1
|
Lindsay RT, Thisted L, Zois NE, Thrane ST, West JA, Fosgerau K, Griffin JL, Fink LN, Murray AJ. Beta-adrenergic agonism protects mitochondrial metabolism in the pancreatectomised rat heart. Sci Rep 2024; 14:19383. [PMID: 39169098 PMCID: PMC11339431 DOI: 10.1038/s41598-024-70335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The diabetic heart is characterised by functional, morphological and metabolic alterations predisposing it to contractile failure. Chronic sympathetic activation is a feature of the pathogenesis of heart failure, however the type 1 diabetic heart shows desensitisation to β-adrenergic stimulation. Here, we sought to understand the impact of repeated isoprenaline-mediated β-stimulation upon cardiac mitochondrial respiratory capacity and substrate metabolism in the 90% pancreatectomy (Px) rat model of type 1 diabetes. We hypothesised these hearts would be relatively protected against the metabolic impact of stress-induced cardiomyopathy. We found that individually both Px and isoprenaline suppressed cardiac mitochondrial respiration, but that this was preserved in Px rats receiving isoprenaline. Px and isoprenaline had contrasting effects on cardiac substrate metabolism, with increased reliance upon cardiac fatty acid oxidation capacity and altered ketone metabolism in the hearts of Px rats, but enhanced capacity for glucose uptake and metabolism in isoprenaline-treated rats. Moreover, Px rats were protected against isoprenaline-induced mortality, whilst isoprenaline elevated cGMP and protected myocardial energetic status in Px rat hearts. Our work suggests that adrenergic stimulation may be protective in the type 1 diabetic heart, and underlines the importance of studying pathological features in combination when modeling complex disease in rodents.
Collapse
Affiliation(s)
- Ross T Lindsay
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark.
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, UK.
| | - Louise Thisted
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Nora E Zois
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Ascendis Pharma A/S, Hellerup, Denmark
| | | | - James A West
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, UK
- AstraZeneca, Cambridge, UK
| | - Keld Fosgerau
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Pephexia Therapeutics ApS, Copenhagen, Denmark
| | - Julian L Griffin
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, UK
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Lisbeth N Fink
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Bohnert S, Reinert C, Trella S, Cattaneo A, Preiß U, Bohnert M, Zwirner J, Büttner A, Schmitz W, Ondruschka B. Neuroforensomics: metabolites as valuable biomarkers in cerebrospinal fluid of lethal traumatic brain injuries. Sci Rep 2024; 14:13651. [PMID: 38871842 DOI: 10.1038/s41598-024-64312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Traumatic brain injury (TBI) is a ubiquitous, common sequela of accidents with an annual prevalence of several million cases worldwide. In forensic pathology, structural proteins of the cellular compartments of the CNS in serum and cerebrospinal fluid (CSF) have been predominantly used so far as markers of an acute trauma reaction for the biochemical assessment of neuropathological changes after TBI. The analysis of endogenous metabolites offers an innovative approach that has not yet been considered widely in the assessment of causes and circumstances of death, for example after TBI. The present study, therefore, addresses the question whether the detection of metabolites by liquid-chromatography-mass spectrometry (LC/MS) analysis in post mortem CSF is suitable to identify TBI and to distinguish it from acute cardiovascular control fatalities (CVF). Metabolite analysis of 60 CSF samples collected during autopsies was performed using high resolution (HR)-LC/MS. Subsequent statistical and graphical evaluation as well as the calculation of a TBI/CVF quotient yielded promising results: numerous metabolites were identified that showed significant concentration differences in the post mortem CSF for lethal acute TBI (survival times up to 90 min) compared to CVF. For the first time, this forensic study provides an evaluation of a new generation of biomarkers for diagnosing TBI in the differentiation to other causes of death, here CVF, as surrogate markers for the post mortem assessment of complex neuropathological processes in the CNS ("neuroforensomics").
Collapse
Affiliation(s)
- Simone Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Christoph Reinert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Stefanie Trella
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Andrea Cattaneo
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Preiß
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Michael Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Johann Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Werner Schmitz
- Institute of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
Meng S, Yu Y, Yu S, Zhu S, Shi M, Xiang M, Ma H. Advances in Metabolic Remodeling and Intervention Strategies in Heart Failure. J Cardiovasc Transl Res 2024; 17:36-55. [PMID: 37843752 DOI: 10.1007/s12265-023-10443-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The heart is the most energy-demanding organ throughout the whole body. Perturbations or failure in energy metabolism contributes to heart failure (HF), which represents the advanced stage of various heart diseases. The poor prognosis and huge economic burden associated with HF underscore the high unmet need to explore novel therapies targeting metabolic modulators beyond conventional approaches focused on neurohormonal and hemodynamic regulators. Emerging evidence suggests that alterations in metabolic substrate reliance, metabolic pathways, metabolic by-products, and energy production collectively regulate the occurrence and progression of HF. In this review, we provide an overview of cardiac metabolic remodeling, encompassing the utilization of free fatty acids, glucose metabolism, ketone bodies, and branched-chain amino acids both in the physiological condition and heart failure. Most importantly, the latest advances in pharmacological interventions are discussed as a promising therapeutic approach to restore cardiac function, drawing insights from recent basic research, preclinical and clinical studies.
Collapse
Affiliation(s)
- Simin Meng
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yi Yu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Shiyu Zhu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Mengjia Shi
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
5
|
Zhang Z, Sun M, Jiang W, Yu L, Zhang C, Ma H. Myocardial Metabolic Reprogramming in HFpEF. J Cardiovasc Transl Res 2024; 17:121-132. [PMID: 37650988 DOI: 10.1007/s12265-023-10433-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Heart failure (HF) caused by structural or functional cardiac abnormalities is a significant cause of morbidity and mortality worldwide. While HF with reduced ejection fraction (HErEF) is well understood, more than half of patients have HF with preserved ejection fraction (HFpEF). Currently, the treatment for HFpEF primarily focuses on symptom alleviation, lacking specific drugs. The stressed heart undergoes metabolic switches in substrate preference, which is a compensatory process involved in cardiac pathological remodeling. Although metabolic reprogramming in HF has gained attention in recent years, its role in HFpEF still requires further elucidation. In this review, we present a summary of cardiac mitochondrial dysfunction and cardiac metabolic reprogramming in HFpEF. Additionally, we emphasize potential therapeutic approaches that target metabolic reprogramming for the treatment of HFpEF.
Collapse
Affiliation(s)
- Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Mingchu Sun
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chan Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China.
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
6
|
Sun Q, Wagg CS, Güven B, Wei K, de Oliveira AA, Silver H, Zhang L, Vergara A, Chen B, Wong N, Wang F, Dyck JRB, Oudit GY, Lopaschuk GD. Stimulating cardiac glucose oxidation lessens the severity of heart failure in aged female mice. Basic Res Cardiol 2024; 119:133-150. [PMID: 38148348 DOI: 10.1007/s00395-023-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/28/2023]
Abstract
Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0.5 g/L of Nω-nitro-L-arginine methyl ester (L-NAME) administered via drinking water to induce obesity and hypertension. Isolated working hearts were perfused with radiolabeled energy substrates to directly measure rates of myocardial glucose oxidation and fatty acid oxidation. Additionally, a series of mice subjected to the obesity and hypertension protocol were treated with a pyruvate dehydrogenase kinase inhibitor (PDKi) to stimulate cardiac glucose oxidation. Aged female mice subjected to the obesity and hypertension protocol had increased body weight, glucose intolerance, elevated blood pressure, cardiac hypertrophy, systolic dysfunction, and decreased survival. While fatty acid oxidation rates were not altered in the failing hearts, insulin-stimulated glucose oxidation rates were markedly impaired. PDKi treatment increased cardiac glucose oxidation in heart failure mice, which was accompanied with improved systolic function and decreased cardiac hypertrophy. The primary energy metabolic change in heart failure induced by obesity and hypertension in aged female mice is a dramatic decrease in glucose oxidation. Stimulating glucose oxidation can lessen the severity of heart failure and exert overall functional benefits.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Berna Güven
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Kaleigh Wei
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Amanda A de Oliveira
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Heidi Silver
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Ander Vergara
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Brandon Chen
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Nathan Wong
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Faqi Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
7
|
Wen J, Chen C. From Energy Metabolic Change to Precision Therapy: a Holistic View of Energy Metabolism in Heart Failure. J Cardiovasc Transl Res 2024; 17:56-70. [PMID: 37450209 DOI: 10.1007/s12265-023-10412-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Heart failure (HF) is a complex and multifactorial disease that affects millions of people worldwide. It is characterized by metabolic disturbances of substrates such as glucose, fatty acids (FAs), ketone bodies, and amino acids, which lead to changes in cardiac energy metabolism pathways. These metabolic alterations can directly or indirectly promote myocardial remodeling, thereby accelerating the progression of HF, resulting in a vicious cycle of worsening symptoms, and contributing to the increased hospitalization and mortality among patients with HF. In this review, we summarized the latest researches on energy metabolic profiling in HF and provided the related translational therapeutic strategies for this devastating disease. By taking a holistic approach to understanding energy metabolism changes in HF, we hope to provide comprehensive insights into the pathophysiology of this challenging condition and identify novel precise targets for the development of more effective treatments.
Collapse
Affiliation(s)
- Jianpei Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
8
|
Su S, Ji X, Li T, Teng Y, Wang B, Han X, Zhao M. The changes of cardiac energy metabolism with sodium-glucose transporter 2 inhibitor therapy. Front Cardiovasc Med 2023; 10:1291450. [PMID: 38124893 PMCID: PMC10731052 DOI: 10.3389/fcvm.2023.1291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Background/aims To investigate the specific effects of s odium-glucose transporter 2 inhibitor (SGLT2i) on cardiac energy metabolism. Methods A systematic literature search was conducted in eight databases. The retrieved studies were screened according to the inclusion and exclusion criteria, and relevant information was extracted according to the purpose of the study. Two researchers independently screened the studies, extracted information, and assessed article quality. Results The results of the 34 included studies (including 10 clinical and 24 animal studies) showed that SGLT2i inhibited cardiac glucose uptake and glycolysis, but promoted fatty acid (FA) metabolism in most disease states. SGLT2i upregulated ketone metabolism, improved the structure and functions of myocardial mitochondria, alleviated oxidative stress of cardiomyocytes in all literatures. SGLT2i increased cardiac glucose oxidation in diabetes mellitus (DM) and cardiac FA metabolism in heart failure (HF). However, the regulatory effects of SGLT2i on cardiac FA metabolism in DM and cardiac glucose oxidation in HF varied with disease types, stages, and intervention duration of SGLT2i. Conclusion SGLT2i improved the efficiency of cardiac energy production by regulating FA, glucose and ketone metabolism, improving mitochondria structure and functions, and decreasing oxidative stress of cardiomyocytes under pathological conditions. Thus, SGLT2i is deemed to exert a benign regulatory effect on cardiac metabolic disorders in various diseases. Systematic review registration https://www.crd.york.ac.uk/, PROSPERO (CRD42023484295).
Collapse
Affiliation(s)
- Sha Su
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Ji
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Teng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baofu Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowan Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Acharya R, Shetty SS, Pavan G, Monteiro F, Munikumar M, Naresh S, Kumari NS. AI-Based Homology Modelling of Fatty Acid Transport Protein 1 Using AlphaFold: Structural Elucidation and Molecular Dynamics Exploration. Biomolecules 2023; 13:1670. [PMID: 38002353 PMCID: PMC10669040 DOI: 10.3390/biom13111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Fatty acid transport protein 1 (FATP1) is an integral transmembrane protein that is involved in facilitating the translocation of long-chain fatty acids (LCFA) across the plasma membrane, thereby orchestrating the importation of LCFA into the cell. FATP1 also functions as an acyl-CoA ligase, catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and VLCFA (very-long-chain fatty acids) as substrates. It is expressed in various types of tissues and is involved in the regulation of crucial signalling pathways, thus playing a vital role in numerous physiological and pathological conditions. Structural insight about FATP1 is, thus, extremely important for understanding the mechanism of action of this protein and developing efficient treatments against its anomalous expression and dysregulation, which are often associated with pathological conditions such as breast cancer. As of now, there has been no prior prediction or evaluation of the 3D configuration of the human FATP1 protein, hindering a comprehensive understanding of the distinct functional roles of its individual domains. In our pursuit to unravel the structure of the most commonly expressed isoforms of FATP1, we employed the cutting-edge ALPHAFOLD 2 model for an initial prediction of the entire protein's structure. This prediction was complemented by molecular dynamics simulations, focusing on the most promising model. We predicted the structure of FATP1 in silico and thoroughly refined and validated it using coarse and molecular dynamics in the absence of the complete crystal structure. Their relative dynamics revealed the different properties of the characteristic FATP1.
Collapse
Affiliation(s)
- Ranjitha Acharya
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Shilpa S. Shetty
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (S.S.S.); (G.P.)
| | - Gollapalli Pavan
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (S.S.S.); (G.P.)
| | - Flama Monteiro
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Manne Munikumar
- Clinical Division, ICMR-National Institute of Nutrition, Jamai-Osmania (Post), Hyderabad 500007, India;
| | - Sriram Naresh
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Nalilu Suchetha Kumari
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| |
Collapse
|
10
|
Scisciola L, Chianese U, Caponigro V, Basilicata MG, Salviati E, Altucci L, Campiglia P, Paolisso G, Barbieri M, Benedetti R, Sommella E. Multi-omics analysis reveals attenuation of cellular stress by empagliflozin in high glucose-treated human cardiomyocytes. J Transl Med 2023; 21:662. [PMID: 37742032 PMCID: PMC10518098 DOI: 10.1186/s12967-023-04537-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute the gold standard treatment for type 2 diabetes mellitus (T2DM). Among them, empagliflozin (EMPA) has shown beneficial effects against heart failure. Because cardiovascular diseases (mainly diabetic cardiomyopathy) are the leading cause of death in diabetic patients, the use of EMPA could be, simultaneously, cardioprotective and antidiabetic, reducing the risk of death from cardiovascular causes and decreasing the risk of hospitalization for heart failure in T2DM patients. Interestingly, recent studies have shown that EMPA has positive benefits for people with and without diabetes. This finding broadens the scope of EMPA function beyond glucose regulation alone to include a more intricate metabolic process that is, in part, still unknown. Similarly, this significantly increases the number of people with heart diseases who may be eligible for EMPA treatment. METHODS This study aimed to clarify the metabolic effect of EMPA on the human myocardial cell model by using orthogonal metabolomics, lipidomics, and proteomics approaches. The untargeted and multivariate analysis mimicked the fasting blood sugar level of T2DM patients (hyperglycemia: HG) and in the average blood sugar range (normal glucose: NG), with and without the addition of EMPA. RESULTS Results highlighted that EMPA was able to modulate and partially restore the levels of multiple metabolites associated with cellular stress, which were dysregulated in the HG conditions, such as nicotinamide mononucleotide, glucose-6-phosphate, lactic acid, FA 22:6 as well as nucleotide sugars and purine/pyrimidines. Additionally, EMPA regulated the levels of several lipid sub-classes, in particular dihydroceramide and triacylglycerols, which tend to accumulate in HG conditions resulting in lipotoxicity. Finally, EMPA counteracted the dysregulation of endoplasmic reticulum-derived proteins involved in cellular stress management. CONCLUSIONS These results could suggest an effect of EMPA on different metabolic routes, tending to rescue cardiomyocyte metabolic status towards a healthy phenotype.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vicky Caponigro
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy
- IEOS CNR, Naples, Italy
- Azienda Ospedaliera Universitaria "Luigi Vanvitelli", Medical Epigenetics Program, Naples, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Azienda Ospedaliera Universitaria "Luigi Vanvitelli", Medical Epigenetics Program, Naples, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| |
Collapse
|
11
|
Kerk SA, Garcia-Bermudez J, Birsoy K, Sherman MH, Shah YM, Lyssiotis CA. Spotlight on GOT2 in Cancer Metabolism. Onco Targets Ther 2023; 16:695-702. [PMID: 37635751 PMCID: PMC10460182 DOI: 10.2147/ott.s382161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
GOT2 is at the nexus of several critical metabolic pathways in homeostatic cellular and dysregulated cancer metabolism. Despite this, recent work has emphasized the remarkable plasticity of cancer cells to employ compensatory pathways when GOT2 is inhibited. Here, we review the metabolic roles of GOT2, highlighting findings in both normal and cancer cells. We emphasize how cancer cells repurpose cell intrinsic metabolism and their flexibility when GOT2 is inhibited. We close by using this framework to discuss key considerations for future investigations into cancer metabolism.
Collapse
Affiliation(s)
- Samuel A Kerk
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Javier Garcia-Bermudez
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mara H Sherman
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Watson WD, Green PG, Lewis AJ, Arvidsson P, De Maria GL, Arheden H, Heiberg E, Clarke WT, Rodgers CT, Valkovič L, Neubauer S, Herring N, Rider OJ. Retained Metabolic Flexibility of the Failing Human Heart. Circulation 2023; 148:109-123. [PMID: 37199155 PMCID: PMC10417210 DOI: 10.1161/circulationaha.122.062166] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND The failing heart is traditionally described as metabolically inflexible and oxygen starved, causing energetic deficit and contractile dysfunction. Current metabolic modulator therapies aim to increase glucose oxidation to increase oxygen efficiency of adenosine triphosphate production, with mixed results. METHODS To investigate metabolic flexibility and oxygen delivery in the failing heart, 20 patients with nonischemic heart failure with reduced ejection fraction (left ventricular ejection fraction 34.9±9.1) underwent separate infusions of insulin+glucose infusion (I+G) or Intralipid infusion. We used cardiovascular magnetic resonance to assess cardiac function and measured energetics using phosphorus-31 magnetic resonance spectroscopy. To investigate the effects of these infusions on cardiac substrate use, function, and myocardial oxygen uptake (MVo2), invasive arteriovenous sampling and pressure-volume loops were performed (n=9). RESULTS At rest, we found that the heart had considerable metabolic flexibility. During I+G, cardiac glucose uptake and oxidation were predominant (70±14% total energy substrate for adenosine triphosphate production versus 17±16% for Intralipid; P=0.002); however, no change in cardiac function was seen relative to basal conditions. In contrast, during Intralipid infusion, cardiac long-chain fatty acid (LCFA) delivery, uptake, LCFA acylcarnitine production, and fatty acid oxidation were all increased (LCFA 73±17% of total substrate versus 19±26% total during I+G; P=0.009). Myocardial energetics were better with Intralipid compared with I+G (phosphocreatine/adenosine triphosphate 1.86±0.25 versus 2.01±0.33; P=0.02), and systolic and diastolic function were improved (LVEF 34.9±9.1 baseline, 33.7±8.2 I+G, 39.9±9.3 Intralipid; P<0.001). During increased cardiac workload, LCFA uptake and oxidation were again increased during both infusions. There was no evidence of systolic dysfunction or lactate efflux at 65% maximal heart rate, suggesting that a metabolic switch to fat did not cause clinically meaningful ischemic metabolism. CONCLUSIONS Our findings show that even in nonischemic heart failure with reduced ejection fraction with severely impaired systolic function, significant cardiac metabolic flexibility is retained, including the ability to alter substrate use to match both arterial supply and changes in workload. Increasing LCFA uptake and oxidation is associated with improved myocardial energetics and contractility. Together, these findings challenge aspects of the rationale underlying existing metabolic therapies for heart failure and suggest that strategies promoting fatty acid oxidation may form the basis for future therapies.
Collapse
Affiliation(s)
- William D. Watson
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
- Department of Cardiovascular Medicine (W.D.W.), University of Cambridge, UK
| | - Peregrine G. Green
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
- Department for Physiology, Anatomy and Genetics (P.G.G., N.H.), University of Oxford, UK
| | - Andrew J.M. Lewis
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
| | - Per Arvidsson
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden (P.A., H.A., E.H.)
| | | | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden (P.A., H.A., E.H.)
| | - Einar Heiberg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden (P.A., H.A., E.H.)
| | - William T. Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences (W.T.C.), University of Oxford, UK
| | | | - Ladislav Valkovič
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
- Institute of Measurement Science, Slovak Academy of Sciences, Slovakia (L.V.)
| | - Stefan Neubauer
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
| | - Neil Herring
- Department for Physiology, Anatomy and Genetics (P.G.G., N.H.), University of Oxford, UK
| | - Oliver J. Rider
- Oxford Centre for Magnetic Resonance Research (W.D.W., P.G.G., A.J.M.L., P.A., L.V., S.N., O.J.R.), University of Oxford, UK
| |
Collapse
|
13
|
Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol 2023; 20:443-462. [PMID: 36609604 DOI: 10.1038/s41569-022-00824-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/09/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce heart failure events by direct action on the failing heart that is independent of changes in renal tubular function. In the failing heart, nutrient transport into cardiomyocytes is increased, but nutrient utilization is impaired, leading to deficient ATP production and the cytosolic accumulation of deleterious glucose and lipid by-products. These by-products trigger downregulation of cytoprotective nutrient-deprivation pathways, thereby promoting cellular stress and undermining cellular survival. SGLT2 inhibitors restore cellular homeostasis through three complementary mechanisms: they might bind directly to nutrient-deprivation and nutrient-surplus sensors to promote their cytoprotective actions; they can increase the synthesis of ATP by promoting mitochondrial health (mediated by increasing autophagic flux) and potentially by alleviating the cytosolic deficiency in ferrous iron; and they might directly inhibit glucose transporter type 1, thereby diminishing the cytosolic accumulation of toxic metabolic by-products and promoting the oxidation of long-chain fatty acids. The increase in autophagic flux mediated by SGLT2 inhibitors also promotes the clearance of harmful glucose and lipid by-products and the disposal of dysfunctional mitochondria, allowing for mitochondrial renewal through mitochondrial biogenesis. This Review describes the orchestrated interplay between nutrient transport and metabolism and nutrient-deprivation and nutrient-surplus signalling, to explain how SGLT2 inhibitors reverse the profound nutrient, metabolic and cellular abnormalities observed in heart failure, thereby restoring the myocardium to a healthy molecular and cellular phenotype.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA.
- Imperial College London, London, UK.
| |
Collapse
|
14
|
Li SR, Moheimani H, Herzig B, Kail M, Krishnamoorthi N, Wu J, Abdelhamid S, Scioscia J, Sung E, Rosengart A, Bonaroti J, Johansson PI, Stensballe J, Neal MD, Das J, Kar U, Sperry J, Billiar TR. High-dimensional proteomics identifies organ injury patterns associated with outcomes in human trauma. J Trauma Acute Care Surg 2023; 94:803-813. [PMID: 36787435 PMCID: PMC10205666 DOI: 10.1097/ta.0000000000003880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Severe traumatic injury with shock can lead to direct and indirect organ injury; however, tissue-specific biomarkers are limited in clinical panels. We used proteomic and metabolomic databases to identify organ injury patterns after severe injury in humans. METHODS Plasma samples (times 0, 24, and 72 hours after arrival to trauma center) from injured patients enrolled in two randomized prehospital trials were subjected to multiplexed proteomics (SomaLogic Inc., Boulder, CO). Patients were categorized by outcome: nonresolvers (died >72 hours or required ≥7 days of critical care), resolvers (survived to 30 days and required <7 days of critical care), and low Injury Severity Score (ISS) controls. Established tissue-specific biomarkers were identified through a literature review and cross-referenced with tissue specificity from the Human Protein Atlas. Untargeted plasma metabolomics (Metabolon Inc., Durham, NC), inflammatory mediators, and endothelial damage markers were correlated with injury biomarkers. Kruskal-Wallis/Mann-Whitney U tests with false discovery rate correction assessed differences in biomarker expression across outcome groups (significance; p < 0.1). RESULTS Of 142 patients, 78 were nonresolvers (median ISS, 30), 34 were resolvers (median ISS, 22), and 30 were low ISS controls (median ISS, 1). A broad release of tissue-specific damage markers was observed at admission; this was greater in nonresolvers. By 72 hours, nine cardiac, three liver, eight neurologic, and three pulmonary proteins remained significantly elevated in nonresolvers compared with resolvers. Cardiac damage biomarkers showed the greatest elevations at 72 hours in nonresolvers and had significant positive correlations with proinflammatory mediators and endothelial damage markers. Nonresolvers had lower concentrations of fatty acid metabolites compared with resolvers, particularly acyl carnitines and cholines. CONCLUSION We identified an immediate release of tissue-specific biomarkers with sustained elevation in the liver, pulmonary, neurologic, and especially cardiac injury biomarkers in patients with complex clinical courses after severe injury. The persistent myocardial injury in nonresolvers may be due to a combination of factors including metabolic stress, inflammation, and endotheliopathy.
Collapse
Affiliation(s)
- Shimena R Li
- From the Department of Surgery (S.L., H.M., B.H., M.K., N.K., J.W., S.A., J. Scioscia, E.S., A.R., J.B., M.N., U.K., J. Sperry, T.R.B.) and Pittsburgh Transfusion and Trauma Research Center (S.L., H.M., B.H., M.K., N.K., J.W., S.A., J. Scioscia, E.S., A.R., J.B., M.N., U.K., J. Sperry, T.R.B.), University of Pittsburgh, Pittsburgh; Lake Erie College of Osteopathic Medicine (B.H.), Erie, Pennsylvania; Department of Cardiology (J.W.), The Third Xiangya Hospital, Central South University, Changsha, China; Section for Transfusion Medicine (P.I.J., J. Stensballe), Capital Region Blood Bank, Rigshospitalet and Department of Anesthesia and Trauma Center (J. Stensballe), Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen; Emergency Medical Services (J. Stensballe), The Capital Region of Denmark, Hillerød, Denmark; and Center for Systems Immunology, Departments of Immunology (J.D.) and Computational and Systems Biology (J.D.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gao J, Shen W. Sirtuin-3-Mediated Cellular Metabolism Links Cardiovascular Remodeling with Hypertension. BIOLOGY 2023; 12:biology12050686. [PMID: 37237500 DOI: 10.3390/biology12050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Hypertension can cause structural and functional abnormalities in the cardiovascular system, which can be attributed to both hemodynamic and nonhemodynamic factors. These alterations are linked with metabolic changes and are induced by pathological stressors. Sirtuins are enzymes that act as stress sensors and regulate metabolic adaptation by deacetylating proteins. Among them, mitochondrial SIRT3 performs a crucial role in maintaining metabolic homeostasis. Evidence from experimental and clinical studies has shown that hypertension-induced decreases in SIRT3 activity can lead to cellular metabolism reprogramming and, subsequently, increased susceptibility to endothelial dysfunction, myocardial hypertrophy, myocardial fibrosis, and heart failure. This review presents recent research advances in SIRT3-mediated metabolic adaptation in hypertensive cardiovascular remodeling.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weili Shen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
16
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
17
|
Schenkl C, Heyne E, Doenst T, Schulze PC, Nguyen TD. Targeting Mitochondrial Metabolism to Save the Failing Heart. Life (Basel) 2023; 13:life13041027. [PMID: 37109556 PMCID: PMC10143865 DOI: 10.3390/life13041027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite considerable progress in treating cardiac disorders, the prevalence of heart failure (HF) keeps growing, making it a global medical and economic burden. HF is characterized by profound metabolic remodeling, which mostly occurs in the mitochondria. Although it is well established that the failing heart is energy-deficient, the role of mitochondria in the pathophysiology of HF extends beyond the energetic aspects. Changes in substrate oxidation, tricarboxylic acid cycle and the respiratory chain have emerged as key players in regulating myocardial energy homeostasis, Ca2+ handling, oxidative stress and inflammation. This work aims to highlight metabolic alterations in the mitochondria and their far-reaching effects on the pathophysiology of HF. Based on this knowledge, we will also discuss potential metabolic approaches to improve cardiac function.
Collapse
Affiliation(s)
- Christina Schenkl
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Paul Christian Schulze
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Tien Dung Nguyen
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
18
|
Abstract
Chronic kidney disease is associated with an increased risk for the development and progression of cardiovascular disorders including hypertension, dyslipidemia, and coronary artery disease. Chronic kidney disease may also affect the myocardium through complex systemic changes, resulting in structural remodeling such as hypertrophy and fibrosis, as well as impairments in both diastolic and systolic function. These cardiac changes in the setting of chronic kidney disease define a specific cardiomyopathic phenotype known as uremic cardiomyopathy. Cardiac function is tightly linked to its metabolism, and research over the past 3 decades has revealed significant metabolic remodeling in the myocardium during the development of heart failure. Because the concept of uremic cardiomyopathy has only been recognized in recent years, there are limited data on metabolism in the uremic heart. Nonetheless, recent findings suggest overlapping mechanisms with heart failure. This work reviews key features of metabolic remodeling in the failing heart in the general population and extends this to patients with chronic kidney disease. The knowledge of similarities and differences in cardiac metabolism between heart failure and uremic cardiomyopathy may help identify new targets for mechanistic and therapeutic research on uremic cardiomyopathy.
Collapse
Affiliation(s)
- T Dung Nguyen
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
19
|
Fatty Acyl Coenzyme A Synthetase Fat1p Regulates Vacuolar Structure and Stationary-Phase Lipophagy in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0462522. [PMID: 36598223 PMCID: PMC9927365 DOI: 10.1128/spectrum.04625-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During yeast stationary phase, a single spherical vacuole (lysosome) is created by the fusion of several small ones. Moreover, the vacuolar membrane is reconstructed into two distinct microdomains. Little is known, however, about how cells maintain vacuolar shape or regulate their microdomains. Here, we show that Fat1p, a fatty acyl coenzyme A (acyl-CoA) synthetase and fatty acid transporter, and not the synthetases Faa1p and Faa4p, is essential for vacuolar shape preservation, the development of vacuolar microdomains, and cell survival in stationary phase of the yeast Saccharomyces cerevisiae. Furthermore, Fat1p negatively regulates general autophagy in both log- and stationary-phase cells. In contrast, Fat1p promotes lipophagy, as the absence of FAT1 limits the entry of lipid droplets into the vacuole and reduces the degradation of liquid droplet (LD) surface proteins. Notably, supplementing with unsaturated fatty acids or overexpressing the desaturase Ole1p can reverse all aberrant phenotypes caused by FAT1 deficiency. We propose that Fat1p regulates stationary phase vacuolar morphology, microdomain differentiation, general autophagy, and lipophagy by controlling the degree of fatty acid saturation in membrane lipids. IMPORTANCE The ability to sense environmental changes and adjust the levels of cellular metabolism is critical for cell viability. Autophagy is a recycling process that makes the most of already-existing energy resources, and the vacuole/lysosome is the ultimate autophagic processing site in cells. Lipophagy is an autophagic process to select degrading lipid droplets. In yeast cells in stationary phase, vacuoles fuse and remodel their membranes to create a single spherical vacuole with two distinct membrane microdomains, which are required for yeast lipophagy. In this study, we discovered that Fat1p was capable of rapidly responding to changes in nutritional status and preserving cell survival by regulating membrane lipid saturation to maintain proper vacuolar morphology and the level of lipophagy in the yeast S. cerevisiae. Our findings shed light on how cells maintain vacuolar structure and promote the differentiation of vacuole surface microdomains for stationary-phase lipophagy.
Collapse
|
20
|
Reactivation of PPAR α alleviates myocardial lipid accumulation and cardiac dysfunction by improving fatty acid β-oxidation in Dsg2-deficient arrhythmogenic cardiomyopathy. Acta Pharm Sin B 2023; 13:192-203. [PMID: 36815030 PMCID: PMC9939300 DOI: 10.1016/j.apsb.2022.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM), a fatal heart disease characterized by fibroadipocytic replacement of cardiac myocytes, accounts for 20% of sudden cardiac death and lacks effective treatment. It is often caused by mutations in desmosome proteins, with Desmoglein-2 (DSG2) mutations as a common etiology. However, the mechanism underlying the accumulation of fibrofatty in ACM remains unknown, which impedes the development of curative treatment. Here we investigated the fat accumulation and the underlying mechanism in a mouse model of ACM induced by cardiac-specific knockout of Dsg2 (CS-Dsg2 -/-). Heart failure and cardiac lipid accumulation were observed in CS-Dsg2 -/- mice. We demonstrated that these phenotypes were caused by decline of fatty acid (FA) β-oxidation resulted from impaired mammalian target of rapamycin (mTOR) signaling. Rapamycin worsened while overexpression of mTOR and 4EBP1 rescued the FA β-oxidation pathway in CS-Dsg2 -/- mice. Reactivation of PPARα by fenofibrate or AAV9-Pparα significantly alleviated the lipid accumulation and restored cardiac function. Our results suggest that impaired mTOR-4EBP1-PPARα-dependent FA β-oxidation contributes to myocardial lipid accumulation in ACM and PPARα may be a potential target for curative treatment of ACM.
Collapse
|
21
|
Fukushima K, Momose M, Kanaya K, Kaimoto Y, Higuchi T, Yamamoto A, Nakao R, Matsuo Y, Nagao M, Kuji I, Abe K. Imaging of Heart Type Fatty Acid Binding Protein Under Acute Reperfusion Ischemia Using Radio-labeled Antibody in Rat Heart Model. ANNALS OF NUCLEAR CARDIOLOGY 2022; 8:14-20. [PMID: 36540183 PMCID: PMC9754781 DOI: 10.17996/anc.21-00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/17/2023]
Abstract
Purpose: Heart-type fatty acid binding protein (H-FABP) is primary transporter of free fatty acid and plays an important role in myocardial metabolism, which is characterized by high specificity and rapid appearance under ischemic condition. The objective of this study was to clarify the usefulness of imaging study of targeting H-FABP appearance using radio-labeled antibody, and correlation with myocardial fatty acid metabolism and perfusion in acute reperfusion ischemia. Method: Wistar rats were allotted to sham-operated control group (sham; n=4), ischemia non-reperfused group (IG; n=5), and ischemia-reperfusion group (RG; n=5). Ligation of left coronary artery (LCA) was performed for IG and RG. 20 min of ischemia was followed by 60min of reperfusion for RG. 125I labeled anti H-FABP antibody (anti H-FABP), BMIPP and 99mTc-sestamibi (MIBI) was injected intravenously. Multi-tracer digital autoradiogram was performed using µ-imager®. The ratio of radioactivity in LCA related (culprit) area to the inferior (remote) area (target uptake ratio=TUR) was generated. Results: In sham group, no visually detectable accumulation was observed for the anti H-FABP image, and TURMIBI and TURBMIPP were equivalent to 1. In IG, TURMIBI and TURBMIPP were remarkably low (0.12±0.01, 0.24±0.07). In RG, TURMIBI was significantly lower (0.20±0.03, p<0.05 vs. other groups). However, TURBMIPP was significantly higher (2.78±1.28, p<0.05) compared to the sham and IG, whereas anti H-FABP showed markedly higher ratio in the reperfused area compared to the sham and IG (3.43±0.73 vs. 0.31±0.13 and 1.09±0.07 for IG and sham; p<0.05, and <0.01, respectively). Conclusion: Anti H-FABP accumulated specifically in reperfused area under acute ischemia, and it accorded to the area where fatty acid metabolism was activated. This study has shown the future potential for clinical application in vivo imaging of acute coronary syndrome.
Collapse
Affiliation(s)
- Kenji Fukushima
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Japan
| | - Mitsuru Momose
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Japan
| | - Kazuko Kanaya
- Department of Radiological Service, Tokyo Women's Medical University, Japan
| | - Yoko Kaimoto
- Department of Radiological Service, Tokyo Women's Medical University, Japan
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University of Wuerzburg, Comprehensive Heart Failure Center, University of Wuerzburg, Germany
| | - Atsushi Yamamoto
- Department of Cardiology, Tokyo Women's Medical University, Japan
| | - Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University, Japan
| | - Yuka Matsuo
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Japan
| | - Ichiei Kuji
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, Japan
| | - Koichiro Abe
- Department of Radiology, Tokyo Medical University, Japan
| |
Collapse
|
22
|
Palm CL, Nijholt KT, Bakker BM, Westenbrink BD. Short-Chain Fatty Acids in the Metabolism of Heart Failure – Rethinking the Fat Stigma. Front Cardiovasc Med 2022; 9:915102. [PMID: 35898266 PMCID: PMC9309381 DOI: 10.3389/fcvm.2022.915102] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) remains a disease with immense global health burden. During the development of HF, the myocardium and therefore cardiac metabolism undergoes specific changes, with decreased long-chain fatty acid oxidation and increased anaerobic glycolysis, diminishing the overall energy yield. Based on the dogma that the failing heart is oxygen-deprived and on the fact that carbohydrates are more oxygen-efficient than FA, metabolic HF drugs have so far aimed to stimulate glucose oxidation or inhibit FA oxidation. Unfortunately, these treatments have failed to provide meaningful clinical benefits. We believe it is time to rethink the concept that fat is harmful to the failing heart. In this review we discuss accumulating evidence that short-chain fatty acids (SCFAs) may be an effective fuel for the failing heart. In contrast to long-chain fatty acids, SCFAs are readily taken up and oxidized by the heart and could serve as a nutraceutical treatment strategy. In addition, we discuss how SCFAs activate pathways that increase long chain fatty acid oxidation, which could help increase the overall energy availability. Another potential beneficial effect we discuss lies within the anti-inflammatory effect of SCFAs, which has shown to inhibit cardiac fibrosis – a key pathological process in the development of HF.
Collapse
Affiliation(s)
- Constantin L. Palm
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Kirsten T. Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Barbara M. Bakker
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - B. Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: B. Daan Westenbrink
| |
Collapse
|
23
|
Okhovatian S, Mohammadi MH, Rafatian N, Radisic M. Engineering Models of the Heart Left Ventricle. ACS Biomater Sci Eng 2022; 8:2144-2160. [PMID: 35523206 DOI: 10.1021/acsbiomaterials.1c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite capturing the imagination of scientists for decades, the goal of creating an artificial heart for transplantation proved to be significantly more challenging than initially anticipated. Toward this goal, recent ground-breaking studies demonstrate the development of functional left ventricular (LV) models. LV models are artificially constructed 3D chambers that are capable of containing liquid within the engineered cavity and exhibit the functionality of native LV including contraction, ejection of fluid, and electrical impulse propagation. Various hydrogels and polymers have been used in manufacturing of LV models, relying on techniques such as electrospinning, bioprinting, casting, and molding. Most studies scaled down the models based on the dimensions of the human or rat ventricle. Initially, neonatal rat cardiomyocytes were the cell type of choice for construction the LV models. Yet, as the stem cell biology field advanced, recent studies focused on the use of cardiomyocytes derived from human induced pluripotent stem cells. In this review, we first describe the physiological characteristics of the human heart, to establish the parameter space for modeling. We then elaborate on current advances in the field and compare recently developed LV models among themselves and with the native human left ventricle. Fabrication methods, cell types, biomaterials, functional properties, and disease modeling capability are some of the major parameters that have distinguished these models. We also highlight some of the current challenges in this field, such as vascularization, cell composition and fidelity, and discuss potential solutions to overcome them.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Mohammad Hossein Mohammadi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.,Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
24
|
Wilshaw J, Boswood A, Chang YM, Sands CJ, Camuzeaux S, Lewis MR, Xia D, Connolly DJ. Evidence of altered fatty acid metabolism in dogs with naturally occurring valvular heart disease and congestive heart failure. Metabolomics 2022; 18:34. [PMID: 35635592 PMCID: PMC9151558 DOI: 10.1007/s11306-022-01887-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/06/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Myxomatous mitral valve disease (MMVD) is the most common cardiac condition in adult dogs. The disease progresses over several years and affected dogs may develop congestive heart failure (HF). Research has shown that myocardial metabolism is altered in cardiac disease, leading to a reduction in β-oxidation of fatty acids and an increased dependence upon glycolysis. OBJECTIVES This study aimed to evaluate whether a shift in substrate use occurs in canine patients with MMVD; a naturally occurring model of human disease. METHODS Client-owned dogs were longitudinally evaluated at a research clinic in London, UK and paired serum samples were selected from visits when patients were in ACVIM stage B1: asymptomatic disease without cardiomegaly, and stage C: HF. Samples were processed using ultra-performance liquid chromatography mass spectrometry and lipid profiles were compared using mixed effects models with false discovery rate adjustment. The effect of disease stage was evaluated with patient breed entered as a confounder. Features that significantly differed were screened for selection for annotation efforts using reference databases. RESULTS Dogs in HF had altered concentrations of lipid species belonging to several classes previously associated with cardiovascular disease. Concentrations of certain acylcarnitines, phospholipids and sphingomyelins were increased after individuals had developed HF, whilst some ceramides and lysophosphatidylcholines decreased. CONCLUSIONS The canine metabolome appears to change as MMVD progresses. Findings from this study suggest that in HF myocardial metabolism may be characterised by reduced β-oxidation. This proposed explanation warrants further research.
Collapse
Affiliation(s)
- Jenny Wilshaw
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, London, United Kingdom.
| | - A Boswood
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, London, United Kingdom
| | - Y M Chang
- Research Support Office, Royal Veterinary College, University of London, London, United Kingdom
| | - C J Sands
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - S Camuzeaux
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - M R Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - D Xia
- Research Support Office, Royal Veterinary College, University of London, London, United Kingdom
- Department of Comparative Biomedical Science, Royal Veterinary College, University of London, London, United Kingdom
| | - D J Connolly
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, London, United Kingdom
| |
Collapse
|
25
|
Spyropoulos F, Sorrentino A, van der Reest J, Yang P, Waldeck-Weiermair M, Steinhorn B, Eroglu E, Saeedi Saravi SS, Yu P, Haigis M, Christou H, Michel T. Metabolomic and transcriptomic signatures of chemogenetic heart failure. Am J Physiol Heart Circ Physiol 2022; 322:H451-H465. [PMID: 35089810 PMCID: PMC8896991 DOI: 10.1152/ajpheart.00628.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The failing heart is characterized by elevated levels of reactive oxygen species. We have developed an animal model of heart failure induced by chemogenetic production of oxidative stress in the heart using a recombinant adeno-associated virus (AAV9) expressing yeast d-amino acid oxidase (DAAO) targeted to cardiac myocytes. When DAAO-infected animals are fed the DAAO substrate d-alanine, the enzyme generates hydrogen peroxide (H2O2) in the cardiac myocytes, leading to dilated cardiomyopathy. However, the underlying mechanisms of oxidative stress-induced heart failure remain incompletely understood. Therefore, we investigated the effects of chronic oxidative stress on the cardiac transcriptome and metabolome. Rats infected with recombinant cardiotropic AAV9 expressing DAAO or control AAV9 were treated for 7 wk with d-alanine to stimulate chemogenetic H2O2 production by DAAO and generate dilated cardiomyopathy. After hemodynamic assessment, left and right ventricular tissues were processed for RNA sequencing and metabolomic profiling. DAAO-induced dilated cardiomyopathy was characterized by marked changes in the cardiac transcriptome and metabolome both in the left and right ventricle. Downregulated transcripts are related to energy metabolism and mitochondrial function, accompanied by striking alterations in metabolites involved in cardiac energetics, redox homeostasis, and amino acid metabolism. Upregulated transcripts are involved in cytoskeletal organization and extracellular matrix. Finally, we noted increased metabolite levels of antioxidants glutathione and ascorbate. These findings provide evidence that chemogenetic generation of oxidative stress leads to a robust heart failure model with distinct transcriptomic and metabolomic signatures and set the basis for understanding the underlying pathophysiology of chronic oxidative stress in the heart.NEW & NOTEWORTHY We have developed a "chemogenetic" heart failure animal model that recapitulates a central feature of human heart failure: increased cardiac redox stress. We used a recombinant DAAO enzyme to generate H2O2 in cardiomyocytes, leading to cardiomyopathy. Here we report striking changes in the cardiac metabolome and transcriptome following chemogenetic heart failure, similar to changes observed in human heart failure. Our findings help validate chemogenetic approaches for the discovery of novel therapeutic targets in heart failure.
Collapse
Affiliation(s)
- Fotios Spyropoulos
- 1Department of Pediatric Newborn Medicine, Brigham and
Women’s Hospital, Harvard Medical School, Boston, Massachusetts,2Cardiovascular Division, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrea Sorrentino
- 2Cardiovascular Division, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Peiran Yang
- 2Cardiovascular Division, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Markus Waldeck-Weiermair
- 2Cardiovascular Division, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Steinhorn
- 2Cardiovascular Division, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emrah Eroglu
- 2Cardiovascular Division, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seyed Soheil Saeedi Saravi
- 2Cardiovascular Division, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul Yu
- 2Cardiovascular Division, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcia Haigis
- 3Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Helen Christou
- 1Department of Pediatric Newborn Medicine, Brigham and
Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas Michel
- 2Cardiovascular Division, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Sousa Fialho MDL, Purnama U, Dennis KMJH, Montes Aparicio CN, Castro-Guarda M, Massourides E, Tyler DJ, Carr CA, Heather LC. Activation of HIF1α Rescues the Hypoxic Response and Reverses Metabolic Dysfunction in the Diabetic Heart. Diabetes 2021; 70:2518-2531. [PMID: 34526367 PMCID: PMC8564414 DOI: 10.2337/db21-0398] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes (T2D) impairs hypoxia-inducible factor (HIF)1α activation, a master transcription factor that drives cellular adaptation to hypoxia. Reduced activation of HIF1α contributes to the impaired post-ischemic remodeling observed following myocardial infarction in T2D. Molidustat is an HIF stabilizer currently undergoing clinical trials for the treatment of renal anemia associated with chronic kidney disease; however, it may provide a route to pharmacologically activate HIF1α in the T2D heart. In human cardiomyocytes, molidustat stabilized HIF1α and downstream HIF target genes, promoting anaerobic glucose metabolism. In hypoxia, insulin resistance blunted HIF1α activation and downstream signaling, but this was reversed by molidustat. In T2D rats, oral treatment with molidustat rescued the cardiac metabolic dysfunction caused by T2D, promoting glucose metabolism and mitochondrial function, while suppressing fatty acid oxidation and lipid accumulation. This resulted in beneficial effects on post-ischemic cardiac function, with the impaired contractile recovery in T2D heart reversed by molidustat treatment. In conclusion, pharmacological HIF1α stabilization can overcome the blunted hypoxic response induced by insulin resistance. In vivo this corrected the abnormal metabolic phenotype and impaired post-ischemic recovery of the diabetic heart. Therefore, molidustat may be an effective compound to further explore the clinical translatability of HIF1α activation in the diabetic heart.
Collapse
Affiliation(s)
| | - Ujang Purnama
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Kaitlyn M J H Dennis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | | | - Marcos Castro-Guarda
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Emmanuelle Massourides
- Centre d'Etude des Cellules Souches/I-Stem, INSERM UMR 861, AFM-Téléthon, Corbeil-Essonnes, France
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K.
| |
Collapse
|
27
|
Kerr M, Dennis KMJH, Carr CA, Fuller W, Berridge G, Rohling S, Aitken CL, Lopez C, Fischer R, Miller JJ, Clarke K, Tyler DJ, Heather LC. Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia. FASEB J 2021; 35:e21765. [PMID: 34318967 PMCID: PMC8662312 DOI: 10.1096/fj.202100394r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023]
Abstract
The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart.
Collapse
Affiliation(s)
- M Kerr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - K M J H Dennis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - W Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - G Berridge
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - S Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C L Aitken
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C Lopez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - R Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - J J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Physics, University of Oxford, Oxford, UK.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - K Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - L C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Zhou HM, Ti Y, Wang H, Shang YY, Liu YP, Ni XN, Wang D, Wang ZH, Zhang W, Zhong M. Cell death-inducing DFFA-like effector C/CIDEC gene silencing alleviates diabetic cardiomyopathy via upregulating AMPKa phosphorylation. FASEB J 2021; 35:e21504. [PMID: 33913563 DOI: 10.1096/fj.202002562r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Cell death-inducing DFFA-like effector C (CIDEC) is responsible for metabolic disturbance and insulin resistance, which are considered to be important triggers in the development of diabetic cardiomyopathy (DCM). To investigate whether CIDEC plays a critical role in DCM, DCM rat model was induced by a high-fat diet and a single injection of low-dose streptozotocin (27.5 mg/kg). DCM rats showed severe metabolic disturbance, insulin resistance, myocardial hypertrophy, interstitial fibrosis, ectopic lipid deposition, inflammation and cardiac dysfunction, accompanied by CIDEC elevation. With CIDEC gene silencing, the above pathophysiological characteristics were significantly ameliorated accompanied by significant improvements in cardiac function in DCM rats. Enhanced AMP-activated protein kinase (AMPK) α activation was involved in the underlying pathophysiological molecular mechanisms. To further explore the underlying mechanisms that CIDEC facilitated collagen syntheses in vitro, insulin-resistant cardiac fibroblast (CF) model was induced by high glucose (15.5 mmol/L) and high insulin (104 μU/mL). We observed that insulin-resistant stimulation dramatically raised CIDEC expression and promoted CIDEC nuclear translocation in CFs. Meanwhile, AMPKα2 was observed to distribute almost completely inside CF nucleus. The results further proved that CIDEC biochemically interacted and co-localized with AMPKα2 rather than AMPKα1 in CF nucleus, which provided a novel mechanism of CIDEC in promoting collagen syntheses. This study suggested that CIDEC gene silencing alleviates DCM via AMPKα signaling both in vivo and in vitro, implicating CIDEC may be a promising target for treatment of human DCM.
Collapse
Affiliation(s)
- Hui-Min Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Ti
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Geriatric Medicines, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan-Yuan Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya-Peng Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ning Ni
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Di Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong key Laboratory of Cardiovascular Proteomics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
29
|
Wasyluk W, Nowicka-Stążka P, Zwolak A. Heart Metabolism in Sepsis-Induced Cardiomyopathy-Unusual Metabolic Dysfunction of the Heart. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147598. [PMID: 34300048 PMCID: PMC8303349 DOI: 10.3390/ijerph18147598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022]
Abstract
Due to the need for continuous work, the heart uses up to 8% of the total energy expenditure. Due to the relatively low adenosine triphosphate (ATP) storage capacity, the heart's work is dependent on its production. This is possible due to the metabolic flexibility of the heart, which allows it to use numerous substrates as a source of energy. Under normal conditions, a healthy heart obtains approximately 95% of its ATP by oxidative phosphorylation in the mitochondria. The primary source of energy is fatty acid oxidation, the rest of the energy comes from the oxidation of pyruvate. A failed heart is characterised by a disturbance in these proportions, with the contribution of individual components as a source of energy depending on the aetiology and stage of heart failure. A unique form of cardiac dysfunction is sepsis-induced cardiomyopathy, characterised by a significant reduction in energy production and impairment of cardiac oxidation of both fatty acids and glucose. Metabolic disorders appear to contribute to the pathogenesis of cardiac dysfunction and therefore are a promising target for future therapies. However, as many aspects of the metabolism of the failing heart remain unexplained, this issue requires further research.
Collapse
Affiliation(s)
- Weronika Wasyluk
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; (P.N.-S.); (A.Z.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Patrycja Nowicka-Stążka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; (P.N.-S.); (A.Z.)
| | - Agnieszka Zwolak
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; (P.N.-S.); (A.Z.)
| |
Collapse
|
30
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
31
|
Morciano G, Vitto VAM, Bouhamida E, Giorgi C, Pinton P. Mitochondrial Bioenergetics and Dynamism in the Failing Heart. Life (Basel) 2021; 11:436. [PMID: 34066065 PMCID: PMC8151847 DOI: 10.3390/life11050436] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
The heart is responsible for pumping blood, nutrients, and oxygen from its cavities to the whole body through rhythmic and vigorous contractions. Heart function relies on a delicate balance between continuous energy consumption and generation that changes from birth to adulthood and depends on a very efficient oxidative metabolism and the ability to adapt to different conditions. In recent years, mitochondrial dysfunctions were recognized as the hallmark of the onset and development of manifold heart diseases (HDs), including heart failure (HF). HF is a severe condition for which there is currently no cure. In this condition, the failing heart is characterized by a disequilibrium in mitochondrial bioenergetics, which compromises the basal functions and includes the loss of oxygen and substrate availability, an altered metabolism, and inefficient energy production and utilization. This review concisely summarizes the bioenergetics and some other mitochondrial features in the heart with a focus on the features that become impaired in the failing heart.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care&Research, 48033 Cotignola, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Veronica Angela Maria Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Esmaa Bouhamida
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care&Research, 48033 Cotignola, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| |
Collapse
|
32
|
Nguyen TD, Schulze PC. Lipid in the midst of metabolic remodeling - Therapeutic implications for the failing heart. Adv Drug Deliv Rev 2020; 159:120-132. [PMID: 32791076 DOI: 10.1016/j.addr.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
A healthy heart relies on an intact cardiac lipid metabolism. Fatty acids represent the major source for ATP production in the heart. Not less importantly, lipids are directly involved in critical processes such as cell growth, proliferation, and cell death by functioning as building blocks or signaling molecules. In the development of heart failure, perturbations in fatty acid utilization impair cardiac energetics. Furthermore, they may affect glucose and amino acid metabolism and induce the synthesis of several lipid intermediates, whose biological functions are still poorly understood. This work outlines the pivotal role of lipid metabolism in the heart and provides a lipocentric view of metabolic remodeling in heart failure. We will also critically revisit therapeutic attempts targeting cardiac lipid metabolism in heart failure and propose specific strategies for future investigations in this regard.
Collapse
|
33
|
Ibrahim N‘I, Fairus S, Naina Mohamed I. The Effects and Potential Mechanism of Oil Palm Phenolics in Cardiovascular Health: A Review on Current Evidence. Nutrients 2020; 12:nu12072055. [PMID: 32664390 PMCID: PMC7400923 DOI: 10.3390/nu12072055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) is globally known as the number one cause of death with hyperlipidemia as a strong risk factor for CVD. The initiation of drug treatment will be recommended if lifestyle modification fails. However, medicines currently used for improving cholesterol and low-density lipoprotein cholesterols (LDL-C) levels have been associated with various side effects. Thus, alternative treatment with fewer or no side effects needs to be explored. A potential agent, oil palm phenolics (OPP) recovered from the aqueous waste of oil palm milling process contains numerous water-soluble phenolic compounds. It has been postulated that OPP has shown cardioprotective effects via several mechanisms such as cholesterol biosynthesis pathway, antioxidant and anti-inflammatory properties. This review aims to summarize the current evidence explicating the actions of OPP in cardiovascular health and the mechanisms that maybe involved for the cardioprotective effects.
Collapse
Affiliation(s)
- Nurul ‘Izzah Ibrahim
- Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Syed Fairus
- Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang Selangor 43000, Malaysia;
| | - Isa Naina Mohamed
- Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +60-3-9145-9545
| |
Collapse
|
34
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
35
|
Abstract
The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Collapse
|
36
|
Affiliation(s)
- Diem H Tran
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Zhao V Wang
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| |
Collapse
|
37
|
Abstract
Inflammatory processes underlie many diseases associated with injury of the heart muscle, including conditions without an obvious inflammatory pathogenic component such as hypertensive and diabetic cardiomyopathy. Persistence of cardiac inflammation can cause irreversible structural and functional deficits. Some are induced by direct damage of the heart muscle by cellular and soluble mediators but also by metabolic adaptations sustained by the inflammatory microenvironment. It is well established that both cardiomyocytes and immune cells undergo metabolic reprogramming in the site of inflammation, which allow them to deal with decreased availability of nutrients and oxygen. However, like in cancer, competition for nutrients and increased production of signalling metabolites such as lactate initiate a metabolic cross-talk between immune cells and cardiomyocytes which, we propose, might tip the balance between resolution of the inflammation versus adverse cardiac remodeling. Here we review our current understanding of the metabolic reprogramming of both heart tissue and immune cells during inflammation, and we discuss potential key mechanisms by which these metabolic responses intersect and influence each other and ultimately define the prognosis of the inflammatory process in the heart.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Dunja Aksentijevic
- School of Biological and Chemical Sciences, Queen Mary University of London, G.E. Fogg Building, Mile End Road, London E1 4NS, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
38
|
Sousa Fialho MDL, Abd Jamil AH, Stannard GA, Heather LC. Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:831-843. [DOI: 10.1016/j.bbadis.2018.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022]
|
39
|
Lock MC, Darby JRT, Soo JY, Brooks DA, Perumal SR, Selvanayagam JB, Seed M, Macgowan CK, Porrello ER, Tellam RL, Morrison JL. Differential Response to Injury in Fetal and Adolescent Sheep Hearts in the Immediate Post-myocardial Infarction Period. Front Physiol 2019; 10:208. [PMID: 30890961 PMCID: PMC6412108 DOI: 10.3389/fphys.2019.00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aim: Characterizing the response to myocardial infarction (MI) in the regenerative sheep fetus heart compared to the post-natal non-regenerative adolescent heart may reveal key morphological and molecular differences that equate to the response to MI in humans. We hypothesized that the immediate response to injury in (a) infarct compared with sham, and (b) infarct, border, and remote tissue, in the fetal sheep heart would be fundamentally different to the adolescent, allowing for repair after damage. Methods: We used a sheep model of MI induced by ligating the left anterior descending coronary artery. Surgery was performed on fetuses (105 days) and adolescent sheep (6 months). Sheep were randomly separated into MI (n = 5) or Sham (n = 5) surgery groups at both ages. We used magnetic resonance imaging (MRI), histological/immunohistochemical staining, and qRT-PCR to assess the morphological and molecular differences between the different age groups in response to infarction. Results: Magnetic resonance imaging showed no difference in fetuses for key functional parameters; however there was a significant decrease in left ventricular ejection fraction and cardiac output in the adolescent sheep heart at 3 days post-infarction. There was no significant difference in functional parameters between MRI sessions at Day 0 and Day 3 after surgery. Expression of genes involved in glucose transport and fatty acid metabolism, inflammatory cytokines as well as growth factors and cell cycle regulators remained largely unchanged in the infarcted compared to sham ventricular tissue in the fetus, but were significantly dysregulated in the adolescent sheep. Different cardiac tissue region-specific gene expression profiles were observed between the fetal and adolescent sheep. Conclusion: Fetuses demonstrated a resistance to cardiac damage not observed in the adolescent animals. The manipulation of specific gene expression profiles to a fetal-like state may provide a therapeutic strategy to treat patients following an infarction.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Joseph B Selvanayagam
- Cardiac Imaging Research Group, Department of Heart Health, South Australian Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Mike Seed
- The Hospital for Sick Children, Division of Cardiology, Toronto, ON, Canada
| | | | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
40
|
Matsumura N, Takahara S, Maayah ZH, Parajuli N, Byrne NJ, Shoieb SM, Soltys CLM, Beker DL, Masson G, El-Kadi AO, Dyck JR. Resveratrol improves cardiac function and exercise performance in MI-induced heart failure through the inhibition of cardiotoxic HETE metabolites. J Mol Cell Cardiol 2018; 125:162-173. [DOI: 10.1016/j.yjmcc.2018.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
|
41
|
Pfleger J, Gross P, Johnson J, Carter RL, Gao E, Tilley DG, Houser SR, Koch WJ. G protein-coupled receptor kinase 2 contributes to impaired fatty acid metabolism in the failing heart. J Mol Cell Cardiol 2018; 123:108-117. [PMID: 30171848 DOI: 10.1016/j.yjmcc.2018.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
Increased G protein-coupled receptor kinase (GRK)2 is central to heart failure (HF) pathogenesis, via desensitization of β-adrenergic receptors and loss of contractile reserve. Since GRK2 has been shown to compromise fatty acid (FA) oxidation, this kinase may link metabolic and contractile defects in HF. The aim of this study was to investigate the mechanistic role of GRK2 in FA metabolism and bioenergetics in the heart. For that purpose, we measured FA uptake and cluster of differentiation (CD)36 expression, phosphorylation, and ubiquitination in mice with cardiac-specific overexpression of GRK2 (TgGRK2) or expression of its c-terminus (GRK2 inhibitor- TgβARKct) or in global heterozygous GRK2 knockout (GRK2+/-) mice. Cellular bioenergetics were also measured in isolated cardiomyocytes following adenoviral delivery of exogenous GRK2, βARKct, or short hairpin GRK2 (shGRK2). Additionally, CD36 expression and phosphorylation were evaluated following transverse aortic constriction (TAC) in wild type (WT) and GRK2+/- mice. Our results show a 33% ± 0.81 reduction in FA uptake rate, accompanied by 51% ± 0.17 lower CD36 protein, and 70% ± 0.23 and 69% ± 0.18 increases in CD36 phosphorylation and ubiquitination, respectively, in the TgGRK2 mice. Moreover, an in vitro kinase assay suggests that GRK2 directly phosphorylates CD36. In isolated cardiomyocytes, GRK2 overexpression induced a 26% ± 2.21 decrease in maximal respiration, which was enhanced (20% ± 4.02-5.14) with inhibition of the kinase. Importantly, in hearts with systolic dysfunction, notable reductions in CD36 mRNA and protein, as well as a significant increase in CD36 phosphorylation were normalized in the GRK2+/- mice post-TAC. Thus, we propose that GRK2 up-regulation in HF is, at least partly, responsible for reduced FA uptake and oxidation and may be a nodal link between metabolic and contractile defects.
Collapse
Affiliation(s)
- Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Polina Gross
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jaslyn Johnson
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rhonda L Carter
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Steven R Houser
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
42
|
Fatty Acids Prevent Hypoxia-Inducible Factor-1α Signaling Through Decreased Succinate in Diabetes. JACC Basic Transl Sci 2018; 3:485-498. [PMID: 30175272 PMCID: PMC6115650 DOI: 10.1016/j.jacbts.2018.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/02/2023]
Abstract
HIF-1α is activated following myocardial infarction, and is a critical transcription factor promoting survival in hypoxia. Type 2 diabetes blunts HIF-1α activation in ischemia and downstream adaptation to hypoxia. This effect is mediated by increased long-chain fatty acids, which prevent HIF-1α activation in hypoxia. Succinate promotes HIF-1α activation by inhibiting the regulatory HIF hydroxylases. Fatty acids decrease succinate concentrations in hypoxia, by blocking increased glycolysis and malate-aspartate shuttle activity. Pharmacologically activating HIF-1α or increasing succinate concentrations restores the hypoxic response and improves functional recovery post-ischemia in diabetes.
Hypoxia-inducible factor (HIF)-1α is essential following a myocardial infarction (MI), and diabetic patients have poorer prognosis post-MI. Could HIF-1α activation be abnormal in the diabetic heart, and could metabolism be causing this? Diabetic hearts had decreased HIF-1α protein following ischemia, and insulin-resistant cardiomyocytes had decreased HIF-1α-mediated signaling and adaptation to hypoxia. This was due to elevated fatty acid (FA) metabolism preventing HIF-1α protein stabilization. FAs exerted their effect by decreasing succinate concentrations, a HIF-1α activator that inhibits the regulatory HIF hydroxylase enzymes. In vivo and in vitro pharmacological HIF hydroxylase inhibition restored HIF-1α accumulation and improved post-ischemic functional recovery in diabetes.
Collapse
Key Words
- ANOVA, analysis of variance
- BSA, bovine serum albumin
- DMF, dimethyl fumarate
- DMOG, dimethyloxalylglycine
- FA, fatty acid
- FIH, factor inhibiting hypoxia-inducible factor
- HIF, hypoxia-inducible factor
- HIF-1α
- IR, insulin resistance/resistant
- MI, myocardial infarction
- PHD, prolyl hydroxylase domain
- SSO, sulfo-N-succinimidyl oleate
- cardiovascular disease
- diabetes
- fatty acids
- hypoxia
- i.p., intraperitoneal
- metabolism
Collapse
|
43
|
Handzlik MK, Constantin‐Teodosiu D, Greenhaff PL, Cole MA. Increasing cardiac pyruvate dehydrogenase flux during chronic hypoxia improves acute hypoxic tolerance. J Physiol 2018; 596:3357-3369. [PMID: 29383727 PMCID: PMC6068244 DOI: 10.1113/jp275357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/19/2018] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS The cardiac metabolic reprogramming seen in heart diseases such as myocardial infarction and hypertrophy shares similarities with that seen in chronic hypoxia, but understanding of how the hypoxic heart responds to further hypoxic challenge - hypoxic tolerance - is limited. The pyruvate dehydrogenase complex serves to control irreversible decarboxylation of pyruvate within mitochondria, and is a key regulator of substrate metabolism, potentially regulating hypoxic tolerance. Acute activation of the pyruvate dehydrogenase complex did not improve cardiac function during acute hypoxia; however, simultaneous activation of the pyruvate dehydrogenase complex during chronic hypoxic exposure improved tolerance to subsequent acute hypoxia. Activation of the pyruvate dehydrogenase complex during chronic hypoxia stockpiled cardiac acetylcarnitine, and this was used during acute hypoxia. This maintained cardiac ATP and glycogen, and improved hypoxic tolerance as a result. These findings demonstrate that pyruvate dehydrogenase complex activation can improve cardiac function under hypoxia. ABSTRACT The pattern of metabolic reprogramming in chronic hypoxia shares similarities with that following myocardial infarction or hypertrophy; however, the response of the chronically hypoxic heart to subsequent acute injury, and the role of metabolism is not well understood. Here, we determined the myocardial tolerance of the chronically hypoxic heart to subsequent acute injury, and hypothesised that activation of a key regulator of myocardial metabolism, the pyruvate dehydrogenase complex (PDC), could improve hypoxic tolerance. Mouse hearts, perfused in Langendorff mode, were exposed to 30 min of hypoxia, and lost 80% of pre-hypoxic function (P = 0.001), with only 51% recovery of pre-hypoxic function with 30 min of reoxygenation (P = 0.046). Activation of the PDC with infusion of 1 mm dichloroacetate (DCA) during hypoxia and reoxygenation did not alter function. Acute hypoxic tolerance was assessed in hearts of mice housed in hypoxia for 3 weeks. Chronic hypoxia reduced cardiac tolerance to subsequent acute hypoxia, with recovery of function 22% of pre-acute hypoxic levels vs. 39% in normoxic control hearts (P = 0.012). DCA feeding in chronic hypoxia (per os, 70 mg kg-1 day-1 ) doubled cardiac acetylcarnitine content, and this fell following acute hypoxia. This acetylcarnitine use maintained cardiac ATP and glycogen content during acute hypoxia, with hypoxic tolerance normalised. In summary, chronic hypoxia renders the heart more susceptible to acute hypoxic injury, which can be improved by activation of the PDC and pooling of acetylcarnitine. This is the first study showing functional improvement of the chronically hypoxic heart with activation of the PDC, and offers therapeutic potential in cardiac disease with a hypoxic component.
Collapse
Affiliation(s)
- Michal K. Handzlik
- School of Life SciencesUniversity of Nottingham Medical SchoolQueen's Medical CentreNottinghamUK
| | - Dumitru Constantin‐Teodosiu
- School of Life SciencesUniversity of Nottingham Medical SchoolQueen's Medical CentreNottinghamUK
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing ResearchUK
| | - Paul L. Greenhaff
- School of Life SciencesUniversity of Nottingham Medical SchoolQueen's Medical CentreNottinghamUK
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing ResearchUK
| | - Mark A. Cole
- School of Life SciencesUniversity of Nottingham Medical SchoolQueen's Medical CentreNottinghamUK
| |
Collapse
|
44
|
Miller JJ, Ball DR, Lau AZ, Tyler DJ. Hyperpolarized ketone body metabolism in the rat heart. NMR IN BIOMEDICINE 2018; 31:e3912. [PMID: 29637642 PMCID: PMC6001529 DOI: 10.1002/nbm.3912] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 05/13/2023]
Abstract
The aim of this work was to investigate the use of 13 C-labelled acetoacetate and β-hydroxybutyrate as novel hyperpolarized substrates in the study of cardiac metabolism. [1-13 C]Acetoacetate was synthesized by catalysed hydrolysis, and both it and [1-13 C]β-hydroxybutyrate were hyperpolarized by dissolution dynamic nuclear polarization (DNP). Their metabolism was studied in isolated, perfused rat hearts. Hyperpolarized [1-13 C]acetoacetate metabolism was also studied in the in vivo rat heart in the fed and fasted states. Hyperpolarization of [1-13 C]acetoacetate and [1-13 C]β-hydroxybutyrate provided liquid state polarizations of 8 ± 2% and 3 ± 1%, respectively. The hyperpolarized T1 values for the two substrates were 28 ± 3 s (acetoacetate) and 20 ± 1 s (β-hydroxybutyrate). Multiple downstream metabolites were observed within the perfused heart, including acetylcarnitine, citrate and glutamate. In the in vivo heart, an increase in acetylcarnitine production from acetoacetate was observed in the fed state, as well as a potential reduction in glutamate. In this work, methods for the generation of hyperpolarized [1-13 C]acetoacetate and [1-13 C]β-hydroxybutyrate were investigated, and their metabolism was assessed in both isolated, perfused rat hearts and in the in vivo rat heart. These preliminary investigations show that DNP can be used as an effective in vivo probe of ketone body metabolism in the heart.
Collapse
Affiliation(s)
- Jack J. Miller
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of PhysicsUniversity of OxfordOxfordUK
| | - Daniel R. Ball
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Angus Z. Lau
- Sunnybrook Research InstituteImaging ResearchTorontoONCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
| | - Damian J. Tyler
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
45
|
Mansor LS, Sousa Fialho MDL, Yea G, Coumans WA, West JA, Kerr M, Carr CA, Luiken JJFP, Glatz JFC, Evans RD, Griffin JL, Tyler DJ, Clarke K, Heather LC. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Cardiovasc Res 2018; 113:737-748. [PMID: 28419197 PMCID: PMC5437367 DOI: 10.1093/cvr/cvx045] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Aims The type 2 diabetic heart oxidizes more fat and less glucose, which can impair metabolic flexibility and function. Increased sarcolemmal fatty acid translocase (FAT/CD36) imports more fatty acid into the diabetic myocardium, feeding increased fatty acid oxidation and elevated lipid deposition. Unlike other metabolic modulators that target mitochondrial fatty acid oxidation, we proposed that pharmacologically inhibiting fatty acid uptake, as the primary step in the pathway, would provide an alternative mechanism to rebalance metabolism and prevent lipid accumulation following hypoxic stress. Methods and results Hearts from type 2 diabetic and control male Wistar rats were perfused in normoxia, hypoxia and reoxygenation, with the FAT/CD36 inhibitor sulfo-N-succinimidyl oleate (SSO) infused 4 min before hypoxia. SSO infusion into diabetic hearts decreased the fatty acid oxidation rate by 29% and myocardial triglyceride concentration by 48% compared with untreated diabetic hearts, restoring fatty acid metabolism to control levels following hypoxia-reoxygenation. SSO infusion increased the glycolytic rate by 46% in diabetic hearts during hypoxia, increased pyruvate dehydrogenase activity by 53% and decreased lactate efflux rate by 56% compared with untreated diabetic hearts during reoxygenation. In addition, SSO treatment of diabetic hearts increased intermediates within the second span of the Krebs cycle, namely fumarate, oxaloacetate, and the FAD total pool. The cardiac dysfunction in diabetic hearts following decreased oxygen availability was prevented by SSO-infusion prior to the hypoxic stress. Infusing SSO into diabetic hearts increased rate pressure product by 60% during hypoxia and by 32% following reoxygenation, restoring function to control levels. Conclusions Diabetic hearts have limited metabolic flexibility and cardiac dysfunction when stressed, which can be rapidly rectified by reducing fatty acid uptake with the FAT/CD36 inhibitor, SSO. This novel therapeutic approach not only reduces fat oxidation but also lipotoxicity, by targeting the primary step in the fatty acid metabolism pathway.
Collapse
Affiliation(s)
- Latt S Mansor
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Maria da Luz Sousa Fialho
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Georgina Yea
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Will A Coumans
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - James A West
- Department of Biochemistry, University of Cambridge, and MRC Human Nutrition Research, Cambridge, UK
| | - Matthew Kerr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Rhys D Evans
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, and MRC Human Nutrition Research, Cambridge, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
46
|
Lopes-Coelho F, André S, Félix A, Serpa J. Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol 2018; 462:93-106. [PMID: 28119133 DOI: 10.1016/j.mce.2017.01.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
The cellular components of microenvironment are partners of cancer cells, sharing soluble factors and organic molecules to accomplish tumor energy and biomass demands. We tested the role of fibroblasts in fatty acids metabolism in breast cancer, addressing fatty acid synthase (FASN) expression and activity, the expression of lipids chaperons (FABPs) and transporters (FATPs) and lipids cellular content. We showed that the amount of lipids increased in cancer cells exposed to fibroblasts conditioned media, showing that lipids transfer is crucial in this metabolic cross-talk. Accordingly, it was seen in those cancer cells a concomitant decrease in the expression of FABP2 and FABP3 and an increase in FATP1 expression, whose function is independent of FABPs. The in vivo experiment corroborates the role of CAFs in tumor growth. Our study is one more step toward the understanding of metabolic dynamics between cancer cells and CAFs, disclosing FATP1 as a putative target to disturb the transfer of lipids between CAFs and breast cancer cells.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Saudade André
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Ana Félix
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal.
| |
Collapse
|
47
|
Abstract
It is thought that at least 6,500 low-molecular-weight metabolites exist in humans, and these metabolites have various important roles in biological systems in addition to proteins and genes. Comprehensive assessment of endogenous metabolites is called metabolomics, and recent advances in this field have enabled us to understand the critical role of previously unknown metabolites or metabolic pathways in the cardiovascular system. In this review, we will focus on heart failure and how metabolomic analysis has contributed to improving our understanding of the pathogenesis of this critical condition.
Collapse
Affiliation(s)
- Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
48
|
Dehn S, Thorp EB. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair. FASEB J 2017; 32:254-264. [PMID: 28860151 DOI: 10.1096/fj.201700450r] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Phagocytosis after myocardial infarction (MI) is a prerequisite to cardiac repair. Recruited monocytes clear necrotic cardiomyocytes and differentiate into cardiac macrophages. Some studies have linked apoptotic cell receptors on cardiac macrophages to tissue repair; however, the contribution of precursor monocyte phagocytic receptors, which are the first to interact with the cardiac parenchyma, is unclear. The scavenger receptor cluster of differentiation (CD)36 protein was detected on cardiac Ly6cHI monocytes, and bone marrow-derived Cd36 was essential for both early phagocytosis of dying cardiomyocytes and for smaller infarct sizes in female and male mice after permanent coronary ligation. Cd36 deficiency led to reduced expression of phagocytosis receptor Mertk and nuclear receptor Nr4a1 in cardiac macrophages, the latter previously shown to be required for phagocyte survival. Nr4a1 was required for phagocytosis-induced Mertk expression, and Nr4a1 protein directly bound to Mertk gene regulatory elements. To test the overall contribution of the Cd36-Mertk axis, MI was induced in Cd36-/- Mertk-/- double-knockout mice and led to increases in myocardial rupture. These data implicate monocyte CD36 in the mitigation of early infarct size and transition to Mertk-dependent macrophage function. Increased myocardial rupture in the absence of both Cd36 and Mertk underscore the physiologic significance of phagocytosis during tissue injury.-Dehn, S., Thorp, E. B. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair.
Collapse
Affiliation(s)
- Shirley Dehn
- Department of Pathology and.,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward B Thorp
- Department of Pathology and .,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
49
|
The ‘Goldilocks zone’ of fatty acid metabolism; to ensure that the relationship with cardiac function is just right. Clin Sci (Lond) 2017; 131:2079-2094. [DOI: 10.1042/cs20160671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022]
Abstract
Fatty acids (FA) are the main fuel used by the healthy heart to power contraction, supplying 60–70% of the ATP required. FA generate more ATP per carbon molecule than glucose, but require more oxygen to produce the ATP, making them a more energy dense but less oxygen efficient fuel compared with glucose. The pathways involved in myocardial FA metabolism are regulated at various subcellular levels, and can be divided into sarcolemmal FA uptake, cytosolic activation and storage, mitochondrial uptake and β-oxidation. An understanding of the critical involvement of each of these steps has been amassed from genetic mouse models, where forcing the heart to metabolize too much or too little fat was accompanied by cardiac contractile dysfunction and hypertrophy. In cardiac pathologies, such as heart disease and diabetes, aberrations in FA metabolism occur concomitantly with changes in cardiac function. In heart failure, FA oxidation is decreased, correlating with systolic dysfunction and hypertrophy. In contrast, in type 2 diabetes, FA oxidation and triglyceride storage are increased, and correlate with diastolic dysfunction and insulin resistance. Therefore, too much FA metabolism is as detrimental as too little FA metabolism in these settings. Therapeutic compounds that rebalance FA metabolism may provide a mechanism to improve cardiac function in disease. Just like Goldilocks and her porridge, the heart needs to maintain FA metabolism in a zone that is ‘just right’ to support contractile function.
Collapse
|
50
|
Kyhl K, Lønborg J, Hartmann B, Kissow H, Poulsen SS, Ali HE, Kjær A, Dela F, Engstrøm T, Treiman M. Lack of effect of prolonged treatment with liraglutide on cardiac remodeling in rats after acute myocardial infarction. Peptides 2017; 93:1-12. [PMID: 28460895 DOI: 10.1016/j.peptides.2017.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023]
Abstract
Following the acute phase of a myocardial infarction, a set of structural and functional changes evolves in the myocardium, collectively referred to as cardiac remodeling. This complex set of processes, including interstitial fibrosis, inflammation, myocyte hypertrophy and apoptosis may progress to heart failure. Analogs of the incretin hormone glucagon-like peptide 1 (GLP-1) have shown some promise as cardioprotective agents. We hypothesized that a long-acting GLP-1 analog liraglutide would ameliorate cardiac remodeling over the course of 4 weeks in a rat model of non-reperfused myocardial infarction. In 134 male Sprague Dawley rats myocardial infarctions were induced by ligation of the left anterior descending coronary artery. Rats were randomized to either subcutaneous injection of placebo or 0.3mg liraglutide once daily. Cardiac magnetic resonance imaging was performed after 4 weeks. Histology of the infarcted and remote non-infarcted myocardium, selected molecular remodeling markers and mitochondrial respiration in fibers of remote non-infarcted myocardium were analyzed. Left ventricular end diastolic volume increased in the infarcted hearts by 62% (from 0.58±0.03mL to 0.95±0.07mL, P<0.05) compared to sham operated hearts and left ventricle ejection fraction decreased by 37% (63±1%-40±3%, P<0.05). Increased interstitial fibrosis and phosphorylation of p38 Mitogen Activated Protein Kinase were observed in the non-infarct regions. Mitochondrial fatty acid oxidation was impaired. Liraglutide did not affect any of these alterations. Four-week treatment with liraglutide did not affect cardiac remodeling following a non-reperfused myocardial infarction, as assessed by cardiac magnetic resonance imaging, histological and molecular analysis and measurements of mitochondrial respiration.
Collapse
Affiliation(s)
- Kasper Kyhl
- Department of Cardiology, Rigshospitalet; University Hospital of Copenhagen, Denmark; Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark.
| | - Jacob Lønborg
- Department of Cardiology, Rigshospitalet; University Hospital of Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Department of Biomedical Sciences and Novo Nordisk Foundation Center of Basic Metabolic Research, University of Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Department of Biomedical Sciences and Novo Nordisk Foundation Center of Basic Metabolic Research, University of Copenhagen, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark
| | - Henrik El Ali
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark
| | - Andreas Kjær
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | - Flemming Dela
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, Rigshospitalet; University Hospital of Copenhagen, Denmark
| | - Marek Treiman
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark
| |
Collapse
|