1
|
Jeyaraman M, Jeyaraman N, Ramasubramanian S, Balaji S, Iyengar KP, Jain VK, Rajendran RL, Gangadaran P. Nanomaterials in point-of-care diagnostics: Bridging the gap between laboratory and clinical practice. Pathol Res Pract 2024; 263:155685. [PMID: 39471524 DOI: 10.1016/j.prp.2024.155685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
The integration of nanomaterials into biosensing technologies represents a paradigm shift in medical diagnostics and environmental monitoring, marking a significant advancement in the field. This comprehensive review examines the role of nanomaterials, such as gold nanoparticles, carbon nanotubes, graphene, and quantum dots, in enhancing the performance of biosensors. These nanomaterials contribute unique physical and chemical properties, including exceptional electrical, optical, and thermal conductivities, which significantly improve the sensitivity, specificity, and versatility of biosensors. The review provides an in-depth analysis of the mechanisms by which these nanomaterials enhance biosensor functionality, including increased surface-to-volume ratio, improved electron transfer rates, and enhanced signal transduction. The practical applications of these advanced biosensors are explored across various domains, including oncology, infectious diseases, diabetes management, cardiovascular health, and neurodegenerative conditions, emphasizing their role in early disease detection, real-time health monitoring, and personalized medicine. Furthermore, the review addresses the critical challenges and limitations facing the field, such as biocompatibility, biofouling, stability, and integration into existing healthcare systems. Strategies to overcome these challenges, including advanced material engineering and novel fabrication techniques, are discussed. The future of nanomaterial-based biosensors is envisioned through the lens of emerging trends and technological innovations. The integration with microfluidics, artificial intelligence, and wearable technology is highlighted as a path toward more personalized, efficient, and accessible healthcare solutions. This review underscores the transformative impact of nanomaterials in biosensing, projecting a future where these advanced technologies play a pivotal role in reshaping diagnostics, patient care, and environmental monitoring, thereby significantly enhancing healthcare and public health outcomes.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077, India.
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu 600002, India
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu 600002, India
| | - Karthikeyan P Iyengar
- Trauma and Orthopaedic Surgeon, Southport and Ormskirk Hospitals, Mersey and West Lancashire Teaching NHS Trust, Southport PR8 6PN, United Kingdom
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi 110001, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Kuppusamy AV, Badawi N, Ramesh K, Ramesh S. A review of the role of graphene-based nanomaterials in tackling challenges posed by the COVID-19 pandemic. Microb Pathog 2024; 197:107059. [PMID: 39442812 DOI: 10.1016/j.micpath.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which had resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, the emergence of many new variants and mutants were found to be more harmful compared to the previous strains. As a result, research scientists around the world had devoted significant efforts to understand the mechanism, causes and transmission due to COVID-19 along with the treatment to cure these diseases. However, despite achieving several findings, much more was unknown and yet to be explored. Hence, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, the graphene-based materials have been explored for the current COVID-19 and future pandemics due to its superior physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Moreover, based on the photothermal effects or reactive oxygen species formation, the carbon-based nanomaterials have shown its potentiality for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses. Therefore, this review article sheds light on the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene-based materials along with the demand aspects of graphene-based products and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.
Collapse
Affiliation(s)
- Sachin Sharma Ashok Kumar
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Engineering, Taylor's University, 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - A V Kuppusamy
- School of Engineering and Computing, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nujud Badawi
- University of Hafr Al-Batin College of Science, Hafer Al-Batin, 39921, Saudi Arabia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India.
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| |
Collapse
|
3
|
Norhakim N, Gunasilan T, Kesuma ZR, Hawari HF, Burhanudin ZA. Elucidating the time-dependent charge neutrality point modulation of polymer-coated graphene field-effect transistors in an ambient environment. NANOTECHNOLOGY 2024; 35:505201. [PMID: 39284313 DOI: 10.1088/1361-6528/ad7b42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
The charge neutrality point (CNP) is one of the essential parameters in the development of graphene field-effect transistors (GFETs). For GFET with an intrinsic graphene channel layer, the CNP is typically near-zero-volt gate voltage, implying that a well-balanced density of electrons and holes exists in the graphene channel layer. Fabricated GFET, however, typically exhibits CNP that is either positively or negatively shifted from the near-zero-volt gate voltage, implying that the graphene channel layer is unintentionally doped, leading to a unipolar GFET transfer characteristic. Furthermore, the CNP is also modulated in time, indicating that charges are dynamically induced in the graphene channel layer. In this work, understanding and mitigating the CNP shift were attempted by introducing passivation layers made of polyvinyl alcohol and polydimethylsiloxane onto the graphene channel layer. The CNP was found to be negatively shifted, recovered back to near-zero-volt gate voltage, and then positively shifted in time. By analyzing the charge density, carrier mobility, and correlation between the CNP and the charge density, it can be concluded that positive CNP shifts can be attributed to the charge trapping at the graphene/SiO2interface. The negative CNP shift, on the other hand, is caused by dipole coupling between dipoles in the polymer layer and carriers on the surface of the graphene layer. By gaining a deeper understanding of the intricate mechanisms governing the CNP shifts, an ambiently stable GFET suitable for next-generation electronics could be realized.
Collapse
Affiliation(s)
- Nadia Norhakim
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Thaachayinie Gunasilan
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Zayyan Rafi Kesuma
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Huzein Fahmi Hawari
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Zainal Arif Burhanudin
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
4
|
Makwana M. FEM simulation of SARS-CoV-2 sensing in single-layer graphene-based bionanosensors. J Mol Model 2024; 30:327. [PMID: 39240273 DOI: 10.1007/s00894-024-06123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
CONTEXT Airborne pathogens, defined as microscopic organisms, pose significant health risks and can potentially cause a variety of diseases. Given their ability to spread through diverse transmission routes from infected hosts, there is a critical need for accurate monitoring of these pathogens. This study aims to develop a sensor by investigating the vibrational responses of cantilever and bridged boundary-conditioned single-layer graphene (SLG) sheets with microorganisms, specifically SARS-CoV-2, attached at various positions on the sheet. The dynamic analysis of SLG with different boundary conditions and lengths was conducted using the atomistic finite element method (AFEM). Simulations were performed to evaluate SLG's performance as a sensor for biological entities. Altering the sheet's length and the mass of the attached biological object revealed observable frequency differences. This sensor design shows promise for enhancing the detection capabilities of graphene-based technologies for viruses. METHODS Finite element method (FEM) analysis is employed to model the sensor's performance and optimize its design parameters. The simulation results highlight the sensor's potential for achieving high sensitivity and rapid detection of SARS-CoV-2. Bridged and cantilever boundary conditions are applied at the ends of the SLG structure by using ANSYS software. Simulations have been conducted to observe how SLG behaves when used as sensors. In armchair graphene, under both boundary conditions, an SLG (5, 5) structure with a length of 50 nm displayed the highest frequency when a SARS-CoV-2 molecule with a mass of 2.6594 × 10-18 g was attached. Conversely, the chiral SLG (17, 1) structure exhibited its lowest frequency at a length of 10 nm. This insight is crucial for grasping detection limits and how factors such as size and boundary conditions influence sensor efficacy. These biosensors hold immense promise in biological sciences and medical applications, revolutionizing patient care by enabling early detection and accurate pathogen identification in clinical settings.
Collapse
Affiliation(s)
- Manisha Makwana
- Mechanical Engineering Department, A D Patel Institute of Technology, CVM University, Vallabh Vidyanagar, Gujarat, India.
| |
Collapse
|
5
|
Sengupta J, Hussain CM. Sensitive and selective detection of heavy metal ions and organic pollutants with graphene-integrated sensing platforms. NANOSCALE 2024; 16:14195-14212. [PMID: 39016018 DOI: 10.1039/d4nr00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Graphene-based sensors have emerged as promising tools for environmental monitoring due to their exceptional properties such as high surface area, excellent electrical conductivity, and sensitivity to various analytes. This paper presents a review of recent advancements in the development and application of graphene-based sensors for the detection of heavy metal ions and organic pollutants. These sensors employ either graphene or its derivatives, often in combination with graphene hybrid nanocomposites, as the primary sensing material. The synthesis methods of graphene and sensing mechanisms of graphene-based sensors are discussed. Furthermore, performance metrics including the determination range and detection limits of these sensors are itemized. The potential challenges and future directions in the field of graphene-based sensors for environmental monitoring are also highlighted. Overall, this review provides valuable insights into the current state-of-the-art technologies and paves the way for the development of highly efficient and reliable sensors for environmental monitoring purposes.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata - 700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, New Jersey, USA.
| |
Collapse
|
6
|
Tene T, Svozilík J, Colcha D, Cevallos Y, Vinueza-Naranjo PG, Vacacela Gomez C, Bellucci S. The Tunable Parameters of Graphene-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:5049. [PMID: 39124094 PMCID: PMC11314989 DOI: 10.3390/s24155049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Graphene-based surface plasmon resonance (SPR) biosensors have emerged as a promising technology for the highly sensitive and accurate detection of biomolecules. This study presents a comprehensive theoretical analysis of graphene-based SPR biosensors, focusing on configurations with single and bimetallic metallic layers. In this study, we investigated the impact of various metallic substrates, including gold and silver, and the number of graphene layers on key performance metrics: sensitivity of detection, detection accuracy, and quality factor. Our findings reveal that configurations with graphene first supported on gold exhibit superior performance, with sensitivity of detection enhancements up to 30% for ten graphene layers. In contrast, silver-supported configurations, while demonstrating high sensitivity, face challenges in maintaining detection accuracy. Additionally, reducing the thickness of metallic layers by 30% optimizes light coupling and enhances sensor performance. These insights highlight the significant potential of graphene-based SPR biosensors in achieving high sensitivity of detection and reliability, paving the way for their application in diverse biosensing technologies. Our findings pretend to motivate future research focusing on optimizing metallic layer thickness, improving the stability of silver-supported configurations, and experimentally validating the theoretical findings to further advance the development of high-performance SPR biosensors.
Collapse
Affiliation(s)
- Talia Tene
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110160, Ecuador
| | - Jiří Svozilík
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060155, Ecuador
| | - Dennys Colcha
- UNICARIBE Research Center, University of Calabria, 87036 Rende, Italy
| | - Yesenia Cevallos
- College of Engineering, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador
- Universidad San Francisco de Quito IMNE, Diego de Robles s/n, Cumbayá, Quito 170901, Ecuador
| | | | | | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
7
|
Galanti AM, Haidekker MA. Low-Cost Source Measure Unit (SMU) to Characterize Sensors Built on Graphene-Channel Field-Effect Transistors. SENSORS (BASEL, SWITZERLAND) 2024; 24:3841. [PMID: 38931626 PMCID: PMC11207584 DOI: 10.3390/s24123841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
This study introduces a flexible and low-cost solution for a source measure unit (SMU), which is presented as an alternative to conventional source meter units and a blueprint for sensor FET drivers. An SMU collects current-voltage (I-V) curves with an additional variable voltage or current and is commonly used to characterize semiconductors. We present the hardware design, interfacing, and test results of our SMU. Specifically, we present representative I-V curve measurements for graphene-channel FETs to demonstrate the SMU's capability to efficiently characterize these devices with minimal noise and sufficient accuracy. This cost-effective solution presents a promising avenue for researchers and developers seeking reliable tools for sensor development and characterization. We demonstrate, with the example of surface illumination, how the sensing behavior of graphene-channel FETs can be characterized without the need for expensive equipment. Additionally, the SMU was validated with known passive and active components, along with probe station integration for semiconductor die-scale connection. The SMU's focus on collecting I-V curves, coupled with its ability to identify device defects, such as parasitic Schottky junctions or a failed oxide, contributes to its utility in quality testing for semiconductor devices. Its low-cost nature makes it accessible for various research endeavors, enabling efficient data collection and analysis for graphene-based and other nanomaterial-based sensor applications.
Collapse
Affiliation(s)
| | - Mark A. Haidekker
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
8
|
Venkatesh M, Parthasarathy P. Al 2O 3/ZrO 2 dual-dielectric Gr/CNT nanoribbon vertical tunnel FET based biosensor for genomic classification and S-protein detection in SARS-CoV-2. Heliyon 2024; 10:e30077. [PMID: 38707330 PMCID: PMC11066398 DOI: 10.1016/j.heliyon.2024.e30077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
The ongoing genetic mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) possesses the capacity to inadvertently lead to an increase in both the rates of transmission and mortality. In this study, we showcase the use of an Al2O3/ZrO2 Dual-Dielectric Gr/CNT Nanoribbon vertical tunnel field-effect transistor biosensor for the purpose of detecting spike proteins of SARS-CoV-2 in clinical samples. The proteins mentioned above are situated within the protein capsids of the virus. The effectiveness of the suggested detector has been assessed through measurements of the alteration in current drain. The present study utilizes the dielectric coefficient analogue of viral proteins as a substitute for biomolecules that exhibit internal hybridization nanogaps. The high sensitivity of the suggested detector, as evaluated on a scale ranging from 0 to 115, suggests its potential as a high-quality sensing instrument. The purpose of this study is to examine the sensitivity of DNA charge density with the aim of identifying any alterations in the virus that may impact its ability to spread and infect humans. The chromosomal composition of SARS-CoV-2 has been determined. The CMC Research Centre, situated in Vellore, Tamil Nadu, India, conducted an examination of SARS-CoV-2 samples. The scientists possess the capability to do genome sequencing on these specimens, so facilitating the examination of mutation patterns and the dispersion of different clades. A total of 250 different mutations were found out of the 600 sequences that were evaluated. The sequencing data consists of a complete collection of 250 distinct variants, including 150 missense mutations, 80 synonymous mutations, 15 mutations in noncoding regions, and 5 deletions. The comprehension of genetic variety is significantly dependent on these mutations. The proposed detector is connected to a variety of previously documented biosensors based on field-effect transistors (FETs), which are employed for the examination of genetic modifications.
Collapse
Affiliation(s)
- M. Venkatesh
- Department of Electronics and Communication Engineering, CMR Institute of Technology, Bengaluru, Karnataka, India, 560037
| | - P. Parthasarathy
- Department of Electronics and Communication Engineering, CMR Institute of Technology, Bengaluru, Karnataka, India, 560037
| |
Collapse
|
9
|
Sengupta J, Hussain CM. Graphene transistor-based biosensors for rapid detection of SARS-CoV-2. Bioelectrochemistry 2024; 156:108623. [PMID: 38070365 DOI: 10.1016/j.bioelechem.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Field-effect transistor (FET) biosensors use FETs to detect changes in the amount of electrical charge caused by biomolecules like antigens and antibodies. COVID-19 can be detected by employing these biosensors by immobilising bio-receptor molecules that bind to the SARS-CoV-2 virus on the FET channel surface and subsequent monitoring of the changes in the current triggered by the virus. Graphene Field-effect Transistor (GFET)-based biosensors utilise graphene, a two-dimensional material with high electrical conductivity, as the sensing element. These biosensors can rapidly detect several biomolecules including the SARS-CoV-2 virus, which is responsible for COVID-19. GFETs are ideal for real-time infectious illness diagnosis due to their great sensitivity and specificity. These graphene transistor-based biosensors could revolutionise clinical diagnostics by generating fast, accurate data that could aid pandemic management. GFETs can also be integrated into point-of-care (POC) diagnostic equipment. Recent advances in GFET-type biosensors for SARS-CoV-2 detection are discussed here, along with their associated challenges and future scope.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, NJ, USA.
| |
Collapse
|
10
|
Wan HH, Zhu H, Chiang CC, Li JS, Ren F, Tsai CT, Liao YT, Neal D, Esquivel-Upshaw JF, Pearton SJ. High sensitivity saliva-based biosensor in detection of breast cancer biomarkers: HER2 and CA15-3. JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. B, NANOTECHNOLOGY & MICROELECTRONICS : MATERIALS, PROCESSING, MEASUREMENT, & PHENOMENA : JVST B 2024; 42:023202. [PMID: 38362284 PMCID: PMC10866624 DOI: 10.1116/6.0003370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
The prevalence of breast cancer in women underscores the urgent need for innovative and efficient detection methods. This study addresses this imperative by harnessing salivary biomarkers, offering a noninvasive and accessible means of identifying breast cancer. In this study, commercially available disposable based strips similar to the commonly used glucose detection strips were utilized and functionalized to detect breast cancer with biomarkers of HER2 and CA15-3. The results demonstrated limits of detection for these two biomarkers reached as low as 1 fg/ml much lower than those of conventional enzyme-linked immunosorbent assay in the range of 1∼4 ng/ml. By employing a synchronized double-pulse method to apply 10 of 1.2 ms voltage pulses to the electrode of sensing strip and drain electrode of the transistor for amplifying the detected signal, and the detected signal was the average of 10 digital output readings corresponding to those 10 voltage pulses. The sensor sensitivities were achieved approximately 70/dec and 30/dec for HER2 and CA15-3, respectively. Moreover, the efficiency of this novel technique is underscored by its swift testing time of less than 15 ms and its minimal sample requirement of only 3 μl of saliva. The simplicity of operation and the potential for widespread public use in the future position this approach as a transformative tool in the early detection of breast cancer. This research not only provides a crucial advancement in diagnostic methodologies but also holds the promise of revolutionizing public health practices.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wan
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
| | - Haochen Zhu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
| | - Chao-Ching Chiang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
| | - Jian-Sian Li
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
| | - Cheng-Tse Tsai
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Hsinchu, Taiwan
| | - Yu-Te Liao
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Hsinchu, Taiwan
| | - Dan Neal
- Department of Surgery, University of Florida, Gainesville, Florida 32610
| | - Josephine F Esquivel-Upshaw
- Department of Restorative Dental Science, Division of Prosthodontics, University of Florida, Gainesville, Florida 32611
| | - Stephen J Pearton
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
11
|
Ono T, Okuda S, Ushiba S, Kanai Y, Matsumoto K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:333. [PMID: 38255502 PMCID: PMC10817696 DOI: 10.3390/ma17020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Owing to its outstanding physical properties, graphene has attracted attention as a promising biosensor material. Field-effect-transistor (FET)-based biosensors are particularly promising because of their high sensitivity that is achieved through the high carrier mobility of graphene. However, graphene-FET biosensors have not yet reached widespread practical applications owing to several problems. In this review, the authors focus on graphene-FET biosensors and discuss their advantages, the challenges to their development, and the solutions to the challenges. The problem of Debye screening, in which the surface charges of the detection target are shielded and undetectable, can be solved by using small-molecule receptors and their deformations and by using enzyme reaction products. To address the complexity of sample components and the detection mechanisms of graphene-FET biosensors, the authors outline measures against nonspecific adsorption and the remaining problems related to the detection mechanism itself. The authors also introduce a solution with which the molecular species that can reach the sensor surfaces are limited. Finally, the authors present multifaceted approaches to the sensor surfaces that provide much information to corroborate the results of electrical measurements. The measures and solutions introduced bring us closer to the practical realization of stable biosensors utilizing the superior characteristics of graphene.
Collapse
Affiliation(s)
- Takao Ono
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Satoshi Okuda
- High Frequency & Optical Device Works, Mitsubishi Electric Corporation, 4-1 Mizuhara, Itami, Sendai 664-8641, Japan
| | - Shota Ushiba
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Kyoto 617-8555, Japan
| | - Yasushi Kanai
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | |
Collapse
|
12
|
Seo G, Lee G, Kim W, An I, Choi M, Jang S, Park YJ, Lee JO, Cho D, Park EC. Ultrasensitive biosensing platform for Mycobacterium tuberculosis detection based on functionalized graphene devices. Front Bioeng Biotechnol 2023; 11:1313494. [PMID: 38179133 PMCID: PMC10765604 DOI: 10.3389/fbioe.2023.1313494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Tuberculosis (TB) has high morbidity as a chronic infectious disease transmitted mainly through the respiratory tract. However, the conventional diagnosis methods for TB are time-consuming and require specialists, making the diagnosis of TB with point-of-care (POC) detection difficult. Here, we developed a graphene-based field-effect transistor (GFET) biosensor for detecting the MPT64 protein of Mycobacterium tuberculosis with high sensitivity as a POC detection platform for TB. For effective conjugation of antibodies, the graphene channels of the GFET were functionalized by immobilizing 1,5-diaminonaphthalene (1,5-DAN) and glutaraldehyde linker molecules onto the graphene surface. The successful immobilization of linker molecules with spatial uniformity on the graphene surface and subsequent antibody conjugation were confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy. The GFET functionalized with MPT64 antibodies showed MPT64 detection with a detection limit of 1 fg/mL in real-time, indicating that the GFET biosensor is highly sensitive. Compared to rapid detection tests (RDT) and enzyme-linked immunosorbent assays, the GFET biosensor platform developed in this study showed much higher sensitivity but much smaller dynamic range. Due to its high sensitivity, the GFET biosensor platform can bridge the gap between time-consuming molecular diagnostics and low-sensitivity RDT, potentially aiding in early detection or management of relapses in infectious diseases.
Collapse
Affiliation(s)
- Giwan Seo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Wooyoung Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Inyoung An
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Myungwoo Choi
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sojeong Jang
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-O. Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Donghwi Cho
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Edmond Changkyun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Uzunoglu A, Gunes Altuntas E, Huseyin Ipekci H, Ozoglu O. Two-Dimensional (2D) materials in the detection of SARS-CoV-2. Microchem J 2023; 193:108970. [PMID: 37342763 PMCID: PMC10265934 DOI: 10.1016/j.microc.2023.108970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
The SARS-CoV-2 pandemic has resulted in a devastating effect on human health in the last three years. While tremendous effort has been devoted to the development of effective treatment and vaccines against SARS-CoV-2 and controlling the spread of it, collective health challenges have been encountered along with the concurrent serious economic impacts. Since the beginning of the pandemic, various detection methods like PCR-based methods, isothermal nucleic acid amplification-based (INAA) methods, serological methods or antibody tests, and evaluation of X-ray chest results have been exploited to diagnose SARS-CoV-2. PCR-based detection methods in these are considered gold standards in the current stage despite their drawbacks, including being high-cost and time-consuming procedures. Furthermore, the results obtained from the PCR tests are susceptible to sample collection methods and time. When the sample is not collected properly, obtaining a false result may be likely. The use of specialized lab equipment and the need for trained people for the experiments pose additional challenges in PCR-based testing methods. Also, similar problems are observed in other molecular and serological methods. Therefore, biosensor technologies are becoming advantageous with their quick response, high specificity and precision, and low-cost characteristics for SARS-CoV-2 detection. In this paper, we critically review the advances in the development of sensors for the detection of SARS-CoV-2 using two-dimensional (2D) materials. Since 2D materials including graphene and graphene-related materials, transition metal carbides, carbonitrides, and nitrides (MXenes), and transition metal dichalcogenides (TMDs) play key roles in the development of novel and high-performance electrochemical (bio)sensors, this review pushes the sensor technologies against SARS-CoV-2 detection forward and highlights the current trends. First, the basics of SARS-CoV-2 detection are described. Then the structure and the physicochemical properties of the 2D materials are explained, which is followed by the development of SARS-CoV-2 sensors by exploiting the exceptional properties of the 2D materials. This critical review covers most of the published papers in detail from the beginning of the outbreak.
Collapse
Affiliation(s)
- Aytekin Uzunoglu
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Evrim Gunes Altuntas
- Ankara University, Biotechnology Institute, Gumusdere Campus, 06135, Ankara, Turkey
| | - Hasan Huseyin Ipekci
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Ozum Ozoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
14
|
Kumar N, Towers D, Myers S, Galvin C, Kireev D, Ellington AD, Akinwande D. Graphene Field Effect Biosensor for Concurrent and Specific Detection of SARS-CoV-2 and Influenza. ACS NANO 2023; 17:18629-18640. [PMID: 37703454 DOI: 10.1021/acsnano.3c07707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for devices capable of carrying out rapid differential detection of viruses that may manifest similar physiological symptoms yet demand tailored treatment plans. Seasonal influenza may be exacerbated by COVID-19 infections, increasing the burden on healthcare systems. In this work, we demonstrate a technology based on liquid-gated graphene field-effect transistors (GFETs), for rapid and ultraprecise sensing and differentiation of influenza and SARS-CoV-2 surface protein. Most distinctively, the device consists of 4 onboard GFETs arranged in a quadruple architecture, where each quarter is functionalized individually (with either antibodies or chemically passivated control) but measured jointly. The sensor platform was tested against a range of concentrations of viral surface proteins from both viruses with the lowest tested and detected concentration at ∼50 ag/mL, or 88 zM for COVID-19 and 227 zM for Flu, which is 5-fold lower than the values reported previously on a similar platform. Unlike the classic real-time polymerase chain reaction test, which has a turnaround time of a few hours, the graphene technology presents an ultrafast response time of ∼10 s even in complex and clinically relevant media such as saliva. Thus, we have developed a multianalyte, highly sensitive, and fault-tolerant technology for rapid diagnostic of contemporary, emerging, and future pandemics.
Collapse
Affiliation(s)
- Neelotpala Kumar
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dalton Towers
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Samantha Myers
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Cooper Galvin
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dmitry Kireev
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Massachusetts 01003, United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Deji Akinwande
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Fu L, Zheng Y, Li X, Liu X, Lin CT, Karimi-Maleh H. Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis. Molecules 2023; 28:6719. [PMID: 37764496 PMCID: PMC10536827 DOI: 10.3390/molecules28186719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Graphene is an emerging nanomaterial increasingly being used in electrochemical biosensing applications owing to its high surface area, excellent conductivity, ease of functionalization, and superior electrocatalytic properties compared to other carbon-based electrodes and nanomaterials, enabling faster electron transfer kinetics and higher sensitivity. Graphene electrochemical biosensors may have the potential to enable the rapid, sensitive, and low-cost detection of cancer biomarkers. This paper reviews early-stage research and proof-of-concept studies on the development of graphene electrochemical biosensors for potential future cancer diagnostic applications. Various graphene synthesis methods are outlined along with common functionalization approaches using polymers, biomolecules, nanomaterials, and synthetic chemistry to facilitate the immobilization of recognition elements and improve performance. Major sensor configurations including graphene field-effect transistors, graphene modified electrodes and nanocomposites, and 3D graphene networks are highlighted along with their principles of operation, advantages, and biosensing capabilities. Strategies for the immobilization of biorecognition elements like antibodies, aptamers, peptides, and DNA/RNA probes onto graphene platforms to impart target specificity are summarized. The use of nanomaterial labels, hybrid nanocomposites with graphene, and chemical modification for signal enhancement are also discussed. Examples are provided to illustrate applications for the sensitive electrochemical detection of a broad range of cancer biomarkers including proteins, circulating tumor cells, DNA mutations, non-coding RNAs like miRNA, metabolites, and glycoproteins. Current challenges and future opportunities are elucidated to guide ongoing efforts towards transitioning graphene biosensors from promising research lab tools into mainstream clinical practice. Continued research addressing issues with reproducibility, stability, selectivity, integration, clinical validation, and regulatory approval could enable wider adoption. Overall, graphene electrochemical biosensors present powerful and versatile platforms for cancer diagnosis at the point of care.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Yuhong Zheng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xingxing Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Xiaozhu Liu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100054, China;
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China;
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| |
Collapse
|
16
|
Generalov V, Cheremiskina A, Glukhov A, Grabezhova V, Kruchinina M, Safatov A. Investigation of Limitations in the Detection of Antibody + Antigen Complexes Using the Silicon-on-Insulator Field-Effect Transistor Biosensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:7490. [PMID: 37687945 PMCID: PMC10490761 DOI: 10.3390/s23177490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The SOI-FET biosensor (silicon-on-insulator field-effect transistor) for virus detection is a promising device in the fields of medicine, virology, biotechnology, and the environment. However, the applications of modern biosensors face numerous problems and require improvement. Some of these problems can be attributed to sensor design, while others can be attributed to technological limitations. The aim of this work is to conduct a theoretical investigation of the "antibody + antigen" complex (AB + AG) detection processes of a SOI-FET biosensor, which may also solve some of the aforementioned problems. Our investigation concentrates on the analysis of the probability of AB + AG complex detection and evaluation. Poisson probability density distribution was used to estimate the probability of the adsorption of the target molecules on the biosensor's surface and, consequently, to obtain correct detection results. Many implicit and unexpected causes of error detection have been identified for AB + AG complexes using SOI-FET biosensors. We showed that accuracy and time of detection depend on the number of SOI-FET biosensors on a crystal.
Collapse
Affiliation(s)
- Vladimir Generalov
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (A.C.); (A.S.)
- Faculty of Automation and Computer Engineering, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Anastasia Cheremiskina
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (A.C.); (A.S.)
| | - Alexander Glukhov
- Design Center of Bio-Microelectronic Technology Vega, 630082 Novosibirsk, Russia; (A.G.); (V.G.)
| | - Victoria Grabezhova
- Design Center of Bio-Microelectronic Technology Vega, 630082 Novosibirsk, Russia; (A.G.); (V.G.)
| | - Margarita Kruchinina
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630089 Novosibirsk, Russia;
| | - Alexander Safatov
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (A.C.); (A.S.)
| |
Collapse
|
17
|
Sengupta J, Hussain CM. CNT and Graphene-Based Transistor Biosensors for Cancer Detection: A Review. Biomolecules 2023; 13:1024. [PMID: 37509060 PMCID: PMC10377131 DOI: 10.3390/biom13071024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
An essential aspect of successful cancer diagnosis is the identification of malignant tumors during the early stages of development, as this can significantly diminish patient mortality rates and increase their chances of survival. This task is facilitated by cancer biomarkers, which play a crucial role in determining the stage of cancer cells, monitoring their growth, and evaluating the success of treatment. However, conventional cancer detection methods involve several intricate steps, such as time-consuming nucleic acid amplification, target detection, and a complex treatment process that may not be appropriate for rapid screening. Biosensors are emerging as promising diagnostic tools for detecting cancer, and carbon nanotube (CNT)- and graphene-based transistor biosensors have shown great potential due to their unique electrical and mechanical properties. These biosensors have high sensitivity and selectivity, allowing for the rapid detection of cancer biomarkers at low concentrations. This review article discusses recent advances in the development of CNT- and graphene-based transistor biosensors for cancer detection.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
18
|
Negahdari R, Rafiee E, Kordrostami Z. A Sensitive Biosensor Based on Plasmonic-Graphene Configuration for Detection of COVID-19 Virus. PLASMONICS (NORWELL, MASS.) 2023; 18:1-11. [PMID: 37360048 PMCID: PMC10150154 DOI: 10.1007/s11468-023-01851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/14/2023] [Indexed: 06/28/2023]
Abstract
In this paper, four individual structures based on graphene-plasmonic nano combinations are proposed for detection of corona viruses and especially COVID-19. The structures are arranged based on arrays in the shapes of half-sphere and one-dimensional photonic crystal formats. The half-sphere and plate shaped layers are made of Al, Au, SiO2 and graphene. The one-dimensional photonic crystals lead the wavelength and peak corresponding to the absorption peak to lower and higher amounts, respectively. In order to improve the functionality of the proposed structures, effects of structural parameters and chemical potentials are considered. A defect layer of GZO is positioned in the middle of one-dimensional photonic crystal layers to shift the absorption's peak wavelength to the appropriate wavelength range for diagnosing corona viruses (~300 nm to 600 nm). The last proposed structure is considered as a refractive bio-sensor for detection of corona viruses. In the final proposed structure (based on different layers of Al, Au, SiO2, GZO and graphene), corona viruses are considered as the biomolecule layer and the results are obtained. The proposed bio-sensor can be a good and functional candidate for detection of corona viruses and especially COVID-19 in photonic integrated circuits with the satisfying sensitivity of ~664.8 nm/RIU (refractive index unit).
Collapse
Affiliation(s)
- Roozbeh Negahdari
- Electronic Department, Nano Optoelectronic Research Center, Shiraz University of Technology, Airport Blvd, Shiraz, Iran
| | - Esmat Rafiee
- Department of Electrical Engineering, Faculty of Engineering, Alzahra university, Tehran, Iran
| | - Zoheir Kordrostami
- Department of Electrical Engineering, Faculty of Engineering, Alzahra university, Tehran, Iran
| |
Collapse
|
19
|
Kwiatkowska A, Granicka LH. Anti-Viral Surfaces in the Fight against the Spread of Coronaviruses. MEMBRANES 2023; 13:464. [PMID: 37233525 PMCID: PMC10223398 DOI: 10.3390/membranes13050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
This review is conducted against the background of nanotechnology, which provides us with a chance to effectively combat the spread of coronaviruses, and which primarily concerns polyelectrolytes and their usability for obtaining protective function against viruses and as carriers for anti-viral agents, vaccine adjuvants, and, in particular, direct anti-viral activity. This review covers nanomembranes in the form of nano-coatings or nanoparticles built of natural or synthetic polyelectrolytes--either alone or else as nanocomposites for creating an interface with viruses. There are not a wide variety of polyelectrolytes with direct activity against SARS-CoV-2, but materials that are effective in virucidal evaluations against HIV, SARS-CoV, and MERS-CoV are taken into account as potentially active against SARS-CoV-2. Developing new approaches to materials as interfaces with viruses will continue to be relevant in the future.
Collapse
Affiliation(s)
| | - Ludomira H. Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| |
Collapse
|
20
|
An ultrasensitive electrochemical sensor for detecting porcine epidemic diarrhea virus based on a Prussian blue-reduced graphene oxide modified glassy carbon electrode. Anal Biochem 2023; 662:115013. [PMID: 36493864 DOI: 10.1016/j.ab.2022.115013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
This study developed a novel, ultrasensitive sandwich-type electrochemical immunosensor for detecting the porcine epidemic diarrhea virus (PEDV). By electrochemical co-deposition of graphene and Prussian blue, a Prussian blue-reduced graphene oxide-modified glassy carbon electrode was made, further modified with PEDV-monoclonal antibodies (mAbs) to create a new PEDV immunosensor using the double antibody sandwich technique. The electrochemical characteristics of several modified electrodes were investigated using cyclic voltammetry (CV). We optimized the pH levels and scan rate. Additionally, we examined specificity, reproducibility, repeatability, accuracy, and stability. The study indicates that the immunosensor has good performance in the concentration range of 1 × 101.88 to 1 × 105.38 TCID50/mL of PEDV, with a detection limit of 1 × 101.93 TCID50/mL at a signal-to-noise ratio of 3σ. The composite membranes produced via co-deposition of graphene and Prussian blue effectively increased electron transport to the glassy carbon electrode, boosted response signals, and increased the sensitivity, specificity, and stability of the immunosensor. The immunosensor could accurately detect PEDV, with results comparable to real-time quantitative PCR. This technique was applied to PEDV detection and served as a model for developing additional immunosensors for detecting hazardous chemicals and pathogenic microbes.
Collapse
|
21
|
Sengupta J, Hussain CM. The Emergence of Carbon Nanomaterials as Effective Nano-Avenues to Fight against COVID-19. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1068. [PMID: 36770075 PMCID: PMC9918919 DOI: 10.3390/ma16031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
22
|
Mia AK, Meyyappan M, Giri PK. Two-Dimensional Transition Metal Dichalcogenide Based Biosensors: From Fundamentals to Healthcare Applications. BIOSENSORS 2023; 13:169. [PMID: 36831935 PMCID: PMC9953520 DOI: 10.3390/bios13020169] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 06/13/2023]
Abstract
There has been an exponential surge in reports on two-dimensional (2D) materials ever since the discovery of graphene in 2004. Transition metal dichalcogenides (TMDs) are a class of 2D materials where weak van der Waals force binds individual covalently bonded X-M-X layers (where M is the transition metal and X is the chalcogen), making layer-controlled synthesis possible. These individual building blocks (single-layer TMDs) transition from indirect to direct band gaps and have fascinating optical and electronic properties. Layer-dependent opto-electrical properties, along with the existence of finite band gaps, make single-layer TMDs superior to the well-known graphene that paves the way for their applications in many areas. Ultra-fast response, high on/off ratio, planar structure, low operational voltage, wafer scale synthesis capabilities, high surface-to-volume ratio, and compatibility with standard fabrication processes makes TMDs ideal candidates to replace conventional semiconductors, such as silicon, etc., in the new-age electrical, electronic, and opto-electronic devices. Besides, TMDs can be potentially utilized in single molecular sensing for early detection of different biomarkers, gas sensors, photodetector, and catalytic applications. The impact of COVID-19 has given rise to an upsurge in demand for biosensors with real-time detection capabilities. TMDs as active or supporting biosensing elements exhibit potential for real-time detection of single biomarkers and, hence, show promise in the development of point-of-care healthcare devices. In this review, we provide a historical survey of 2D TMD-based biosensors for the detection of bio analytes ranging from bacteria, viruses, and whole cells to molecular biomarkers via optical, electronic, and electrochemical sensing mechanisms. Current approaches and the latest developments in the study of healthcare devices using 2D TMDs are discussed. Additionally, this review presents an overview of the challenges in the area and discusses the future perspective of 2D TMDs in the field of biosensing for healthcare devices.
Collapse
Affiliation(s)
- Abdul Kaium Mia
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - M. Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P. K. Giri
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
23
|
Silvestri A, Zayas-Arrabal J, Vera-Hidalgo M, Di Silvio D, Wetzl C, Martinez-Moro M, Zurutuza A, Torres E, Centeno A, Maestre A, Gómez JM, Arrastua M, Elicegui M, Ontoso N, Prato M, Coluzza I, Criado A. Ultrasensitive detection of SARS-CoV-2 spike protein by graphene field-effect transistors. NANOSCALE 2023; 15:1076-1085. [PMID: 36546457 DOI: 10.1039/d2nr05103f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
COVID-19, caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), originated a global health crisis, causing over 2 million casualties and altering human daily life all over the world. This pandemic emergency revealed the limitations of current diagnostic tests, highlighting the urgency to develop faster, more precise and sensitive sensors. Graphene field effect transistors (GFET) are analytical platforms that enclose all these requirements. However, the design of a sensitive and robust GFET is not a straightforward objective. In this work, we report a GFET array biosensor for the detection of SARS-CoV-2 spike protein using the human membrane protein involved in the virus internalisation: angiotensin-converting enzyme 2 (ACE2). By finely controlling the graphene functionalisation, by tuning the Debye length, and by deeply characterising the ACE2-spike protein interactions, we have been able to detect the target protein with an extremely low limit of detection (2.94 aM). This work set the basis for a new class of analytical platforms, based on human membrane proteins, with the potential to detect a broad variety of pathogens, even before their isolation, being a powerful tool in the fight against future pandemics.
Collapse
Affiliation(s)
- Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Julian Zayas-Arrabal
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Mariano Vera-Hidalgo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Desire Di Silvio
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Cecilia Wetzl
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- University of the Basque Country UPV-EHU, 20018 Donostia-San Sebastián, Spain
| | - Marta Martinez-Moro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Amaia Zurutuza
- Graphenea Semiconductor SLU., Paseo Mikeletegi 83, 20009 San Sebastián, Spain
| | - Elias Torres
- Graphenea Semiconductor SLU., Paseo Mikeletegi 83, 20009 San Sebastián, Spain
| | - Alba Centeno
- Graphenea Semiconductor SLU., Paseo Mikeletegi 83, 20009 San Sebastián, Spain
| | - Arantxa Maestre
- Graphenea Semiconductor SLU., Paseo Mikeletegi 83, 20009 San Sebastián, Spain
| | - Juan Manuel Gómez
- Graphenea Semiconductor SLU., Paseo Mikeletegi 83, 20009 San Sebastián, Spain
| | - María Arrastua
- Graphenea Semiconductor SLU., Paseo Mikeletegi 83, 20009 San Sebastián, Spain
| | - Marta Elicegui
- Graphenea Semiconductor SLU., Paseo Mikeletegi 83, 20009 San Sebastián, Spain
| | - Nerea Ontoso
- Graphenea Semiconductor SLU., Paseo Mikeletegi 83, 20009 San Sebastián, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 3412 7 Trieste, Italy
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Ivan Coluzza
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Alejandro Criado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Universidade da Coruña, CICA - Centro Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, 15071 A Coruña, Spain.
| |
Collapse
|
24
|
Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Competition between enzymatic and non-enzymatic electrochemical determination of cholesterol. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117169] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Khalid A, Yi W, Yoo S, Abbas S, Si J, Hou X, Hou J. Single-chirality of single-walled carbon nanotubes (SWCNTs) through chromatography and its potential biological applications. NEW J CHEM 2023. [DOI: 10.1039/d2nj04056e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gel chromatography is used to separate single-chirality and selective-diameter SWCNTs. We also explore the use of photothermal therapy and biosensor applications based on single-chirality, selected-diameter, and unique geometric shape.
Collapse
Affiliation(s)
- Asif Khalid
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Sweejiang Yoo
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Shakeel Abbas
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jinhai Si
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Xun Hou
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Science, Xi’an Medical University, Xi’an, Shaanxi, 710021, China
| |
Collapse
|
26
|
Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. BIOSENSORS 2022; 13:40. [PMID: 36671875 PMCID: PMC9856107 DOI: 10.3390/bios13010040] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/14/2023]
Abstract
Biosensors are modern engineering tools that can be widely used for various technological applications. In the recent past, biosensors have been widely used in a broad application spectrum including industrial process control, the military, environmental monitoring, health care, microbiology, and food quality control. Biosensors are also used specifically for monitoring environmental pollution, detecting toxic elements' presence, the presence of bio-hazardous viruses or bacteria in organic matter, and biomolecule detection in clinical diagnostics. Moreover, deep medical applications such as well-being monitoring, chronic disease treatment, and in vitro medical examination studies such as the screening of infectious diseases for early detection. The scope for expanding the use of biosensors is very high owing to their inherent advantages such as ease of use, scalability, and simple manufacturing process. Biosensor technology is more prevalent as a large-scale, low cost, and enhanced technology in the modern medical field. Integration of nanotechnology with biosensors has shown the development path for the novel sensing mechanisms and biosensors as they enhance the performance and sensing ability of the currently used biosensors. Nanoscale dimensional integration promotes the formulation of biosensors with simple and rapid detection of molecules along with the detection of single biomolecules where they can also be evaluated and analyzed critically. Nanomaterials are used for the manufacturing of nano-biosensors and the nanomaterials commonly used include nanoparticles, nanowires, carbon nanotubes (CNTs), nanorods, and quantum dots (QDs). Nanomaterials possess various advantages such as color tunability, high detection sensitivity, a large surface area, high carrier capacity, high stability, and high thermal and electrical conductivity. The current review focuses on nanotechnology-enabled biosensors, their fundamentals, and architectural design. The review also expands the view on the materials used for fabricating biosensors and the probable applications of nanotechnology-enabled biosensors.
Collapse
Affiliation(s)
- Manickam Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Ravichandran Janani
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Chinnaiyan Deepa
- Department of Artificial Intelligence & Data Science, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Lakshminarasimhan Rajeshkumar
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| |
Collapse
|
27
|
Han X, Hu Z, Wang S, Zhang Y. A Survey on Deep Learning in COVID-19 Diagnosis. J Imaging 2022; 9:1. [PMID: 36662099 PMCID: PMC9866755 DOI: 10.3390/jimaging9010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
According to the World Health Organization statistics, as of 25 October 2022, there have been 625,248,843 confirmed cases of COVID-19, including 65,622,281 deaths worldwide. The spread and severity of COVID-19 are alarming. The economy and life of countries worldwide have been greatly affected. The rapid and accurate diagnosis of COVID-19 directly affects the spread of the virus and the degree of harm. Currently, the classification of chest X-ray or CT images based on artificial intelligence is an important method for COVID-19 diagnosis. It can assist doctors in making judgments and reduce the misdiagnosis rate. The convolutional neural network (CNN) is very popular in computer vision applications, such as applied to biological image segmentation, traffic sign recognition, face recognition, and other fields. It is one of the most widely used machine learning methods. This paper mainly introduces the latest deep learning methods and techniques for diagnosing COVID-19 using chest X-ray or CT images based on the convolutional neural network. It reviews the technology of CNN at various stages, such as rectified linear units, batch normalization, data augmentation, dropout, and so on. Several well-performing network architectures are explained in detail, such as AlexNet, ResNet, DenseNet, VGG, GoogleNet, etc. We analyzed and discussed the existing CNN automatic COVID-19 diagnosis systems from sensitivity, accuracy, precision, specificity, and F1 score. The systems use chest X-ray or CT images as datasets. Overall, CNN has essential value in COVID-19 diagnosis. All of them have good performance in the existing experiments. If expanding the datasets, adding GPU acceleration and data preprocessing techniques, and expanding the types of medical images, the performance of CNN will be further improved. This paper wishes to make contributions to future research.
Collapse
Affiliation(s)
- Xue Han
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Zuojin Hu
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
28
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
29
|
Ali A, Zhang GF, Hu C, Yuan B, Jahan S, Kitsios GD, Morris A, Gao SJ, Panat R. Ultrarapid and ultrasensitive detection of SARS-CoV-2 antibodies in COVID-19 patients via a 3D-printed nanomaterial-based biosensing platform. J Med Virol 2022; 94:5808-5826. [PMID: 35981973 PMCID: PMC9538259 DOI: 10.1002/jmv.28075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 01/06/2023]
Abstract
Rapid detection of antibodies during infection and after vaccination is critical for the control of infectious outbreaks, understanding immune response, and evaluating vaccine efficacy. In this manuscript, we evaluate a simple ultrarapid test for SARS-CoV-2 antibodies in COVID-19 patients, which gives quantitative results (i.e., antibody concentration) in 10-12 s using a previously reported nanomaterial-based three-dimensional (3D)-printed biosensing platform. This platform consists of a micropillar array electrode fabricated via 3D printing of aerosolized gold nanoparticles and coated with nanoflakes of graphene and specific SARS-CoV-2 antigens, including spike S1, S1 receptor-binding domain (RBD) and nucleocapsid (N). The sensor works on the principle of electrochemical transduction, where the change of sensor impedance is realized by the interactions between the viral proteins attached to the sensor electrode surface and the antibodies. The three sensors were used to test samples from 17 COVID-19 patients and 3 patients without COVID-19. Unlike other serological tests, the 3D sensors quantitatively detected antibodies at a concentration as low as picomole within 10-12 s in human plasma samples. We found that the studied COVID-19 patients had higher concentrations of antibodies to spike proteins (RBD and S1) than to the N protein. These results demonstrate the enormous potential of the rapid antibody test platform for understanding patients' immunity, disease epidemiology and vaccine efficacy, and facilitating the control and prevention of infectious epidemics.
Collapse
Affiliation(s)
- Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
- Current address: Department of Animal and Poultry Sciences,
Virginia Tech, Blacksburg, VA, 24061 USA
| | - George Fei Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center and
Department of Microbiology and Molecular Genetics, University of Pittsburgh School
of Medicine, Pittsburgh, PA, 15213 USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| | - Bin Yuan
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| | - Sanjida Jahan
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA,
15213 USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA,
15213 USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center and
Department of Microbiology and Molecular Genetics, University of Pittsburgh School
of Medicine, Pittsburgh, PA, 15213 USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| |
Collapse
|
30
|
Adam T, Dhahi TS, Gopinath SCB, Hashim U. Novel Approaches in Fabrication and Integration of Nanowire for Micro/Nano Systems. Crit Rev Anal Chem 2022; 52:1913-1929. [DOI: 10.1080/10408347.2021.1925523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tijjani Adam
- Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| | | | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| |
Collapse
|
31
|
Application of Nanotechnology in COVID-19 Infection: Findings and Limitations. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an urgent need to address the global mortality of the COVID-19 pandemic, as it reached 6.3 million as of July 2022. As such, the experts recommended the mass diagnosis of SARS-CoV-2 infection at an early stage using nanotechnology-based sensitive diagnostic approaches. The development of nanobiosensors for Point-of-Care (POC) sampling of COVID-19 could ensure mass detection without the need for sophisticated laboratories or expert personnel. The use of Artificial Intelligence (AI) techniques for POC detection was also proposed. In addition, the utilization of various antiviral nanomaterials such as Silver Nanoparticles (AgNPs) for the development of masks for personal protection mitigates viral transmission. Nowadays, nano-assisted vaccines have been approved for emergency use, but their safety and effectiveness in the mutant strain of the SARS-CoV-2 virus remain challenging. Methodology: Updated literature was sourced from various research indexing databases such as PubMed, SCOPUS, Science Direct, Research Gate and Google Scholars. Result: We presented the concept of novel nanotechnology researched discovery, including nano-devices, electrochemical biosensing, nano-assisted vaccine, and nanomedicines, for use in recent times, which could be a formidable step for future management of COVID-19.
Collapse
|
32
|
Chang H, Jiang M, Zhu Q, Liu A, Wu Y, Li C, Ji X, Gong L, Li S, Chen Z, Kong L, Han L. A novel photoelectrochemical immunosensor based on TiO 2@Bi 2WO 6 hollow microspheres and Ag 2S for sensitive detection of SARS-COV-2 nucleocapsid protein. Microchem J 2022; 182:107866. [PMID: 35971541 PMCID: PMC9365518 DOI: 10.1016/j.microc.2022.107866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) is a cluster of β coronaviruses. The 2019 coronavirus disease (COVID-19) caused by SARS-COV-2 is emerging as a global pandemic. Thus, early diagnosis of SARS-COV-2 is essential to prevent severe outbreaks of the disease. In this experiment, a novel label-free photoelectrochemical (PEC) immunosensor was obtained based on silver sulfide (Ag2S) sensitized titanium dioxide@bismuth tungstate (TiO2@Bi2WO6) nanocomposite for quantitative detection of SARS-COV-2 nucleocapsid protein. The constructed TiO2@Bi2WO6 hollow microspheres had large specific surface area and could produce high photocurrent intensity under visible light illumination. Ag2S was in-situ grown on the surface of thioglycolic acid (TGA) modified TiO2@Bi2WO6. In particular, TiO2@Bi2WO6 and Ag2S formed a good energy level match, which could effectively enhance the photocurrent conversion efficiency and strength the photocurrent response. Ascorbic acid (AA) acted as an effective electron donor to effectively eliminate photogenerated holes. Under optimal experimental conditions, the constructed immunosensor presented a supersensitive response to SARS-COV-2 nucleocapsid protein, with a desirable linear relationship ranged from 0.001 to 50 ng/mL for nucleocapsid protein and a lower detection limit of 0.38 pg/mL. The fabricated sensor exhibited a wide linear range, excellent selectivity, specificity and stability, which provided a valuable referential idea for the detection of SARS-COV-2.
Collapse
Affiliation(s)
- Huiqin Chang
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, PR China
| | - Meng Jiang
- School of Life Sciences, Shandong University of Technology, Zibo 255049, PR China
| | - Qiying Zhu
- School of Life Sciences, Shandong University of Technology, Zibo 255049, PR China
| | - Anqi Liu
- School of Life Sciences, Shandong University of Technology, Zibo 255049, PR China
| | - Yuyin Wu
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, PR China
| | - Canguo Li
- School of Life Sciences, Shandong University of Technology, Zibo 255049, PR China
| | - Xiangyue Ji
- School of Life Sciences, Shandong University of Technology, Zibo 255049, PR China
| | - Li Gong
- School of Life Sciences, Shandong University of Technology, Zibo 255049, PR China
| | - Shanshan Li
- School of Life Sciences, Shandong University of Technology, Zibo 255049, PR China
| | - Zhiwei Chen
- Institute of Food and Nutrition Science, Shandong University of Technology, Zibo 255049, PR China
| | - Ling Kong
- School of Life Sciences, Shandong University of Technology, Zibo 255049, PR China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| |
Collapse
|
33
|
Wasfi A, Awwad F, Qamhieh N, Al Murshidi B, Palakkott AR, Gelovani JG. Real-time COVID-19 detection via graphite oxide-based field-effect transistor biosensors decorated with Pt/Pd nanoparticles. Sci Rep 2022; 12:18155. [PMID: 36307495 PMCID: PMC9614753 DOI: 10.1038/s41598-022-22249-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 12/31/2022] Open
Abstract
Coronavirus 2019 (COVID-19) spreads an extremely infectious disease where there is no specific treatment. COVID-19 virus had a rapid and unexpected spread rate which resulted in critical difficulties for public health and unprecedented daily life disruption. Thus, accurate, rapid, and early diagnosis of COVID-19 virus is critical to maintain public health safety. A graphite oxide-based field-effect transistor (GO-FET) was fabricated and functionalized with COVID-19 antibody for the purpose of real-time detection of COVID-19 spike protein antigen. Thermal evaporation process was used to deposit the gold electrodes on the surface of the sensor substrate. Graphite oxide channel was placed between the gold electrodes. Bimetallic nanoparticles of platinum and palladium were generated via an ultra-high vacuum (UHV) compatible system by sputtering and inert-gas condensation technique. The biosensor graphite oxide channel was immobilized with specific antibodies against the COVID-19 spike protein to achieve selectivity and specificity. This technique uses the attractive semiconductor characteristics of the graphite oxide-based materials resulting in highly specific and sensitive detection of COVID-19 spike protein. The GO-FET biosensor was decorated with bimetallic nanoparticles of platinum and palladium to investigate the improvement in the sensor sensitivity. The in-house developed biosensor limit of detection (LOD) is 1 fg/mL of COVID-19 spike antigen in phosphate-buffered saline (PBS). Moreover, magnetic labelled SARS-CoV-2 spike antibody were studied to investigate any enhancement in the sensor performance. The results indicate the successful fabrication of a promising field effect transistor biosensor for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Asma Wasfi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Naser Qamhieh
- Department of Physics, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badria Al Murshidi
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdul Rasheed Palakkott
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juri George Gelovani
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
34
|
Sadique MA, Yadav S, Khare V, Khan R, Tripathi GK, Khare PS. Functionalized Titanium Dioxide Nanoparticle-Based Electrochemical Immunosensor for Detection of SARS-CoV-2 Antibody. Diagnostics (Basel) 2022; 12:2612. [PMID: 36359457 PMCID: PMC9689474 DOI: 10.3390/diagnostics12112612] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2023] Open
Abstract
The advancement in biosensors can overcome the challenges faced by conventional diagnostic techniques for the detection of the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, the development of an accurate, rapid, sensitive, and selective diagnostic technique can mitigate adverse health conditions caused by SARS-CoV-2. This work proposes the development of an electrochemical immunosensor based on bio-nanocomposites for the sensitive detection of SARS-CoV-2 antibodies through the differential pulse voltammetry (DPV) electroanalytical method. The facile synthesis of chitosan-functionalized titanium dioxide nanoparticles (TiO2-CS bio-nanocomposites) is performed using the sol-gel method. Characterization of the TiO2-CS bio-nanocomposite is accomplished using UV-vis spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The electrochemical performance is studied using cyclic voltammetry (CV), DPV, and electrochemical impedance spectroscopy (EIS) for its electroanalytical and biosensing capabilities. The developed immunosensing platform has a high sensitivity with a wide range of detection from 50 ag mL-1 to 1 ng mL-1. The detection limit of the SARS-CoV-2 antibody in buffer media is obtained to be 3.42 ag mL-1 and the limit of quantitation (LOQ) to be 10.38 ag mL-1. The electrochemical immunosensor has high selectivity in different interfering analytes and is stable for 10 days. The results suggest that the developed electrochemical immunosensor can be applicable for real sample analysis and further high-throughput testing.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vedika Khare
- School of Nanotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal 462033, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gagan Kant Tripathi
- School of Nanotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal 462033, India
| | - Purnima Swarup Khare
- School of Nanotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal 462033, India
| |
Collapse
|
35
|
Janata J. Chemically Sensitive Field‐Effect Transistors, Past, Present and Future. ChemElectroChem 2022. [DOI: 10.1002/celc.202200784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiří Janata
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332-0400 USA
| |
Collapse
|
36
|
Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS OMEGA 2022; 7:35387-35445. [PMID: 36249372 PMCID: PMC9558614 DOI: 10.1021/acsomega.2c03171] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 08/24/2023]
Abstract
Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | | | - Harshvardhan Meena
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Abhay Giri Goswami
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Bhawna
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Pallavi Jain
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh, India
| | - Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi, India
- Swami Shraddhanand
College, University of Delhi, Delhi, India
| | - Mansi Sagar
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Devendra Kumar Rana
- Department
of Physics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Indra Bahadur
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
37
|
Ji G, Tian J, Xing F, Feng Y. Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules. Int J Mol Sci 2022; 23:10838. [PMID: 36142748 PMCID: PMC9500660 DOI: 10.3390/ijms231810838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Graphene and its derivatives show great potential for biosensing due to their extraordinary optical, electrical and physical properties. In particular, graphene and its derivatives have excellent optical properties such as broadband and tunable absorption, fluorescence bursts, and strong polarization-related effects. Optical biosensors based on graphene and its derivatives make nondestructive detection of biomolecules possible. The focus of this paper is to review the preparation of graphene and its derivatives, as well as recent advances in optical biosensors based on graphene and its derivatives. The working principle of face plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence resonance energy transfer (FRET) and colorimetric sensors are summarized, and the advantages and disadvantages of graphene and its derivatives applicable to various types of sensors are analyzed, and the methods of surface functionalization of graphene and its derivatives are introduced; these optical biosensors can be used for the detection of a range of biomolecules such as single cells, cellular secretions, proteins, nucleic acids, and antigen-antibodies; these new high-performance optical sensors are capable of detecting changes in surface structure and biomolecular interactions with the advantages of ultra-fast detection, high sensitivity, label-free, specific recognition, and the ability to respond in real-time. Problems in the current stage of application are discussed, as well as future prospects for graphene and its biosensors. Achieving the applicability, reusability and low cost of novel optical biosensors for a variety of complex environments and achieving scale-up production, which still faces serious challenges.
Collapse
Affiliation(s)
- Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yu Feng
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
38
|
Jimenez-Rosales A, Cortes-Camargo S, Acuña-Avila PE. Minireview: biocompatibility of engineered biomaterials, their interaction with the host cells, and evaluation of their properties. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Stefani Cortes-Camargo
- Department of Nanotechnology, Technological University of Zinacantepec, Zinacantepec, Mexico
| | | |
Collapse
|
39
|
Maghoul A, Simonsen I, Rostami A, Mirtaheri P. An Optical Modeling Framework for Coronavirus Detection Using Graphene-Based Nanosensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2868. [PMID: 36014733 PMCID: PMC9412525 DOI: 10.3390/nano12162868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The outbreak of the COVID-19 virus has faced the world with a new and dangerous challenge due to its contagious nature. Hence, developing sensory technologies to detect the coronavirus rapidly can provide a favorable condition for pandemic control of dangerous diseases. In between, because of the nanoscale size of this virus, there is a need for a good understanding of its optical behavior, which can give an extraordinary insight into the more efficient design of sensory devices. For the first time, this paper presents an optical modeling framework for a COVID-19 particle in the blood and extracts its optical characteristics based on numerical computations. To this end, a theoretical foundation of a COVID-19 particle is proposed based on the most recent experimental results available in the literature to simulate the optical behavior of the coronavirus under varying physical conditions. In order to obtain the optical properties of the COVID-19 model, the light reflectance by the structure is then simulated for different geometrical sizes, including the diameter of the COVID-19 particle and the size of the spikes surrounding it. It is found that the reflectance spectra are very sensitive to geometric changes of the coronavirus. Furthermore, the density of COVID-19 particles is investigated when the light is incident on different sides of the sample. Following this, we propose a nanosensor based on graphene, silicon, and gold nanodisks and demonstrate the functionality of the designed devices for detecting COVID-19 particles inside the blood samples. Indeed, the presented nanosensor design can be promoted as a practical procedure for creating nanoelectronic kits and wearable devices with considerable potential for fast virus detection.
Collapse
Affiliation(s)
- Amir Maghoul
- Optical/FNIR Laboratory of Biomedical Group, Department of Mechanical, Electronics and Chemical Engineering, OsloMet–Oslo Metropolitan University, 0167 Oslo, Norway
| | - Ingve Simonsen
- Department of Physics, NTNU—Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ali Rostami
- Photonics and Nanocrystals Research Laboratory (PNRL), Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166614761, Iran
| | - Peyman Mirtaheri
- Optical/FNIR Laboratory of Biomedical Group, Department of Mechanical, Electronics and Chemical Engineering, OsloMet–Oslo Metropolitan University, 0167 Oslo, Norway
| |
Collapse
|
40
|
Maia R, Carvalho V, Faria B, Miranda I, Catarino S, Teixeira S, Lima R, Minas G, Ribeiro J. Diagnosis Methods for COVID-19: A Systematic Review. MICROMACHINES 2022; 13:1349. [PMID: 36014271 PMCID: PMC9415914 DOI: 10.3390/mi13081349] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 05/15/2023]
Abstract
At the end of 2019, the coronavirus appeared and spread extremely rapidly, causing millions of infections and deaths worldwide, and becoming a global pandemic. For this reason, it became urgent and essential to find adequate tests for an accurate and fast diagnosis of this disease. In the present study, a systematic review was performed in order to provide an overview of the COVID-19 diagnosis methods and tests already available, as well as their evolution in recent months. For this purpose, the Science Direct, PubMed, and Scopus databases were used to collect the data and three authors independently screened the references, extracted the main information, and assessed the quality of the included studies. After the analysis of the collected data, 34 studies reporting new methods to diagnose COVID-19 were selected. Although RT-PCR is the gold-standard method for COVID-19 diagnosis, it cannot fulfill all the requirements of this pandemic, being limited by the need for highly specialized equipment and personnel to perform the assays, as well as the long time to get the test results. To fulfill the limitations of this method, other alternatives, including biological and imaging analysis methods, also became commonly reported. The comparison of the different diagnosis tests allowed to understand the importance and potential of combining different techniques, not only to improve diagnosis but also for a further understanding of the virus, the disease, and their implications in humans.
Collapse
Affiliation(s)
- Renata Maia
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Violeta Carvalho
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
- ALGORITMI, Production and Systems Department, School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Bernardo Faria
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Miranda
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Senhorinha Teixeira
- ALGORITMI, Production and Systems Department, School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Rui Lima
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
- CEFT, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Graça Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - João Ribeiro
- ALiCE, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|
41
|
Thapa S, Singh KRB, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. BIOSENSORS 2022; 12:637. [PMID: 36005033 PMCID: PMC9405813 DOI: 10.3390/bios12080637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
Abstract
The novel coronavirus appeared to be a milder infection initially, but the unexpected outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called COVID-19, was transmitted all over the world in late 2019 and caused a pandemic. Human health has been disastrously affected by SARS-CoV-2, which is still evolving and causing more serious concerns, leading to the innumerable loss of lives. Thus, this review provides an outline of SARS-CoV-2, of the traditional tools to diagnose SARS-CoV-2, and of the role of emerging nanomaterials with unique properties for fabricating biosensor devices to diagnose SARS-CoV-2. Smart and intelligent nanomaterial-enabled biosensors (nanobiosensors) have already proven their utility for the diagnosis of several viral infections, as various detection strategies based on nanobiosensor devices are already present, and several other methods are also being investigated by researchers for the determination of SARS-CoV-2 disease; however, considerably more is undetermined and yet to be explored. Hence, this review highlights the utility of various nanobiosensor devices for SARS-CoV-2 determination. Further, it also emphasizes the future outlook of nanobiosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Sushma Thapa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
42
|
Singh PK, Sharma K, Singh PK. Electro-magneto-chemical synthesis and characterization of thermally reduced graphene oxide: Influence of magnetic field and cyclic thermal loading on microstructural properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Wasfi A, Awwad F, Gelovani JG, Qamhieh N, Ayesh AI. COVID-19 Detection via Silicon Nanowire Field-Effect Transistor: Setup and Modeling of Its Function. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2638. [PMID: 35957069 PMCID: PMC9370568 DOI: 10.3390/nano12152638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
Biomolecular detection methods have evolved from simple chemical processes to laboratory sensors capable of acquiring accurate measurements of various biological components. Recently, silicon nanowire field-effect transistors (SiNW-FETs) have been drawing enormous interest due to their potential in the biomolecular sensing field. SiNW-FETs exhibit capabilities such as providing real-time, label-free, highly selective, and sensitive detection. It is highly critical to diagnose infectious diseases accurately to reduce the illness and death spread rate. In this work, a novel SiNW-FET sensor is designed using a semiempirical approach, and the electronic transport properties are studied to detect the COVID-19 spike protein. Various electronic transport properties such as transmission spectrum, conductance, and electronic current are investigated by a semiempirical modeling that is combined with a nonequilibrium Green's function. Moreover, the developed sensor selectivity is tested by studying the electronic transport properties for other viruses including influenza, rotavirus, and HIV. The results indicate that SiNW-FET can be utilized for accurate COVID-19 identification with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Asma Wasfi
- Department of Electrical Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Falah Awwad
- Department of Electrical Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Juri George Gelovani
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Naser Qamhieh
- Department of Physics, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Ahmad I. Ayesh
- Physics Program, Department of Mathematics, Statistics and Physics, College of Arts and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
44
|
Shahdeo D, Chauhan N, Majumdar A, Ghosh A, Gandhi S. Graphene-Based Field-Effect Transistor for Ultrasensitive Immunosensing of SARS-CoV-2 Spike S1 Antigen. ACS APPLIED BIO MATERIALS 2022; 5:3563-3572. [PMID: 35775242 PMCID: PMC9274923 DOI: 10.1021/acsabm.2c00503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coronavirus disease (COVID-19) is an infectious disease that has posed a global health challenge caused by the SARS-CoV-2 virus. Early management and diagnosis of SARS-CoV-2 are crucial for the timely treatment, traceability, and reduction of viral spread. We have developed a rapid method using a Graphene-based Field-Effect Transistor (Gr-FET) for the ultrasensitive detection of SARS-CoV-2 Spike S1 antigen (S1-Ag). The in-house developed antispike S1 antibody (S1-Ab) was covalently immobilized on the surface of a carboxy functionalized graphene channel using carbodiimide chemistry. Ultraviolet-visible spectroscopy, Fourier-Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Optical Microscopy, Raman Spectroscopy, Scanning Electron Microscopy (SEM), Enzyme-Linked Immunosorbent Assays (ELISA), and device stability studies were conducted to characterize the bioconjugation and fabrication process of Gr-FET. In addition, the electrical response of the device was evaluated by monitoring the change in resistance caused by Ag-Ab interaction in real time. For S1-Ag, our Gr-FET devices were tested in the range of 1 fM to 1 μM with a limit of detection of 10 fM in the standard buffer. The fabricated devices are highly sensitive, specific, and capable of detecting low levels of S1-Ag.
Collapse
Affiliation(s)
- Deepshikha Shahdeo
- DBT-National
Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India
| | - Neha Chauhan
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
- The
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Majumdar
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
| | - Arindam Ghosh
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
- Centre
for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Sonu Gandhi
- DBT-National
Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India
| |
Collapse
|
45
|
Zambry NS, Obande GA, Khalid MF, Bustami Y, Hamzah HH, Awang MS, Aziah I, Manaf AA. Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. BIOSENSORS 2022; 12:473. [PMID: 35884276 PMCID: PMC9312918 DOI: 10.3390/bios12070473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/16/2023]
Abstract
The development of precise and efficient diagnostic tools enables early treatment and proper isolation of infected individuals, hence limiting the spread of coronavirus disease 2019 (COVID-19). The standard diagnostic tests used by healthcare workers to diagnose severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have some limitations, including longer detection time, the need for qualified individuals, and the use of sophisticated bench-top equipment, which limit their use for rapid SARS-CoV-2 assessment. Advances in sensor technology have renewed the interest in electrochemical biosensors miniaturization, which provide improved diagnostic qualities such as rapid response, simplicity of operation, portability, and readiness for on-site screening of infection. This review gives a condensed overview of the current electrochemical sensing platform strategies for SARS-CoV-2 detection in clinical samples. The fundamentals of fabricating electrochemical biosensors, such as the chosen electrode materials, electrochemical transducing techniques, and sensitive biorecognition molecules, are thoroughly discussed in this paper. Furthermore, we summarised electrochemical biosensors detection strategies and their analytical performance on diverse clinical samples, including saliva, blood, and nasopharyngeal swab. Finally, we address the employment of miniaturized electrochemical biosensors integrated with microfluidic technology in viral electrochemical biosensors, emphasizing its potential for on-site diagnostics applications.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia PMB 146, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| |
Collapse
|
46
|
Abstract
Healthcare is undergoing large transformations, and it is imperative to leverage new technologies to support the advent of personalized medicine and disease prevention. It is now well accepted that the levels of certain biological molecules found in blood and other bodily fluids, as well as in exhaled breath, are an indication of the onset of many human diseases and reflect the health status of the person. Blood, urine, sweat, or saliva biomarkers can therefore serve in early diagnosis of diseases such as cancer, but also in monitoring disease progression, detecting metabolic disfunctions, and predicting response to a given therapy. For most point-of-care sensors, the requirement that patients themselves can use and apply them is crucial not only regarding the diagnostic part, but also at the sample collection level. This has stimulated the development of such diagnostic approaches for the non-invasive analysis of disease-relevant analytes. Considering these timely efforts, this review article focuses on novel, sensitive, and selective sensing systems for the detection of different endogenous target biomarkers in bodily fluids as well as in exhaled breath, which are associated with human diseases.
Collapse
|
47
|
Sadighbayan D, Minhas-Khan A, Ghafar-Zadeh E. Laser-Induced Graphene-Functionalized Field-Effect Transistor-Based Biosensing: A Potent Candidate for COVID-19 Detection. IEEE Trans Nanobioscience 2022; 21:232-245. [PMID: 34648455 PMCID: PMC9088816 DOI: 10.1109/tnb.2021.3119996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Speedy and on-time detection of coronavirus disease 2019 (COVID-19) is of high importance to control the pandemic effectively and stop its disastrous consequences. A widely available, reliable, label-free, and rapid test that can recognize tiny amounts of specific biomarkers might be the solution. Nanobiosensors are one of the most attractive candidates for this purpose. Integration of graphene with biosensing devices shifts the performance of these systems to an incomparable level. Between the various arrangements using this wonder material, field-effect transistors (FETs) display a precise detection even in complex samples. The emergence of pioneering biosensors for detecting a wide range of diseases especially COVID-19 created the incentive to prepare a review of the recent graphene-FET biosensing platforms. However, the graphene fabrication and transfer to the surface of the device is an imperative factor for researchers to take into account. Therefore, we also reviewed the common methods of manufacturing graphene for biosensing applications and discuss their advantages and disadvantages. One of the most recent synthesizing techniques - laser-induced graphene (LIG) - is attracting attention owing to its extraordinary benefits which are thoroughly explained in this article. Finally, a conclusion highlighting the current challenges is presented.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| | - Aamir Minhas-Khan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
48
|
Fioranelli M, Ahmad H, Sepehri A, Roccia MG, Aziz F. A mathematical model for imaging and killing cancer cells by using concepts of the Warburg effect in designing a Graphene system. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2985-2995. [PMID: 35240816 DOI: 10.3934/mbe.2022137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
According to the Warburg effect, there are some significant differences between metabolisms, products and process of respirations of cancer cells and normal cells. For example, normal cells absorb oxygen and glucose and give water molecules, carbon dioxide, ATP molecules and some number of spinors; while cancer cells take glucose and give lactate, less number of ATP molecules and different number of spinors. Using this property, we can design a system from two graphene sheets that are connected by pairing the fourth free electrons of carbons. Then, we can break some pairs and produce some holes. The number of these holes should be equal to the number of radiated spinors by normal cells. Near a normal cell, all holes are filled and the graphene system doesn't emit any electrical current or wave. However, near a cancer cell, some extra holes or spinors remain that their motions produce some electrical currents. These currents force on cancer cell membranes and destroy them and consequently, cause the cell death. Also, these currents emit some electromagnetic waves which detectors could take them out of the human's body and consequently, they could play the main role in imaging.
Collapse
Affiliation(s)
- Massimo Fioranelli
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, Rome 00193, Italy
| | - Hijaz Ahmad
- Information Technology Application and Research Center, Istanbul Ticaret University, Istanbul 34445, Turkey
- Department of Mathematics, Faculty of Humanities and Social Sciences, Istanbul Ticaret University, Istanbul 34445, Turkey
| | - Alireza Sepehri
- Istituto Terapie Sistemiche Integrate, Via Flaminia 449, Rome 00181, Italy
| | - Maria Grazia Roccia
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, Rome 00193, Italy
| | - Faissal Aziz
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B. P. 2390, Marrakech 40000, Morocco
| |
Collapse
|
49
|
Singh KRB, Rathee S, Nagpure G, Singh J, Singh RP. Smart and emerging nanomaterials-based biosensor for SARS-CoV-2 detection. MATERIALS LETTERS 2022; 307:131092. [PMID: 34690389 PMCID: PMC8519812 DOI: 10.1016/j.matlet.2021.131092] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 05/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a primary cause of the COVID-19 pandemic. To date, various detection approaches are already present, and many other techniques are also being developed for the rapid and real-time detection of COVID-19 infection in the wake of this pandemic. Hence, this featured review will provide an overview of COVID-19, its biomarkers, current diagnostic techniques, and emerging smart nanomaterials-based biosensing approaches; apart from this, it will also extend some light on future perspectives of biosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Kshitij R B Singh
- Department of Chemistry, Govt. V. Y. T. P.G. Autonomous College, Durg, Chhattisgarh (491001), India
| | - Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana (131028), India
| | - Gunjan Nagpure
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh (484886), India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh (221005), India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh (484886), India
| |
Collapse
|
50
|
Zhu A, Luo X. Detection of Covid-19 through a Heptanal Biomarker Using Transition Metal Doped Graphene. J Phys Chem B 2022; 126:151-160. [PMID: 34982559 PMCID: PMC8751021 DOI: 10.1021/acs.jpcb.1c09580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/12/2021] [Indexed: 12/18/2022]
Abstract
A rapid and noninvasive way to monitor the spread of COVID-19 is the detection of SARS-CoV-2 biomarkers from exhaled breath. Heptanal was identified as a key biomarker which was significantly elevated in the breath of SARS-CoV-2 patients. In this study, the adsorption behaviors of heptanal on pristine and transition metal (Pd, Pt, and Ag) doped graphene were studied based on density functional theory. The results indicated that heptanal was weakly adsorbed on pristine graphene with an adsorption energy of -0.015 eV while it was strongly adsorbed on Pd-, Pt-, and Ag-doped graphene with adsorption energies of -0.404, - 0.356, and -0.755 eV, respectively. Also, the electronic properties of Pd-, Pt-, and Ag-doped graphene changed more dramatically after heptanal adsorption than pristine graphene. The recovery times were estimated to be 6.13 × 10-6, 9.57 × 10-7, and 4.83 s for Pd-, Pt-, and Ag-doped graphene, respectively, showing that Pd-, Pt-, and Ag-doped graphene are suitable as reversible sensors. Our results conclude that Pd-, Pt-, and Ag-doped graphene are potential candidates as gas sensors for heptanal detection, and Ag-doped graphene is the most promising one.
Collapse
Affiliation(s)
- Anthony Zhu
- National Graphene
Research
and Development Center, Springfield, Virginia 22151, United States
| | - Xuan Luo
- National Graphene
Research
and Development Center, Springfield, Virginia 22151, United States
| |
Collapse
|