanocellulose composites, which have the goal of creating a flexible and environmentally friendly material that can address waste management issues and optimize resource efficiency.
Collapse
Affiliation(s)
- Muhammad Adlan Azka
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Adib Adam
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Ridzuan
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Sapuan
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Abdul Habib
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Li C, Zhu YX, Yang Y, Miao W, Shi X, Xu KF, Li ZH, Xiao H, Wu FG. Bioinspired multifunctional cellulose film: In situ bacterial capturing and killing for managing infected wounds. Bioact Mater 2024; 36:595-612. [PMID: 39206220 PMCID: PMC11350459 DOI: 10.1016/j.bioactmat.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Bacterial infection of cutaneous wounds can easily lead to occurrence of chronic wounds and even more serious diseases. Therefore, multifunctional, biodegradable, and reusable wound dressings that can quickly manage wound infection and promote wound healing are urgently desired. Herein, inspired by the "capturing and killing" action of Drosera peltata Thunb., a biomimetic cellulose film was constructed to capture the bacteria (via the rough structure of the film) and kill them (via the combination of photodynamic therapy and chemotherapy) to promote wound tissue remodeling. The film (termed OBC-PR) was simply prepared by chemically crosslinking the oxidized bacterial cellulose (OBC) with polyhexamethylene guanidine hydrochloride (PHGH) and rose bengal (RB). Notably, it could effectively capture Escherichia coli and Staphylococcus aureus bacterial cells with capture efficiencies of ∼99 % and ∼96 %, respectively, within 10 min. Furthermore, the in vivo experiments showed that OBC-PR could effectively promote the macrophage polarization toward the M2 phenotype and adequately induce the reconstruction of blood vessels and nerves, thus promoting wound healing. This study provides a potential direction for designing multifunctional wound dressings for managing infected skin wounds in the future.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Ya-Xuan Zhu
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ying Yang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wanting Miao
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke-Fei Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China
| | - Zi-Heng Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China
| |
Collapse
|
11
|
Yu S, Budtova T. Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices. Carbohydr Polym 2024; 332:121925. [PMID: 38431419 DOI: 10.1016/j.carbpol.2024.121925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Carboxymethyl cellulose (CMC) is a well-known cellulose derivative used in biomedical applications due to its biocompatibility and biodegradability. In this work, novel porous CMC materials, aerogels, were prepared and tested as a drug delivery device. CMC aerogels were made from CMC solutions, followed by non-solvent induced phase separation and drying with supercritical CO2. The influence of CMC characteristics and of processing conditions on aerogels' density, specific surface area, morphology and drug release properties were investigated. Freeze-drying of CMC solutions was also used as an alternative process to compare the properties of the as-obtained "cryogels" with those of aerogels. Aerogels were nanostructured materials with bulk density below 0.25 g/cm3 and high specific surface area up to 143 m2/g. Freeze drying yields highly macroporous materials with low specific surface areas (around 5-18 m2/g) and very low density, 0.01 - 0.07g/cm3. Swelling and dissolution of aerogels and cryogels in water and in a simulated wound exudate (SWE) were evaluated. The drug was loaded in aerogels and cryogels, and release kinetics in SWE was investigated. Drug diffusion coefficients were correlated with material solubility, morphology, density, degree of substitution and drying methods, demonstrating tuneability of new materials' properties in view of their use as delivery matrices.
Collapse
Affiliation(s)
- Sujie Yu
- Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France
| | - Tatiana Budtova
- Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France.
| |
Collapse
|
12
|
Lee J, An HE, Lee KH, Kim S, Park C, Kim CB, Yoo HY. Identification of Gluconacetobacter xylinus LYP25 and application to bacterial cellulose production in biomass hydrolysate with acetic acid. Int J Biol Macromol 2024; 261:129597. [PMID: 38266828 DOI: 10.1016/j.ijbiomac.2024.129597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Bacterial cellulose (BC) is a remarkable biomacromolecule with potential applications in food, biomedical, and other industries. However, the low economic feasibility of BC production processes hinders its industrialization. In our previous work, we obtained candidate strains with improved BC production through random mutations in Gluconacetobacter. In this study, the molecular identification of LYP25 strain with significantly improved productivity, the development of chestnut pericarp (CP) hydrolysate medium, and its application in BC fermentation were performed for cost-effective BC production process. As a result, the mutant strain was identified as Gluconacetobacter xylinus. The CP hydrolysate (CPH) medium contained 30 g/L glucose with 0.4 g/L acetic acid, whereas other candidates known to inhibit fermentation were not detected. Although acetic acid is generally known as a fermentation inhibitor, it improves the BC production by G. xylinus when present within about 5 g/L in the medium. Fermentation of G. xylinus LYP25 in CPH medium resulted in 17.3 g/L BC, a 33 % improvement in production compared to the control medium, and BC from the experimental and control groups had similar physicochemical properties. Finally, the overall process of BC production from biomass was evaluated and our proposed platform showed the highest yield (17.9 g BC/100 g biomass).
Collapse
Affiliation(s)
- Jeongho Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Hyung-Eun An
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Kang Hyun Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; Department of Bio-Convergence Engineering, Dongyang Mirae University, 445-8, Gyeongin-Ro, Guro-Gu, Seoul 08221, Republic of Korea
| | - Seunghee Kim
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea.
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea.
| |
Collapse
|
13
|
Zhao R, Zhao C, Zhang Y, Wan Y, Wang Y. Retrospective comparison of postoperative dressing after eschar dermabrasion on paediatric scald wounds: Bacterial cellulose dressing and allogenic skin. Int Wound J 2024; 21:e14492. [PMID: 37989716 PMCID: PMC10898373 DOI: 10.1111/iwj.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
Eschar dermabrasion is an easy, cost-effective and dependable technique for debriding deep partial-thickness burn wounds, highly suitable for paediatric scalds. Postoperative dressing plays a crucial role in the subsequent healing process. While allogenic skin (AGS) has long been considered as the optimal coverage for abraded burn wounds by Chinese burn specialists, its clinical application on children has encountered challenges. In recent years, our department has observed promising results in the application of bacterial cellulose dressing on paediatric burn wounds after dermabrasion surgery. This study aimed to retrospectively review qualified cases from the past 5 years and categorize them into two groups: 201 cases in the AGS group and 116 cases in the bacterial cellulose dressing (BCD) group. Upon statistical analysis, no differences were oberved between the groups in terms of demographic information and wound characteristics. However, the BCD group had a significantly longer surgery time (44.3 ± 7.0 min vs. 31.5 ± 6.1 min, p < 0.01) and shorter healing time (19.6 ± 2.2 days vs. 24.4 ± 4.3 days, p < 0.01) compared to the AGS group. Moreover, the BCD group required fewer dressing changes (3.5 ± 0.8 vs. 6.7 ± 2.1, p < 0.01) and demonstrated lower rates of skin grafting (10/116 vs. 46/201, p = 0.036). In conclusion, our findings suggest that the bacterial cellulose material may serve as an optimal coverage option for paediatric abraded scald wounds.
Collapse
Affiliation(s)
- Ran Zhao
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research WorkstationShandong Academy of Pharmaceutical ScienceJinanChina
- Burn and Plastic Surgery DepartmentShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanChina
| | - Chenyuyao Zhao
- Burn and Plastic Surgery DepartmentShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanChina
| | - Yushen Zhang
- Burn and Plastic Surgery DepartmentShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanChina
| | - Yi Wan
- School of Mechanical EngineeringShandong UniversityJinanChina
| | - Yibing Wang
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research WorkstationShandong Academy of Pharmaceutical ScienceJinanChina
- Department of Plastic SurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| |
Collapse
|
14
|
Hou S, Xia Z, Pan J, Wang N, Gao H, Ren J, Xia X. Bacterial Cellulose Applied in Wound Dressing Materials: Production and Functional Modification - A Review. Macromol Biosci 2024; 24:e2300333. [PMID: 37750477 DOI: 10.1002/mabi.202300333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Indexed: 09/27/2023]
Abstract
In recent years, the development of new type wound dressings has gradually attracted more attention. Bacterial cellulose (BC) is a natural polymer material with various unique properties, such as ultrafine 3D nanonetwork structure, high water retention capacity, and biocompatibility. These properties allow BC to be used independently or in combination with different components (such as biopolymers and nanoparticles) to achieve diverse effects. This means that BC has great potential as a wound dressing. However, systematic summaries for the production and commercial application of BC-based wound dressings are still lacking. Therefore, this review provides a detailed introduction to the production fermentation process of BC, including various production strains and their biosynthetic mechanisms. Subsequently, with regard to the functional deficiencies of bacterial cellulose as a wound dressing, recent research progress in this area is enumerated. Finally, prospects are discussed for the low-cost production and high-value-added product development of BC-based wound dressings.
Collapse
Affiliation(s)
- Shuaiwen Hou
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhaopeng Xia
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jiajun Pan
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ning Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hanchao Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jingli Ren
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xuekui Xia
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
15
|
Zheng L, Yang F, Liang J, Zhao Y, Niu J, Ma Y, Meng Q, Liu Q, Gong W, Wang B. Research on the application of Thelephora ganbajun exopolysaccharides in antioxidant, anti-inflammatory and spot-fading cosmetics. Int J Biol Macromol 2024; 257:128713. [PMID: 38081489 DOI: 10.1016/j.ijbiomac.2023.128713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Thelephora ganbajun exopolysaccharides (TGEP) with a "coral-like" branched chain structure (main chain diameter ∼ 80 nm) were prepared by liquid fermentation and fractionated by ion-exchange chromatography. The main fraction (TGEP-2) with the highest in vitro antioxidant capacity was composed of Glc, Man, Gal, GalA, GlcA, Ara, Rha, GlcN, Fuc and Rib in a molar ratio of 465.43:420.43:219.14:188.43:37:35.14:31.43:19.43:11.14:1, with a molecular weight of 1.879 × 104 Da. The sequence of monosaccharide residue release revealed that Gal, Glc and Ara residues were more distributed in the side-branch chains and at their ends, whereas Man and GalA residues were more distributed in the main chains. TGEP-2 contained linear residues (mainly →4)-Glcp-(1 → and →4)-Manp-(1→), branch residues (→3,6)-Glcp-(1→, →4,6)-Glcp-(1 → and →3,6)-Galp-(1→) and terminal residues (Galp-(1→, Manp-(1 → and Glcp-(1→). TGEP-2 consisted of α- and β-glycosidically linked pyranosides, with a triple helical conformation and many long branches. Zebrafish oxidative stress and inflammation models found that TGEP-2 had antioxidant and anti-inflammatory activities. The zebrafish skin black spot assay showed that TGEP-2 inhibited melanin formation. Therefore, extracellular polysaccharides of T. ganbajun have strong application potential in anti-oxidant, anti-inflammatory and skin spot-fading functions cosmetics.
Collapse
Affiliation(s)
- Lan Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Furui Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jie Liang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yonglei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Junhua Niu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yaohong Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Qingjun Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qingai Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Weili Gong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Binglian Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
16
|
Yusuf J, Sapuan SM, Ansari MA, Siddiqui VU, Jamal T, Ilyas RA, Hassan MR. Exploring nanocellulose frontiers: A comprehensive review of its extraction, properties, and pioneering applications in the automotive and biomedical industries. Int J Biol Macromol 2024; 255:128121. [PMID: 37984579 DOI: 10.1016/j.ijbiomac.2023.128121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Material is an inseparable entity for humans to serve different purposes. However, synthetic polymers represent a major category of anthropogenic pollutants with detrimental impacts on natural ecosystems. This escalating environmental issue is characterized by the accumulation of non-biodegradable plastic materials, which pose serious threats to the health of our planet's ecosystem. Cellulose is becoming a focal point for many researchers due to its high availability. It has been used to serve various purposes. Recent scientific advancements have unveiled innovative prospects for the utilization of nanocellulose within the area of advanced science. This comprehensive review investigates deeply into the field of nanocellulose, explaining the methodologies employed in separating nanocellulose from cellulose. It also explains upon two intricately examined applications that emphasize the pivotal role of nanocellulose in nanocomposites. The initial instance pertains to the automotive sector, encompassing cutting-edge applications in electric vehicle (EV) batteries, while the second exemplifies the use of nanocellulose in the field of biomedical applications like otorhinolaryngology, ophthalmology, and wound dressing. This review aims to provide comprehensive information starting from the definitions, identifying the sources of the nanocellulose and its extraction, and ending with the recent applications in the emerging field such as energy storage and biomedical applications.
Collapse
Affiliation(s)
- J Yusuf
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Sapuan
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Mubashshir Ahmad Ansari
- Department of Mechanical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202001, India.
| | - Vasi Uddin Siddiqui
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Tarique Jamal
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - R A Ilyas
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - M R Hassan
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
Tan F, Sun B, Shen W, Gai Y, Shi L, Chen C, Sun D. Oriented bacterial cellulose microfibers with tunable mechanical performance fabricated via green reassembly avenue. Int J Biol Macromol 2024; 254:127990. [PMID: 37949266 DOI: 10.1016/j.ijbiomac.2023.127990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Bacterial cellulose has garnered remarkable interest from researchers, particularly those working in the biomedical field. In this work, BC microfibers were fabricated via green dissolution (ZnCl2) and regeneration (ethanol). The orientation of cellulose chains was investigated during extrusion and simple post-processing via polarized optical microscopy and small-angle X-ray scattering. The results implied that the mechanical properties of BC microfibers can be tuned by rational pre-stretching. The BC microfibers can be programmable, and be used to suture hard or soft tissues. The as-designed paralleled BC microfibers have good biocompatibility and can regulate the directional growth of cells on their surface. The as-obtained BC microfiber with a high tensile strength of up to ∼115 MPa is suitable for surgical sutures. The tunable BC microfibers may be utilized as an adequate fiber-derived biomedical material product.
Collapse
Affiliation(s)
- Fengyan Tan
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bianjing Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Wei Shen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuwen Gai
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lin Shi
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
18
|
List R, Gonzalez-Lopez L, Ashfaq A, Zaouak A, Driscoll M, Al-Sheikhly M. On the Mechanism of the Ionizing Radiation-Induced Degradation and Recycling of Cellulose. Polymers (Basel) 2023; 15:4483. [PMID: 38231912 PMCID: PMC10708459 DOI: 10.3390/polym15234483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024] Open
Abstract
The use of ionizing radiation offers a boundless range of applications for polymer scientists, from inducing crosslinking and/or degradation to grafting a wide variety of monomers onto polymeric chains. This review in particular aims to introduce the field of ionizing radiation as it relates to the degradation and recycling of cellulose and its derivatives. The review discusses the main mechanisms of the radiolytic sessions of the cellulose molecules in the presence and absence of water. During the radiolysis of cellulose, in the absence of water, the primary and secondary electrons from the electron beam, and the photoelectric, Compton effect electrons from gamma radiolysis attack the glycosidic bonds (C-O-C) on the backbone of the cellulose chains. This radiation-induced session results in the formation of alkoxyl radicals and C-centered radicals. In the presence of water, the radiolytically produced hydroxyl radicals (●OH) will abstract hydrogen atoms, leading to the formation of C-centered radicals, which undergo various reactions leading to the backbone session of the cellulose. Based on the structures of the radiolytically produced free radicals in presence and absence of water, covalent grafting of vinyl monomers on the cellulose backbone is inconceivable.
Collapse
Affiliation(s)
- Richard List
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- UV/EB Technology Center, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Lorelis Gonzalez-Lopez
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Aiysha Ashfaq
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Amira Zaouak
- Research Laboratory on Energy and Matter for Nuclear Science Development, National Center for Nuclear Science and Technology, Sidi-Thabet 2020, Tunisia;
| | - Mark Driscoll
- UV/EB Technology Center, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Mohamad Al-Sheikhly
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
19
|
Mbituyimana B, Bukatuka CF, Qi F, Ma G, Shi Z, Yang G. Microneedle-mediated drug delivery for scar prevention and treatment. Drug Discov Today 2023; 28:103801. [PMID: 37858631 DOI: 10.1016/j.drudis.2023.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Scars are an inevitable natural outcome of most wound healing processes and affect skin functions, leading to cosmetic, psychological and social problems. Several strategies, including surgery, radiation, cryotherapy, laser therapy, pressure therapy and corticosteroids, can be used to either prevent or treat scars. However, these strategies are ineffective, have side effects and are typically expensive. Microneedle (MN) technology is a powerful, minimally invasive platform for transdermal drug delivery. This review discusses the most recent progress in MN-mediated drug delivery to prevent and treat pathological scars (hypertrophic and keloids). A comprehensive overview of existing challenges and future perspectives is also provided.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Clemence Futila Bukatuka
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
20
|
Adamopoulou V, Salvanou A, Bekatorou A, Petsi T, Dima A, Giannakas AE, Kanellaki M. Production and In Situ Modification of Bacterial Cellulose Gels in Raisin Side-Stream Extracts Using Nanostructures Carrying Thyme Oil: Their Physicochemical/Textural Characterization and Use as Antimicrobial Cheese Packaging. Gels 2023; 9:859. [PMID: 37998949 PMCID: PMC10671232 DOI: 10.3390/gels9110859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
We report the production of BC gels by Komagataeibacter sucrofermentans in synthetic (Hestrin and Schramm; HS) and natural media (raisin finishing side-stream extracts; RFSE), and their in situ modification by natural zeolite (Zt) and activated carbon (AC) nanostructures (NSs) carrying thyme oil (Th). The NS content for optimum BC yield was 0.64 g/L for both Zt-Th (2.56 and 1.47 g BC/L in HS and RFSE, respectively), and AC-Th (1.78 and 0.96 g BC/L in HS and RFSE, respectively). FTIR spectra confirmed the presence of NS and Th in the modified BCs, which, compared to the control, had reduced specific surface area (from 5.7 to 0.2-0.8 m2/g), average pore diameter (from 264 to 165-203 Å), cumulative pore volume (from 0.084 to 0.003-0.01 cm3/g), crystallinity index (CI) (from 72 to 60-70%), and crystallite size (from 78 to 72-76%). These values (except CI and CS), slightly increased after the use of the BC films as antimicrobial coatings on white cheese for 2 months at 4 °C. Tensile properties analysis showed that the addition of NSs resulted in a decrease of elasticity, tensile strength, and elongation at break values. The best results regarding an antimicrobial effect as cheese coating were obtained in the case of the RFSE/AC-Th BC.
Collapse
Affiliation(s)
- Vasiliki Adamopoulou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (V.A.); (A.S.); (T.P.); (A.D.); (M.K.)
| | - Anastasia Salvanou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (V.A.); (A.S.); (T.P.); (A.D.); (M.K.)
| | - Argyro Bekatorou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (V.A.); (A.S.); (T.P.); (A.D.); (M.K.)
| | - Theano Petsi
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (V.A.); (A.S.); (T.P.); (A.D.); (M.K.)
| | - Agapi Dima
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (V.A.); (A.S.); (T.P.); (A.D.); (M.K.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece;
| | - Maria Kanellaki
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (V.A.); (A.S.); (T.P.); (A.D.); (M.K.)
| |
Collapse
|
21
|
Mbituyimana B, Adhikari M, Qi F, Shi Z, Fu L, Yang G. Microneedle-based cell delivery and cell sampling for biomedical applications. J Control Release 2023; 362:692-714. [PMID: 37689252 DOI: 10.1016/j.jconrel.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Cell-based therapeutics are novel therapeutic strategies that can potentially treat many presently incurable diseases through novel mechanisms of action. Cell therapies may benefit from the ease, safety, and efficacy of administering therapeutic cells. Despite considerable recent technological and biological advances, several barriers remain to the clinical translation and commercialization of cell-based therapies, including low patient compliance, personal handling inconvenience, poor biosafety, and limited biocompatibility. Microneedles (MNs) are emerging as a promising biomedical device option for improved cell delivery with little invasion, pain-free administration, and simplicity of disposal. MNs have shown considerable promise in treating a wide range of diseases and present the potential to improve cell-based therapies. In this review, we first summarized the latest advances in the various types of MNs developed for cell delivery and cell sampling. Emphasis was given to the design and fabrication of various types of MNs based on their structures and materials. Then we focus on the recent biomedical applications status of MNs-mediated cell delivery and sampling, including tissue repair (wound healing, heart repair, and endothelial repair), cancer treatment, diabetes therapy, cell sampling, and other applications. Finally, the current status of clinical application, potential perspectives, and the challenges for clinical translation are also highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lina Fu
- College of Medicine, Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Central Hospital, Zhumadian, Henan 463000, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
22
|
Liu X, Cao L, Wang S, Huang L, Zhang Y, Tian M, Li X, Zhang J. Isolation and characterization of bacterial cellulose produced from soybean whey and soybean hydrolyzate. Sci Rep 2023; 13:16024. [PMID: 37749160 PMCID: PMC10520036 DOI: 10.1038/s41598-023-42304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023] Open
Abstract
Soybean whey and soybean hydrolyzate can be used for the biotechnological production of high-value products. Herein, we isolate soybean whey (SW)-and soybean hydrolyzate (SH)-derived bacterial cellulose (BC, produced by kombucha) and characterize it by a range of instrumental techniques to reveal differences in micromorphology, crystallinity, and themal behavior. Studies have shown that the amounts of wet state BC produced from HS, SW and SH was 181 g/L, 47 g/L and 83 g/L, respectively. The instrumental analysis of BC, included SEM, AFM, FT-IR, XRD and TGA. It is shown that the FT-IR spectra of BC have a similar character, but we found differences in the micromorphology,crystallinity and thermal temperature of BC. The minimum average widths of the fibers produced from SH medium was 100 ± 29 nm. The CrI values of BC produced from SH medium was 61.8%. The maximum thermal degradation rate temperature of BC produced from SW medium was 355.73 °C. The combined results demonstrate that soybean industrial waste can be used as a cost-effective raw material for BC production.
Collapse
Affiliation(s)
- Xin Liu
- Department of and Chemical and Pharmaceutical Engineering, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Liang Cao
- Department of and Chemical and Pharmaceutical Engineering, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Shenao Wang
- Department of and Chemical and Pharmaceutical Engineering, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Li Huang
- Department of and Chemical and Pharmaceutical Engineering, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Yu Zhang
- Department of and Chemical and Pharmaceutical Engineering, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Miaoyi Tian
- Department of and Chemical and Pharmaceutical Engineering, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Xuejiao Li
- Department of and Chemical and Pharmaceutical Engineering, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Jinyou Zhang
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
23
|
Liang S. Advances in drug delivery applications of modified bacterial cellulose-based materials. Front Bioeng Biotechnol 2023; 11:1252706. [PMID: 37600320 PMCID: PMC10436498 DOI: 10.3389/fbioe.2023.1252706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Bacterial cellulose (BC) is generated by certain species of bacteria and comprises polysaccharides with unique physical, chemical, and mechanical characteristics. Due to its outstanding biocompatibility, high purity, excellent mechanical strength, high water absorption, and highly porous structure, bacterial cellulose has been recently investigated for biomedical application. However, the pure form of bacterial cellulose is hardly used as a biomedical material due to some of its inherent shortcomings. To extend its applications in drug delivery, modifications of native bacterial cellulose are widely used to improve its properties. Usually, bacterial cellulose modifications can be carried out by physical, chemical, and biological methods. In this review, a brief introduction to bacterial cellulose and its production and fabrication is first given, followed by up-to-date and in-depth discussions of modification. Finally, we focus on the potential applications of bacterial cellulose as a drug delivery system.
Collapse
Affiliation(s)
- Shuya Liang
- Department of Dermatology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
24
|
Pinmanee P, Sompinit K, Jantimaporn A, Khongkow M, Haltrich D, Nimchua T, Sukyai P. Purification and Immobilization of Superoxide Dismutase Obtained from Saccharomyces cerevisiae TBRC657 on Bacterial Cellulose and Its Protective Effect against Oxidative Damage in Fibroblasts. Biomolecules 2023; 13:1156. [PMID: 37509191 PMCID: PMC10377281 DOI: 10.3390/biom13071156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Superoxide dismutase (SOD) is an essential enzyme that eliminates harmful reactive oxygen species (ROS) generating inside living cells. Due to its efficacities, SOD is widely applied in many applications. In this study, the purification of SOD produced from Saccharomyces cerevisiae TBRC657 was conducted to obtain the purified SOD that exhibited specific activity of 513.74 U/mg with a purification factor of 10.36-fold. The inhibitory test revealed that the purified SOD was classified as Mn-SOD with an estimated molecular weight of 25 kDa on SDS-PAGE. After investigating the biochemical characterization, the purified SOD exhibited optimal activity under conditions of pH 7.0 and 35 °C, which are suitable for various applications. The stability test showed that the purified SOD rapidly decreased in activity under high temperatures. To overcome this, SOD was successfully immobilized on bacterial cellulose (BC), resulting in enhanced stability under those conditions. The immobilized SOD was investigated for its ability to eliminate ROS in fibroblasts. The results indicated that the immobilized SOD released and retained its function to regulate the ROS level inside the cells. Thus, the immobilized SOD on BC could be a promising candidate for application in many industries that require antioxidant functionality under operating conditions.
Collapse
Affiliation(s)
- Phitsanu Pinmanee
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Kamonwan Sompinit
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Angkana Jantimaporn
- Nanomedicine and Veterinary Research Team, National Center of Nanotechnology (NANOTEC), Pathum Thani 12120, Thailand
| | - Mattaka Khongkow
- Nanomedicine and Veterinary Research Team, National Center of Nanotechnology (NANOTEC), Pathum Thani 12120, Thailand
| | - Dietmar Haltrich
- Department for Food Science and Food Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Thidarat Nimchua
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Prakit Sukyai
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
25
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
26
|
Mohammadi S, Jabbari F, Babaeipour V. Bacterial cellulose-based composites as vehicles for dermal and transdermal drug delivery: A review. Int J Biol Macromol 2023:124955. [PMID: 37245742 DOI: 10.1016/j.ijbiomac.2023.124955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
In recent years, a significant amount of drugs have been taken orally, which are not as effective as desired. To solve this problem, bacterial cellulose-based dermal/transdermal drug delivery systems (BC-DDSs) with unique properties such as cell compatibility, hemocompatibility, tunable mechanical properties, and the ability to encapsulate various therapeutic agents with the controlled release have been introduced. A BC-dermal/transdermal DDS reduces first-pass metabolism and systematic side effects while improving patient compliance and dosage effectiveness by controlling drug release through the skin. The barrier function of the skin, especially the stratum corneum, can interfere with drug delivery. Few drugs can pass through the skin to reach effective concentrations in the blood to treat diseases. Due to their unique physicochemical properties and high potential to reduce immunogenicity and improve bioavailability, BC-dermal/transdermal DDSs are widely used to deliver various types of drugs for disease treatment. In this review, we describe the different types of BC-dermal/ transdermal DDSs, along with a critical discussion of the advantages and disadvantages of these systems. After the general presentation, the review is focused on recent advances in the preparation and applications of BC-based dermal/transdermal DDSs in various types of disease treatment.
Collapse
Affiliation(s)
- Sajad Mohammadi
- 3D Microfluidic Biofabrication Lab, Center for Life Nano- & Neuro-science (CLN2S), Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy; Department of Basic and Applied Science for Engineering, Sapienza University of Rome, 00161, Italy.
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran 1774-15875, Iran.
| |
Collapse
|
27
|
Prilepskii A, Nikolaev V, Klaving A. Conductive bacterial cellulose: From drug delivery to flexible electronics. Carbohydr Polym 2023; 313:120850. [PMID: 37182950 DOI: 10.1016/j.carbpol.2023.120850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Bacterial cellulose (BC) is a chemically pure, non-toxic, and non-pyrogenic natural polymer with high mechanical strength and a complex fibrillar porous structure. Due to these unique biological and physical properties, BC has been amply used in the food industry and, to a somewhat lesser extent, in medicine and cosmetology. To expand its application the BC structure can be modified. This review presented some recent developments in electrically conductive BC-based composites. The as-synthesized BC is an excellent dielectric. Conductive polymers, graphene oxide, nanoparticles and other materials are used to provide it with conductive properties. Conductive bacterial cellulose (CBC) is currently investigated in numerous areas including electrically conductive scaffolds for tissue regeneration, implantable and wearable biointerfaces, flexible batteries, sensors, EMI shielding composites. However, there are several issues to be addressed before CBC composites can enter the market, namely, composite mechanical strength reduction, porosity decrease, change in chemical characteristics. Some of them can be addressed both at the stage of synthesis, biologically, or by adding (nano)materials with the required properties to the BC structure. We propose several solutions to meet the challenges and suggest some promising BC applications.
Collapse
|
28
|
Horue M, Silva JM, Berti IR, Brandão LR, Barud HDS, Castro GR. Bacterial Cellulose-Based Materials as Dressings for Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15020424. [PMID: 36839745 PMCID: PMC9963514 DOI: 10.3390/pharmaceutics15020424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023] Open
Abstract
Bacterial cellulose (BC) is produced by several microorganisms as extracellular structures and can be modified by various physicochemical and biological strategies to produce different cellulosic formats. The main advantages of BC for biomedical applications can be summarized thus: easy moldability, purification, and scalability; high biocompatibility; and straightforward tailoring. The presence of a high amount of free hydroxyl residues, linked with water and nanoporous morphology, makes BC polymer an ideal candidate for wound healing. In this frame, acute and chronic wounds, associated with prevalent pathologies, were addressed to find adequate therapeutic strategies. Hence, the main characteristics of different BC structures-such as membranes and films, fibrous and spheroidal, nanocrystals and nanofibers, and different BC blends, as well as recent advances in BC composites with alginate, collagen, chitosan, silk sericin, and some miscellaneous blends-are reported in detail. Moreover, the development of novel antimicrobial BC and drug delivery systems are discussed.
Collapse
Affiliation(s)
- Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), Calle 47 y 115, La Plata B1900, Argentina
| | - Jhonatan Miguel Silva
- Biopolymers and Biomaterials Laboratory—BioPolMat, University of Araraquara—UNIARA, Araraquara 14801-320, SP, Brazil
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), Calle 47 y 115, La Plata B1900, Argentina
| | - Larissa Reis Brandão
- Biopolymers and Biomaterials Laboratory—BioPolMat, University of Araraquara—UNIARA, Araraquara 14801-320, SP, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Laboratory—BioPolMat, University of Araraquara—UNIARA, Araraquara 14801-320, SP, Brazil
- Correspondence: (H.d.S.B.); (G.R.C.)
| | - Guillermo R. Castro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, Rosario S2000, Argentina
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, SP, Brazil
- Correspondence: (H.d.S.B.); (G.R.C.)
| |
Collapse
|
29
|
Oliveira TJ, Segato TCM, Machado GP, Grotto D, Jozala AF. Evolution of Bacterial Cellulose in Cosmetic Applications: An Updated Systematic Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238341. [PMID: 36500434 PMCID: PMC9739779 DOI: 10.3390/molecules27238341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022]
Abstract
In recent decades, there has been an increase in environmental problems caused by cosmetic products derived from toxic substances. Based on this issue, researchers and developers of new beauty cosmetics are looking for new natural alternatives that work well for the consumer and have biodegradable characteristics. This systematic review highlights the major publications of bacterial cellulose used strictly for cosmetics in the last 10 years. Bacterial cellulose is a natural product with great cosmetic properties and low cost that has shown excellent results. This study aimed at collecting rigorous information on bacterial cellulose in the cosmetic field in the last decade to produce a systematized review. A comprehensive search was conducted with selected descriptors involving the topic of "bacterial cellulose", "cosmetics", "clean beauty", and "skin mask". Seventy studies were found, which went through exclusion criteria that selected only those related to the topic that was searched. In the 12 remaining studies that met the criteria, bacterial cellulose showed conditions for use as a mask-forming product for facial care. The increase in the number of publications concerning bacterial cellulose in cosmetics in the last ten years is a strong indicator that this is a growing area for both research and the industry.
Collapse
Affiliation(s)
- Thais Jardim Oliveira
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | | | - Gabriel Pereira Machado
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Denise Grotto
- LAPETOX—Laboratory of Toxicological Research, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Angela Faustino Jozala
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
- Correspondence:
| |
Collapse
|
30
|
de Carvalho-Guimarães FB, Correa KL, de Souza TP, Rodríguez Amado JR, Ribeiro-Costa RM, Silva-Júnior JOC. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals (Basel) 2022; 15:1413. [PMID: 36422543 PMCID: PMC9698490 DOI: 10.3390/ph15111413] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 09/10/2023] Open
Abstract
Pickering emulsions are systems composed of two immiscible fluids stabilized by organic or inorganic solid particles. These solid particles of certain dimensions (micro- or nano-particles), and desired wettability, have been shown to be an alternative to conventional emulsifiers. The use of biodegradable and biocompatible stabilizers of natural origin, such as clay minerals, presents a promising future for the development of Pickering emulsions and, with this, they deliver some advantages, especially in the area of biomedicine. In this review, the effects and characteristics of microparticles in the preparation and properties of Pickering emulsions are presented. The objective of this review is to provide a theoretical basis for a broader type of emulsion, in addition to reviewing the main aspects related to the mechanisms and applications to promote its stability. Through this review, we highlight the use of this type of emulsion and its excellent properties as permeability promoters of solid particles, providing ideal results for local drug delivery and use in Pickering emulsions.
Collapse
Affiliation(s)
| | - Kamila Leal Correa
- Laboratory of Pharmaceutical and Cosmetic R&D, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - Tatiane Pereira de Souza
- Laboratory of Innovation and Development in Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - Jesus Rafael Rodríguez Amado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Food and Nutrition, Federal University of Mato-Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | | |
Collapse
|
31
|
Liu L, Ode Boni BO, Ullah MW, Qi F, Li X, Shi Z, Yang G. Cellulose: A promising and versatile Pickering emulsifier for healthy foods. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2142940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Li Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Biaou Oscar Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Revin VV, Liyaskina EV, Parchaykina MV, Kuzmenko TP, Kurgaeva IV, Revin VD, Ullah MW. Bacterial Cellulose-Based Polymer Nanocomposites: A Review. Polymers (Basel) 2022; 14:4670. [PMID: 36365662 PMCID: PMC9654748 DOI: 10.3390/polym14214670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 10/15/2023] Open
Abstract
Bacterial cellulose (BC) is currently one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially in the past decade. Currently, extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities. However, the commercial production of such materials is limited by the high cost and low yield of BC, and the lack of highly efficient industrial production technologies as well. Therefore, the present review aimed at studying the current literature data in the field of highly efficient BC production for the purpose of its further usage to obtain polymer nanocomposites. The review highlights the progress in synthesizing BC-based nanocomposites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering. Bacterial nanocellulose-based biosensors and adsorbents were introduced herein.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Elena V. Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Marina V. Parchaykina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Tatyana P. Kuzmenko
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V. Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Vadim D. Revin
- Faculty of Architecture and Civil Engineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
33
|
Xiao J, Chen Y, Xue M, Ding R, Kang Y, Tremblay PL, Zhang T. Fast-growing cyanobacteria bio-embedded into bacterial cellulose for toxic metal bioremediation. Carbohydr Polym 2022; 295:119881. [DOI: 10.1016/j.carbpol.2022.119881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
|
34
|
Mbituyimana B, Ma G, Shi Z, Yang G. Polymeric microneedles for enhanced drug delivery in cancer therapy. BIOMATERIALS ADVANCES 2022; 142:213151. [PMID: 36244246 DOI: 10.1016/j.bioadv.2022.213151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Microneedles (MNs) have attracted the interest of researchers. Polymeric MNs offer tremendous promise as drug delivery vehicles for bio-applications because of their high loading capacity, strong patient adherence, excellent biodegradability and biocompatibility, low toxicity, and extremely cheap cost. Incorporating enhanced-property nanomaterials into polymeric MNs matrix increases their features such as better mechanical strength, sustained drug delivery, lower toxicity, and higher therapeutic effects, therefore considerably increasing their biomedical application. This paper discusses polymeric MN fabrication techniques and the present status of polymeric MNs as a delivery method for enhanced drug delivery in cancer therapeutic applications. Furthermore, the opportunities and challenges of polymeric MNs for improved drug delivery in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
35
|
Surface modification of cellulose via photo-induced click reaction. Carbohydr Polym 2022; 301:120321. [DOI: 10.1016/j.carbpol.2022.120321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
36
|
Qian H, Liu J, Wang X, Pei W, Fu C, Ma M, Huang C. The state-of-the-art application of functional bacterial cellulose-based materials in biomedical fields. Carbohydr Polym 2022; 300:120252. [DOI: 10.1016/j.carbpol.2022.120252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
37
|
Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022; 23:267. [PMID: 36163568 PMCID: PMC9512992 DOI: 10.1208/s12249-022-02419-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
38
|
Nargatti KI, Subhedar AR, Ahankari SS, Grace AN, Dufresne A. Nanocellulose-based aerogel electrodes for supercapacitors: A review. Carbohydr Polym 2022; 297:120039. [DOI: 10.1016/j.carbpol.2022.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
|
39
|
Characterization of bacterial cellulose produced by Acetobacter pasteurianus MGC-N8819 utilizing lotus rhizome. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Almeida AP, Saraiva JN, Cavaco G, Portela RP, Leal CR, Sobral RG, Almeida PL. Crosslinked bacterial cellulose hydrogels for biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
A Review of Properties of Nanocellulose, Its Synthesis, and Potential in Biomedical Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147090] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellulose is the most venerable and essential natural polymer on the planet and is drawing greater attention in the form of nanocellulose, considered an innovative and influential material in the biomedical field. Because of its exceptional physicochemical characteristics, biodegradability, biocompatibility, and high mechanical strength, nanocellulose attracts considerable scientific attention. Plants, algae, and microorganisms are some of the familiar sources of nanocellulose and are usually grouped as cellulose nanocrystal (CNC), cellulose nanofibril (CNF), and bacterial nanocellulose (BNC). The current review briefly highlights nanocellulose classification and its attractive properties. Further functionalization or chemical modifications enhance the effectiveness and biodegradability of nanocellulose. Nanocellulose-based composites, printing methods, and their potential applications in the biomedical field have also been introduced herein. Finally, the study is summarized with future prospects and challenges associated with the nanocellulose-based materials to promote studies resolving the current issues related to nanocellulose for tissue engineering applications.
Collapse
|
42
|
Jabbari F, Babaeipour V, Bakhtiari S. Bacterial cellulose-based composites for nerve tissue engineering. Int J Biol Macromol 2022; 217:120-130. [PMID: 35820488 DOI: 10.1016/j.ijbiomac.2022.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Nerve injuries and neurodegenerative disorders are very serious and costly medical challenges. Damaged nerve tissue may not be able to heal and regain its function, and scar tissue may restrict nerve cell regeneration. In recent years, new electroactive biomaterials have attracted widespread attention in the neural tissue engineering field. Bacterial cellulose (BC) due to its unique properties such as good mechanical properties, high water retention, biocompatibility, high crystallinity, large surface area, high purity, very fine network, and inability to absorb in the human body due to cellulase deficiency, can be considered a promising treatment for neurological injuries and disorders that require long-term support. However, BC lacks electrical activity, but can significantly improve the nerve regeneration rate by combining with conductive structures. Electrical stimulation has been shown to be an effective means of increasing the rate and accuracy of nerve regeneration. Many factors, such as the intensity and pattern of electrical current, have positive effects on cellular activity, including cell adhesion, proliferation, migration and differentiation, and cell-cell/tissue/molecule/drug interaction. This study discusses the importance and essential role of BC-based biomaterials in neural tissue regeneration and the effects of electrical stimulation on cellular behaviors.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | - Samaneh Bakhtiari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
43
|
Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022; 10:3199-3241. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout history, natural biomaterials have benefited society. Nevertheless, in recent years, tailoring natural materials for diverse biomedical applications accompanied with sustainability has become the focus. With the progress in the field of materials science, novel approaches for the production, processing, and functionalization of biomaterials to obtain specific architectures have become achievable. This review highlights an immensely adaptable natural biomaterial, bacterial cellulose (BC). BC is an emerging sustainable biopolymer with immense potential in the biomedical field due to its unique physical properties such as flexibility, high porosity, good water holding capacity, and small size; chemical properties such as high crystallinity, foldability, high purity, high polymerization degree, and easy modification; and biological characteristics such as biodegradability, biocompatibility, excellent biological affinity, and non-biotoxicity. The structure of BC consists of glucose monomer units polymerized via cellulose synthase in β-1-4 glucan chains, creating BC nano fibrillar bundles with a uniaxial orientation. BC-based composites have been extensively investigated for diverse biomedical applications due to their similarity to the extracellular matrix structure. The recent progress in nanotechnology allows the further modification of BC, producing novel BC-based biomaterials for various applications. In this review, we strengthen the existing knowledge on the production of BC and BC composites and their unique properties, and highlight the most recent advances, focusing mainly on the delivery of active pharmaceutical compounds, tissue engineering, and wound healing. Further, we endeavor to present the challenges and prospects for BC-associated composites for their application in the biomedical field.
Collapse
Affiliation(s)
- Prachi Shrivastav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.,Bombay College of Pharmacy, Kolivery Village, Mathuradas Colony, Kalina, Vakola, Santacruz East, Mumbai, Maharashtra 400 098, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Gayatri Vaidya
- Department of Studies in Food Technology, Davangere University, Davangere 577007, Karnataka, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ajeet Singh
- Department of Pharmaceutical Sciences, J.S. University, Shikohabad, Firozabad, UP 283135, India.
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Larissa Souza Amaral
- Department of Bioengineering (USP ALUMNI), University of São Paulo (USP), Av. Trabalhador São Carlense, 400, 13566590, São Carlos (SP), Brazil
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| |
Collapse
|
44
|
Modelling of the Electrical Membrane Potential for Concentration Polarization Conditions. ENTROPY 2022; 24:e24010138. [PMID: 35052163 PMCID: PMC8774907 DOI: 10.3390/e24010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 12/07/2022]
Abstract
Based on Kedem–Katchalsky formalism, the model equation of the membrane potential (Δψs) generated in a membrane system was derived for the conditions of concentration polarization. In this system, a horizontally oriented electro-neutral biomembrane separates solutions of the same electrolytes at different concentrations. The consequence of concentration polarization is the creation, on both sides of the membrane, of concentration boundary layers. The basic equation of this model includes the unknown ratio of solution concentrations (Ci/Ce) at the membrane/concentration boundary layers. We present the calculation procedure (Ci/Ce) based on novel equations derived in the paper containing the transport parameters of the membrane (Lp, σ, and ω), solutions (ρ, ν), concentration boundary layer thicknesses (δl, δh), concentration Raileigh number (RC), concentration polarization factor (ζs), volume flux (Jv), mechanical pressure difference (ΔP), and ratio of known solution concentrations (Ch/Cl). From the resulting equation, Δψs was calculated for various combinations of the solution concentration ratio (Ch/Cl), the Rayleigh concentration number (RC), the concentration polarization coefficient (ζs), and the hydrostatic pressure difference (ΔP). Calculations were performed for a case where an aqueous NaCl solution with a fixed concentration of 1 mol m−3 (Cl) was on one side of the membrane and on the other side an aqueous NaCl solution with a concentration between 1 and 15 mol m−3 (Ch). It is shown that (Δψs) depends on the value of one of the factors (i.e., ΔP, Ch/Cl, RC and ζs) at a fixed value of the other three.
Collapse
|
45
|
Aditya T, Allain JP, Jaramillo C, Restrepo AM. Surface Modification of Bacterial Cellulose for Biomedical Applications. Int J Mol Sci 2022; 23:610. [PMID: 35054792 PMCID: PMC8776065 DOI: 10.3390/ijms23020610] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Bacterial cellulose is a naturally occurring polysaccharide with numerous biomedical applications that range from drug delivery platforms to tissue engineering strategies. BC possesses remarkable biocompatibility, microstructure, and mechanical properties that resemble native human tissues, making it suitable for the replacement of damaged or injured tissues. In this review, we will discuss the structure and mechanical properties of the BC and summarize the techniques used to characterize these properties. We will also discuss the functionalization of BC to yield nanocomposites and the surface modification of BC by plasma and irradiation-based methods to fabricate materials with improved functionalities such as bactericidal capabilities.
Collapse
Affiliation(s)
- Teresa Aditya
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA; (J.P.A.); (C.J.)
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
| | - Jean Paul Allain
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA; (J.P.A.); (C.J.)
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Camilo Jaramillo
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA; (J.P.A.); (C.J.)
| | - Andrea Mesa Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
46
|
Shavyrkina NA, Skiba EA, Kazantseva AE, Gladysheva EK, Budaeva VV, Bychin NV, Gismatulina YA, Kashcheyeva EI, Mironova GF, Korchagina AA, Pavlov IN, Sakovich GV. Static Culture Combined with Aeration in Biosynthesis of Bacterial Cellulose. Polymers (Basel) 2021; 13:4241. [PMID: 34883747 PMCID: PMC8659626 DOI: 10.3390/polym13234241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
One of the ways to enhance the yield of bacterial cellulose (BC) is by using dynamic aeration and different-type bioreactors because the microbial producers are strict aerobes. But in this case, the BC quality tends to worsen. Here we have combined static culture with aeration in the biosynthesis of BC by symbiotic Medusomyces gisevii Sa-12 for the first time. A new aeration method by feeding the air onto the growth medium surface is proposed herein. The culture was performed in a Binder-400 climate chamber. The study found that the air feed at a rate of 6.3 L/min allows a 25% increase in the BC yield. Moreover, this aeration mode resulted in BC samples of stable quality. The thermogravimetric and X-ray structural characteristics were retained: the crystallinity index in reflection and transmission geometries were 89% and 92%, respectively, and the allomorph Iα content was 94%. Slight decreases in the degree of polymerization (by 12.0% compared to the control-no aeration) and elastic modulus (by 12.6%) are not critical. Thus, the simple aeration by feeding the air onto the culture medium surface has turned out to be an excellent alternative to dynamic aeration. Usually, when the cultivation conditions, including the aeration ones, are changed, characteristics of the resultant BC are altered either, due to the sensitivity of individual microbial strains. In our case, the stable parameters of BC samples under variable aeration conditions are explained by the concomitant factors: the new efficient aeration method and the highly adaptive microbial producer-symbiotic Medusomyces gisevii Sa-12.
Collapse
Affiliation(s)
- Nadezhda A. Shavyrkina
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Russia
| | - Ekaterina A. Skiba
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Russia
| | - Anastasia E. Kazantseva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Evgenia K. Gladysheva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Vera V. Budaeva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Nikolay V. Bychin
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Yulia A. Gismatulina
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Ekaterina I. Kashcheyeva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Galina F. Mironova
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Anna A. Korchagina
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Igor N. Pavlov
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Russia
| | - Gennady V. Sakovich
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| |
Collapse
|