1
|
Bui DT, Kitova EN, Kitov PI, Han L, Mahal LK, Klassen JS. Deciphering Pathways and Thermodynamics of Protein Assembly Using Native Mass Spectrometry. J Am Chem Soc 2024; 146:28809-28821. [PMID: 39387708 DOI: 10.1021/jacs.4c08455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Protein oligomerization regulates many critical physiological processes, and its dysregulation can contribute to dysfunction and diseases. Elucidating the assembly pathways and quantifying their underlying thermodynamic and kinetic parameters are crucial for a comprehensive understanding of biological processes and for advancing therapeutics targeting abnormal protein oligomerization. Established binding assays, with limited mass precision, often rely on simplified models for data interpretation. In contrast, high-resolution native mass spectrometry (nMS) can directly determine the stoichiometry of biomolecular complexes in vitro. However, quantification is hindered by the fact that the relative abundances of gas-phase ions generally do not reflect solution concentrations due to nonuniform response factors. Recently, slow mixing mode (SLOMO)-nMS, which can quantify the relative response factors of interacting species, has been demonstrated to reliably measure the affinity (Kd) of binary biomolecular complexes. Here, we introduce an extended form of SLOMO-nMS that enables simultaneous quantification of the thermodynamics in multistep association reactions. Application of this method to homo-oligomerization of concanavalin A and insulin confirmed the reliability of the assay and uncovered details about the assembly processes that had previously resisted elucidation. Results acquired using SLOMO-nMS implemented with charge detection shed new light on the binding of recombinant human angiotensin-converting enzyme 2 and the SARS-CoV-2 spike protein. Importantly, new assembly pathways were uncovered, and the affinities of these interactions, which regulate host cell infection, were quantified. Together, these findings highlight the tremendous potential of SLOMO-nMS to accelerate the characterization of protein assembly pathways and thermodynamics and, in so doing, enhance fundamental biological understanding and facilitate therapeutic development. https://orcid.org/0000-0002-3389-7112.
Collapse
Affiliation(s)
- Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Pavel I Kitov
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
2
|
Phase-Transfer Catalyzed Microfluidic Glycosylation: A Small Change in Concentration Results in a Dramatic Increase in Stereoselectivity. Catalysts 2023. [DOI: 10.3390/catal13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phase-transfer catalysis (PTC) is widely used in glycochemistry for the preparation of aryl glycosides by the glycosylation reaction. While investigating the possibility of synthesis of 4-(3-chloropropoxy)phenyl sialoside (Neu5Ac-OCPP) from N-acetylsialyl chloride with O-acetyl groups (1), we have recently discovered a strong dependence of the PTC glycosylation outcome on the mixing mode: under batch conditions, only α-anomer of Neu5Ac-OCPP was obtained, albeit in low yield (13%), while under microfluidic conditions the yield of Neu5Ac-OCPP increased to 36%, although stereoselectivity decreased (α/β ≤ 6.2). Here, we report that the outcome of this reaction, performed under microfluidic conditions using a Comet X-01 micromixer (at 2 μL/min flow rate), non-linearly depends on the concentration of N-acetylsialyl chloride 1 (5–200 mmol/L). The target Neu5Ac-OCPP was obtained in a noticeably higher yield (up to 66%) accompanied by enhanced stereoselectivity (α/β = 17:1–32:1) in the high concentration range (C > 50 mmol/L), whereas the yield (10–36%) and especially, stereoselectivity (α/β = 0.9:1–6.2:1) were lower in the low concentration range (C ≤ 50 mmol/L). This dramatic stepwise increase in stereoselectivity above critical concentration (50 mmol/L) is apparently related to the changes in the presentation of molecules on the surface of supramers of glycosyl donor, which exist in different concentration ranges.
Collapse
|
3
|
Bui D, Li Z, Kitov PI, Han L, Kitova EN, Fortier M, Fuselier C, Granger Joly de Boissel P, Chatenet D, Doucet N, Tompkins SM, St-Pierre Y, Mahal LK, Klassen JS. Quantifying Biomolecular Interactions Using Slow Mixing Mode (SLOMO) Nanoflow ESI-MS. ACS CENTRAL SCIENCE 2022; 8:963-974. [PMID: 35912341 PMCID: PMC9335916 DOI: 10.1021/acscentsci.2c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a powerful label-free assay for detecting noncovalent biomolecular complexes in vitro and is increasingly used to quantify binding thermochemistry. A common assumption made in ESI-MS affinity measurements is that the relative ion signals of free and bound species quantitatively reflect their relative concentrations in solution. However, this is valid only when the interacting species and their complexes have similar ESI-MS response factors (RFs). For many biomolecular complexes, such as protein-protein interactions, this condition is not satisfied. Existing strategies to correct for nonuniform RFs are generally incompatible with static nanoflow ESI (nanoESI) sources, which are typically used for biomolecular interaction studies, thereby significantly limiting the utility of ESI-MS. Here, we introduce slow mixing mode (SLOMO) nanoESI-MS, a direct technique that allows both the RF and affinity (K d) for a biomolecular interaction to be determined from a single measurement using static nanoESI. The approach relies on the continuous monitoring of interacting species and their complexes under nonhomogeneous solution conditions. Changes in ion signals of free and bound species as the system approaches or moves away from a steady-state condition allow the relative RFs of the free and bound species to be determined. Combining the relative RF and the relative abundances measured under equilibrium conditions enables the K d to be calculated. The reliability of SLOMO and its ease of use is demonstrated through affinity measurements performed on peptide-antibiotic, protease-protein inhibitor, and protein oligomerization systems. Finally, affinities measured for the binding of human and bacterial lectins to a nanobody, a viral glycoprotein, and glycolipids displayed within a model membrane highlight the tremendous power and versatility of SLOMO for accurately quantifying a wide range of biomolecular interactions important to human health and disease.
Collapse
Affiliation(s)
- Duong
T. Bui
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zhixiong Li
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pavel I. Kitov
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ling Han
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marlène Fortier
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Camille Fuselier
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Philippine Granger Joly de Boissel
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - David Chatenet
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Nicolas Doucet
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Stephen M. Tompkins
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30605, United States
- Emory-UGA
Centers of Excellence for Influenza Research and Surveillance (CEIRS), Emory University School of Medicine, Athens, Georgia 30322, United States
| | - Yves St-Pierre
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- . Telephone: (780) 492-3501. Fax: (780) 492-8231
| |
Collapse
|
4
|
Canal-Martín A, Navo CD, Sáez E, Molero D, Jiménez-Osés G, Pérez-Fernández R. Nucleophilic catalysis of p-substituted aniline derivatives in acylhydrazone formation and exchange. Org Biomol Chem 2021; 19:7202-7210. [PMID: 34612342 DOI: 10.1039/d1ob00871d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrazone bond formation is a versatile reaction employed in several research fields. It is one of the most popular reversible reactions in dynamic combinatorial chemistry. Under physiological conditions, hydrazone exchange benefits from the addition of a nucleophilic catalyst. We report a mechanistic study and superior performance of electron-rich p-substituted aniline derivatives as catalysts for efficient hydrazone formation and exchange in both protic and aprotic solvents. Rigorous kinetic analyses demonstrate that imine formation with 3-hydroxy-4-nitrobenzaldehyde and aniline derivatives proceeds with unprecedented third-order kinetics in which the aldehyde consistently shows a partial order of two. Computational investigations provide insights into the mechanisms of these transformations.
Collapse
Affiliation(s)
- Andrea Canal-Martín
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid 28040, Spain.
| | | | | | | | | | | |
Collapse
|
5
|
Wang J, Guo J, Chen H, Huang X, Somsen GW, Song F, Jiang Z. A single-step preparation of carbohydrate functionalized monoliths for separation and trapping of polar compounds. J Chromatogr A 2020; 1628:461481. [DOI: 10.1016/j.chroma.2020.461481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
|
6
|
Fabijanczuk K, Gaspar K, Desai N, Lee J, Thomas DA, Beauchamp JL, Gao J. Resin and Magnetic Nanoparticle-Based Free Radical Probes for Glycan Capture, Isolation, and Structural Characterization. Anal Chem 2019; 91:15387-15396. [PMID: 31718152 DOI: 10.1021/acs.analchem.9b01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By combining the merits of solid supports and free radical activated glycan sequencing (FRAGS) reagents, we develop a multifunctional solid-supported free radical probe (SS-FRAGS) that enables glycan enrichment and characterization. SS-FRAGS comprises a solid support, free radical precursor, disulfide bond, pyridyl, and hydrazine moieties. Thio-activated resin and magnetic nanoparticles (MNPs) are chosen as the solid support to selectively capture free glycans via the hydrazine moiety, allowing for their enrichment and isolation. The disulfide bond acts as a temporary covalent linkage between the solid support and the captured glycan, allowing the release of glycans via the cleavage of the disulfide bond by dithiothreitol. The basic pyridyl functional group provides a site for the formation of a fixed charge, enabling detection by mass spectrometry and avoiding glycan rearrangement during collisional activation. The free radical precursor generates a nascent free radical upon collisional activation and thus simultaneously induces systematic and predictable fragmentation for glycan structure elucidation. A radical-driven glycan deconstruction diagram (R-DECON) is developed to visually summarize the MS2 results and thus allow for the assembly of the glycan skeleton, making the differentiation of isobaric glycan isomers unambiguous. For application to a real-world sample, we demonstrate the efficacy of the SS-FRAGS by analyzing glycan structures enzymatically cleaved from RNase-B.
Collapse
Affiliation(s)
- Kimberly Fabijanczuk
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Kaylee Gaspar
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Nikunj Desai
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Jungeun Lee
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Daniel A Thomas
- Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - J L Beauchamp
- Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| |
Collapse
|
7
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
8
|
Østergaard M, Christensen NJ, Hjuler CT, Jensen KJ, Thygesen MB. Glycoconjugate Oxime Formation Catalyzed at Neutral pH: Mechanistic Insights and Applications of 1,4-Diaminobenzene as a Superior Catalyst for Complex Carbohydrates. Bioconjug Chem 2018; 29:1219-1230. [PMID: 29437382 DOI: 10.1021/acs.bioconjchem.8b00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of unprotected carbohydrates with aminooxy reagents to provide oximes is a key method for the construction of glycoconjugates. Aniline and derivatives serve as organocatalysts for the formation of oximes from simple aldehydes, and we have previously reported that aniline also catalyzes the formation of oximes from the more complex aldehydes, carbohydrates. Here, we present a comprehensive study of the effect of aniline analogues on the formation of carbohydrate oximes and related glycoconjugates depending on organocatalyst structure, pH, nucleophile, and carbohydrate, covering more than 150 different reaction conditions. The observed superiority of the 1,4-diaminobenzene (PDA) catalyst at neutral pH is rationalized by NMR analyses and DFT studies of reaction intermediates. Carbohydrate oxime formation at pH 7 is demonstrated by the formation of a bioactive glycoconjugate from a labile, decorated octasaccharide originating from exopolysaccharides of the soil bacterium Mesorhizobium loti. This study of glycoconjugate formation includes the first direct comparison of aniline-catalyzed reaction rates and equilibrium constants for different classes of nucleophiles, including primary oxyamines, secondary N-alkyl oxyamines, as well as aryl and arylsulfonyl hydrazides. We identified 1,4-diaminobenzene as a superior catalyst for the construction of oxime-linked glycoconjugates under mild conditions.
Collapse
Affiliation(s)
- Mads Østergaard
- Department of Chemistry, Faculty of Science , University of Copenhagen , Thorvaldsensvej 40 , DK-1871 Frederiksberg C , Denmark
| | - Niels Johan Christensen
- Department of Chemistry, Faculty of Science , University of Copenhagen , Thorvaldsensvej 40 , DK-1871 Frederiksberg C , Denmark
| | - Christian T Hjuler
- Department of Chemistry, Faculty of Science , University of Copenhagen , Thorvaldsensvej 40 , DK-1871 Frederiksberg C , Denmark
| | - Knud J Jensen
- Department of Chemistry, Faculty of Science , University of Copenhagen , Thorvaldsensvej 40 , DK-1871 Frederiksberg C , Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, Faculty of Science , University of Copenhagen , Thorvaldsensvej 40 , DK-1871 Frederiksberg C , Denmark
| |
Collapse
|
9
|
Wang Y, Meng S, Yue T, Li S, Li Z. The rapid assembling of oligosaccharides by the developed HASP strategy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Fukuda K, Matsuda K, Matsuda S, Kado S, Masu H, Dohi H, Nishida Y. Chemosynthetic homologues of Mycoplasma pneumoniae β-glycolipid antigens for the diagnosis of mycoplasma infectious diseases. Bioorg Med Chem 2017; 26:824-832. [PMID: 29373272 DOI: 10.1016/j.bmc.2017.12.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/25/2017] [Accepted: 12/28/2017] [Indexed: 11/26/2022]
Abstract
Mycoplasma pneumoniae expresses β-glycolipids (β-GGLs) in cytoplasmic membranes, which possess a unique β(1 → 6)-linked disaccharide epitope, which has high potential in biochemical and medicinal applications. In the present study, a series of β-GGLs homologues with different acyl chains (C12, C14, C16, and C18) were prepared from a common precursor. An ELISA assay using an anti-(β-GGLs) monoclonal antibody indicated that the synthetic homologues with long acyl chains had greater diagnostic potential in the order C18 > C16 > C14 > C12. Toward a simultaneous detection of natural glycolipids by mass spectrometry (MS), a deuterium-labeled C16 homologue (β-GGL-C16-d3) was prepared and applied as an internal standard for a high-resolution electrospray ionization MS (ESI-MS) analysis. The ESI-MS analysis was used to identify and quantify acyl homologues (C16/C16, C16/C18, and C18/C18) of β-GGL-C16 in cultured M. pneumoniae. A β-GGLs homologue with a 1,2-diacetyl group (C2) was also prepared as a "water soluble" glycolipid homologue and characterized by 1H NMR spectroscopy. We envisage that each of these chemosynthetic homologues will provide promising approaches to solve medical and biological problems associated with mycoplasma infectious diseases (MIDs).
Collapse
Affiliation(s)
- Kazuo Fukuda
- Molecular Chirality Research Center, Graduate School of Advanced Integration Science, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan; Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kazuhiro Matsuda
- M. Bio Technology Inc., 2-1-3-1103, Fukasawa, Setagaya-ku, Tokyo 158-0081, Japan
| | - Sachie Matsuda
- M. Bio Technology Inc., 2-1-3-1103, Fukasawa, Setagaya-ku, Tokyo 158-0081, Japan
| | - Sayaka Kado
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hyuma Masu
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hirofumi Dohi
- Molecular Chirality Research Center, Graduate School of Advanced Integration Science, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Yoshihiro Nishida
- Molecular Chirality Research Center, Graduate School of Advanced Integration Science, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan.
| |
Collapse
|
11
|
Hjuler CT, Maolanon NN, Sauer J, Stougaard J, Thygesen MB, Jensen KJ. Preparation of glycoconjugates from unprotected carbohydrates for protein-binding studies. Nat Protoc 2017; 12:2411-2422. [PMID: 29072708 DOI: 10.1038/nprot.2017.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glycobiology, in particular the study of carbohydrate-protein interactions and the events that follow, has become an important research focus in recent decades. To study these interactions, many assays require homogeneous glycoconjugates in suitable amounts. Their synthesis is one of the methodological challenges of glycobiology. Here, we describe a versatile, three-stage protocol for the formation of glycoconjugates from unprotected carbohydrates, including those purified from natural sources, as exemplified here by rhizobial Nod factors and exopolysaccharide fragments. The first stage is to add an oligo(ethylene glycol) linker (OEG-linker) that has a terminal triphenylmethanethiol group to the reducing end of the oligosaccharide by oxime formation catalyzed by aniline. The triphenylmethyl (trityl) tag is then removed from the linker to expose a thiol (stage 2) to allow a conjugation reaction at the thiol group (stage 3). There are many possible conjugation reactions, depending on the desired application. Examples shown in this protocol are as follows: (i) coupling of the oligosaccharide to a support for surface plasmon resonance (SPR) studies, (ii) fluorescence labeling for microscale thermophoresis (MST) or bioimaging, and (iii) biotinylation for biolayer interferometry (BLI) studies. This protocol starts from unprotected carbohydrates and provides glycoconjugates in milligram amounts in just 2 d.
Collapse
Affiliation(s)
- Christian T Hjuler
- Centre for Carbohydrate Recognition and Signaling, Copenhagen University, Frederiksberg, Denmark.,Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Nicolai N Maolanon
- Centre for Carbohydrate Recognition and Signaling, Copenhagen University, Frederiksberg, Denmark.,Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Jørgen Sauer
- Centre for Carbohydrate Recognition and Signaling, Copenhagen University, Frederiksberg, Denmark.,Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signaling, Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mikkel B Thygesen
- Centre for Carbohydrate Recognition and Signaling, Copenhagen University, Frederiksberg, Denmark.,Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Knud J Jensen
- Centre for Carbohydrate Recognition and Signaling, Copenhagen University, Frederiksberg, Denmark.,Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
12
|
García C, Hoyos P, Hernáiz MJ. Enzymatic synthesis of carbohydrates and glycoconjugates using lipases and glycosidases in green solvents. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1349760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cecilia García
- Organic and Pharmaceutical Chemistry Department, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain
| | - Pilar Hoyos
- Organic and Pharmaceutical Chemistry Department, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain
| | - María J. Hernáiz
- Organic and Pharmaceutical Chemistry Department, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Cao W, Hu N, Yuan Y, Cheng J, Guo X, Wang Y, Wang X, Hu P. Effects of Tilianin on Proliferation, Migration and TGF-β/Smad Signaling in Rat Vascular Smooth Muscle Cells Induced with Angiotensin II. Phytother Res 2017. [PMID: 28620995 DOI: 10.1002/ptr.5846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wenjiang Cao
- First Affiliated Hospital of the Medical College; Shihezi University; Xinjiang 832008 China
| | - Na Hu
- College of Medicine; Shihezi University; Xinjiang 832002 China
| | - Yong Yuan
- First Affiliated Hospital of the Medical College; Shihezi University; Xinjiang 832008 China
| | - Jiang Cheng
- First Affiliated Hospital of the Medical College; Shihezi University; Xinjiang 832008 China
| | - Xinhong Guo
- First Affiliated Hospital of the Medical College; Shihezi University; Xinjiang 832008 China
| | - Yanfang Wang
- First Affiliated Hospital of the Medical College; Shihezi University; Xinjiang 832008 China
- College of Medicine; Shihezi University; Xinjiang 832002 China
| | - Xinchun Wang
- First Affiliated Hospital of the Medical College; Shihezi University; Xinjiang 832008 China
- College of Medicine; Shihezi University; Xinjiang 832002 China
| | - Ping Hu
- College of Pharmaceutical Sciences and Innovative Drug Research Centre; Chongqing University; 55 South Daxuecheng Road Chongqing 401331 China
| |
Collapse
|
14
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
15
|
Lee KT, Coffey JW, Robinson KJ, Muller DA, Grøndahl L, Kendall MAF, Young PR, Corrie SR. Investigating the Effect of Substrate Materials on Wearable Immunoassay Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:773-782. [PMID: 28006902 DOI: 10.1021/acs.langmuir.6b03933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Immunoassays are ubiquitous across research and clinical laboratories, yet little attention is paid to the effect of the substrate material on the assay performance characteristics. Given the emerging interest in wearable immunoassay formats, investigations into substrate materials that provide an optimal mix of mechanical and bioanalytical properties are paramount. In the course of our research in developing wearable immunoassays which can penetrate skin to selectively capture disease antigens from the underlying blood vessels, we recently identified significant differences in immunoassay performance between gold and polycarbonate surfaces, even with a consistent surface modification procedure. We observed significant differences in PEG density, antibody immobilization, and nonspecific adsorption between the two substrates. Despite a higher PEG density formed on gold-coated surfaces than on amine-functionalized polycarbonate, the latter revealed a higher immobilized capture antibody density and lower nonspecific adsorption, leading to improved signal-to-noise ratios and assay sensitivities. The major conclusion from this study is that in designing wearable bioassays or biosensors, the design and its effect on the antifouling polymer layer can significantly affect the assay performance in terms of analytical specificity and sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark A F Kendall
- Australian Infectious Diseases Research Centre, St. Lucia, Queensland 4067, Australia
- Faculty of Medicine and Biomedical Sciences, Royal Brisbane and Women's Hospital , Herston, Queensland 4029, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, St. Lucia, Queensland 4067, Australia
| | - Simon R Corrie
- Australian Infectious Diseases Research Centre, St. Lucia, Queensland 4067, Australia
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Zhou S, Dong X, Veillon L, Huang Y, Mechref Y. LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem 2017; 409:453-466. [PMID: 27796453 PMCID: PMC5444817 DOI: 10.1007/s00216-016-9996-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
The biosynthesis of glycans is a template-free process; hence compositionally identical glycans may contain highly heterogeneous structures. Meanwhile, the functions of glycans in biological processes are significantly influenced by the glycan structure. Structural elucidation of glycans is an essential component of glycobiology. Although NMR is considered the most powerful approach for structural glycan studies, it suffers from low sensitivity and requires highly purified glycans. Although mass spectrometry (MS)-based methods have been applied in numerous glycan structure studies, there are challenges in preserving glycan structure during ionization. Permethylation is an efficient derivatization method that improves glycan structural stability. In this report, permethylated glycans are isomerically separated; thus facilitating structural analysis of a mixture of glycans by LC-MS/MS. Separation by porous graphitic carbon liquid chromatography at high temperatures in conjunction with tandem mass spectrometry (PGC-LC-MS/MS) was utilized for unequivocal characterization of glycan isomers. Glycan fucosylation sites were confidently determined by eliminating fucose rearrangement and assignment of diagnostic ions, achieved by permethylation and PGC-LC at high temperatures, respectively. Assigning monosaccharide residues to specific glycan antennae was also achieved. Galactose linkages were also distinguished from each other by CID/HCD tandem MS. This was attainable because of the different bond energies associated with monosaccharide linkages. Graphical Abstract LC-MS and tandem MS of terminal galactose isomers.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
17
|
Gregersen S, Vosch T, Jensen KJ. Peptide-Stabilized, Fluorescent Silver Nanoclusters: Solid-Phase Synthesis and Screening. Chemistry 2016; 22:18492-18500. [PMID: 27809363 DOI: 10.1002/chem.201603176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Indexed: 12/24/2022]
Abstract
Few-atom silver nanoclusters (AgNCs) can exhibit strong fluorescence; however, they require ligands to prevent aggregation into larger nanoparticles. Fluorescent AgNCs in biopolymer scaffolds have so far mainly been synthesized in solution, and peptides have only found limited use compared to DNA. Herein, we demonstrate how solid-phase methods can increase throughput dramatically in peptide ligand screening and in initial evaluation of fluorescence intensity and chemical stability of peptide-stabilized AgNCs (P-AgNCs). 9-Fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis on a hydroxymethyl-benzoic acid (HMBA) polyethylene glycol polyacrylamide copolymer (PEGA) resin enabled on-resin screening and evaluation of a peptide library, leading to identification of novel peptide-stabilized, fluorescent AgNCs. Using systematic amino acid substitutions, we synthesized and screened a 144-member library. This allowed us to evaluate the effect of length, charge, and Cys content in peptides used as ligands for AgNC stabilization. The results of this study will enable future spectroscopic studies of these peptide-stabilized AgNCs for bioimaging and other applications.
Collapse
Affiliation(s)
- Simon Gregersen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Tom Vosch
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
18
|
Baudendistel OR, Wieland DE, Schmidt MS, Wittmann V. Real-Time NMR Studies of Oxyamine Ligations of Reducing Carbohydrates under Equilibrium Conditions. Chemistry 2016; 22:17359-17365. [DOI: 10.1002/chem.201603369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Oliver R. Baudendistel
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Daniel E. Wieland
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Magnus S. Schmidt
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Valentin Wittmann
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| |
Collapse
|
19
|
|
20
|
Chen Y, Ding L, Song W, Yang M, Ju H. Liberation of Protein-Specific Glycosylation Information for Glycan Analysis by Exonuclease III-Aided Recycling Hybridization. Anal Chem 2016; 88:2923-8. [DOI: 10.1021/acs.analchem.5b04883] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Wanyao Song
- State
Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Min Yang
- Department
of Pharmaceutical and Biological Chemistry, UCL School
of Pharmacy, University College London, London WC1N 1AX, U.K
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
21
|
Marín MJ, Schofield CL, Field RA, Russell DA. Glyconanoparticles for colorimetric bioassays. Analyst 2015; 140:59-70. [PMID: 25277069 DOI: 10.1039/c4an01466a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbohydrate molecules are involved in many of the cellular processes that are important for life. By combining the specific analyte targeting of carbohydrates with the multivalent structure and change of solution colour as a consequence of plasmonic interactions with the aggregation of metal nanoparticles, glyconanoparticles have been used extensively for the development of bioanalytical assays. The noble metals used to create the nanocore, the methodologies used to assemble the carbohydrates on the nanoparticle surface, the carbohydrate chosen for each specific target, the length of the tether that separates the carbohydrate from the nanocore and the density of carbohydrates on the surface all impact on the structural formation of metal based glyconanoparticles. This tutorial review highlights these key components, which directly impact on the selectivity and sensitivity of the developed bioassay, for the colorimetric detection of lectins, toxins and viruses.
Collapse
Affiliation(s)
- María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | | | | | | |
Collapse
|
22
|
Hernandez Armada D, Santos JT, Richards MR, Cairo CW. Protecting group-free immobilization of glycans for affinity chromatography using glycosylsulfonohydrazide donors. Carbohydr Res 2015; 417:109-16. [PMID: 26454791 DOI: 10.1016/j.carres.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
A variety of applications in glycobiology exploit affinity chromatography through the immobilization of glycans to a solid support. Although several strategies are known, they may provide certain advantages or disadvantages in how the sugar is attached to the affinity matrix. Additionally, the products of some methods may be hard to characterize chemically due to non-specific reactions. The lack of specificity in standard immobilization reactions makes affinity chromatography with expensive oligosaccharides challenging. As a result, methods for specific and efficient immobilization of oligosaccharides remain of interest. Herein, we present a method for the immobilization of saccharides using N'-glycosylsulfonohydrazide (GSH) carbohydrate donors. We have compared GSH immobilization to known strategies, including the use of divinyl sulfone (DVS) and cyanuric chloride (CC), for the generation of affinity matrices. We compared immobilization methods by determining their immobilization efficiency, based on a comparison of the mass of immobilized carbohydrate and the concentration of active binding sites (determined using lectins). Our results indicate that immobilization using GSH donors can provide comparable amounts of carbohydrate epitopes on solid support while consuming almost half of the material required for DVS immobilization. The lectin binding capacity observed for these two methods suggests that GSH immobilization is more efficient. We propose that this method of oligosaccharide immobilization will be an important tool for glycobiologists working with precious glycan samples purified from biological sources.
Collapse
Affiliation(s)
- Daniel Hernandez Armada
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jobette T Santos
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
23
|
Kannan A, Rajakumar P. Synthesis and catalytic application of glycodendrimers decorated with gold nanoparticles – reduction of 4-nitrophenol. RSC Adv 2015. [DOI: 10.1039/c5ra06375b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Au–DSNPs and Au–DENPs with an average diameter of 7.2 and 4.0 nm have been synthesized and proved to be good catalysts for the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Ayyavoo Kannan
- Department of Organic Chemistry
- University of Madras
- Guindy Campus
- Chennai 600025
- India
| | - Perumal Rajakumar
- Department of Organic Chemistry
- University of Madras
- Guindy Campus
- Chennai 600025
- India
| |
Collapse
|
24
|
Lalitha K, Muthusamy K, Prasad YS, Vemula PK, Nagarajan S. Recent developments in β-C-glycosides: synthesis and applications. Carbohydr Res 2014; 402:158-71. [PMID: 25498016 DOI: 10.1016/j.carres.2014.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/11/2014] [Accepted: 10/16/2014] [Indexed: 11/26/2022]
Abstract
In the last few years, considerable progress has been made in the synthesis of C-glycosides. Despite its challenging chemistry, due to its versatility, C-glycosides play a pivotal role in developing novel materials, surfactants and bioactive molecules. In this review, we present snapshots of various synthetic methodologies developed for C-glycosides in the recent years and the potential application of C-glycosides derived from β-C-glycosidic ketones.
Collapse
Affiliation(s)
- Krishnamoorthy Lalitha
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Kumarasamy Muthusamy
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Y Siva Prasad
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Praveen Kumar Vemula
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, UAS-GKVK Post, Bellary Road, Bangalore 560065, India
| | - Subbiah Nagarajan
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
25
|
Hushegyi A, Tkac J. Are glycan biosensors an alternative to glycan microarrays? ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:6610-6620. [PMID: 27231487 PMCID: PMC4878710 DOI: 10.1039/c4ay00692e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Complex carbohydrates (glycans) play an important role in nature and study of their interaction with proteins or intact cells can be useful for understanding many physiological and pathological processes. Such interactions have been successfully interrogated in a highly parallel way using glycan microarrays, but this technique has some limitations. Thus, in recent years glycan biosensors in numerous progressive configurations have been developed offering distinct advantages compared to glycan microarrays. Thus, in this review advances achieved in the field of label-free glycan biosensors are discussed.
Collapse
Affiliation(s)
- A Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - J Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| |
Collapse
|
26
|
Ding R, Zhou Y, Zhang X, Zhu R, Yao WB, Gao XD. Preparation, optimization and application of affinity absorbent with a polysaccharide YCP as the ligand. Carbohydr Polym 2014; 104:73-9. [PMID: 24607162 DOI: 10.1016/j.carbpol.2014.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/05/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022]
Abstract
YCP, an α-glucan from the mycelium of marine filamentous fungus Phoma herbarum YS4108, has great antitumor potential via enhancement of host immune through Toll-like receptor (TLR) 2 and TLR4 signaling. In the current study, YCP was coupled to EAH Sepharose 4B agarose beads to prepare the YCP-Sepharose affinity absorbent using 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) as the activating agent. An orthogonal experiment L9 (3)(4) was applied to optimize the coupling procedure, giving the optimal parameters as follows: molar ratio of CDAP to YCP of 1:2, CDAP-activation time of 5 min, gel volume of 0.1 mL, and gel-incubation time of 72 h, respectively. Scanning electron microscopy analysis indicated successfully preparation of YCP immobilized sepharose beads, while these beads essentially maintained biological properties of free YCP since they can interact with TLR2 and TLR4 specifically at comparable level. Collectively, our findings provide an alternative approach to immobilize carbohydrate-based molecules for studying the carbohydrate-protein interaction.
Collapse
Affiliation(s)
- Ran Ding
- State Key Laboratory of Natural Medicines, PR China; School of Life Science and Technology China Pharmaceutical University, Nanjing 210009, PR China
| | - Yan Zhou
- State Key Laboratory of Natural Medicines, PR China; School of Life Science and Technology China Pharmaceutical University, Nanjing 210009, PR China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines, PR China; School of Life Science and Technology China Pharmaceutical University, Nanjing 210009, PR China
| | - Rui Zhu
- State Key Laboratory of Natural Medicines, PR China; School of Life Science and Technology China Pharmaceutical University, Nanjing 210009, PR China
| | - Wen-Bing Yao
- State Key Laboratory of Natural Medicines, PR China; School of Life Science and Technology China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiang-Dong Gao
- State Key Laboratory of Natural Medicines, PR China; School of Life Science and Technology China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
27
|
Maolanon NN, Blaise M, Sørensen KK, Thygesen MB, Cló E, Sullivan JT, Ronson CW, Stougaard J, Blixt O, Jensen KJ. Lipochitin oligosaccharides immobilized through oximes in glycan microarrays bind LysM proteins. Chembiochem 2014; 15:425-34. [PMID: 24436194 DOI: 10.1002/cbic.201300520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 01/28/2023]
Abstract
Glycan microarrays have emerged as novel tools to study carbohydrate-protein interactions. Here we describe the preparation of a covalent microarray with lipochitin oligosaccharides and its use in studying proteins containing LysM domains. The glycan microarray was assembled from glycoconjugates that were synthesized by using recently developed bifunctional chemoselective aminooxy reagents without the need for transient carbohydrate protecting groups. We describe for the first time the preparation of a covalent microarray with lipochitin oligosaccharides and its use for studying proteins containing LysM domains. Lipochitin oligosaccharides (also referred to as Nod factors) were isolated from bacterial strains or chemoenzymatically synthesized. The glycan microarray also included peptidoglycan-related compounds, as well as chitin oligosaccharides of different lengths. In total, 30 ligands were treated with the aminooxy linker molecule. The identity of the glycoconjugates was verified by mass spectrometry, and they were then immobilized on the array. The presence of the glycoconjugates on the array surface was confirmed by use of lectins and human sera (IgG binding). The functionality of our array was tested with a bacterial LysM domain-containing protein, autolysin p60, which is known to act on the bacterial cell wall peptidoglycan. P60 showed specific binding to Nod factors and to chitin oligosaccharides. Increasing affinity was observed with increasing chitin oligomer length.
Collapse
Affiliation(s)
- Nicolai N Maolanon
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Centre for Carbohydrate Recognition and Signalling, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen R, Pawlicki MA, Tolbert TJ. Versatile on-resin synthesis of high mannose glycosylated asparagine with functional handles. Carbohydr Res 2014; 383:69-75. [PMID: 24326091 PMCID: PMC3974579 DOI: 10.1016/j.carres.2013.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 01/17/2023]
Abstract
Here we present a synthetic route for solid phase synthesis of N-linked glycoconjugates containing high mannose oligosaccharides which allows the incorporation of useful functional handles on the N-terminus of asparagine. In this strategy, the C-terminus of an Fmoc protected aspartic acid residue is first attached to a solid phase support. The side chain of aspartic acid is protected by a 2-phenylisopropyl protecting group, which allows selective deprotection for the introduction of glycosylation. By using a convergent on-resin glycosylamine coupling strategy, an N-glycosidic linkage is successfully formed on the free side chain of the resin bound aspartic acid with a large high mannose oligosaccharide, Man8GlcNAc2, to yield N-linked high mannose glycosylated asparagine. The use of on-resin glycosylamine coupling provides excellent glycosylation yield, can be applied to couple other types of oligosaccharides, and also makes it possible to recover excess oligosaccharides conveniently after the on-resin coupling reaction. Useful functional handles including an alkene (p-vinylbenzoic acid), an alkyne (4-pentynoic acid), biotin, and 5-carboxyfluorescein are then conjugated onto the N-terminal amine of asparagine on-resin after the removal of the Fmoc protecting group. In this way, useful functional handles are introduced onto the glycosylated asparagine while maintaining the structural integrity of the reducing end of the oligosaccharide. The asparagine side chain also serves as a linker between the glycan and the functional group and preserves the native presentation of N-linked glycan which may aid in biochemical and structural studies. As an example of a biochemical study using functionalized high mannose glycosylated asparagine, a fluorescence polarization assay has been utilized to study the binding of the lectin Concanavalin A (ConA) using 5-carboxyfluorescein labeled high mannose glycosylated asparagine.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Mark A Pawlicki
- Interdisciplinary Biochemistry Graduate Program, Indiana University, Bloomington, IN 47405, United States
| | - Thomas J Tolbert
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, United States.
| |
Collapse
|
29
|
Lin H, Kitova EN, Klassen JS. Quantifying Protein–Ligand Interactions by Direct Electrospray Ionization-MS Analysis: Evidence of Nonuniform Response Factors Induced by High Molecular Weight Molecules and Complexes. Anal Chem 2013; 85:8919-22. [DOI: 10.1021/ac401936x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong Lin
- Department
of Chemistry and
Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N. Kitova
- Department
of Chemistry and
Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John S. Klassen
- Department
of Chemistry and
Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
30
|
Fessele C, Lindhorst TK. Effect of Aminophenyl and Aminothiahexyl α-D-Glycosides of the Manno-, Gluco-, and Galacto-Series on Type 1 Fimbriae-Mediated Adhesion of Escherichia coli. BIOLOGY 2013; 2:1135-49. [PMID: 24833058 PMCID: PMC3960877 DOI: 10.3390/biology2031135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/17/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
Adhesion of bacteria to the glycosylated surface of their target cells is typically mediated by fimbrial lectins, exposed on the bacterial surface. Among the best-investigated and most important fimbriae are type 1 fimbriae, for which α-d-mannopyranoside-specificity has been described. This carbohydrate specificity is mediated by the type 1 fimbrial lectin FimH. In this account, we have employed four different set-ups to assay type 1 fimbriae-mediated bacterial adhesion, including tailor-made glycoarrays. The focus of our study was on testing FimH specificity with regard to the glycone part of a glycosidic ligand by testing a series of synthetic α-mannosides, as well as α-glucosides and α-galactosides. Unexpectedly, it was found that in solution all tested aminothiahexyl glycosides inhibit bacterial adhesion but that this effect is unspecific. Instead it is due to cytotoxicity of the respective glycosides at high mm concentrations.
Collapse
Affiliation(s)
- Claudia Fessele
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24098 Kiel, Germany.
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24098 Kiel, Germany.
| |
Collapse
|
31
|
Abstract
In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research.
Collapse
Affiliation(s)
- Sungjin Park
- National Creative Research Initiative Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
32
|
Scott RA, Panitch A. Glycosaminoglycans in biomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:388-98. [PMID: 23606640 DOI: 10.1002/wnan.1223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosaminoglycans (GAGs) compose one of four classes of mammalian biopolymers, and are arguably the most complex. The research areas of glycobiology, glycopolymers, and the use of GAGs within tissue engineering and regenerative medicine have grown exponentially during the past decade. Researchers are closing in on high throughput methods for GAG synthesis and sequencing, but our understanding of glycan sequence and the information contained in this sequence lags behind. Screening methods to identify key GAG-biopolymer interactions are providing insights into important targets for nanomedicine, regenerative medicine, and pharmaceutics. Importantly, GAGs are most often found in the form of glycolipids and proteoglycans. Several studies have shown that the clustering of GAGs, as is often the case in proteoglycans, increases the affinity between GAGs and other biopolymers. In addition, GAG clustering can create regions of high anionic charge, which leads to high osmotic pressure. Recent advances have led to proteoglycan mimics that exhibit many of the functions of proteoglycans including protection of the extracellular matrix from proteolytic activity, regulation of collagen fibril assembly on the nanoscale, alteration of matrix stiffness, and inhibition of platelet adhesion, among others. Collectively, these advances are stimulating possibilities for targeting of drugs, nanoparticles, and imaging agents, opening new avenues for mimicking nanoscale molecular interactions that allow for directed assembly of bulk materials, and providing avenues for the synthesis of proteoglycan mimics that enhance opportunities in regenerative medicine.
Collapse
Affiliation(s)
- Rebecca A Scott
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
33
|
Martos-Maldonado MC, Thygesen MB, Jensen KJ, Vargas-Berenguel A. Gold-Ferrocene Glyco-Nanoparticles for High-Sensitivity Electrochemical Detection of Carbohydrate-Lectin Interactions. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Reuel NF, Mu B, Zhang J, Hinckley A, Strano MS. Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps. Chem Soc Rev 2013; 41:5744-79. [PMID: 22868627 DOI: 10.1039/c2cs35142k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoengineered glycan sensors may help realize the long-held goal of accurate and rapid glycoprotein profiling without labeling or glycan liberation steps. Current methods of profiling oligosaccharides displayed on protein surfaces, such as liquid chromatography, mass spectrometry, capillary electrophoresis, and microarray methods, are limited by sample pretreatment and quantitative accuracy. Microarrayed platforms can be improved with methods that better estimate kinetic parameters rather than simply reporting relative binding information. These quantitative glycan sensors are enabled by an emerging class of nanoengineered materials that differ in their mode of signal transduction from traditional methods. Platforms that respond to mass changes include a quartz crystal microbalance and cantilever sensors. Electronic response can be detected from electrochemical, field effect transistor, and pore impedance sensors. Optical methods include fluorescent frontal affinity chromatography, surface plasmon resonance methods, and fluorescent carbon nanotubes. After a very brief primer on glycobiology and its connection to medicine, these emerging systems are critically reviewed for their potential use as core sensors in future glycoprofiling tools.
Collapse
Affiliation(s)
- Nigel F Reuel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
35
|
Cubrilovic D, Zenobi R. Influence of dimehylsulfoxide on protein-ligand binding affinities. Anal Chem 2013; 85:2724-30. [PMID: 23347283 DOI: 10.1021/ac303197p] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Because of its favorable physicochemical properties, DMSO is the standard solvent for sample storage and handling of compounds in drug discovery. To date, little attention was given to how DMSO influences protein-ligand binding strengths. In this study we investigated the effects of DMSO on different noncovalent protein-ligand complexes, in particular in terms of the binding affinities, which we determined using nanoESI-MS. For the investigation, three different protein-ligand complexes were chosen: trypsin-Pefabloc, lysozyme-tri-N-acetylchitotriose (NAG3), and carbonic anhydrase-chlorothiazide. The DMSO content in the nanoESI buffer was increased systematically from 0.5 to 8%. For all three model systems, it was shown that the binding affinity decreases upon addition of DMSO. Even 0.5-1% DMSO alters the KD values, in particular for the tight binding system carbonic anhydrase-chlorothiazide. The determined dissociation constant (KD) is up to 10 times higher than for a DMSO-free sample in the case of carbonic anhydrase-chlorothiazide binding. For the trypsin-Pefabloc and lysozyme-NAG3 complexes, the dissociation constants are 7 and 3 times larger, respectively, in the presence of DMSO. This work emphasizes the importance of effects of DMSO as a co-solvent for quantification of protein-ligand binding strengths in the early stages of drug discovery.
Collapse
Affiliation(s)
- Dragana Cubrilovic
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
36
|
Deng L, Wang X, Uppalapati S, Norberg O, Dong H, Joliton A, Yan M, Ramström O. Stereocontrolled 1- S-glycosylation and comparative binding studies of photoprobe-thiosaccharide conjugates with their O-linked analogs. PURE APPL CHEM 2013; 85:1789-1801. [PMID: 26180266 PMCID: PMC4500165 DOI: 10.1351/pac-con-12-08-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of thioglycosides and other glycan derivatives with anomeric sulfur linkages is gaining increasing interest, both in synthesis and in various biological contexts. Herein, we demonstrate the occurrence and circumvention of anomerization during 1-S-glycosylation reactions, and present highly efficient and stereocontrolled syntheses of a series of photoprobe-thiosaccharide conjugates. Mutarotation of glycosyl thiols proved to be the origin of the anomeric mixtures formed, and kinetic effects could be used to circumvent anomerization. The synthesized carbohydrate conjugates were then evaluated by both solution- and solid-phase-based techniques. Both binding results showed that the S-linked glyco-sides interact with their cognate lectins comparably to the corresponding O-analogs in the present cases, thus demonstrating the reliability of the solid-support platform built upon our photo-initiated carbohydrate immobilization method for probing protein bindings, and showing the potential of combining these two means for studying carbohydrate-protein interactions.
Collapse
Affiliation(s)
- Lingquan Deng
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
| | - Xin Wang
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
| | - Suji Uppalapati
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
| | - Oscar Norberg
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
| | - Hai Dong
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Rd. 1037, Wuhan, China
| | - Adrien Joliton
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
| | - Mingdi Yan
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
| | - Olof Ramström
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
| |
Collapse
|
37
|
Algar WR, Blanco-Canosa JB, Manthe RL, Susumu K, Stewart MH, Dawson PE, Medintz IL. Synthesizing and modifying peptides for chemoselective ligation and assembly into quantum dot-peptide bioconjugates. Methods Mol Biol 2013; 1025:47-73. [PMID: 23918329 DOI: 10.1007/978-1-62703-462-3_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quantum dots (QDs) are well-established as photoluminescent nanoparticle probes for in vitro or in vivo imaging, sensing, and even drug delivery. A critical component of this research is the need to reliably conjugate peptides, proteins, oligonucleotides, and other biomolecules to QDs in a controlled manner. In this chapter, we describe the conjugation of peptides to CdSe/ZnS QDs using a combination of polyhistidine self-assembly and hydrazone ligation. The former is a high-affinity interaction with the inorganic surface of the QD; the latter is a highly efficient and chemoselective reaction that occurs between 4-formylbenzoyl (4FB) and 2-hydrazinonicotinoyl (HYNIC) moieties. Two methods are presented for modifying peptides with these functional groups: (1) solid phase peptide synthesis; and (2) solution phase modification of pre-synthesized, commercial peptides. We further describe the aniline-catalyzed ligation of 4FB- and HYNIC-modified peptides, in the presence of a fluorescent label on the latter peptide, as well as subsequent assembly of the ligated peptide to water-soluble QDs. Many technical elements of these protocols can be extended to labeling peptides with other small molecule reagents. Overall, the bioconjugate chemistry is robust, selective, and modular, thereby potentiating the controlled conjugation of QDs with a diverse array of biomolecules for various applications.
Collapse
|
38
|
|
39
|
Otten L, Richards SJ, Fullam E, Besra GS, Gibson MI. Gold nanoparticle-linked analysis of carbohydrate–protein interactions, and polymeric inhibitors, using unlabelled proteins; easy measurements using a ‘simple’ digital camera. J Mater Chem B 2013; 1:2665-2672. [DOI: 10.1039/c3tb20259c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Abstract
Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.
Collapse
|
41
|
Yang S, Zhang H. Solid-phase glycan isolation for glycomics analysis. Proteomics Clin Appl 2012; 6:596-608. [PMID: 23090885 PMCID: PMC3674833 DOI: 10.1002/prca.201200045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/11/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022]
Abstract
Glycosylation is one of the most significant protein PTMs. The biological activities of proteins are dramatically changed by the glycans associated with them. Thus, structural analysis of the glycans of glycoproteins in complex biological or clinical samples is critical in correlation with the functions of glycans with diseases. Profiling of glycans by HPLC-MS is a commonly used technique in analyzing glycan structures and quantifying their relative abundance in different biological systems. Methods relied on MS require isolation of glycans from negligible salts and other contaminant ions since salts and ions may interfere with the glycans, resulting in poor glycan ionization. To accomplish those objectives, glycan isolation and clean-up methods including SPE, liquid-phase extraction, chromatography, and electrophoresis have been developed. Traditionally, glycans are isolated from proteins or peptides using a combination of hydrophobic and hydrophilic columns: proteins and peptides remain on hydrophobic absorbent while glycans, salts, and other hydrophilic reagents are collected as flowthrough. The glycans in the flowthrough are then purified through graphite-activated carbon column by hydrophilic interaction LC. Yet, the drawback in these affinity-based approaches is nonspecific binding. As a result, chemical methods by hydrazide or oxime have been developed for solid-phase isolation of glycans with high specificity and yield. Combined with high-resolution MS, specific glycan isolation techniques provide tremendous potentials as useful tools for glycomics analysis.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | | |
Collapse
|
42
|
Grabosch C, Kolbe K, Lindhorst TK. Glycoarrays by a New Tandem Noncovalent-Covalent Modification of Polystyrene Microtiter Plates and their Interrogation with Live Cells. Chembiochem 2012; 13:1874-9. [DOI: 10.1002/cbic.201200365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Indexed: 01/11/2023]
|
43
|
Bian S, He J, Schesing KB, Braunschweig AB. Polymer pen lithography (PPL)-induced site-specific click chemistry for the formation of functional glycan arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2000-2005. [PMID: 22488791 DOI: 10.1002/smll.201102707] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/02/2012] [Indexed: 05/31/2023]
Abstract
Polymer pen lithography (PPL) can be combined with the Cu(I) -catalyzed azide-alkyne click reaction to create molecular arrays with control over orientation and sub-1 μm feature sizes over cm(2) areas. The process has been applied to the deposition of carbohydrates to form functional glycochips.
Collapse
Affiliation(s)
- Shudan Bian
- Department of Chemistry and The Molecular Design Institute, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | |
Collapse
|
44
|
El-Hawiet A, Kitova EN, Klassen JS. Quantifying Carbohydrate–Protein Interactions by Electrospray Ionization Mass Spectrometry Analysis. Biochemistry 2012; 51:4244-53. [DOI: 10.1021/bi300436x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amr El-Hawiet
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| |
Collapse
|
45
|
Kitova EN, El-Hawiet A, Schnier PD, Klassen JS. Reliable determinations of protein-ligand interactions by direct ESI-MS measurements. Are we there yet? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:431-41. [PMID: 22270873 DOI: 10.1007/s13361-011-0311-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 05/11/2023]
Abstract
The association-dissociation of noncovalent interactions between protein and ligands, such as other proteins, carbohydrates, lipids, DNA, or small molecules, are critical events in many biological processes. The discovery and characterization of these interactions is essential to a complete understanding of biochemical reactions and pathways and to the design of novel therapeutic agents that may be used to treat a variety of diseases and infections. Over the last 20 y, electrospray ionization mass spectrometry (ESI-MS) has emerged as a versatile tool for the identification and quantification of protein-ligand interactions in vitro. Here, we describe the implementation of the direct ESI-MS assay for the determination of protein-ligand binding stoichiometry and affinity. Additionally, we outline common sources of error encountered with these measurements and various strategies to overcome them. Finally, we comment on some of the outstanding challenges associated with the implementation of the assay and highlight new areas where direct ESI-MS measurements are expected to make significant contributions in the future.
Collapse
Affiliation(s)
- Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | | | | | | |
Collapse
|
46
|
Yang SJ, Zhang H. Glycan analysis by reversible reaction to hydrazide beads and mass spectrometry. Anal Chem 2012; 84:2232-8. [PMID: 22304307 DOI: 10.1021/ac202769k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Investigation into glycoproteins and their associated glycans is the key to understanding the function of glycoproteins in biological pathways and disease development. Current methods for glycan analysis are generally based on multiple preparation processes to separate glycans from proteins and other molecules prior to analysis. During the multistep purification processes, glycans are continuously lost and the procedure increases the difficulty for accurate quantitative analysis of glycans. Here we describe the development of a novel technique, which uses hydrazide beads to capture glycans. It is based on the conjugation of glycans to hydrazide beads through the formation of reversible hydrazone, washing out unbound nonglycans, then releasing captured glycans by acids. The results showed that the glycans were able to be isolated from concatenate peptides by using hydrazide beads. This technique was also applied to the analysis of glycans from sera sample. The integrated capture-release on the solid-phase simplifies the procedure for glycan preparation from a complex mixture and can be a powerful tool for glycan analysis.
Collapse
Affiliation(s)
- Shuang J Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
47
|
Immobilization of polyacrylamide-based glycoconjugates on solid phase in immunosorbent assays. Methods Mol Biol 2012; 808:167-82. [PMID: 22057525 DOI: 10.1007/978-1-61779-373-8_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Our experience in coating of solid surfaces with glycans, mainly for obtaining routine glycoarrays based on immunological plates, is summarized. Three polystyrene coating techniques are described: direct physical adsorption, covalent binding, and immobilization using the biotin tag. Protocols for studies on anticarbohydrate antibodies are considered, with special emphasis on the application niches of different immobilization techniques as related to the specificity of each method of glycan-binding protein assay, as well as the problems of background binding and quantitative estimation of the results.
Collapse
|
48
|
Morvan F, Vidal S, Souteyrand E, Chevolot Y, Vasseur JJ. DNA glycoclusters and DNA-based carbohydrate microarrays: From design to applications. RSC Adv 2012. [DOI: 10.1039/c2ra21550k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
49
|
Safina G. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: A comparison with conventional analytical techniques. A critical review. Anal Chim Acta 2012; 712:9-29. [DOI: 10.1016/j.aca.2011.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/07/2011] [Accepted: 11/04/2011] [Indexed: 12/16/2022]
|
50
|
Morvan F, Chevolot Y, Zhang J, Meyer A, Vidal S, Praly JP, Vasseur JJ, Souteyrand E. Glycoarray by DNA-directed immobilization. Methods Mol Biol 2012; 808:195-219. [PMID: 22057527 DOI: 10.1007/978-1-61779-373-8_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Glycoarrays have become a powerful platform to investigate the interactions of many biological events involving carbohydrates. The carbohydrates immobilization on the surface of the substrates is a key step of glycoarray fabrication. Plenty of strategies have been applied to the immobilization process. Herein a protocol for the synthesis of oligonucleotide glycomimetic conjugates is proposed. The resulting molecules are immobilized by hybridization on a DNA microarray (DNA-directed immobilization; DDI). DDI has been proved to be a very efficient and site-selective. This protocol provides detailed procedures for the preparation of fluorescent oligonucleotide trigalactosylmimetic conjugates and for the preparation of carbohydrate microarrays by DDI on glass slides.
Collapse
Affiliation(s)
- François Morvan
- Institut des Biomoléules Max Mousseron, UMR 5247, CNRS Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|