1
|
Karimi I, Ghowsi M, Mohammed LJ, Haidari Z, Nazari K, Schiöth HB. Inulin as a Biopolymer; Chemical Structure, Anticancer Effects, Nutraceutical Potential and Industrial Applications: A Comprehensive Review. Polymers (Basel) 2025; 17:412. [PMID: 39940613 PMCID: PMC11819723 DOI: 10.3390/polym17030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Inulin is a versatile biopolymer that is non-digestible in the upper alimentary tract and acts as a bifidogenic prebiotic which selectively promotes gut health and modulates gut-organ axes through short-chain fatty acids and possibly yet-to-be-known interactions. Inulin usage as a fiber ingredient in food has been approved by the FDA since June 2018 and it is predicted that the universal inulin market demand will skyrocket in the near future because of its novel applications in health and diseases. This comprehensive review outlines the known applications of inulin in various disciplines ranging from medicine to industry, covering its benefits in gut health and diseases, metabolism, drug delivery, therapeutic pharmacology, nutrition, and the prebiotics industry. Furthermore, this review acknowledges the attention of researchers to knowledge gaps regarding the usages of inulin as a key modulator in the gut-organ axes.
Collapse
Affiliation(s)
- Isaac Karimi
- Research Group of Bioengineering and Biotechnology, Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran; (Z.H.); (K.N.)
- Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran;
| | - Mahnaz Ghowsi
- Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran;
| | - Layth Jasim Mohammed
- Department of Medical Microbiology, College of Medicine, Babylon University, Hilla City 51002, Babylon Governorate, Iraq;
| | - Zohreh Haidari
- Research Group of Bioengineering and Biotechnology, Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran; (Z.H.); (K.N.)
| | - Kosar Nazari
- Research Group of Bioengineering and Biotechnology, Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, P.O. Box 67149-67346, Kermanshah, Iran; (Z.H.); (K.N.)
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Sun H, Wang J, Han J, Li X, Zhao J, Zhang Y, Sun J. Dietary inulin supplementation improves meat quality and off-flavor of duck meat referring to regulated muscle fiber types and antioxidant capacity. Food Chem X 2025; 25:102148. [PMID: 39844955 PMCID: PMC11751494 DOI: 10.1016/j.fochx.2024.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025] Open
Abstract
This study aimed to evaluate the effects of dietary inulin (0-30 g/kg) on duck meat, muscle fiber types, meat quality, antioxidant ability, Low-field nuclear magnetic resonance, amino acid and off-flavor. These results indicated that inulin promoted the conversion of type II to type I muscle fibers. Compared with the control group, supplementation with 20 g/kg inulin reduced (P < 0.05) the shear force and pressure water loss by 17.9 N and 1.9 %, respectively. Inulin increased the pH24h and the redness of duck meat. Low-field nuclear magnetic resonance confirmed that inulin increased the immobile water content and enhanced water retention in duck meat. Additionally, inulin enhanced antioxidant capacity and reduced the degree of lipid oxidation. Inulin increased the content of umami and sweet amino acids by 2.63 %, which affects the flavor of duck meat. Notably, dietary inulin reduced the content of volatile off-flavor substances and improved the flavor of duck meat. In summary, dietary inulin may be an effective strategy for producing high quality duck meat and removing duck off-flavor.
Collapse
Affiliation(s)
- Hailei Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jia Wang
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jina Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250014, China
| | - Xiaolong Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Zhao
- Shandong Shengyao Biotechnology Co., Ltd., Jining, Shandong 272000, China
| | - Yimin Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Li K, Wei W, Xu C, Lian X, Bao J, Yang S, Wang S, Zhang X, Zheng X, Wang Y, Zhong S. Prebiotic inulin alleviates anxiety and depression-like behavior in alcohol withdrawal mice by modulating the gut microbiota and 5-HT metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156181. [PMID: 39488100 DOI: 10.1016/j.phymed.2024.156181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Alcohol dependence (AD) is a common psychiatric disorder, often accompanied by anxiety and depression. These comorbidities are linked to disturbances in serotonin (5-HT) metabolism and gut microbiota dysbiosis. Clinical studies suggest that inulin, a prebiotic, can alleviate anxiety and depression in AD patients by affecting the gut microbiota, although the mechanisms remain unclear. PURPOSE The purpose of this study is to investigate the potential mechanisms by which inulin, a prebiotic, improves anxiety and depression-like behaviors in AD withdrawal mice. This research is based on the drug and food homology and intestinal treatment of encephalopathy, with the goal of developing new clinical strategies for AD treatment. STUDY DESIGN For this purpose, fecal samples from AD patients were analyzed to identify microorganisms associated with AD. An AD withdrawal mouse model was created, with inulin as the intervention and fluvoxamine maleate as the control. Techniques such as 16S microbiome sequencing and UPLC-TQMS-targeted metabolomics were used to assess gut microbiota, short-chain fatty acids (SCFAs) levels, and 5-HT metabolism. METHODS The AD withdrawal model was built using the "Drinking-in-the-dark" protocol over 6 weeks. Inulin (2 g/kg/day) and fluvoxamine maleate (30 mg/kg/day) were administered for 4 weeks. The open field test, forced swim test, and tail suspension test were used to evaluate anxiety and depression-like behaviors in mice. ELISA and qRT-PCR assessed 5-HT metabolism in the colon, blood, and prefrontal cortex, while 16S microbiome sequencing analyzed changes in gut microbiota and UPLC-TQMS examined SCFAs levels. Immunohistochemistry was used to study intestinal barrier integrity. RESULTS AD patients showed reduced SCFA-producing bacteria such as Faecalibacterium and Roseburia. In mice, AD withdrawal led to anxiety and depression-like behaviors, disrupted 5-HT metabolism, and gut microbiota dysbiosis. Inulin supplementation alleviated these behaviors, increased 5-HT and 5-hydroxytryptophan (5-HTP) levels, upregulated colonic tryptophan hydroxylase 1 (TPH1) expression, and promoted the growth of beneficial bacteria such as Faecalibacterium and Roseburia, while also increasing SCFAs levels. CONCLUSION Inulin increases the abundance of Faecalibacterium and Roseburia, enhances SCFAs production, and regulates 5-HT metabolism, improving anxiety and depression-like behaviors in AD withdrawal mice. These findings suggest that inulin may serve as a nutritional intervention for mental health in AD patients by targeting the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Wei Wei
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jianjun Bao
- Department of Geriatric Psychiatry, The Mental Hospital of Yunnan Province, Kunming, 650224, China
| | - Shuo Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xulan Zhang
- Department of Psychiatry/Alcohol Dependence Treatment, The Mental Hospital of Yunnan Province, Kunming, 650224, China
| | - Xinjian Zheng
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yue Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shurong Zhong
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China; NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China; Forensic Biology Identification Laboratory, Judicial Identification Center of Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
4
|
Aktaş H, Custodio-Mendoza J, Szpicer A, Pokorski P, Samborska K, Kurek MA. Polysaccharide-potato protein coacervates for enhanced anthocyanin bioavailability and stability. Int J Biol Macromol 2024; 282:136829. [PMID: 39490469 DOI: 10.1016/j.ijbiomac.2024.136829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Anthocyanins (ACNs) possess strong antioxidants, anti-cancer, anti-obesity, anti-diabetic, and anti-inflammatory properties but are limited use by their susceptibility to environmental factors. This study aims to overcome these limitations by developing and assessing a novel coacervate system, consisting of potato protein isolate (PPI) combined with various polysaccharides, to stabilize and encapsulate anthocyanins from black carrot concentrate The polysaccharides included in this system include inulin, gum Arabic, guar gum, pectin, and soluble fiber. The coacervate system's effectiveness in maintaining stability and increasing the bioavailability of anthocyanins was evaluated compared to conventional soybean protein-based systems. The results show that pH considerably influences potato protein solubility, with maximum solubility at strongly acidic (pH 2) conditions. Hygroscopicity and moisture content analysis of the coacervates showed significant variations, with potato protein-guar gum (PPIGG) microcapsules having the lowest moisture content and potato protein gum Arabic (PPIGA) microcapsules having the highest moisture content. SEM imaging illustrated distinct microcapsule morphologies, while FT-IR measurement verified the successful integration of proteins and polysaccharides. The significance of the research reflects its proof that potato protein isolate (PPI) based coacervate systems consists of potato protein with polysaccharides, particularly those containing gum Arabic and pectin, have significant potential for improving anthocyanin stability and bioavailability. These findings guide future studies to investigate other polysaccharides, improve coacervation processes, and explore applications in the food and nutraceutical sectors. It also offers valuable insights for creating efficient encapsulation techniques for bioactive substances.
Collapse
Affiliation(s)
- Havva Aktaş
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Jorge Custodio-Mendoza
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Patryk Pokorski
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| |
Collapse
|
5
|
Ni D, Huang Z, Zhang S, Yang Y, Liu X, Xu W, Zhang W, Mu W. Improving the activity of an inulosucrase by rational engineering for the efficient biosynthesis of low-molecular-weight inulin. Arch Microbiol 2024; 206:424. [PMID: 39361031 DOI: 10.1007/s00203-024-04153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Inulin, a widely recognized prebiotic, has diverse applications across various industrial sectors. Although inulin is primarily produced through plant extraction, there is growing interest in enzymatic synthesis as an alternative. The enzymatic production of inulin from sucrose, which yields polymers with degrees of polymerization similar to those of plant-derived inulin, shows potential as a viable replacement for traditional extraction methods. In this study, an inulosucrase from Neobacillus bataviensis was identified, demonstrating a non-processive mechanism specifically tailored for synthesizing inulin with polymerization degrees ranging from 3 to approximately 40. The enzyme exhibited optimal activity at pH 6.5 and 55 °C, efficiently producing inulin with a yield of 50.6%. Ca2+ can improve the activity and thermostability of this enzyme. To enhance catalytic total activity, site-directed and truncated mutagenesis techniques were applied, resulting in the identification of a mutant, T149S, displaying a significant 57% increase in catalytic total activity. Molecular dynamics simulations unveiled that the heightened flexibility observed in three surface regions positively influenced enzymatic activity. This study not only contributes to the theoretical foundation for inulosucrase engineering but also presents a potential avenue for the production of inulin.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, 264333, Shandong, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yang Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, 264333, Shandong, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
6
|
Alonso-Allende J, Milagro FI, Aranaz P. Health Effects and Mechanisms of Inulin Action in Human Metabolism. Nutrients 2024; 16:2935. [PMID: 39275251 PMCID: PMC11397174 DOI: 10.3390/nu16172935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
Inulin is a plant polysaccharide which, due to its chemical structure, is not digestible by human gut enzymes but by some bacteria of the human microbiota, acting as a prebiotic. Consequently, inulin consumption has been associated with changes in the composition of the intestinal microbiota related to an improvement of the metabolic state, counteracting different obesity-related disturbances. However, the specific mechanisms of action, including bacterial changes, are not exactly known. Here, a bibliographic review was carried out to study the main effects of inulin on human metabolic health, with a special focus on the mechanisms of action of this prebiotic. Inulin supplementation contributes to body weight and BMI control, reduces blood glucose levels, improves insulin sensitivity, and reduces inflammation markers, mainly through the selective favoring of short-chain fatty acid (SCFA)-producer species from the genera Bifidobacterium and Anaerostipes. These SCFAs have been shown to ameliorate glucose metabolism and decrease hepatic lipogenesis, reduce inflammation, modulate immune activity, and improve anthropometric parameters such as body weight or BMI. In conclusion, the studies collected suggest that inulin intake produces positive metabolic effects through the improvement of the intestinal microbiota and through the metabolites produced by its fermentation.
Collapse
Affiliation(s)
- Jaime Alonso-Allende
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| |
Collapse
|
7
|
Ozcan BE, Tetik N, Aloglu HS. Polysaccharides from fruit and vegetable wastes and their food applications: A review. Int J Biol Macromol 2024; 276:134007. [PMID: 39032889 DOI: 10.1016/j.ijbiomac.2024.134007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Fruit and vegetables are a great source of nutrients and have numerous health benefits. The fruit and vegetable industry produces enormous amounts of waste such as peels, seeds, and stems. The amount of this waste production has increased, causing economic and environmental problems. Fruit and vegetable wastes (FVWs) have the potential to be recovered and used to produce high-value goods. Furthermore, FVWs have a large variety and quantity of polysaccharides, which makes them interesting to study for potential industrial use. Currently, the investigations on extracting polysaccharides from FVWs and examining how they affect human health are increasing. The present review focuses on polysaccharides from FVWs such as starch, pectin, cellulose, and inulin, and their various biological activities such as anti-inflammatory, anti-tumor, anti-diabetic, antioxidant, and antimicrobial. Additionally, applications as packaging material, gelling agent, emulsifier, prebiotic, and fat replacer of polysaccharides from FVWs in the food industry have been viewed in detail. As a result, FVWs can be reused as the source of polysaccharides, reducing environmental pollution and enabling sustainable green development. Further investigation of the biological activities of polysaccharides from FVWs on human health is of great importance for using these polysaccharides in food applications.
Collapse
Affiliation(s)
- Basak Ebru Ozcan
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kırklareli 39000, Turkiye.
| | - Nurten Tetik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkiye
| | - Hatice Sanlidere Aloglu
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kırklareli 39000, Turkiye
| |
Collapse
|
8
|
Lv S, Yang N, Lu Y, Zhang G, Zhong X, Cui Y, Huang Y, Teng J, Sai Y. The therapeutic potential of traditional Chinese medicine in depression: focused on the modulation of neuroplasticity. Front Pharmacol 2024; 15:1426769. [PMID: 39253375 PMCID: PMC11381291 DOI: 10.3389/fphar.2024.1426769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Depression, a mood disorder characterized by a persistent low mood and lack of enjoyment, is considered the leading cause of non-fatal health losses worldwide. Neuroplasticity refers to the brain's ability to adapt to external or internal stimuli, resulting in functional and structural changes. This process plays a crucial role in the development of depression. Traditional Chinese Medicine (TCM) shows significant potential as a complementary and alternative therapy for neurological diseases, including depression. However, there has been no systematic summary of the role of neuroplasticity in the pathological development of depression and TCM Interventions currently. This review systematically summarized recent literature on changes in neuroplasticity in depression and analyzed the regulatory mechanisms of active metabolites in TCM and TCM formulas on neuroplasticity in antidepressant treatment. Additionally, this review discussed the limitations of current research and the application prospects of TCM in regulating neuroplasticity in antidepressant research.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yaru Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanyan Sai
- University Town Hospital, Afiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Ni D, Zhang S, Huang Z, Liu X, Xu W, Zhang W, Mu W. Multistrategy Engineering of an Inulosucrase to Enhance the Activity and Thermostability for Efficient Production of Microbial Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18100-18109. [PMID: 39090787 DOI: 10.1021/acs.jafc.4c05224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Inulin has found commercial applications in the pharmaceutical, nutraceutical, and food industries due to its beneficial health effects. The enzymatic biosynthesis of microbial inulin has garnered increasing attention. In this study, molecular modification was applied to Lactobacillus mulieris UMB7800 inulosucrase, an enzyme that specifically produces high-molecular weight inulin, to enhance its catalytic activity and thermostability. Among the 18 variable regions, R5 was identified as a crucial region significantly impacting enzymatic activity by replacing it with more conserved sequences. Site-directed mutagenesis combined with saturated mutagenesis revealed that the mutant A250 V increased activity by 68%. Additionally, after screening candidate mutants by rational design, four single-point mutants, S344D, H434P, E526D, and G531P, were shown to enhance thermostability. The final combinational mutant, M5, exhibited a 66% increase in activity and a 5-fold enhancement in half-life at 55 °C. These findings are significant for understanding the catalytic activity and thermostability of inulosucrase and are promising for the development of microbial inulin biosynthesis platforms.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Sinsuwan S. Effect of Inulin on Rheological Properties and Emulsion Stability of a Reduced-Fat Salad Dressing. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:4229514. [PMID: 39015432 PMCID: PMC11251795 DOI: 10.1155/2024/4229514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
This study is aimed at investigating the potential use of inulin in a reduced-fat salad dressing to improve its rheological properties, fat globule size distribution, and emulsion stability. The reduced-fat salad dressing, which has 50% less fat compared to the full-fat counterpart (control), was prepared with varying inulin concentrations (10, 12.5, 15, 17.5, and 20% w/w). The full-fat and reduced-fat salad dressings exhibited a non-Newtonian shear-thinning behavior. Power law model was used to describe the rheological properties. Results showed that the flow behavior index (n) and consistency coefficient (K) were greatly affected by the concentration of inulin. A greater pseudoplasticity and apparent viscosity of the reduced-fat samples were achieved with a higher concentration of inulin. Oscillatory tests showed that the storage modulus (G') and loss modulus (G ″) values increased with increasing inulin concentration. All samples displayed characteristics of a viscoelastic solid, as evidenced by a greater G' than G ″. Regarding the size distribution of the oil droplets, the reduced-fat salad dressing containing a higher inulin content was observed to have a larger droplet size. All reduced-fat samples, similar to the full-fat counterparts, exhibited stability with no cream separation over one month of storage at 4°C, as determined by visual observation. Additionally, the reduced-fat salad dressings supplemented with 17.5 and 20% inulin exhibited stability against cream separation, comparable to the full-fat counterpart (p > 0.05), as measured by the thermal stress test (80°C for 30 min) with centrifugation. The sensory acceptance scores for reduced-fat salad dressing with 15 and 17.5% inulin, ranging from approximately 6.28 to 7.63 on a 9-point hedonic scale for all evaluated attributes (appearance, color, aroma, texture, taste, and overall acceptability), were not significantly different from those of the full-fat counterpart (p > 0.05). This study demonstrated that inulin may be a suitable ingredient in reduced-fat salad dressings.
Collapse
Affiliation(s)
- Sornchai Sinsuwan
- School of Human Ecology (Program in FoodNutrition and Applications)Sukhothai Thammathirat Open University, Nonthaburi 11120, Thailand
| |
Collapse
|
11
|
Melilli MG, Buzzanca C, Di Stefano V. Quality characteristics of cereal-based foods enriched with different degree of polymerization inulin: A review. Carbohydr Polym 2024; 332:121918. [PMID: 38431396 DOI: 10.1016/j.carbpol.2024.121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Vegetables, cereals and fruit are foods rich in fibre with beneficial and nutritional effects as their consumption reduces the onset of degenerative diseases, especially cardiovascular ones. Among fibres, inulin, oligofructose or fructooligosaccharide (FOS) are the best-studied. Inulin is a generic term to cover all linear β(2-1) fructans, with a variable degree of polymerization. In this review a better understanding of the importance of the degree of polymerization of inulin as a dietary fibre, functions, health benefits, classifications, types and its applications in the food industry was considered in different fortified foods. Inulin has been used to increase the nutritional and healthy properties of the product as a sweetener and as a substitute for fats and carbohydrates, improving the nutritional value and decreasing the glycemic index, with the advantage of not compromising taste and consistency of the product. Bifidogenic and prebiotic effects of inulin have been well established, inulin-type fructans are fermented by the colon to produce short-chain fatty acids, with important local and systemic actions. Addition of inulin with different degrees of polymerization to daily foods for the production of fortified pasta and bread was reviewed, and the impact on sensorial, technological and organoleptic characteristics even of gluten-free bread was also reported.
Collapse
Affiliation(s)
- Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy.
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy.
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy; National Biodiversity Future Center (NBFC), 90123, Palermo, Italy.
| |
Collapse
|
12
|
Chen Y, Zhao Y, Lu H, Zhang W, Gai Y, Niu G, Meng X, Lv H, Qian X, Ding X, Chen J. Protective effect of short-chain fructo-oligosaccharides from chicory on alcohol-induced injury in GES-1 cells via Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Front Nutr 2024; 11:1374579. [PMID: 38807640 PMCID: PMC11132183 DOI: 10.3389/fnut.2024.1374579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Numerous studies have demonstrated that polysaccharides derived from chicory possess the ability to regulate host signaling and modify mucosal damage. Yet, the effect and mechanism of short-chain fructo-oligosaccharides (scFOS) on gastric mucosa remain unclear. Hence, the protective effect of three scFOS (1-Kestose, Nystose, and 1F-Fructofuranosylnystose) against ethanol-induced injury in gastric epithelial (GES-1) cells, and the underlying molecular mechanism involved was investigated in this study. Treatment with 7% ethanol decreased the cell viability of GES-1 cells, resulting in oxidative stress and inflammation. However, pretreatment with scFOS exhibited significant improvements in cell viability, and mitigated oxidative stress and inflammation. scFOS markedly elevated the protein expression of Nrf2, HO-1, SOD1 and SOD2, while suppressing the expression of Keap1. scFOS pretreatment could also maintain mitochondrial membrane potential balance and reduce apoptosis. In addition, scFOS was observed to reduce the protein level of NLRP3, Caspase-1 and ASC. In conclusion, scFOS served a preventive function in mitigating oxidative stress and inflammation in ethanol-exposed GES-1 cells through modulation of the Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Collectively, the results indicated that scFOS could significantly mitigate ethanol-induced gastric cell damage, suggesting its potential for safeguarding gastrointestinal health.
Collapse
Affiliation(s)
- Yan Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yanan Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hao Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Han Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaoguo Qian
- Fengning PingAn High-Tech Industrial Co., Ltd, Chengde, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Zhang T, Li XA, Duan LP. Exploring the potential causal effects of food preferences on irritable bowel syndrome risk: A two-sample Mendelian randomization study. J Dig Dis 2024; 25:270-278. [PMID: 38973137 DOI: 10.1111/1751-2980.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVES Irritable bowel syndrome (IBS) is a common disorder in gut-brain interaction. Diet plays an important role in the pathophysiology of IBS. Therefore, we aimed to explore the potential causal effects of food-liking on IBS to provide better diet advice for patients. METHODS Single-nucleotide polymorphisms associated with food-liking were selected as instrumental variables, which were obtained from the latest genome-wide association study (GWAS) conducted on 161 625 participants. The summary data of genetic associations with IBS were obtained from a recent GWAS with 433 201 European controls and 53 400 cases. We used inverse variance weighting as the main analysis. Sensitivity analyses were conducted to detect horizontal pleiotropy and heterogeneity. RESULTS Significant evidence revealed the protective effects of a vegetarian diet-liking on IBS, including asparagus, avocadoes, globe artichoke, aubergine, and black olives, while onion-liking showed potential deleterious effects. For meat and fish, preference for sardines and fried fish was marginally associated with IBS risk, but salami and salmon were potential protective factors. In terms of desserts and dairy products, preferences for cake icing, ketchup, and cheesecake were suggestively associated with higher IBS risk, while goat cheese-liking was marginally correlated with lower IBS risk. Additionally and suggestively, significant causal effects of IBS on increased preferences for globe artichoke and salami were also found in a reverse Mendelian randomization (MR) study. CONCLUSION Our study revealed potential causal associations between food preference and IBS from a genetic perspective, which provides a dietary reference for such patients.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Xiao Ang Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Li Ping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Wang M, Zhang L, Piao H, Jin Y, Cui C, Jin X, Cui L, Yan C. Synbiotic of Pediococcus acidilactici and Inulin Ameliorates Dextran Sulfate Sodium-Induced Acute Ulcerative Colitis in Mice. J Microbiol Biotechnol 2024; 34:689-699. [PMID: 38346819 PMCID: PMC11016757 DOI: 10.4014/jmb.2308.08056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 04/17/2024]
Abstract
Colitis is a major gastrointestinal disease that threatens human health. In this study, a synbiotic composed of inulin and Pediococcus acidilactici (P. acidilactici) was investigated for its ability to alleviate dextran sulfate sodium (DSS)-induced colitis. The results revealed that the synbiotic, composed of inulin and P. acidilactici, attenuated the body weight loss and disease activity index (DAI) score in mice with DSS-mediated colitis. Determination of biochemical indicators found that the synbiotic increased anti-oxidation and alleviated inflammation in mice. Additionally, histopathological examination revealed that colonic goblet cell loss and severe mucosal damage in the model group were significantly reversed by the combination of inulin and P. acidilactici. Moreover, synbiotic treatment significantly reduced the levels of IL-1β, TNF-α, and IL-6 in the serum of mice. Thus, a synbiotic composed of inulin and P. acidilactici has preventive and therapeutic effects on DSSinduced colitis in mice.
Collapse
Affiliation(s)
- Mingzhu Wang
- Department of Animal Science, Yanbian University, Yanji, Jilin 133002, P.R. China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Longzhou Zhang
- Department of Animal Science, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Huiyan Piao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Yuanming Jin
- Department of Animal Science, Yanbian University, Yanji, Jilin 133002, P.R. China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Chengdu Cui
- Department of Animal Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xin Jin
- Laboratory Animal Center?Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Lianhua Cui
- Department of Animal Science, Yanbian University, Yanji, Jilin 133002, P.R. China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Chunri Yan
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin 133002, P.R. China
| |
Collapse
|
15
|
Lin X, Zhang X, Xu B. Differences in physicochemical, rheological, and prebiotic properties of inulin isolated from five botanical sources and their potential applications. Food Res Int 2024; 180:114048. [PMID: 38395565 DOI: 10.1016/j.foodres.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
This study compares the physicochemical and prebiotic properties of inulin isolated from five botanical sources. The average degree of polymerization (DP) for inulin ranged from 5.00 to 13.33. Notably, inulin from Dahlia tubers (DP = 13) and Platycodonis Radix (DP = 8) demonstrated granular, clustered morphology under SEM, semi-crystalline structures via X-ray diffraction, and exhibited shear-thinning behaviors from shear rate 1 s-1 to 500 s-1. In contrast, inulin from Jerusalem artichoke (DP = 5), chicory root (DP = 7), and Asparagi Radix (DP = 5) showcased rough flake morphologies under SEM, amorphous structures in X-ray patterns, and similar shear-thinning behaviors. All inulin types showed acid stability at pH levels below 2.0, with a reducing sugar conversion ratio (RRS) under 1 %. Furthermore, the isolated inulin from the different sources presented prebiotic capacity when added as a sole carbon source in the culture media of the probiotics Lactobacillus paracasei and Bifidobacterium longum. This study provides the properties of inulin from various sources, thereby offering a reference for the selection of appropriate inulin in industrial applications based on the desired characteristics of the final product.
Collapse
Affiliation(s)
- Xiaojun Lin
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Xuanyi Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
16
|
Lv S, Zhang G, Huang Y, Zhong X, Yi Y, Lu Y, Li J, Ma Y, Teng J. Adult hippocampal neurogenesis: pharmacological mechanisms of antidepressant active ingredients in traditional Chinese medicine. Front Pharmacol 2023; 14:1307746. [PMID: 38152691 PMCID: PMC10751940 DOI: 10.3389/fphar.2023.1307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Depression is characterized by prominent indicators and manifestations, such as anhedonia, which refers to the inability to experience pleasure, and persistent feelings of hopelessness. In clinical practice, the primary treatment approach involves the utilization of selective serotonin reuptake inhibitors (SSRIs) and related pharmacological interventions. Nevertheless, it is crucial to recognize that these agents are associated with significant adverse effects. Traditional Chinese medicine (TCM) adopts a multifaceted approach, targeting diverse components, multiple targets, and various channels of action. TCM has potential antidepressant effects. Anomalies in adult hippocampal neurogenesis (AHN) constitute a pivotal factor in the pathology of depression, with the regulation of AHN emerging as a potential key measure to intervene in the pathogenesis and progression of this condition. This comprehensive review presented an overview of the pharmacological mechanisms underlying the antidepressant effects of active ingredients found in TCM. Through examination of recent studies, we explored how these ingredients modulated AHN. Furthermore, we critically assessed the current limitations of research in this domain and proposed novel strategies for preclinical investigation and clinical applications in the treatment of depression in future.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
17
|
Sunanta P, Kontogiorgos V, Pankasemsuk T, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, Sommano SR. The nutritional value, bioactive availability and functional properties of garlic and its related products during processing. Front Nutr 2023; 10:1142784. [PMID: 37560057 PMCID: PMC10409574 DOI: 10.3389/fnut.2023.1142784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Garlic, a common culinary spice, is cultivated and used around the globe. Consumption of garlic and its supplements reduces the risk of diabetes and cardiovascular disease and boosts the immune system with antibacterial, antifungal, anti-aging, and anti-cancer properties. Diallyl sulfide, diallyl disulfide, triallyl trisulfide, phenolics, flavonoids, and others are the most commercially recognized active ingredients in garlic and its products. In recent years, global demand for medicinal or functional garlic has surged, introducing several products such as garlic oil, aged garlic, black garlic, and inulin into the market. Garlic processing has been demonstrated to directly impact the availability of bioactive ingredients and the functionality of products. Depending on the anticipated functional qualities, it is also recommended that one or a combination of processing techniques be deemed desirable over the others. This work describes the steps involved in processing fresh garlic into products and their physicochemical alterations during processing. Their nutritional, phytochemical, and functional properties are also reviewed. Considering the high demand for functional food, this review has been compiled to provide guidance for food producers on the industrial utilization and suitability of garlic for new product development.
Collapse
Affiliation(s)
- Piyachat Sunanta
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Vassilis Kontogiorgos
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tanachai Pankasemsuk
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Frolova Y, Vorobyeva V, Vorobyeva I, Sarkisyan V, Malinkin A, Isakov V, Kochetkova A. Development of Fermented Kombucha Tea Beverage Enriched with Inulin and B Vitamins. FERMENTATION-BASEL 2023; 9:552. [DOI: 10.3390/fermentation9060552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Kombucha is a sweet and sour beverage made by fermenting a liquid base with a symbiotic culture of bacteria and yeast. Different tea substrates, carbohydrate sources, and additional ingredients are used to create beverages with different physical and chemical characteristics. The purpose of this work was to create a recipe and technology to study the properties of the beverage based on kombucha with a given chemical composition. The content of added functional ingredients (vitamins and inulin) in quantities comparable with reference daily intake was the specified parameter characterizing the distinctive features of the enriched beverages. For fermentation using symbiotic cultures of bacteria and yeast, a black tea infusion sweetened with sucrose was used as a substrate. The changes in the physicochemical characteristics of the fermented tea beverage base were evaluated. The dynamics of changes in pH, acidity, the content of mono- and disaccharides, ethanol, organic acids, polyphenolic compounds, and volatile organic substances were shown. The fermentation conditions were selected (pH up to 3.3 ± 0.3, at T = 25 ± 1 °C, process duration of 14 days) to obtain the beverage base. Strawberry and lime leaves were used as flavor and aroma ingredients, and vitamins with inulin were used as functional ingredients. Since the use of additional ingredients changed the finished beverage’s organoleptic profile and increased its content of organic acids, the final product’s physical–chemical properties, antioxidant activity, and organoleptic indicators were assessed. The content of B vitamins in the beverages ranges from 29 to 44% of RDI, and 100% of RDI for inulin, which allows it to be attributed to the category of enriched products. The DPPH inhibitory activity of the beverages was 82.0 ± 7%, and the ethanol content did not exceed 0.43%. The beverages contained a variety of organic acids: lactic (43.80 ± 4.82 mg/100 mL), acetic (205.00 ± 16.40 mg/100 mL), tartaric (2.00 ± 0.14 mg/100 mL), citric (65.10 ± 5.86 mg/100 mL), and malic (45.50 ± 6.37 mg/100 mL). The technology was developed using pilot equipment to produce fermented kombucha tea enriched with inulin and B vitamins.
Collapse
Affiliation(s)
- Yuliya Frolova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Valentina Vorobyeva
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Irina Vorobyeva
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Varuzhan Sarkisyan
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alexey Malinkin
- Laboratory of Food Chemistry, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Vasily Isakov
- Department of Gastroenterology & Hepatology, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alla Kochetkova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| |
Collapse
|
19
|
Sherpa K, Priyadarshini MB, Mehta NK, Waikhom G, Surasani VKR, Tenali DR, Vaishnav A, Sharma S, Debbarma S. Blue agave inulin-soluble dietary fiber: effect on technological quality properties of pangasius mince emulsion-type sausage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37005347 DOI: 10.1002/jsfa.12594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The aim of the work was to investigate the influence of supplementing pangasius mince-based emulsion sausages with blue agave-derived inulin at 1% (T1), 2% (T2), 3% (T3), 4% (T4), and 5% (T5) on its technological quality attributes and acceptability. RESULTS The cooking yield of T-2, T-3, and T-4 sausages (96-97%) exhibited no significant difference (P > 0.05), which was higher than the other lots. The T-2 batter exhibited a significant difference with all other treatments, showing the lowest total expressible fluid (12.20%) value, indicating the highest emulsion stability of the batter. There was a significant effect on the diameter reduction of the cooked sausages as the level of inulin increased. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the proteolysis of raw mince without inulin and new bands in cooked sausage samples were observed. Increasing inulin content increased the hardness of the sausages from 2510.81 ± 114.31 g to 3415.54 ± 75.88. The differential scanning calorimetry melting temperatures of peak 2 of the T-1, T-2, T-3, and T-4 increased as the inulin content increased from 1 to 4%. The scanning electron microscope images exhibited a smooth appearance on the surface as the inulin level increased. CONCLUSION The sausages incorporated with the 2% and 3% blue agave plant-derived inulin (T-2 and T-3) showed better sensory overall acceptability scores than the control. The results suggested that the blue agave plant-derived inulin could be efficiently utilized at the 2% and 3% levels to enhance the quality of emulsion-type pangasius sausage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kusang Sherpa
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | | | - Naresh Kumar Mehta
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | | | | | | | - Anand Vaishnav
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | - Sanjeev Sharma
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | - Sourabh Debbarma
- Department of Aquatic Health & Environment, College of Fisheries, West Tripura, India
| |
Collapse
|
20
|
Piao X, Huang J, Sun Y, Zhao Y, Zheng B, Zhou Y, Yu H, Zhou R, Cullen PJ. Inulin for surimi gel fortification: Performance and molecular weight-dependent effects. Carbohydr Polym 2023; 305:120550. [PMID: 36737199 DOI: 10.1016/j.carbpol.2023.120550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Inulin is a prebiotic carbohydrate widely used in food industry due to its health benefits and unique rheological properties. For the first time, this study explores the potential of natural inulin as a sustainable food additive to enhance surimi gel characteristics, specifically focusing on understanding its molecular weight effects. The good solubility of inulin facilitates the conversion of α-helix to other secondary conformations which are favorable for protein denaturation and aggregation during gelation. Moreover, the abundant -OH groups at the surface of inulin can boost the chemical forces within surimi proteins to reinforce the gel network. Compared to short-chain inulin, long-chain inulin can alleviate proteolysis, enhance hydrophobic interactions and intertwine with myosin molecules, thereby reinforcing the gel network. A more viscous long-chain inulin solution formed within surimi gels fills the space between aggregated proteins and facilitates the lock of water molecules, improving the water-holding capacity (WHC). Thus, an addition of 12 % long-chain inulin leads to an enhanced hardness of surimi gel from 943 to 1593 and improved WHC from 72 % to 85 %. A new inulin-myosin interaction mechanism model is also proposed to provide useful guidelines for surimi processing and expanding the application of inulin within the food industries.
Collapse
Affiliation(s)
- Xinyue Piao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiabao Huang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu Sun
- School of Nursing, Zhejiang Pharmaceutical University, Ningbo 315500, China
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Bin Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yufang Zhou
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Haixia Yu
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, China
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Wang X, Zhong X, Liu D, Cao H, Chen J, Wang Q, Xia Y, Zhang F. An empowerment-based, healthy dietary behavioral intervention to ameliorate functional constipation. Front Nutr 2023; 10:1043031. [PMID: 37051123 PMCID: PMC10083415 DOI: 10.3389/fnut.2023.1043031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
ObjectiveTo explore the boost effect on ameliorating functional constipation in elderly patients through empowerment-based, healthy dietary behavioral intervention.DesignIn this randomized parallel group study, elderly patients with functional constipation were recruited and assigned to the experimental and control groups at a ratio of 1:1. The control group received routine intervention. The experimental group received 3-month empowerment-based intervention. The results were evaluated based on the Healthy Lifestyle and Personal Control Questionnaire (HLPCQ) and Cleveland Clinic Constipation Score (CCS). GraphPad Prism (Version 9) software was used for the statistical analysis.SettingAs the world's population ages, functional constipation in the elderly has attracted widespread attention. The practical behavioral intervention to ameliorate constipation are worth exploring.ParticipantsSixty elderly patients with functional constipation.ResultsThe study results showed no significant difference in the baseline data between the two groups (P > 0.05). After the intervention, the scores of HLPCQ (77.90 ± 14.57 vs. 61.11 ± 13.64) and CCS (7.48 ± 3.73 vs. 9.70 ± 3.07) in the experimental group were significantly higher than those in the control group (P < 0.05).ConclusionThe results showed that empowerment-based intervention can effectively strengthen the healthy dietary behavior of elderly patients. Through patient empowerment, the subjective initiative and willingness to communicate were boosted in the experimental group. Their symptoms of functional constipation improved considerably better than in the control group.
Collapse
Affiliation(s)
- Xuesong Wang
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaohui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Dongsong Liu
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hong Cao
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Chen
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qinyue Wang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yanping Xia
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- *Correspondence: Feng Zhang
| |
Collapse
|
22
|
Qin YQ, Wang LY, Yang XY, Xu YJ, Fan G, Fan YG, Ren JN, An Q, Li X. Inulin: properties and health benefits. Food Funct 2023; 14:2948-2968. [PMID: 36876591 DOI: 10.1039/d2fo01096h] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Inulin, a soluble dietary fiber, is widely found in more than 36 000 plant species as a reserve polysaccharide. The primary sources of inulin, include Jerusalem artichoke, chicory, onion, garlic, barley, and dahlia, among which Jerusalem artichoke tubers and chicory roots are often used as raw materials for inulin production in the food industry. It is universally acknowledged that inulin as a prebiotic has an outstanding effect on the regulation of intestinal microbiota via stimulating the growth of beneficial bacteria. In addition, inulin also exhibits excellent health benefits in regulating lipid metabolism, weight loss, lowering blood sugar, inhibiting the expression of inflammatory factors, reducing the risk of colon cancer, enhancing mineral absorption, improving constipation, and relieving depression. In this review paper, we attempt to present an exhaustive overview of the function and health benefits of inulin.
Collapse
Affiliation(s)
- Yu-Qing Qin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Liu-Yan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xin-Yu Yang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yi-Jie Xu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yan-Ge Fan
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
23
|
Chen N, Liu Y, Wei S, Zong X, Zhou G, Lu Z, Wang F, Wang Y, Jin M. Dynamic changes of inulin utilization associated with longitudinal development of gut microbiota. Int J Biol Macromol 2023; 229:952-963. [PMID: 36596372 DOI: 10.1016/j.ijbiomac.2022.12.318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Inulin is a typical kind of fermentable polysaccharide and has emerged as a promising dietary supplement due to its multiple health-promoting effects. This study aimed to unveil the dynamic change pattern of inulin utilizability as a fermentation substrate during gut microbiota development and illuminate its potential association with gut microbiota in Chinese Jinhua native pig models via longitudinal analyses. Herein, fresh feces were collected at one week pre- and post-weaning as well as 3rd month post-weaning, respectively. Targeted metabolomics and in vitro simulated fermentation revealed increasing concentrations of fecal short-chain fatty acids (SCFAs) and elevating utilizability of inulin as a fermentation substrate. Microbiomic analyses demonstrated the conspicuous longitudinal alteration in gut microbial composition and a significant rise in microbial community diversity during gut microbiota development. Furthermore, gut microbial functional analyses showed a remarkable increase in the relative abundances of carbohydrate metabolism pathways, including pentose phosphate pathway, galactose metabolism pathway, butanoate metabolism pathway as well as fructose and mannose metabolism pathway. Notably, relative abundances of bacterial genera Bifidobacterium, Roseburia, Faecalibacterium and Enterococcus displayed significantly positive correlations with the production of microbial fermentation-derived SCFAs. Collectively, these findings offer novel insights into understanding inulin utilizability variations from the perspective of gut microbiota development.
Collapse
Affiliation(s)
- Nana Chen
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yalin Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Siyu Wei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Guilian Zhou
- Weifang Newhope Liuhe Feed Technology Co. Ltd, Weifang 261000, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
24
|
Hendrysiak A, Brzezowska J, Nicolet N, Bocquel D, Andlauer W, Michalska-Ciechanowska A. Juice Powders from Rosehip ( Rosa canina L.): Physical, Chemical, and Antiglycation Properties. Molecules 2023; 28:1674. [PMID: 36838668 PMCID: PMC9964629 DOI: 10.3390/molecules28041674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Fruits from rosehip (Rosa canina L.) are gaining popularity due to their content and profile of bioactive components. Rosehip is distinct for its antioxidant, immunomodulatory, and anticancer properties. However, the abundance of these bioactives led to a tart taste, resulting in its consumption mainly in processed form. Due to microbiological safety, pasteurization is the preferred way of processing, which affects the chemical properties of the juice. A promising approach to improve acceptability of rosehip's physical properties, while preserving its bioactive compounds and adding health-promoting benefits, is to enrich the rosehip juice with functional carriers before drying. The influence of the carrier type (maltodextrin, inulin, trehalose, palatinose) and drying technique (spray- and freeze-drying) on the physical, chemical, and antioxidant properties of pasteurized, and non-pasteurized juice powders was examined in this study. In addition, the ability of powders with functional carriers to inhibit protein glycation was evaluated. Spray drying led to products with improved physical properties in relation to freeze-drying. The addition of carrier substances significantly influenced the antioxidant capacity determined by TEAC ABTS and FRAP methods, whereby the application of inulin and palatinose retained antioxidant capacity better than the frequently used maltodextrin. Moreover, rosehip juice powders showed a promising ability to inhibit protein glycation.
Collapse
Affiliation(s)
- Aleksandra Hendrysiak
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Jessica Brzezowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Nancy Nicolet
- Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland
| | - Dimitri Bocquel
- Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland
| | - Wilfried Andlauer
- Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland
| | - Anna Michalska-Ciechanowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| |
Collapse
|
25
|
Talens C, Ibargüen M, Murgui X, García-Muñoz S, Peral I. Texture‐modified meat for senior consumers varying meat type and mincing speed: effect of gender, age and nutritional information on sensory perception and preferences. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
26
|
Thangavelu KP, Tiwari BK, Kerry JP, Álvarez C. Effect of high-pressure processing in improving the quality of phosphate-reduced Irish breakfast sausages formulated with ultrasound-treated phosphate alternatives. Meat Sci 2022; 194:108981. [PMID: 36156346 DOI: 10.1016/j.meatsci.2022.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022]
Abstract
This work examined the effects of High-pressure processing (HPP) treatment on pork meat subsequently used to generate three phosphate-reduced sausage formulations (1-3) containing ultrasound (US) treated apple pomace (AP) and coffee silverskin (CSS) ingredients as phosphate replacers and compared against control (traditional) sausage formulations. Results showed that HPP and formulations produced significant interactive (P < 0.05) positive changes in the water holding capacity (WHC), cook loss, emulsion stability values. Texture, colour, TBARS, and emulsion stability values for sausage formulations showed no significant interactive impacts. Overall comparison of treatment sausage formulations against control formulations with non-HPP treated meat showed that HPP improved overall sausage quality attributes, where sausage formulation 2 employing HPP-treated meat and US-treated AP and CSS was regarded as the optimal sausage formulation. In conclusion, there is potential to manufacture sausages with reduced-phosphate concentration using combined novel processing technologies and clean label ingredients such as AP and CSS.
Collapse
Affiliation(s)
- Karthikeyan Palanisamy Thangavelu
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | - Joseph P Kerry
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Carlos Álvarez
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
27
|
You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C. The promotion mechanism of prebiotics for probiotics: A review. Front Nutr 2022; 9:1000517. [PMID: 36276830 PMCID: PMC9581195 DOI: 10.3389/fnut.2022.1000517] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Prebiotics and probiotics play a positive role in promoting human nutrition and health. Prebiotics are compounds that cannot be digested by the host, but can be used and fermented by probiotics, so as to promote the reproduction and metabolism of intestinal probiotics for the health of body. It has been confirmed that probiotics have clinical or health care functions in preventing or controlling intestinal, respiratory, and urogenital infections, allergic reaction, inflammatory bowel disease, irritable bowel syndrome and other aspects. However, there are few systematic summaries of these types, mechanisms of action and the promotion relationship between prebiotics and probiotic. Therefore, we summarized the various types of prebiotics and probiotics, their individual action mechanisms, and the mechanism of prebiotics promoting probiotics in the intestinal tract. It is hoped this review can provide new ideas for the application of prebiotics and probiotics in the future.
Collapse
Affiliation(s)
- Siyong You
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yuchen Ma
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Qiming Wu
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Chao Ding
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Caoxing Huang
| |
Collapse
|
28
|
Domínguez R, Lorenzo JM, Pateiro M, Munekata PES, Alves Dos Santos B, Basso Pinton M, Cichoski AJ, Bastianello Campagnol PC. Main animal fat replacers for the manufacture of healthy processed meat products. Crit Rev Food Sci Nutr 2022; 64:2513-2532. [PMID: 36123812 DOI: 10.1080/10408398.2022.2124397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The technological, sensory, and nutritional characteristics of meat products are directly related to their animal fat content. Adding animal fat to meat products significantly influences their sensory properties, such as color, taste, and aroma. In addition, the physicochemical properties of fat decisively contribute to the texture of meat products, playing a fundamental role in improving the properties of viscosity, creaminess, chewiness, cohesiveness, and hardness. However, meat products' high animal fat content makes them detrimental to a healthy diet. Therefore, reducing the fat content of meat products is an urgent need, but it is a challenge for researchers and the meat industry. The fat reduction in meat products without compromising the product's quality and with minor impacts on the production costs is not a simple task. Thus, strategies to reduce the fat content of meat products should be studied with caution. During the last decades, several fat replacers were tested, but among all of them, the use of flours and fibers, hydrocolloids, mushrooms, and some animal proteins (such as whey and collagen) presented promising results. Additionally, multiple strategies to gel oils of vegetable origin are also a current topic of study, and these have certain advantages such as their appearance (attempts to imitate animal fat), while also improving the nutritional profile of the lipid fraction of the products meat. However, each of these fat substitutes has both advantages and limitations in their use, which will be discussed in subsequent sections. Therefore, due to the growing interest in this issue, this review focuses on the main substitutes for animal fat used in the production of meat products, offering detailed and updated information on the latest discoveries and advances in this area.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | | | | | | | | |
Collapse
|
29
|
A Comparative Study on the Effect of Ultrasound-Treated Apple Pomace and Coffee Silverskin Powders as Phosphate Replacers in Irish Breakfast Sausage Formulations. Foods 2022; 11:foods11182763. [PMID: 36140891 PMCID: PMC9497824 DOI: 10.3390/foods11182763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Ultrasound (US) technology can be used to improve the techno-functional properties of food ingredients, such as apple pomace (AP) and coffee silverskin (CSS), which can be used in meat products to enhance their quality. This study evaluated the changes produced by US-treated AP and CSS, when used as phosphate replacers, in the physicochemical properties of Irish breakfast sausages, i.e., their water holding capacity (WHC), cook loss, emulsion stability, proximate content, lipid oxidation, color, and textural parameters. Three sausage formulations with reduced phosphate concentrations were used to study the effect of US-treated AP and CSS, and an interactive relationship between US treatment and formulations using two-way ANOVA. The results showed that the addition of US-treated AP and CSS to all the formulations produced a significant interactive effect that increased the WHC (p < 0.05) and emulsion stability (p < 0.05), decreased cook loss (p < 0.05), and increased day 9 TBARS (p < 0.05) values of specific formulations. No significant changes were observed for the parameters of; color, texture, or proximate content values. Thus, this study demonstrated that the addition of US-treated AP and CSS improved the quality of phosphate-reduced sausages.
Collapse
|
30
|
Mudannayake DC, Jayasena DD, Wimalasiri KM, Ranadheera CS, Ajlouni S. Inulin fructans as functional food ingredients‐ food applications and alternative plant sources: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Deshani C. Mudannayake
- Department of Animal Science, Faculty of Animal Science and Export Agriculture Uva Wellassa University Badulla Sri Lanka
| | - Dinesh D. Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture Uva Wellassa University Badulla Sri Lanka
| | - Kuruppu M.S. Wimalasiri
- Department of Food Science and Technology, Faculty of Agriculture University of Peradeniya Peradeniya Sri Lanka
| | - C. S. Ranadheera
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne VIC 3010 Australia
| | - Said Ajlouni
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne VIC 3010 Australia
| |
Collapse
|
31
|
Usaga J, Barahona D, Arroyo L, Esquivel P. Probiotics survival and betalains stability in purple pitaya (Hylocereus sp.) juice. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Tang W, Liu D, Nie SP. Food glycomics in food science: recent advances and future perspectives. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Wang M, Zhou J, Tavares J, Pinto CA, Saraiva JA, Prieto MA, Cao H, Xiao J, Simal-Gandara J, Barba FJ. Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability and quality. Crit Rev Food Sci Nutr 2022; 63:8357-8374. [PMID: 35357258 DOI: 10.1080/10408398.2022.2054939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Meat constitutes one the main protein sources worldwide. However, ethical and health concerns have limited its consumption over the last years. To overcome this negative impact, new ingredients from natural sources are being applied to meat products to obtain healthier proteinaceous meat products. Algae is a good source of unsaturated fatty acids, proteins, essential amino acids, and vitamins, which can nutritionally enrich several foods. On this basis, algae have been applied to meat products as a functional ingredient to obtain healthier meat-based products. This paper mainly reviews the bioactive compounds in algae and their application in meat products. The bioactive ingredients present in algae can give meat products functional properties such as antioxidant, neuroprotective, antigenotoxic, resulting in healthier foods. At the same time, algae addition to foods can also contribute to delay microbial spoilage extending shelf-life. Additionally, other algae-based applications such as for packaging materials for meat products are being explored. However, consumers' acceptance for new products (particularly in Western countries), namely those containing algae, not only depends on their knowledge, but also on their eating habits. Therefore, it is necessary to further explore the nutritional properties of algae-containing meat products to overcome the gap between new meat products and traditional products, so that healthier algae-containing meat can occupy a significant place in the market.
Collapse
Affiliation(s)
- Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Jéssica Tavares
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
34
|
Jayarathna GN, Jayasena DD, Mudannayake DC. Garlic inulin as a fat replacer in vegetable fat incorporated low-fat
chicken sausages. Food Sci Anim Resour 2022; 42:295-312. [PMID: 35310567 PMCID: PMC8907788 DOI: 10.5851/kosfa.2022.e5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
Inulin is a non-digestible carbohydrate and a prebiotic that can also act as a
fat replacer in various foods. This study examined the effect of replacing
vegetable oil with garlic inulin on the quality traits of chicken sausages.
Water-based inulin gels were prepared using garlic inulin or commercial inulin
to imitate fats in chicken sausages. Chicken sausages were prepared separately
replacing vegetable oil with water-based inulin gels to reach final inulin
percentages of 1, 2, and 3 (w/w). The control was prepared using 3% (w/w)
vegetable oil with no inulin. The physicochemical properties and thiobarbituric
acid reactive substance (TBARS) value of prepared sausages were analyzed over
28-d frozen storage. Sausages with 2% garlic inulin recorded higher
flavour and overall acceptability scores (p<0.05). Ash, moisture, and
protein contents of the sausages were increased with increasing levels of inulin
while fat content was reduced from 13.67% (control) to
4.47%–4.85% (p<0.05) in 3%
inulin-incorporated products. Sausages incorporated with 2% inulin had
lower lightness (L*) values than the control (p<0.05). Water holding
capacity (WHC) was similar (p>0.05) among the samples. During storage L*
value, pH, and WHC decreased while redness (a*) and yellowness (b*) values
increased in all the samples. In addition, TBARS values were increased during
the storage in all samples within the acceptable limits. In conclusion, garlic
inulin can be used successfully as a fat substitute in sausages without altering
meat quality parameters.
Collapse
Affiliation(s)
| | | | - Deshani Chirajeevi Mudannayake
- Department of Animal Science, Uva Wellassa
University, Badulla 90000, Sri
Lanka
- Corresponding author : Deshani
Chirajeevi Mudannayake, Department of Animal Science, Uva Wellassa University,
Badulla 90000, Sri Lanka, Tel: +94-55-2226580, Fax:
+94-55-2226672, E-mail:
| |
Collapse
|
35
|
Grujović MŽ, Mladenović KG, Semedo-Lemsaddek T, Laranjo M, Stefanović OD, Kocić-Tanackov SD. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Compr Rev Food Sci Food Saf 2022; 21:1537-1567. [PMID: 35029033 DOI: 10.1111/1541-4337.12897] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Traditional fermented foods are a significant source of starter and/or non-starter lactic acid bacteria (nsLAB). Moreover, these microorganisms are also known for their role as probiotics. The potential of nsLAB is huge; however, there are still challenges to be overcome with respect to characterization and application. In the present review, the most important steps that autochthonous lactic acid bacteria isolated from fermented foods need to overcome, to qualify as novel starter cultures, or as probiotics, in food technology and biotechnology, are considered. These different characterization steps include precise identification, detection of health-promoting properties, and safety evaluation. Each of these features is strain specific and needs to be accurately determined. This review highlights the advantages and disadvantages of nsLAB, isolated from traditional fermented foods, discussing safety aspects and sensory impact.
Collapse
Affiliation(s)
- Mirjana Ž Grujović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Republic of Serbia.,Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Katarina G Mladenović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Republic of Serbia.,Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Teresa Semedo-Lemsaddek
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Olgica D Stefanović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Sunčica D Kocić-Tanackov
- Department of Food Preservation Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia
| |
Collapse
|
36
|
Campagnol PCB, Lorenzo JM, Dos Santos BA, Cichoski AJ. Recent advances in the development of healthier meat products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:123-179. [PMID: 36064292 DOI: 10.1016/bs.afnr.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meat products are an excellent source of high biological value proteins, in addition to the high content of minerals, vitamins, and bioactive compounds. However, meat products contain compounds that can cause a variety of adverse health effects and pose a serious health threat to humans. In this sense, this chapter will address recent strategies to assist in the development of healthier meat products. The main advances about the reduction of sodium and animal fat in meat products will be presented. In addition, strategies to make the lipid profile of meat products more nutritionally advantageous for human health will also be discussed. Finally, the reduction of substances of safety concern in meat products will be addressed, including phosphates, nitrites, polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, as well as products from lipid and protein oxidation.
Collapse
Affiliation(s)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain; Universidad de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Ourense, Spain
| | | | | |
Collapse
|