1
|
Jin S, Xiao C, Lu H, Deng X. Effects of extrusion temperature on structure and physicochemical properties of proso millet starch. Int J Biol Macromol 2025; 299:140011. [PMID: 39828172 DOI: 10.1016/j.ijbiomac.2025.140011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/12/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Due to its thermal stability, and high viscosity, proso millet starch has limited practical applications. Extrusion can alter the functional properties of starch by pre-gelatinization, but the specific effects of extrusion temperature on starch behavior are not clear. In this study, proso millet starch was modified using extrusion at varying temperatures (70 °C, 90 °C, 110 °C), and its structure as well as physicochemical properties were evaluated. As the extrusion temperature increased, the starch granules were gelatinized, and the particle size increased significantly. The relative crystallinity of extruded starch decreased and the short-range order was enhanced notably, but the starch still exhibited an A-type structure. Starch chains degraded, migrated, and aggregated, showing an increase in the double helix content, but there was no difference in the single helix structure with temperature. With the increase of extrusion temperature, the amorphous layer of extruded starch thickened. Moreover, the peak viscosity, breakdown viscosity and setback viscosity initially increased and then decreased, the peak temperature and enthalpy change increased. The water absorption index, water solubility and swelling power significantly decreased with increasing temperatures. The freeze-thaw stability and transparency of extruded starch decreased, and showed a downward trend with prolonged time. The above results indicate that extrusion treatment effectively modifies the thermal stability and viscosity of proso millet starch, laying a foundation for applying it different industrial applications.
Collapse
Affiliation(s)
- Shuxiu Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Hao Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiaoqi Deng
- Chongqing City Management College, Chongqing 401331, PR China
| |
Collapse
|
2
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Wu W, Lin Y, Farag MA, Li Z, Shao P. Dendrobium as a new natural source of bioactive for the prevention and treatment of digestive tract diseases: A comprehensive review with future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154784. [PMID: 37011417 DOI: 10.1016/j.phymed.2023.154784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The incidence of diseases related to the digestive tract is on the rise, with many types of complex etiologies. Dendrobium nobile Lindl. is a famous Traditional Chinese Medicine (TCM) rich in many bioactives proven to be beneficial in several health diseases related to inflammation and oxidative stress. PURPOSE At present, despite the availability of various therapeutic clinical drugs used for the treatment of digestive tract diseases, resistance emergence and existence of several side effects warrant for the developing of novel drugs for improved effects on digestive tract diseases. METHODS "Orchidaceae", "Dendrobium", "inflammation", "digestive tract", and "polysaccharide" were used as search terms to screen the literature. The therapeutic use of Dendrobium related to digestive tract diseases relative to known polysaccharides and other bioactive compounds were derived from online databases, including Web of Science, PubMed, Elsevier, Science Direct, and China National Knowledge Infrastructure, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS To better capitalize upon Dendrobium for preventing and treating diseases related to digestive tract, this review summarizes bioactives in Dendrobium reported of potential in digestive tract diseases management and their underlying action mechanisms. Studies revealed that Dendrobium encompasses diverse classes including polysaccharides, phenolics, alkaloids, bibenzyls, coumarins, phenanthrene and steroids, with polysaccharide as the major class. Dendrobium exerts various health effects on a variety of disease related to the digestive tract. Action mechanisms involve antioxidant, anti-inflammatory, anti-apoptotic, antioxidant, anticancer, alongside the regulation of some key signaling pathways. CONCLUSION Overall, Dendrobium appears as a promising TCM source of bioactives that has the potential to be further developed into nutraceuticals for digestive tract diseases compared to current drug treatments. This review highlights for Dendrobium potential effects with future perspectives for needed future research to maximize the use of bioactive compounds from Dendrobium for digestive tract disease treatment. A compile of Dendrobium bioactives is also presented alongside methods for their extraction and enrichment for potential incorporation in nutraceuticals.
Collapse
Affiliation(s)
- Wenjun Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Zhejiang, Shaoxing 312000, China
| | - Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Zhejiang, Shaoxing 312000, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo, Egypt
| | - Zhenhao Li
- Zhejiang ShouXianGu Botanical Drug Institute Co., Ltd., Zhejiang Hangzhou 321200 China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Eco-Industrial Innovation Institute ZJUT, Zhejiang, Quzhou 324000, China.
| |
Collapse
|
4
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Warechowska M, Anders A, Warechowski J, Bramowicz M, Markowska-Mendik A, Rejmer W, Tyburski J, Kulesza S. The endosperm microstructure, physical, thermal properties and specific milling energy of spelt (Triticum aestivum ssp. spelta) grain and flour. Sci Rep 2023; 13:3629. [PMID: 36869096 PMCID: PMC9984367 DOI: 10.1038/s41598-023-30285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Previous research has shown that the endosperm microstructure and physical properties of grain have significance in grain processing and in the development of processing machines. The aim of our study was to analyze the endosperm microstructure, physical, thermal properties, and specific milling energy of organic spelt (Triticum aestivum ssp. spelta) grain and flour. Image analysis combined with fractal analysis was used to describe the microstructural differences of the endosperm of spelt grain. The endosperm morphology of spelt kernels was monofractal, isotropic, and complex. A higher proportion of Type-A starch granules resulted in an increased proportion of voids and interphase boundaries in the endosperm. Changes in the fractal dimension were correlated with kernel hardness, specific milling energy, the particle size distribution of flour, and the starch damage rate. Spelt cultivars varied in size and shape of the kernels. Kernel hardness was a property that differentiated specific milling energy, particle size distribution of flour, and starch damage rate. Fractal analysis may be considered as a useful tool for evaluating milling processes in the future.
Collapse
Affiliation(s)
- Małgorzata Warechowska
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| | - Andrzej Anders
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| | - Józef Warechowski
- Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 7, 10-719, Olsztyn, Poland.
| | - Mirosław Bramowicz
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| | - Agnieszka Markowska-Mendik
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| | - Wojciech Rejmer
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| | - Józef Tyburski
- Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-719, Olsztyn, Poland
| | - Sławomir Kulesza
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| |
Collapse
|
6
|
Incorporating acetylated starch regulates the structure and sol-gel performance of wheat starch-based binary system. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
Production and Characterization of Durvillaea antarctica Enzyme Extract for Antioxidant and Anti-Metabolic Syndrome Effects. Catalysts 2022. [DOI: 10.3390/catal12101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, three enzyme hydrolysate termed Dur-A, Dur-B, and Dur-C, were produced from Durvillaea antarctica biomass using viscozyme, cellulase, and α-amylase, respectively. Dur-A, Dur-B, and Dur-C, exhibited fucose-containing sulfated polysaccharide from chemical composition determination and characterization by FTIR analyses. In addition, Dur-A, Dur-B, and Dur-C, had high extraction yields and low molecular weights. All extracts determined to have antioxidant activities by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt), and ferrous ion-chelating methods. All extracts were also able to positively suppress the activities of key enzymes involved in metabolic syndrome: angiotensin I-converting enzyme (ACE), α-amylase, α-glucosidase, and pancreatic lipase. In general, Dur-B exhibited higher antioxidant and higher anti-metabolic syndrome effects as compared to the other two extracts. Based on the above health promoting properties, these extracts (especially Dur-B) can be used as potential natural antioxidants and natural anti-metabolic syndrome agents in a variety of food, cosmetic, and nutraceutical products for health applications.
Collapse
|
8
|
Qiu Z, Qiao Y, Zhang B, Sun-Waterhouse D, Zheng Z. Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships. Compr Rev Food Sci Food Saf 2022; 21:3033-3095. [PMID: 35765769 DOI: 10.1111/1541-4337.12972] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
Garlic is a common food, and many of its biological functions are attributed to its components including functional carbohydrates. Garlic polysaccharides and oligosaccharides as main components are understudied but have future value due to the growing demand for bioactive polysaccharides/oligosaccharides from natural sources. Garlic polysaccharides have molecular weights of 1 × 103 to 2 × 106 Da, containing small amounts of pectins and fructooligosaccharides and large amounts of inulin-type fructans ((2→1)-linked β-d-Fruf backbones alone or with attached (2→6)-linked β-d-Fruf branched chains). This article provides a detailed review of research progress and identifies knowledge gaps in extraction, production, composition, molecular characteristics, structural features, physicochemical properties, bioactivities, and structure-function relationships of garlic polysaccharides/oligosaccharides. Whether the extraction processes, synthesis approaches, and modification methods established for other non-garlic polysaccharides are also effective for garlic polysaccharides/oligosaccharides (to preserve their desired molecular structures and bioactivities) requires verification. The metabolic processes of ingested garlic polysaccharides/oligosaccharides (as food ingredients/dietary supplements), their modes of action in healthy humans or populations with chronic conditions, and molecular/chain organization-bioactivity relationships remain unclear. Future research directions related to garlic polysaccharides/oligosaccharides are discussed.
Collapse
Affiliation(s)
- Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yiteng Qiao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
9
|
Wei H, Wang Y, Li W, Qiu Y, Hua C, Zhang Y, Guo Z, Xie Z. Immunomodulatory activity and active mechanisms of a low molecular polysaccharide isolated from Lanzhou lily bulbs in RAW264.7 macrophages. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Guo X, Liu S, Wang Z, Zhang G. Ultrasonic-assisted extraction of polysaccharide from Dendrobium officinale: Kinetics, thermodynamics and optimization. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Liu Y, Liu Z, Zhu X, Hu X, Zhang H, Guo Q, Yada RY, Cui SW. Seed coat mucilages: Structural, functional/bioactive properties, and genetic information. Compr Rev Food Sci Food Saf 2021; 20:2534-2559. [PMID: 33836113 DOI: 10.1111/1541-4337.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Seed coat mucilages are mainly polysaccharides covering the outer layer of the seeds to facilitate seed hydration and germination, thereby improving seedling emergence and reducing seedling mortality. Four types of polysaccharides are found in mucilages including xylan, pectin, glucomannan, and cellulose. Recently, mucilages from flaxseed, yellow mustard seed, chia seed, and so on, have been used extensively in the areas of food, pharmaceutical, and cosmetics contributing to stability, texture, and appearance. This review, for the first time, addresses the similarities and differences in physicochemical properties, molecular structure, and functional/bioactive properties of mucilages among different sources; highlights their structure and function relationships; and systematically summarizes the related genetic information, aiming with the intent to explore the potential functions thereby extending their future industrial applications.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenfei Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xuerui Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steve W Cui
- Guelph Research and Development Centre, Agri- and Agri-food Canada, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Dong JL, Yang M, Zhu YY, Shen RL, Zhang KY. Comparative study of thermal processing on the physicochemical properties and prebiotic effects of the oat β-glucan by in vitro human fecal microbiota fermentation. Food Res Int 2020; 138:109818. [DOI: 10.1016/j.foodres.2020.109818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023]
|
13
|
Chen N, Zhang H, Zong X, Li S, Wang J, Wang Y, Jin M. Polysaccharides from Auricularia auricula: Preparation, structural features and biological activities. Carbohydr Polym 2020; 247:116750. [DOI: 10.1016/j.carbpol.2020.116750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
14
|
Huang TY, Huang MY, Tsai CK, Su WT. Phosphorylation of levan by microwave-assisted synthesis enhanced anticancer ability. J Biosci Bioeng 2020; 131:98-106. [PMID: 32962963 DOI: 10.1016/j.jbiosc.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 12/23/2022]
Abstract
Levan is an exopolysaccharide produced by Bacillus licheniformis (strain FRI MY-55) that shows promising pharmacological activity. Phosphorylation is a chemical modification that can increase the biological and antioxidant properties of levan. In this study, levan was phosphorylated by microwave-assisted synthesis to achieve a degree of substitution of 0.29. The hydroxyl radical scavenging activity of microwave-assisted phosphorylated levan (microwave P) increased significantly (6-fold) over native levan; this activity was only slightly lower than vitamin C. Other free radical scavenging and reducing power tests revealed that Microwave P activity was increased by 30-40%. Microwave P inhibited the proliferation of HCT-116 and A549 cancer cell lines more readily than native levan with an IC50 of 1.03 mg/mL and 1.38 mg/mL for HCT-116 and A549 cells, respectively. Cells treated with native levan and its derivatives remained in the sub-G1 phase according to cell cycle analysis, whereas Microwave P treatment increased the proportion of cells undergoing apoptosis. Furthermore, Microwave P effectively upregulated pro-apoptosis marker Bax and downregulated anti-apoptosis marker Bcl-2, in addition to inducing the expression of caspase-9 and caspase-3. These findings show that levan phosphorylated via microwave-assisted synthesis showed increased antioxidant and antitumor activity over native levan or levan phosphorylated via traditional long-term heating. In particular, Microwave P possesses antiproliferative activity and can induce apoptosis through mitochondrial pathways in cancerous cells.
Collapse
Affiliation(s)
- Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Mei-Ying Huang
- Fisheries Research Institute, Council of Agriculture, Keelung 20246, Taiwan
| | - Chung-Kang Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
15
|
Chain conformation of an acidic polysaccharide from green tea and related mechanism of α-amylase inhibitory activity. Int J Biol Macromol 2020; 164:1124-1132. [PMID: 32682045 DOI: 10.1016/j.ijbiomac.2020.07.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022]
Abstract
An acidic tea polysaccharide (TPSA) isolated from green tea was fractionated using a precipitation-fractionation method into seven fractions with different molecular weights. TPSA was characterized as a hyperbranched polysaccharide with a globular homogeneous conformation by analysis of solution parameters of each fraction using static light scattering and viscosity analyses. Observation by transmission electron microscopy confirmed that TPSA occurred as globular homogeneous particles with size in the range of 20-40 nm. To simulate the branched chain segments of TPSA, four model molecules were designed based on chemical structure of TPSA. Molecular docking analysis indicated that the branched chain segments of TPSA similar to the TPSA-4 model molecule showed preferential binding to α-amylase to form the TPSA/α-amylase complex through hydrogen bonding interactions. Circular dichroism spectroscopy showed that the structure of α-amylase was not significantly affected by TPSA. The mechanism of α-amylase inhibitory activity of TPSA was simulated by molecular docking analysis. The branched chain segments of TPSA similar to the TPSA-4 model molecule likely act as a potential competitor to the starch substrate to inhibit the activity of α-amylase.
Collapse
|
16
|
Qin X, Li R, Zhu S, Hu J, Zeng X, Zhang X, Xu H, Kong W, Liang J, Zhang H, Zhang J, Wang J. A comparative study of sulfated tara gum: RSM optimization and structural characterization. Int J Biol Macromol 2020; 150:189-199. [PMID: 32050084 DOI: 10.1016/j.ijbiomac.2020.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/01/2023]
Abstract
Interest in galactomannans and its derivatives as a functional health supplement is growing based on physicochemical properties. In this work, the optimized conditions of sulfated tara gum (STG) with a maximum DS of 0.66 by box-behnken design (BBD) were obtained as following: ratio of chlorosulfonic acid/pyridine 3:1, reaction time 4 h and reaction temperature 40 °C. The structure features of STG such as the degree of substitution (DS), substitution position, weight average molar mass (MW), monosaccharide components and chain conformation were investigated. Decreasing of MW, the increasing of Z-average radius of gyration (〈S2〉Z1/2) and specific volume for gyration (SVg) were obtained by SEC-MALLS. In addition, the structural properties of four sulfated galactomannans were comparatively investigated and analyzed based on our earlier reports of sulfated fenugreek gum, guar gum and locust bean gum. A conclusion was drown that higher galactose branch could enhance steric hindrance, which was inferred as one of the significant factors for the derivatization efficiency, thus affecting the DS, MW and conformational transition of sulfated galactomannans. This study will provide valuable information for further research on the comparison of bioactivities and medical application of galactomannans family.
Collapse
Affiliation(s)
- Xiaojie Qin
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Rui Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Shengyong Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Jiahuan Hu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaorong Zeng
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoyue Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Hairong Xu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Weibao Kong
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center For Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Junyu Liang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center For Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center For Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center For Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Junlong Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center For Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
17
|
Zhang D, Lin Z, Lei W, Zhong G. Synergistic effects of acetylated distarch adipate and sesbania gum on gelatinization and retrogradation of wheat starch. Int J Biol Macromol 2020; 156:171-179. [PMID: 32251753 DOI: 10.1016/j.ijbiomac.2020.03.256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023]
Abstract
The synergistic effects of the combination of acetylated distarch adipate and sesbania gum (C-ADA-SG) with the ratio of 5:0, 4:1, 2.5:2.5, 1:4, 0:5, accounting for 5% (w/w) of the starch on gelatinization and retrogradation properties of wheat starch (WS) were studied. Scanning Electron Microscopy (SEM) showed that the microstructure of gelatinized WASs (WS added with C-ADA-SG) tended to be smoother. Based on the results of Rapid Visco-Analyzer (RVA) and Differential Scanning Calorimetry (DSC), the pasting characteristics of WS were affected and the gelatinization process was retarded by C-ADA-SG. After seven-day storage at 4 °C, compared to WS, the gel firmness, syneresis, retrogradation enthalpy, and the relative crystallinity of WASs clearly decreased by 17.47-44.36 g, 11.16-17.93%, 0.22-0.80 J·g-1, and 4.06-8.61%, respectively. However, the band ratio 1639:1157 cm-1 by FTIR and loss tangent (tan δ) value were increased with C-ADA-SG addition. Meanwhile, X-Ray Diffraction (XRD) reflected that native WS showed A-type crystal structure, which transferred to B + V type after retrogradation. Furthermore, Low-Field Nuclear Magnetic Resonance (LF-NMR) declared that C-ADA-SG increased the water mobility and limited the diffusion and seepage of water during storage. Generally, ADA and SG produced a synergistic effect on retarding the gelatinization and retrogradation of WS.
Collapse
Affiliation(s)
- Dongxia Zhang
- College of Food Science, Southwest University, No. 2 Tiansheng Street, Chongqing 400715, PR China
| | - Zhitong Lin
- College of Food Science, Southwest University, No. 2 Tiansheng Street, Chongqing 400715, PR China
| | - Wen Lei
- College of Food Science, Southwest University, No. 2 Tiansheng Street, Chongqing 400715, PR China
| | - Geng Zhong
- College of Food Science, Southwest University, No. 2 Tiansheng Street, Chongqing 400715, PR China.
| |
Collapse
|
18
|
Abstract
Β-glucan is a strongly hydrophilic non-starchy polysaccharide, which, when incorporated in food, is renowned for its ability to alter functional characteristics such as viscosity, rheology, texture, and sensory properties of the food product. The functional properties of β-glucans are directly linked to their origin/source, molecular weight, and structural features. The molecular weight and structural/conformational features are in turn influenced by method of extraction and modification of the β-glucan. For example, whereas physical modification techniques influence only the spatial structures, modification by chemical agents, enzyme hydrolysis, mechanical treatment, and irradiation affect both spatial conformation and primary structures of β-glucan. Consequently, β-glucan can be modified (via one or more of the aforementioned techniques) into forms that have desired morphological, rheological, and (bio)functional properties. This review describes how various modification techniques affect the structure, properties, and applications of β-glucans in the food industry.
Collapse
|
19
|
Al-Dhabi NA, Ponmurugan K. Microwave assisted extraction and characterization of polysaccharide from waste jamun fruit seeds. Int J Biol Macromol 2019; 152:1157-1163. [PMID: 31751731 DOI: 10.1016/j.ijbiomac.2019.10.204] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
The intention of current work is to recover/extract polysaccharide from jamun fruit seeds (waste) by microwave assisted solid-liquid extraction (MAE) technique using four-factor (microwave power (MWP), pH, time (MWT) and solid to liquid (SL) ratio) five-level central composite rotatable experimental design (CCRED). The observed data was evaluated by statistically and a mathematical model (polynomial) was developed to predict the polysaccharide yield. Numerical optimization technique is used to attain the ideal optimal condition (microwave power of 515 w, pH of 3.2, MWT of 3.1 min and SL ratio of 1:15 g/ml) to retrieve maximal yield of polysaccharide and attained optimal condition was experimentally validated. The experimental yield of polysaccharide (4.71 ± 0.02%) was matched with predicted value (4.72%). Physico-chemical properties of the polysaccharide extracted at optimal condition was investigated. Fourier Transform Infrared Spectroscopy (FTIR) evaluation were carried out in this study to characterize the polysaccharide. Scanning Electron Microscopy (SEM) was also utilized to reveal the morphology of raw and extracted plant sample.
Collapse
Affiliation(s)
- Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia
| | - K Ponmurugan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
20
|
Du B, Meenu M, Liu H, Xu B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int J Mol Sci 2019; 20:E4032. [PMID: 31426608 PMCID: PMC6720260 DOI: 10.3390/ijms20164032] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
β-glucan is a non-starch soluble polysaccharide widely present in yeast, mushrooms, bacteria, algae, barley, and oat. β-Glucan is regarded as a functional food ingredient due to its various health benefits. The high molecular weight (Mw) and high viscosity of β-glucan are responsible for its hypocholesterolemic and hypoglycemic properties. Thus, β-glucan is also used in the food industry for the production of functional food products. The inherent gel-forming property and high viscosity of β-glucan lead to the production of low-fat foods with improved textural properties. Various studies have reported the relationship between the molecular structure of β-glucan and its functionality. The structural characteristics of β-glucan, including specific glycosidic linkages, monosaccharide compositions, Mw, and chain conformation, were reported to affect its physiochemical and biological properties. Researchers have also reported some chemical, physical, and enzymatic treatments can successfully alter the molecular structure and functionalities of β-glucan. This review article attempts to review the available literature on the relationship of the molecular structure of β-glucan with its functionalities, and future perspectives in this area.
Collapse
Affiliation(s)
- Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Maninder Meenu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Hongzhi Liu
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
21
|
Zhu H, Liu C, Hou J, Long H, Wang B, Guo D, Lei M, Wu W. Gastrodia elata Blume Polysaccharides: A Review of Their Acquisition, Analysis, Modification, and Pharmacological Activities. Molecules 2019; 24:E2436. [PMID: 31269719 PMCID: PMC6651794 DOI: 10.3390/molecules24132436] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 06/26/2019] [Indexed: 01/02/2023] Open
Abstract
Gastrodia elata Blume (G. elata) is a valuable Traditional Chinese Medicine (TCM) with a wide range of clinical applications. G. elata polysaccharides, as one of the main active ingredients of G. elata, have interesting extraction, purification, qualitative analysis, quantitative analysis, derivatization, and pharmacological activity aspects, yet a review of G. elata polysaccharides has not yet been published. Based on this, this article summarizes the progress of G. elata polysaccharides in terms of the above aspects to provide a basis for their further research and development.
Collapse
Affiliation(s)
- Haodong Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De'an Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Nikitina O, Cherno N, Ozolina S. Features of the hemicellulose structure of some species of regional raw materials and products of their enzymatic hydrolysis. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.15673/fst.v12i3.1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nowadays, it is recognized that a lot of polysaccharides are biologically active. It is well known that these biomolecules show the highest level of their activity if they are water-soluble preparations, their molecular weight being 15–25 kDa, and if they preserve the supramolecular structure of carbohydrates. Basing on the fact that β-glucans of mushrooms are characterized by the antitumor, anticoagulant, anti-inflammatory, and immunomodulatory activities, it is important to determine whether regional raw material contains polysaccharides of a similar structure, and to define the conditions for their fragmentation to obtain products with a given molecular weight. The purpose of the work was to characterize the features of the structure of the hemicellulose complex of the Agaricus bisporous and Pleurotus ostreatus and products of their limited enzymatic hydrolysis. To determine the primary structure of hemicellulose polysaccharides, the 1H-NMR spectra of the samples were registered. It has been shown that β-D-(1→3)/β-(1→6)-glucan dominates in the hemicellulose of Pleurotus ostreatus. Among the hemicelluloses in the Agaricus bisporis, the main polysaccharide was galactoglucan. Its main chain consisted of β-D-glucopyranose residues interconnected with (1→3)-glucosidic bonds. The positions of O-6 monosaccharide are joined by the side branches in the form of β-D-glucopyranoses and the terminal residues of β-D-galactopyranoses. The hemicelluloses of Pleurotus ostreatus also contain manogalactan. Complexes of hemicelluloses of both types of mushrooms contain linear α-(1→3)-glucan in small quantities. It has been studied how the molecular-weight distribution of products of limited hydrolysis of hemicelluloses depends on the conditions of their treatment with the enzyme with β-(1→3)-glucanase activity. The maximum accumulation of a fraction with a given molecular weight of 15–25 kDa was observed at a ratio of E:S = 1:45 and treatment time of 21 hours. A specific reaction with congo red has proved there is a triple helical conformation of the main chain of the polysaccharide for this fraction of carbohydrates, so the supramolecular structure of the molecule is preserved.
Collapse
|
23
|
He L, Yan X, Liang J, Li S, He H, Xiong Q, Lai X, Hou S, Huang S. Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem. Carbohydr Polym 2018; 198:101-108. [DOI: 10.1016/j.carbpol.2018.06.073] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/02/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
|
24
|
Lu X, Zheng Z, Li H, Cao R, Zheng Y, Yu H, Xiao J, Miao S, Zheng B. Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. INDUSTRIAL CROPS AND PRODUCTS 2017. [DOI: 10.1016/j.indcrop.2017.05.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Wang Q, Sheng X, Shi A, Hu H, Yang Y, Liu L, Fei L, Liu H. β-Glucans: Relationships between Modification, Conformation and Functional Activities. Molecules 2017; 22:E257. [PMID: 28208790 PMCID: PMC6155770 DOI: 10.3390/molecules22020257] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/17/2017] [Indexed: 11/27/2022] Open
Abstract
β-glucan is a type of polysaccharide which widely exists in bacteria, fungi, algae, and plants, and has been well known for its biological activities such as enhancing immunity, antitumor, antibacterial, antiviral, and wound healing activities. The conformation of β-glucan plays a crucial role on its biological activities. Therefore, β-glucans obtained from different sources, while sharing the same basic structures, often show different bioactivities. The basic structure and inter-molecular forces of polysaccharides can be changed by modification, which leads to the conformational transformation in solution that can directly affect bioactivity. In this review, we will first determine different ways to modify β-glucan molecules including physical methods, chemical methods, and biological methods, and then reveal the relationship of the flexible helix form of the molecule chain and the helix conformation to their bioactivities. Last, we summarize the scientific challenges to modifying β-glucan's conformation and functional activity, and discuss its potential future development.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Xiaojing Sheng
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Ying Yang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Li Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Ling Fei
- Cornell University, Robert Frederick Smith School of Chemical and Biomolecular Engineering, Ithaca, NY 14850, USA.
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Akram K, Shahbaz HM, Kim GR, Farooq U, Kwon JH. Improved Extraction and Quality Characterization of Water-Soluble Polysaccharide from Gamma-IrradiatedLentinus edodes. J Food Sci 2017; 82:296-303. [DOI: 10.1111/1750-3841.13590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/31/2016] [Accepted: 11/30/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Kashif Akram
- School of Food Science & Biotechnology; Kyungpook Natl. Univ.; Daegu 702-701 Republic of Korea
- Inst. of Food Science & Nutrition; Bahauddin Zakariya Univ.; Multan Pakistan
| | - Hafiz Muhammad Shahbaz
- School of Food Science & Biotechnology; Kyungpook Natl. Univ.; Daegu 702-701 Republic of Korea
- Dept. of Biotechnology; Yonsei Univ.; Seoul 03722 Republic of Korea
| | - Gui-Ran Kim
- School of Food Science & Biotechnology; Kyungpook Natl. Univ.; Daegu 702-701 Republic of Korea
| | - Umar Farooq
- Inst. of Food Science & Nutrition; Bahauddin Zakariya Univ.; Multan Pakistan
- Inst. of Food Science & Nutrition; Univ. of Sargodha; Sargodha 40100 Pakistan
| | - Joong-Ho Kwon
- School of Food Science & Biotechnology; Kyungpook Natl. Univ.; Daegu 702-701 Republic of Korea
| |
Collapse
|
27
|
Li S, Dai S, Shah NP. Sulfonation and Antioxidative Evaluation of Polysaccharides from Pleurotus Mushroom and Streptococcus thermophilus Bacteria: A Review. Compr Rev Food Sci Food Saf 2017; 16:282-294. [PMID: 33371533 DOI: 10.1111/1541-4337.12252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/29/2022]
Abstract
Human beings are equipped with antioxidant defense systems to neutralize free radicals as free radicals could damage macromolecules, subsequently resulting in serious diseases. Researchers have been attracted to search for potential natural antioxidants to reduce oxidative damage. Pleurotus and Streptococcus thermophilus have been chosen as sources of sustainable bioactive compounds that have been consumed for thousands of years. Polysaccharides are important bioactive components produced by Pleurotus mushrooms and Streptococcus thermophilus bacteria. Additionally, there is a continued interest in sulfonation of crude polysaccharides from both sources, since sulfonation has been found to improve or create new bioactive properties in polysaccharides. Both crude and sulfated polysaccharides with good antioxidant capacities have great potential for the further development as commercial products. This review focuses on characterization, sulfonation methods, and antioxidant capacity evaluations of polysaccharides from Pleurotus and S. thermophilus. Common antioxidant capacity assays, including the mechanisms underlying each assay, and various experimental procedures are also discussed.
Collapse
Affiliation(s)
- Siqian Li
- Food and Nutritional Science, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Rd., Hong Kong
| | - Shuhong Dai
- Food and Nutritional Science, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Rd., Hong Kong
| | - Nagendra Prasad Shah
- Food and Nutritional Science, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Rd., Hong Kong
| |
Collapse
|
28
|
Ahmad M, Gani A, Shah A, Gani A, Masoodi F. Germination and microwave processing of barley ( Hordeum vulgare L ) changes the structural and physicochemical properties of β- d -glucan & enhances its antioxidant potential. Carbohydr Polym 2016; 153:696-702. [DOI: 10.1016/j.carbpol.2016.07.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/25/2023]
|
29
|
Chen L, Liu X, Wong KH. Novel nanoparticle materials for drug/food delivery-polysaccharides. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Jin Y, Yang N, Tong Q, Jin Z, Xu X. Rotary magnetic field combined with pipe fluid technique for efficient extraction of pumpkin polysaccharides. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Li S, Xiong Q, Lai X, Li X, Wan M, Zhang J, Yan Y, Cao M, Lu L, Guan J, Zhang D, Lin Y. Molecular Modification of Polysaccharides and Resulting Bioactivities. Compr Rev Food Sci Food Saf 2015; 15:237-250. [DOI: 10.1111/1541-4337.12161] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Shijie Li
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
- Affiliated Huaian Hospital; Xuzhou Medical College; Huaian 223002 Jiangsu PR China
| | - Qingping Xiong
- College of Life Science and Chemical Engineering; Huaiyin Inst. of Technology; Huaian 223003 Jiangsu PR China
| | - Xiaoping Lai
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
- Research Inst. of Mathematical Engineering; Guangzhou Univ. of Chinese Medicine in Dongguan; Dongguan 523808 Guangdong PR China
| | - Xia Li
- College of Life Science and Chemical Engineering; Huaiyin Inst. of Technology; Huaian 223003 Jiangsu PR China
| | - Mianjie Wan
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Jingnian Zhang
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Yajuan Yan
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Man Cao
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Lun Lu
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Jiemin Guan
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
- Research Inst. of Mathematical Engineering; Guangzhou Univ. of Chinese Medicine in Dongguan; Dongguan 523808 Guangdong PR China
| | - Danyan Zhang
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Ying Lin
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| |
Collapse
|
32
|
Chen R, Jin C, Tong Z, Lu J, Tan L, Tian L, Chang Q. Optimization extraction, characterization and antioxidant activities of pectic polysaccharide from tangerine peels. Carbohydr Polym 2015; 136:187-97. [PMID: 26572345 DOI: 10.1016/j.carbpol.2015.09.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 01/22/2023]
Abstract
Response surface methodology (RSM) was employed to optimize the microwave-assisted extraction (MAE) process of pectic polysaccharide (TPPs) from tangerines peel. The optimal extraction conditions were as follows: microwave power 704 W, extraction temperature 52.2 °C, and extraction time 41.8 min Under these conditions, the experimental yield was 19.9 ± 0.2%. The purified pectic polysaccharide TPPs-2-1 was successfully obtained by anion-exchange and gel filtration chromatography. TPPs-2-1, linked mainly by α-glycosidic bonds, consisted of galacturonic acid (GalA), arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc) and mannose (Man) with the average molecular weight of 17.8 kDa, and had typical IR spectra characteristic of pectic polysaccharides. Antioxidant activities were investigated on the basis of ferric-reducing antioxidant power (FRAP), hydroxyl radical (OH), 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and superoxide radical (O2(-)) scavenging assay. TPPs-2-1 exhibited significant antioxidant activity in a concentration-dependent manner and might be exploited as effective natural antioxidant applied in functional food and medicine.
Collapse
Affiliation(s)
- Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Chenguang Jin
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhigang Tong
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tan
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Qingquan Chang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
33
|
Huang C, Miao M, Janaswamy S, Hamaker BR, Li X, Jiang B. Polysaccharide Modification through Green Technology: Role of Endodextranase in Improving the Physicochemical Properties of (1→3)(1→6)-α-D-Glucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6450-6456. [PMID: 26134382 DOI: 10.1021/acs.jafc.5b00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structure and properties of bioengineered (1→3)(1→6)-α-D-glucan subjected to endodextranase treatment were investigated. Upon enzyme treatment, OD220 and Mw decreased substantially during the first 60 min and thereafter slowed as the modification progressed. Compared to the native glucan, the modified sample solution had a lighter opalescent, bluish-white color. The morphological analysis revealed that bioengineered glucan produced quite a few small particles after hydrolysis. The molecular weight distribution curve gradually shifted to the low Mw region with a significant broadening distribution, and the chain hydrolysis reaction followed a combination of zeroth- and first-order processes. The NMR results showed some specific α-1,6 linkages of glucan chains were cleaved with enzyme treatment. The viscosity of modified glucan solution was markedly reduced, and the Newtonian plateaus were also observed at high shear rates (10-100 1/s). The above results suggested that the modified (1→3)(1→6)-α-D-glucan showed a tailor-made solution character similar to that of arabic gum and would be used as a novel food gum substitute in the design of artificial carbohydrate-based foods.
Collapse
Affiliation(s)
| | | | - Srinivas Janaswamy
- §Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47907-2009, United States
| | - Bruce R Hamaker
- §Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47907-2009, United States
| | - Xingfeng Li
- #College of Bioscience and Bioengineering, Hebei University of Science and Technology, 70 Yuhuadonglu, Shijiazhuang, Hebei 050018, People's Republic of China
| | | |
Collapse
|
34
|
Microwave-assisted extraction of pectic polysaccharide from waste mango peel. Carbohydr Polym 2015; 123:67-71. [DOI: 10.1016/j.carbpol.2014.11.072] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/06/2014] [Accepted: 11/29/2014] [Indexed: 11/23/2022]
|
35
|
Pan D, Wang L, Chen C, Hu B, Zhou P. Isolation and characterization of a hyperbranched proteoglycan from Ganoderma Lucidum for anti-diabetes. Carbohydr Polym 2015; 117:106-114. [DOI: 10.1016/j.carbpol.2014.09.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/25/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
|
36
|
Optimization of reaction conditions by RSM and structure characterization of sulfated locust bean gum. Carbohydr Polym 2014; 114:375-383. [DOI: 10.1016/j.carbpol.2014.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 11/18/2022]
|
37
|
Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods. Carbohydr Polym 2014; 114:432-439. [DOI: 10.1016/j.carbpol.2014.08.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
38
|
Wang J, Yang T, Tian J, Zeng T, Wang X, Yao J, Zhang J, Lei Z. Synthesis and characterization of phosphorylated galactomannan: The effect of DS on solution conformation and antioxidant activities. Carbohydr Polym 2014; 113:325-35. [DOI: 10.1016/j.carbpol.2014.07.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
|
39
|
Huang F, Guo Y, Zhang R, Yi Y, Deng Y, Su D, Zhang M. Effects of drying methods on physicochemical and immunomodulatory properties of polysaccharide-protein complexes from litchi pulp. Molecules 2014; 19:12760-76. [PMID: 25140451 PMCID: PMC6271374 DOI: 10.3390/molecules190812760] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/09/2014] [Accepted: 08/14/2014] [Indexed: 11/23/2022] Open
Abstract
Dried litchi pulp has been used in traditional remedies in China for many years to treat various diseases, and the therapeutic activity has been, at least partly, attributed to the presence of bioactive polysaccharides. Polysaccharide-protein complexes from vacuum freeze-(VF), vacuum microwave-(VM) and heat pump (HP) dried litchi pulp, which were coded as LP-VF, LP-VM and LP-HP, were comparatively studied on the physicochemical and immunomodulatory properties. LP-HP had a predominance of galactose, while glucose was the major sugar component in LP-VF and LP-VM. Compared with LP-VF and LP-VM, LP-HP contained more aspartate and glutamic in binding protein. LP-HP also exhibited a stronger stimulatory effect on splenocyte proliferation at 200 μg/mL and triggered higher NO, TNF-α and IL-6 secretion from RAW264.7 macrophages. Different drying methods caused the difference in physicochemical properties of polysaccharide-protein complexes from dried litchi pulp, which resulted in significantly different immunomodulatory activity. HP drying appears to be the best method for preparing litchi pulp to improve its immunomodulatory properties.
Collapse
Affiliation(s)
- Fei Huang
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yajuan Guo
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruifen Zhang
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanyuan Deng
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Dongxiao Su
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingwei Zhang
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| |
Collapse
|
40
|
Wang J, Niu S, Zhao B, Luo T, Liu D, Zhang J. Catalytic synthesis of sulfated polysaccharides. II: Comparative studies of solution conformation and antioxidant activities. Carbohydr Polym 2014; 107:221-31. [DOI: 10.1016/j.carbpol.2014.02.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 11/26/2022]
|
41
|
Cell wall structure of mushroom sclerotium (Pleurotus tuber-regium): Part 2. Fine structure of a novel alkali-soluble hyper-branched cell wall polysaccharide. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
42
|
Zhao T, Mao G, Zhang M, Feng W, Mao R, Zhu Y, Gu X, Li Q, Yang L, Wu X. Structure analysis of a bioactive heteropolysaccharide from Schisandra chinensis (Turcz.) Baill. Carbohydr Polym 2014; 103:488-95. [DOI: 10.1016/j.carbpol.2013.12.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
43
|
Yi Y, Huang F, Zhang MW, Zhang RF, Deng YY, Wei ZC, He JR. Solution properties and in vitro anti-tumor activities of polysaccharides from longan pulp. Molecules 2013; 18:11601-13. [PMID: 24051475 PMCID: PMC6270385 DOI: 10.3390/molecules180911601] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/28/2013] [Accepted: 09/11/2013] [Indexed: 11/21/2022] Open
Abstract
The solution properties of four fractions (LPI-IV) from crude longan pulp polysaccharides (LP3) were analyzed by size-exclusion chromatography combined with laser light scattering, viscometry, complex formation with Congo red, and atomic force microscopy. Their radii of gyration (z)(½) were 43.3, 62.6, 43.2 and 77.3 nm, exponents of (z)(½) = k M(w)(v) were 0.04, 0.50, 0.52 and 0.02, and intrinsic viscosities ([η]) were 9.945, 25.38, 308.2 and 452.1 mL/g, respectively. Moreover, the dependence of [η] on M(w) was established to be [η] = 5.3 × 10⁻²M(w)⁰·⁶¹ (mL/g). LPI had both a sphere-like conformation and a triple-helix structure, and LPII-IV existed as flexible chains. LP3, LPI, LPII and LPIII all exhibited direct inhibitory effects on A549, HeLa and HepG2 cells in a positive dose-dependent manner in the range of 50-400 µg/mL. The activities of LPIII, especially the inhibition of HepG2 cell proliferation, were stronger than those of others, which may be partly related to its flexible conformation. The present results support the cancer therapeutic potential of longan polysaccharides.
Collapse
Affiliation(s)
- Yang Yi
- Key Laboratory of Functional Food, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fei Huang
- Key Laboratory of Functional Food, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Ming-Wei Zhang
- Key Laboratory of Functional Food, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Rui-Fen Zhang
- Key Laboratory of Functional Food, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Yuan-Yuan Deng
- Key Laboratory of Functional Food, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Zhen-Cheng Wei
- Key Laboratory of Functional Food, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Jing-Ren He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
44
|
Hu JL, Nie SP, Li C, Fu ZH, Xie MY. Microbial short-chain fatty acid production and extracellular enzymes activities during in vitro fermentation of polysaccharides from the seeds of Plantago asiatica L. treated with microwave irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6092-6101. [PMID: 23738978 DOI: 10.1021/jf401877j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Effects of microwave irradiation on microbial short-chain fatty acid production and the activites of extracellular enzymes during in vitro fermentation of the polysaccharide from Plantago asiatica L. were investigated in this study. It was found that the apparent viscosity, average molecular weight, and particle size of the polysaccharide decreased after microwave irradiation. Reducing sugar amount increased with molecular weight decrease, suggesting the degradation may derive from glycosidic bond rupture. The polysaccharide surface topography was changed from large flakelike structure to smaller chips. FT-IR showed that microwave irradiation did not alter the primary functional groups in the polysaccharide. However, short-chain fatty acid productions of the polysaccharide during in vitro fermentation significantly increased after microwave irradiation. Activities of microbial extracellular enzymes xylanase, arabinofuranosidase, xylosidase, and glucuronidase in fermentation cultures supplemented with microwave irradiation treated polysaccharide were also generally higher than those of untreated polysaccharide. This showed that microwave irradiation could be a promising degradation method for the production of value-added polysaccharides.
Collapse
Affiliation(s)
- Jie-Lun Hu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | | | | | | | | |
Collapse
|
45
|
Utrilla-Coello R, Bello-Pérez L, Vernon-Carter E, Rodriguez E, Alvarez-Ramirez J. Microstructure of retrograded starch: Quantification from lacunarity analysis of SEM micrographs. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.01.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Bushra M, Xu XY, Pan SY. Microwave assisted acetylation of mung bean starch and the catalytic activity of potassium carbonate in free-solvent reaction. STARCH-STARKE 2012. [DOI: 10.1002/star.201200081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Wang J, Zhao B, Wang X, Zhang J. Preparation and characterization of sulfated galactomannan from guar gum: Optimization of reaction conditions by BBD and molecule conformational studies. J Taiwan Inst Chem Eng 2012. [DOI: 10.1016/j.jtice.2012.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Zeng WC, Zhang Z, Gao H, Jia LR, Chen WY. Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction. Carbohydr Polym 2012; 89:694-700. [DOI: 10.1016/j.carbpol.2012.03.078] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/15/2012] [Accepted: 03/25/2012] [Indexed: 12/11/2022]
|
49
|
Wu Y, Lin Q, Chen Z, Wu W, Xiao H. Fractal analysis of the retrogradation of rice starch by digital image processing. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2011.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Yi Y, Zhang MW, Liao ST, Zhang RF, Deng YY, Wei ZC, Yang B. Effects of alkali dissociation on the molecular conformation and immunomodulatory activity of longan pulp polysaccharide (LPI). Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|