1
|
Williams-Carrier R, Chotewutmontri P, Perkel S, Rojas M, Belcher S, Barkan A. The psbA open reading frame acts in cis to toggle HCF173 from an activator to a repressor for light-regulated psbA translation in plants. THE PLANT CELL 2025; 37:koaf047. [PMID: 40073200 PMCID: PMC11983388 DOI: 10.1093/plcell/koaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025]
Abstract
The D1 subunit of photosystem II is subject to photooxidative damage. Photodamaged D1 must be replaced with nascent D1 to maintain photosynthesis. In plant chloroplasts, D1 photodamage regulates D1 synthesis by modulating translation initiation on psbA mRNA encoding D1, but the underlying mechanisms are unknown. Analyses of reporter constructs in transplastomic tobacco (Nicotiana tabacum) showed that the psbA translational regulator HCF173 activates via a cis-element in the psbA 5'-UTR. However, the psbA UTRs are not sufficient to program light-regulated translation. Instead, the psbA open reading frame represses translation initiation in cis, and D1 photodamage relieves this repression. HCF173 remains bound to the psbA 5'-UTR in the dark and truncation of HCF173 prevents repression in the dark, implicating HCF173 as a mediator of repression. We propose a model that accounts for these and prior observations, which is informed by structures of the Complex I assembly factor CIA30/NDUFAF1. We posit that D1 photodamage relieves a repressive cotranslational interaction between nascent D1 and HCF173's CIA30 domain, that the photosystem II assembly factor HCF136 promotes this repressive interaction, and that these events toggle HCF173 between activating and repressive conformations on psbA mRNA. These findings elucidate a translational rheostat that optimizes photosynthesis in response to shifting light conditions.
Collapse
Affiliation(s)
| | | | - Sarah Perkel
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| | - Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| |
Collapse
|
2
|
Hong G, Yang M, Wang S, Xia Y, Peng G. Metarhizium acridum transcription factor MaFTF1 negatively regulates virulence of the entomopathogenic fungus by controlling cuticle penetration of locusts. PEST MANAGEMENT SCIENCE 2025; 81:2020-2031. [PMID: 39704032 DOI: 10.1002/ps.8604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The entomopathogenic fungus (EPF) Metarhizium acridum, a typical filamentous fungus, has been utilized for the biological control of migratory locusts (Locusta migratoria manilensis). Fungal-specific transcription factors (TFs) play a crucial role in governing various cellular processes in fungi, although TFs with only the Fungal_trans domain remain poorly understood. RESULTS In this study, we identified a unique fungal-specific TF in M. acridum, named MaFTF1, which contains only a Fungal_trans domain and functions as a negative regulator of M. acridum virulence by influencing cuticle penetration. The virulence of the MaFTF1 knockout strain (ΔMaFTF1) against L. migratoria was increased, with a median lethal time (LT50) ~0.91 days shorter than that of the wild-type (WT) strain when inoculated topically, mimicking natural infection conditions. Correspondingly, ΔMaFTF1 penetrated the cuticle earlier than did the WT strain. Our investigation revealed that the development of appressoria was accelerated in ΔMaFTF1 compared with the WT strain. Furthermore, the appressoria of the ΔMaFTF1 displayed higher turgor pressure and an upregulated expression of fungal hydrolases active toward the insect cuticle. RNA sequencing analysis indicated that the differences in appressorium behavior between the strains were due to MaFTF1 regulating a complex metabolism pathway. CONCLUSION This study revealed that MaFTF1 acts as a negative regulator of virulence, impacting the process of cuticle penetration by slowing the formation of appressoria, decreasing their turgor pressure, and reducing the expression of hydrolases in appressoria, revealing an unexpected strategy in the EPFs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Geng Hong
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Man Yang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Shanjun Wang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Guoxiong Peng
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
3
|
Li J, Liu J, Peng L, Liu J, Xu L, He J, Sun L, Shen G, He L. Functional analysis of SDR112C1 associated with fenpropathrin tolerance in Tetranychus cinnabarinus (Boisduval). INSECT SCIENCE 2025; 32:585-599. [PMID: 38926942 DOI: 10.1111/1744-7917.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Short-chain dehydrogenases/reductases (SDRs) are ubiquitously distributed across diverse organisms and play pivotal roles in the growth, as well as endogenous and exogenous metabolism of various substances, including drugs. The expression levels of SDR genes are reportedly upregulated in the fenpropathrin (FEN)-resistant (FeR) strain of Tetranychus cinnabarinus. However, the functions of these SDR genes in acaricide tolerance remain elusive. In this study, the activity of SDRs was found to be significantly higher (2.26-fold) in the FeR strain compared to the susceptible strain (SS) of T. cinnabarinus. A specific upregulated SDR gene, named SDR112C1, exhibited significant overexpression (3.13-fold) in the FeR population compared with that in the SS population. Furthermore, the expression of SDR112C1 showed a significant increase in the response to FEN induction. Additionally, knockdown of the SDR112C1 gene resulted in decreased SDR activity and reduced mite viability against FEN. Importantly, heterologous expression and in vitro incubation assays confirmed that recombinant SDR112C1 could effectively deplete FEN. Moreover, the overexpression of the SDR112C1 gene in Drosophila melanogaster significantly decreased the toxicity of FEN to transgenic fruit flies. These findings suggest that the overexpression of SDR SDR112C1 is a crucial factor contributing to FEN tolerance in T. cinnabarinus. This discovery not only enhances our understanding of SDR-mediated acaricide tolerance but also introduces a new family of detoxification enzymes to consider in practice, beyond cytochrome P450s, carboxyl/choline esterases and glutathione S-transferases.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jialu Liu
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing, China
| | - Lishu Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jingui Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Junfeng He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Longjiang Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Parker LE, Papanicolaou KN, Zalesak-Kravec S, Weinberger EM, Kane MA, Foster DB. Retinoic acid signaling and metabolism in heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H792-H813. [PMID: 39933792 DOI: 10.1152/ajpheart.00871.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Nearly 70 years after studies first showed that the offspring of vitamin A (retinol, ROL)-deficient rats exhibit structural cardiac defects and over 20 years since the role of vitamin A's potent bioactive metabolite hormone, all-trans retinoic acid (ATRA), was elucidated in embryonic cardiac development, the role of the vitamin A metabolites, or retinoids, in adult heart physiology and heart and vascular disease, remains poorly understood. Studies have shown that low serum levels of retinoic acid correlate with higher all-cause and cardiovascular mortality, though the relationship between circulating retinol and ATRA levels, cardiac tissue ATRA levels, and intracellular cardiac ATRA signaling in the context of heart and vascular disease has only begun to be addressed. We have recently shown that patients with idiopathic dilated cardiomyopathy show a nearly 40% decline of in situ cardiac ATRA levels, despite adequate local stores of retinol. Moreover, we and others have shown that the administration of ATRA forestalls the development of heart failure (HF) in rodent models. In this review, we summarize key facets of retinoid metabolism and signaling and discuss mechanisms by which impaired ATRA signaling contributes to several HF hallmarks including hypertrophy, contractile dysfunction, poor calcium handling, redox imbalance, and fibrosis. We highlight unresolved issues in cardiac ATRA metabolism whose pursuit will help refine therapeutic strategies aimed at restoring ATRA homeostasis.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Eva M Weinberger
- School of Medicine, Imperial College London, London, United Kingdom
| | - Maureen A Kane
- School of Pharmacy, University of Maryland, Baltimore, Maryland, United States
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Vosála O, Krátký J, Matoušková P, Rychlá N, Štěrbová K, Raisová Stuchlíková L, Vokřál I, Skálová L. Biotransformation of anthelmintics in nematodes in relation to drug resistance. Int J Parasitol Drugs Drug Resist 2025; 27:100579. [PMID: 39827513 PMCID: PMC11787565 DOI: 10.1016/j.ijpddr.2025.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance. The present study summarizes the current knowledge regarding the biotransformation of anthelmintics, specifically drugs used to treat mainly nematodes, a group of parasites that are a significant health concern for humans and animals. The main biotransformation enzymes are introduced and their roles in anthelmintics metabolism in nematodes are discussed with a particular focus on their potential participation in drug resistance. Similarly, the inducibility of biotransformation enzymes with sublethal doses of anthelmintics is presented in view of its potential contribution to drug resistance development. In the conclusion, the main tasks awaiting scientists in this area are outlined.
Collapse
Affiliation(s)
- Ondřej Vosála
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Josef Krátký
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Nikola Rychlá
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Karolína Štěrbová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic.
| |
Collapse
|
6
|
Li Y, Yu S, Jiang Y, Huang C, Zhu J, Lv J, Wang J, You S, Qin B. Asymmetric Synthesis of CF 3-Substituted β-Hydroxyketones and 1,3-Diols by Engineered Ketoreductases. Org Lett 2025; 27:3031-3036. [PMID: 40110611 DOI: 10.1021/acs.orglett.5c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Chiral CF3-substituted β-hydroxy ketones and 1,3-diols were prepared via the ketoreductase-catalyzed asymmetric reduction of the corresponding benzoyl trifluoroacetones. The variants of two ketoreductases, LfSDR1 and CgKR1, were screened or engineered for stereocomplementary synthesis of CF3-substituted β-hydroxy ketones with up to >99% conversions and up to >99% enantiomeric excess (ee) values. In addition, the cascade reduction or one pot reduction of diketones could afford the CF3-substituted 1,3-diols with up to >99% ratios and >99% ee values.
Collapse
Affiliation(s)
- Yangyang Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Sizhe Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Yingqian Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Chenming Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Jingxue Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Jiaxiang Lv
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Jiaqi Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| |
Collapse
|
7
|
Yang Y, Zhou S, Ni M, Zhang Y, Lin S, Zhang J, Tong Z. The Mining of Candidate Genes Involved in the Camphor Biosynthesis Pathway of Cinnamomum camphora. PLANTS (BASEL, SWITZERLAND) 2025; 14:991. [PMID: 40219058 PMCID: PMC11990527 DOI: 10.3390/plants14070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Cinnamomum camphora is widely cultivated for its camphor in essential oil (EO), which is used in pharmaceutical industries. However, the candidate genes for the camphor biosynthesis pathway are unknown. Gas chromatography-mass spectrometry (GC-MS) was used to identify differences in the composition of camphor- and linalool-type camphor EOs and in conjunction with transcriptional analysis to identify terpene biosynthesis-related genes. The GC-MS analysis of C. camphora revealed 67 chemical components, including 32 monoterpenes and 35 sesquiterpenes, with camphor-type leaves dominated by camphor and linalool-type leaves by linalool. Transcriptome analysis revealed 6499 differentially expressed genes (DEGs) between camphor- and linalool-type C. camphora, with 4244 upregulated and 2255 downregulated in the camphor-type. GO enrichment highlighted DEGs involved in monoterpene biosynthesis, cell wall organization, and membrane-related processes. KEGG analysis identified pathways such as monoterpenoid, diterpenoid, and phenylpropanoid biosynthesis as significantly enriched. Furthermore, DEGs encoding TPS, dehydrogenases, and transcription factors, which might contribute to the terpenoid diversity in C. camphora, were identified. Twenty-one candidate genes involved in the camphor biosynthesis pathway were identified, providing a foundation for further elucidating the genetic mechanisms underlying camphor production in C. camphora.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (M.N.); (Y.Z.); (S.L.); (Z.T.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Hangzhou 311300, China
| | - Shengcai Zhou
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui 323000, China;
| | - Mingyang Ni
- Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (M.N.); (Y.Z.); (S.L.); (Z.T.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuting Zhang
- Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (M.N.); (Y.Z.); (S.L.); (Z.T.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Hangzhou 311300, China
| | - Shixiong Lin
- Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (M.N.); (Y.Z.); (S.L.); (Z.T.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Hangzhou 311300, China
| | - Junhong Zhang
- Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (M.N.); (Y.Z.); (S.L.); (Z.T.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Hangzhou 311300, China
| | - Zaikang Tong
- Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (M.N.); (Y.Z.); (S.L.); (Z.T.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
8
|
Abraham N, Chan E, Li XZ, Zhu H, Mats L, Zhou T, Seah SYK. Patulin Detoxification by Evolutionarily Divergent Reductases of Gluconobacter oxydans ATCC 621. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6842-6853. [PMID: 40066527 PMCID: PMC11926874 DOI: 10.1021/acs.jafc.4c12572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The mycotoxin patulin in processed apple juice poses a significant threat to food safety, driving the need for effective detoxification strategies. Gluconobacter oxydans ATCC 621 can detoxify patulin to ascladiol using either the short-chain dehydrogenases/reductases (SDRs)─GOX0525, GOX1899, and GOX0716─or the aldo-keto reductase (AKR) GOX1462. While GOX0525 and GOX1899 have been previously characterized, this study focuses on GOX0716 and GOX1462, evaluating their optimal pH, thermostability, thermoactivity, and substrate specificity, thereby completing the characterization of all four reductases. GOX0716 and GOX1462 exhibit pH optima of 6 and 7, respectively, and are functional across a broad temperature range of 25-55 °C. GOX0716 was determined to be more thermostable than GOX1462, with a half-life of 4.95 h at 55 °C. Phylogenetic analysis revealed that these SDRs belong to distinct evolutionary families with broad substrate specificity. GOX0716 is a member of the SDR79 family, which shares a common ancestry with the SDR111 family of fungal anthrol reductases. Conversely, GOX1462 is a member of the AKR18 family, which is involved in detoxification of the mycotoxin, deoxynivalenol (DON). Molecular docking analysis of Alphafold models highlights distinct variations in the active site architectures of these SDRs and AKRs, offering insights into their differing catalytic efficiencies toward patulin.
Collapse
Affiliation(s)
- Nadine Abraham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Edicon Chan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Honghui Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Lili Mats
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Stephen Y K Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
9
|
Yin Y, Tian M, Zhang G, Ding C, Yu S. A novel Brucella T4SS effector RS15060 acts on bacterial morphology, lipopolysaccharide core synthesis and host proinflammatory responses, which is beneficial for Brucella melitensis virulence. Microbiol Res 2025; 292:128015. [PMID: 39689431 DOI: 10.1016/j.micres.2024.128015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Brucella relies on the type IV secretion system (T4SS) to establish replication niches within host cells. However, the Brucella T4SS effectors and their functions have not been fully identified. In this study, we investigated the function of Brucella RS15060, a novel T4SS effector discovered in our previous study, on the bacterial biological characteristics and pathogenesis by construction of the gene deletion and complementation strains. We found that deletion of the rs15060 gene weakened abilities of Brucella to replicate within host cells and establish chronic infection in mice but enhanced abilities to adhere/invade HeLa cells and evade lysosomal degradation in the early stage of infection. In addition, the rs15060 deletion Brucella strain showed significant changes in bacterial shape, cell wall thickness, and sensitivity to bactericidal factors. Furthermore, the rs15060 deletion strain showed an increased synthesis of bacterial lipopolysaccharide core and induced a stronger host's inflammatory response. The Brucella rs15060 complementation strain restored the altered biological characteristics. Moreover, BLASTP prediction and 3D structure simulation revealed that the Brucella RS15060 contains NAD(P)-binding and active motifs in structure, which are important for proteins to exert NAD dependent epimerase/dehydratase activity. The complementation strain with mutation on NAD(P)-binding and/or active motifs of RS15060 did not restore the altered characteristics, suggesting that the Brucella RS15060 is a potential NAD dependent epimerase/dehydratase, and the predicted NAD(P)-binding and/or active motifs play an important role on bacterial cell wall and LPS core synthesis, which is crucial for maintaining bacterial morphology and exerting virulence.
Collapse
Affiliation(s)
- Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu 225309, China.
| |
Collapse
|
10
|
Liu X, Chen J, Ma R, Zhao L, Lian C, Chen S, Ma Y. Metabolic profiling and transcriptome analysis of Sinomenium acutum provide insights into the biosynthesis of structurally diverse benzylisoquinoline alkaloids. Sci Rep 2025; 15:5877. [PMID: 39966592 PMCID: PMC11836279 DOI: 10.1038/s41598-025-90334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Sinomenium acutum, a traditional medicinal plant, has been utilized for millennia to alleviate various forms of rheumatic pain symptoms. The structurally diverse benzylisoquinoline alkaloids (BIAs) found in S. acutum are the primary contributors to its therapeutic efficacy, with sinomenine being the principal bioactive constituent. In this study, we employed an integrated transcriptomic and metabolomic approach to investigate BIA biosynthesis in S. acutum. Transcriptome sequencing, functional annotation, and differential gene expression analysis were combined with metabolite profiling to predict biosynthetic pathways of structurally diverse BIAs and screen candidate genes. Metabolomic analysis revealed significant stem-enriched accumulation of BIAs compared to leaves. Furthermore, we proposed a biosynthetic pathway of sinomenine and hypothesized that 34 key candidate genes, including cytochrome P450 (CYP450s), reductases, 2-oxoglutarate-dependent dioxygenases (2-ODDs), and O-methyltransferases (O-MTs), might be involved in its biosynthetic process. This study provides a foundation for understanding the biosynthesis of structurally diverse BIA compounds in S. acutum and offers critical insights for future characterization of functional genetic elements.
Collapse
Affiliation(s)
- Xiuyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
| | - Jicong Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
| | - Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
| | - Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China.
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China.
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng District, Beijing, 100700, People's Republic of China.
| |
Collapse
|
11
|
Liang B, Fu L, Liu P. Regulation of lipid droplet dynamics and lipid homeostasis by hydroxysteroid dehydrogenase proteins. Trends Cell Biol 2025; 35:153-165. [PMID: 39603915 DOI: 10.1016/j.tcb.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
The superfamily of hydroxysteroid dehydrogenases (HSDs) has been well-characterized as enzymes in lipid metabolism, and especially in steroid hormone metabolism from bacteria to mammals. Recently, a subset of HSDs members, including 3β-HSD, 11β-HSD, and 17β-HSD, have been shown to be lipid droplet (LD)-associated proteins that are involved in LD dynamics beyond their canonical functions. This review summarizes current understanding of these LD-associated HSD proteins, focusing on how they regulate different LDs with respect to distinct neutral lipids including triacylglycerols (TAGs), cholesterol esters (CEs), and retinyl esters (REs), the evolutionally conserved role of some LD-associated 17β-HSDs in preventing lipolysis, and specific targeting of HSDs for the treatment of metabolic diseases and viral infections.
Collapse
Affiliation(s)
- Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China.
| | - Lin Fu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming 650500, China; Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China.
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Liao J, Wang Y, Liu H, Liu S, Yan P, Chen H, Li S. Genome-wide identification of short-chain dehydrogenases/reductases genes and functional characterization of ApSDR53C2 in melanin biosynthesis in Arthrinium phaeospermum. Front Microbiol 2025; 16:1532162. [PMID: 39949619 PMCID: PMC11821928 DOI: 10.3389/fmicb.2025.1532162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Arthrinium phaeospermum can cause large areas wilted and death of Bambusa pervariabilis × Dendrocalamopsis grandis, resulting in serious ecological and economic losses. Previous studies found that the appressorium of A. phaeospermum must form to invade the host cells and cause disease. A short-chain dehydrogenase/reductase gene has been shown to maintain the osmotic pressure of the appressorium by synthesizing fungal melanin to penetrate the plant epidermis and cause disease. The SDR gene family of A. phaeospermum was found to be highly expressed during the penetration in the transcriptome sequencing results. Still, the relationship with melanin biosynthesis of A. phaeospermum is not clear. Methods We aimed to predict the biological function of the SDR gene family in A. phaeospermum, identify key ApSDR genes with pathogenic roles, and explore the pathogenic mechanism. We have characterized the SDR family of A. pheospermum bioinformatically. Candidate ApSDRs screened by transcriptome sequencing were compared by qPCR experiments to obtain key ApSDRs that may play an important role in infestation and adversity resistance. Knockout mutants, the co-knockout mutant, and backfill mutants of key ApSDRs were obtained for phenotypic and stress conditions analysis. We explored and validated the pathogenic mechanisms through cellulose membrane penetration experiments and analysis of melanin-related gene synthesis levels. Results and discussion 180 ApSDRs were identified bioinformatically. After screening six candidate ApSDRs with noticeably elevated expression using transcriptome sequencing, qPCR experiments revealed that ApSDR53C2 and ApSDR548U2 had the highest expression. The results of phenotypic and stress conditions analysis indicate that ApSDRs are critical for the growth, development, stress response, and fungicide resistance of A. phaeospermum. The pathogenicity analysis revealed that ApSDR53C2 and ApSDR548U2 play important roles in virulence, with ApSDR53C2 having a stronger effect. A comparison of melanin synthesis levels between wild-type and ΔApSDR53C2 strains showed that ApSDR53C2 positively regulates melanin biosynthesis to promote penetration. The findings demonstrate that ApSDRs are essential for A. phaeospermum to withstand stress and facilitate melanin biosynthesis, which in turn contributes to its virulence.
Collapse
Affiliation(s)
- Jiao Liao
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yisi Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- Ganzi Institute of Forestry Research, Kangding, China
| | - Sijia Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Peng Yan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
13
|
Tang W, Gui C, Zhang T. Expression, Purification, and Bioinformatic Prediction of Mycobacterium tuberculosis Rv0439c as a Potential NADP +-Retinol Dehydrogenase. Mol Biotechnol 2024; 66:3559-3572. [PMID: 37989944 DOI: 10.1007/s12033-023-00956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Although the genome of Mycobacterium tuberculosis (Mtb) H37Rv, the causative agent of tuberculosis, has been repeatedly annotated and updated, a range of proteins from this human pathogen have unknown functions. Mtb Rv0439c, a member of the short-chain dehydrogenase/reductases superfamily, has yet to be cloned and characterized, and its function remains unclear. In this work, we present for the first time the optimized expression and purification of this enzyme, as well as bioinformatic analysis to unveil its potential coenzyme and substrate. Optimized expression in Escherichia coli yielded soluble Rv0439c, while certain tag fusions resulted in insolubility. Sequence and docking analyses strongly suggested that Rv0439c has a clear preference for NADP+, with Arg53 being a key residue that confers coenzyme specificity. Furthermore, functional prediction using CLEAN and DEEPre servers suggested that this protein is a potential NADP+-retinol dehydrogenase (EC No. 1.1.1.300) in retinol metabolism, and this was supported by a BLASTp search and docking studies. Collectively, our findings provide a solid basis for future functional characterization and structural studies of Rv0439c, which will contribute to enhanced understanding of Mtb biology.
Collapse
Affiliation(s)
- Wanggang Tang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China.
| | - Chuanyue Gui
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
- School of Public Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Tingting Zhang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
- School of Public Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| |
Collapse
|
14
|
Yang L, Pan X, Pan Z, Gao H, Ban J, Chen S. Semaglutide Reduces Cardiomyocyte Damage Caused by High-Fat Through HSDL2. Drug Des Devel Ther 2024; 18:5501-5515. [PMID: 39634723 PMCID: PMC11616417 DOI: 10.2147/dddt.s495659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Obesity-induced inflammation and oxidative stress can cause damage to cardiomyocytes. Semaglutide has the potential to reduce glucose levels and weight, while hydroxysteroid dehydrogenase-like protein 2 (HSDL2) also plays a role in regulating lipid metabolism. This study aimed to investigate the expression of oxidative stress markers and HSDL2 in myocardium and serum under high-fat conditions, in order to elucidate the mechanism of obesity-induced myocardial injury and evaluate the impact of semaglutide on myocardial injury through HSDL2. Methods Mouse models of obesity were established with semaglutide treatment. Palmitic acid-cultured mouse cardiomyocytes with HSDL2 knockout were used, as well as palmitic acid-induced high-fat environment models followed by semaglutide treatment. The levels of inflammatory and oxidative stress markers in serum and cardiomyocytes were measured. Additionally, the expression of HSDL2 and autophagy levels in different cell groups were assessed to evaluate the effect of semaglutide on high-fat diet-induced cardiomyocyte injury mediated by HSDL2. Results Obesity increased oxidative stress, which was alleviated by intervention with semaglutide. Furthermore, semaglutide down-regulated HSDL2 expression in obese individuals. Moreover, palmitic acid-induced oxidative stress and autophagy were reduced when using cells with knocked out HSDL2 gene. Conclusion These findings suggest that semaglutide may mitigate cardiomyocyte injury caused by a high-fat diet through regulation of HDLSDSLEP-1 expression. These discoveries are expected to unveil novel molecular mechanisms and provide new targets for clinical treatment.
Collapse
Affiliation(s)
- Lin Yang
- Department of Internal Medicine, Hebei North University, Zhangjiakou, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhenyu Pan
- Department of Internal Medicine, Shandong Medical College, Linyi, Shandong, People’s Republic of China
| | - Haina Gao
- Department of Endocrinology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, People’s Republic of China
| | - Jiangli Ban
- Department of Endocrinology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
15
|
Jacinto JGP, Ogundipe TG, Benazzi C, Häfliger IM, Muscatello LV, Bolcato M, Rinnovati R, Gentile A, Drögemüller C. Familial osteochondrodysplastic and cardiomyopathic syndrome in Chianina cattle. J Vet Intern Med 2024; 38:3346-3357. [PMID: 39460958 PMCID: PMC11586572 DOI: 10.1111/jvim.17221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Skeletal dysplasia encompasses a heterogeneous group of genetic disorders characterized by an abnormal development of bones, joints, and cartilage. Two Chianina half-sibling calves from consanguineous mating with congenital skeletal malformations and cardiac abnormalities were identified. HYPOTHESIS/OBJECTIVES To characterize the disease phenotype, to evaluate its genetic cause, and to determine the prevalence of the deleterious alleles in the Chianina population. ANIMALS Two affected calves, their parents and 332 Chianina bulls. METHODS The affected animals underwent clinicopathological investigation. Whole-genome sequencing trio-approach and PCR-based assessment of the frequency of TDP-glucose 4,6-dehydratase (TGDS) and laminin subunit alpha 4 (LAMA4) alleles were performed. RESULTS The cases presented with retarded growth, poor nutritional status associated with muscular atrophy and angular deformities of the hindlimbs. Radiologic examination identified generalized osteopenia and shortening of the limb long bones. Necropsy showed osteochondrodysplastic limbs and dilatation of the heart right ventricle. On histological examination, the physeal cartilages were characterized by multifocal mild to moderate loss of the normal columnar arrangement of chondrocytes. Osteopenia also was observed. Genetic analysis identified a missense variant in TGDS and a splice-site variant in LAMA4, both of which were homozygous in the 2 cases. Parents were heterozygous and allele frequency in the Chianina population for the TGDS variant was 5% and for the LAMA4 variant was 2%. CONCLUSIONS AND CLINICAL IMPORTANCE Genetic findings identified 2 potentially pathogenic alleles in TGDS and LAMA4, but no clear mode of inheritance could be determined.
Collapse
Affiliation(s)
- Joana G. P. Jacinto
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | | | - Cinzia Benazzi
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
| | - Irene M. Häfliger
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | | | - Marilena Bolcato
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
| | - Riccardo Rinnovati
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
| | - Arcangelo Gentile
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
| | - Cord Drögemüller
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse FacultyUniversity of BernBernSwitzerland
| |
Collapse
|
16
|
de Crécy-Lagard V, Dias R, Friedberg I, Yuan Y, Swairjo MA. Limitations of Current Machine-Learning Models in Predicting Enzymatic Functions for Uncharacterized Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601547. [PMID: 39005379 PMCID: PMC11244979 DOI: 10.1101/2024.07.01.601547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Thirty to seventy percent of proteins in any given genome have no assigned function and have been labeled as the protein "unknome". This large knowledge gap prevents the biological community from fully leveraging the plethora of genomic data that is now available. Machine-learning approaches are showing some promise in propagating functional knowledge from experimentally characterized proteins to the correct set of isofunctional orthologs. However, they largely fail to predict enzymatic functions unseen in the training set, as shown by dissecting the predictions made for over 450 enzymes of unknown function from the model bacteria Escherichia coli uxgsing the DeepECTransformer platform. Lessons from these failures can help the community develop machine-learning methods that assist domain experts in making testable functional predictions for more members of the uncharacterized proteome. Article Summary Many proteins in any genome, ranging from 30 to 70%, lack an assigned function. This knowledge gap limits the full use of the vast available genomic data. Machine learning has shown promise in transferring functional knowledge from proteins of known functions to similar ones, but largely fails to predict novel functions not seen in its training data. Understanding these failures can guide the development of better machine-learning methods to help experts make accurate functional predictions for uncharacterized proteins.
Collapse
|
17
|
Endo S, Morikawa Y, Suenami K, Sakai Y, Abe N, Matsunaga T, Hara A, Takasu M. Involvement of porcine and human carbonyl reductases in the metabolism of epiandrosterone, 11-oxygenated steroids, neurosteroids, and corticosteroids. J Steroid Biochem Mol Biol 2024; 243:106574. [PMID: 38945307 DOI: 10.1016/j.jsbmb.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Porcine carbonyl reductases (pCBR1 and pCBR-N1) and aldo-keto reductases (pAKR1C1 and pAKR1C4) exhibit hydroxysteroid dehydrogenase (HSD) activity. However, their roles in the metabolism of porcine-specific androgens (19-nortestosterone and epiandrosterone), 11-oxygenated androgens, neurosteroids, and corticosteroids remain unclear. Here, we compared the steroid specificity of the four recombinant enzymes by kinetic and product analyses. In C18/C19-steroids,11-keto- and 11β-hydroxy-5α-androstane-3,17-diones were reduced by all the enzymes, whereas 5α-dihydronandrolone (19-nortestosterone metabolite) and 11-ketodihydrotestosterone were reduced by pCBR1, pCBR-N1, and pAKR1C1, of which pCBR1 exhibited the lowest (submicromolar) Km values. Product analysis showed that pCBR1 and pCBR-N1 function as 3α/β-HSDs, in contrast to pAKR1C1 and pAKR1C4 (acting as 3β-HSD and 3α-HSD, respectively). Additionally, 17β-HSD activity was observed in pCBR1 and pCBR-N1 (toward epiandrosterone and its 11-oxygenated derivatives) and in pAKR1C1 (toward androsterone, 4-androstene-3,17-dione and their 11-oxygenated derivatives). The four enzymes also showed different substrate specificity for 3-keto-5α/β-dihydro-C21-steroids, including GABAergic neurosteroid precursors and corticosteroid metabolites. 5β-Dihydroprogesterone was reduced by all the enzymes, whereas 5α-dihydroprogesterone was reduced only by pCBR1, and 5α/β-dihydrodeoxycorticosterones by pCBR1 and pCBR-N1. The two pCBRs also reduced the 5α/β-dihydro-metabolites of cortisol, 11-deoxycortisol, cortisone, and corticosterone. pCBR1 exhibited lower Km values (0.3-2.9 μM) for the 3-keto-C21-steroids than pCBR-N1 (Km=10-36 μM). The reduced products of the 3-keto-C21-steroids by pCBR1 and pCBR-N1 were their 3α-hydroxy-metabolites. Finally, we found that human CBR1 has similar substrate specificity for the C18/C19/C21-steroids to pCBR-N1. Based on these results, it was concluded that porcine and human CBRs can be involved in the metabolism of the aforementioned steroids as 3α/β,17β-HSDs.
Collapse
Affiliation(s)
- Satoshi Endo
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1194, Japan; Center for One Medicine Innovative Translational Research, Gifu University, Gifu 501-1193, Japan.
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Naohito Abe
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Masaki Takasu
- Center for One Medicine Innovative Translational Research, Gifu University, Gifu 501-1193, Japan; Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
18
|
Zhang Y, Fu C, Wen S, Zhang T, Wang X. Genome-Wide Analysis and Characterization of the SDR Gene Superfamily in Cinnamomum camphora and Identification of Synthase for Eugenol Biosynthesis. Int J Mol Sci 2024; 25:10084. [PMID: 39337570 PMCID: PMC11432319 DOI: 10.3390/ijms251810084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Short-chain dehydrogenase/reductases (SDRs) are the largest NAD(H)-dependent oxidoreductase superfamilies and are involved in diverse metabolisms. This study presents a comprehensive genomic analysis of the SDR superfamily in Cinnamomum camphora, a species that is one of the most significant woody essential oil plants in southern China. We identify a total of 222 CcSDR proteins and classify them into five types based on their cofactor-binding and active sites: 'atypical', 'classic', 'divergent', 'extended', and 'unknown'. Phylogenetic analysis reveals three evolutionary branches within the CcSDR proteins, and further categorization using the SDR-initiative Hidden Markov model resulted in 46 families, with the CcSDR110C, CcSDR108E, and CcSDR460A families being the most populous. Collinearity analysis identified 34 pairs of CcSDR paralogs in C. camphora, 141 pairs of SDR orthologs between C. camphora and Populus trichocarpa, and 59 pairs between C. camphora and Oryza sativa. Expression profile analysis indicates a preference for the expression of 77 CcSDR genes in specific organs such as flowers, bark, twigs, roots, leaves, or fruits. Moreover, 77 genes exhibit differential expression patterns during the four developmental stages of leaves, while 130 genes show variance across the five developmental stages of fruits. Additionally, to explore the biosynthetic mechanism of methyl eugenol, a key component of the leaf essential oil in the methyl eugenol chemotype, this study also identifies eugenol synthase (EGS) within the CcSDR460A family through an integrated strategy. Real-time quantitative PCR analysis demonstrates that the expression of CcEGS in the leaves of the methyl eugenol chemotype is more than fourfold higher compared to other chemotypes. When heterologously expressed in Escherichia coli, it catalyzes the conversion of coniferyl acetate into a mixture predominantly composed of eugenol (71.44%) and isoeugenol (21.35%). These insights pave the way for future research into the functional diversity of CcSDR genes, with a focus on secondary metabolism.
Collapse
Affiliation(s)
- Yueting Zhang
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academe of Forestry, Nanchang 330032, China; (Y.Z.); (C.F.); (S.W.); (T.Z.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species (NO. 2024SSY04091), Jiangxi Academe of Forestry, Nanchang 330032, China
| | - Chao Fu
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academe of Forestry, Nanchang 330032, China; (Y.Z.); (C.F.); (S.W.); (T.Z.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species (NO. 2024SSY04091), Jiangxi Academe of Forestry, Nanchang 330032, China
| | - Shifang Wen
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academe of Forestry, Nanchang 330032, China; (Y.Z.); (C.F.); (S.W.); (T.Z.)
| | - Ting Zhang
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academe of Forestry, Nanchang 330032, China; (Y.Z.); (C.F.); (S.W.); (T.Z.)
| | - Xindong Wang
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academe of Forestry, Nanchang 330032, China; (Y.Z.); (C.F.); (S.W.); (T.Z.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species (NO. 2024SSY04091), Jiangxi Academe of Forestry, Nanchang 330032, China
| |
Collapse
|
19
|
Hendi NN, Bengoechea-Alonso MT, Ericsson J, Nemer G. Functional characterization of the SDR42E1 reveals its role in vitamin D biosynthesis. Heliyon 2024; 10:e36466. [PMID: 39263177 PMCID: PMC11387231 DOI: 10.1016/j.heliyon.2024.e36466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Vitamin D deficiency poses a widespread health challenge, shaped by environmental and genetic determinants. A recent discovery identified a genetic regulator, rs11542462, in the SDR42E1 gene, though its biological implications remain largely unexplored. Our bioinformatic assessments revealed pronounced SDR42E1 expression in skin keratinocytes and the analogous HaCaT human keratinocyte cell lines, prompting us to select the latter as an experimental model. Employing CRISPR/Cas9 gene-editing technology and multi-omics approach, we discovered that depleting SDR42E1 showed a 1.6-fold disruption in steroid biosynthesis pathway (P-value = 0.03), considerably affecting crucial vitamin D biosynthesis regulators. Notably, SERPINB2 (P-value = 2.17 × 10-103), EBP (P-value = 2.46 × 10-13), and DHCR7 (P-value = 8.03 × 10-09) elevated by ∼2-3 fold, while ALPP (P-value <2.2 × 10-308), SLC7A5 (P-value = 1.96 × 10-215), and CYP26A1 (P-value = 1.06 × 10-08) downregulated by ∼1.5-3 fold. These alterations resulted in accumulation of 7-dehydrocholesterol precursor and reduction of vitamin D3 production, as evidenced by the drug enrichment (P-value = 4.39 × 10-06) and total vitamin D quantification (R2 = 0.935, P-value = 0.0016) analyses. Our investigation unveils SDR42E1's significance in vitamin D homeostasis, emphasizing the potential of precision medicine in addressing vitamin D deficiency through understanding its genetic basis.
Collapse
Affiliation(s)
- Nagham Nafiz Hendi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
- Systems Biology and Immunology Department, Sidra Medicine, Doha, P.O. Box 26999, Qatar
| | - Maria Teresa Bengoechea-Alonso
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
| | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, P.O. Box 110236, Lebanon
| |
Collapse
|
20
|
Steindorff AS, Aguilar-Pontes MV, Robinson AJ, Andreopoulos B, LaButti K, Kuo A, Mondo S, Riley R, Otillar R, Haridas S, Lipzen A, Grimwood J, Schmutz J, Clum A, Reid ID, Moisan MC, Butler G, Nguyen TTM, Dewar K, Conant G, Drula E, Henrissat B, Hansel C, Singer S, Hutchinson MI, de Vries RP, Natvig DO, Powell AJ, Tsang A, Grigoriev IV. Comparative genomic analysis of thermophilic fungi reveals convergent evolutionary adaptations and gene losses. Commun Biol 2024; 7:1124. [PMID: 39266695 PMCID: PMC11393059 DOI: 10.1038/s42003-024-06681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024] Open
Abstract
Thermophily is a trait scattered across the fungal tree of life, with its highest prevalence within three fungal families (Chaetomiaceae, Thermoascaceae, and Trichocomaceae), as well as some members of the phylum Mucoromycota. We examined 37 thermophilic and thermotolerant species and 42 mesophilic species for this study and identified thermophily as the ancestral state of all three prominent families of thermophilic fungi. Thermophilic fungal genomes were found to encode various thermostable enzymes, including carbohydrate-active enzymes such as endoxylanases, which are useful for many industrial applications. At the same time, the overall gene counts, especially in gene families responsible for microbial defense such as secondary metabolism, are reduced in thermophiles compared to mesophiles. We also found a reduction in the core genome size of thermophiles in both the Chaetomiaceae family and the Eurotiomycetes class. The Gene Ontology terms lost in thermophilic fungi include primary metabolism, transporters, UV response, and O-methyltransferases. Comparative genomics analysis also revealed higher GC content in the third base of codons (GC3) and a lower effective number of codons in fungal thermophiles than in both thermotolerant and mesophilic fungi. Furthermore, using the Support Vector Machine classifier, we identified several Pfam domains capable of discriminating between genomes of thermophiles and mesophiles with 94% accuracy. Using AlphaFold2 to predict protein structures of endoxylanases (GH10), we built a similarity network based on the structures. We found that the number of disulfide bonds appears important for protein structure, and the network clusters based on protein structures correlate with the optimal activity temperature. Thus, comparative genomics offers new insights into the biology, adaptation, and evolutionary history of thermophilic fungi while providing a parts list for bioengineering applications.
Collapse
Affiliation(s)
- Andrei S Steindorff
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Maria Victoria Aguilar-Pontes
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
- Departamento de Genética, University of Córdoba, 14071, Córdoba, Spain
| | | | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert Otillar
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jane Grimwood
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- National Microbiome Data Collaborative, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ian D Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Marie-Claude Moisan
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Gregory Butler
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Thi Truc Minh Nguyen
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Ken Dewar
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Gavin Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | | | - Steven Singer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Donald O Natvig
- Department of Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Amy J Powell
- Systems Design and Architecture, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
21
|
Andress Huacachino A, Joo J, Narayanan N, Tehim A, Himes BE, Penning TM. Aldo-keto reductase (AKR) superfamily website and database: An update. Chem Biol Interact 2024; 398:111111. [PMID: 38878851 PMCID: PMC11232437 DOI: 10.1016/j.cbi.2024.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The aldo-keto reductase (AKR) superfamily is a large family of proteins found across the kingdoms of life. Shared features of the family include 1) structural similarities such as an (α/β)8-barrel structure, disordered loop structure, cofactor binding site, and a catalytic tetrad, and 2) the ability to catalyze the nicotinamide adenine dinucleotide (phosphate) reduced (NAD(P)H)-dependent reduction of a carbonyl group. A criteria of family membership is that the protein must have a measured function, and thus, genomic sequences suggesting the transcription of potential AKR proteins are considered pseudo-members until evidence of a functionally expressed protein is available. Currently, over 200 confirmed AKR superfamily members are reported to exist. A systematic nomenclature for the AKR superfamily exists to facilitate family and subfamily designations of the member to be communicated easily. Specifically, protein names include the root "AKR", followed by the family represented by an Arabic number, the subfamily-if one exists-represented by a letter, and finally, the individual member represented by an Arabic number. The AKR superfamily database has been dedicated to tracking and reporting the current knowledge of the AKRs since 1997, and the website was last updated in 2003. Here, we present an updated version of the website and database that were released in 2023. The database contains genetic, functional, and structural data drawn from various sources, while the website provides alignment information and family tree structure derived from bioinformatics analyses.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Nisha Narayanan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Anisha Tehim
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA.
| |
Collapse
|
22
|
Witecka A, Kazak V, Kwiatkowski S, Kiersztan A, Jagielski AK, Kozminski W, Augustyniak R, Drozak J. Hydroxysteroid 17-β dehydrogenase 14 (HSD17B14) is an L-fucose dehydrogenase, the initial enzyme of the L-fucose degradation pathway. J Biol Chem 2024; 300:107501. [PMID: 38944119 PMCID: PMC11293516 DOI: 10.1016/j.jbc.2024.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024] Open
Abstract
L-Fucose (6-deoxy-L-galactose), a monosaccharide abundant in glycolipids and glycoproteins produced by mammalian cells, has been extensively studied for its role in intracellular biosynthesis and recycling of GDP-L-fucose for fucosylation. However, in certain mammalian species, L-fucose is efficiently broken down to pyruvate and lactate in a poorly understood metabolic pathway. In the 1970s, L-fucose dehydrogenase, an enzyme responsible for the initial step of this pathway, was partially purified from pig and rabbit livers and characterized biochemically. However, its molecular identity remained elusive until recently. This study reports the purification, identification, and biochemical characterization of the mammalian L-fucose dehydrogenase. The enzyme was purified from rabbit liver approximately 340-fold. Mass spectrometry analysis of the purified protein preparation identified mammalian hydroxysteroid 17-β dehydrogenase 14 (HSD17B14) as the sole candidate enzyme. Rabbit and human HSD17B14 were expressed in HEK293T and Escherichia coli, respectively, purified, and demonstrated to catalyze the oxidation of L-fucose to L-fucono-1,5-lactone, as confirmed by mass spectrometry and NMR analysis. Substrate specificity studies revealed that L-fucose is the preferred substrate for both enzymes. The human enzyme exhibited a catalytic efficiency for L-fucose that was 359-fold higher than its efficiency for estradiol. Additionally, recombinant rat HSD17B14 exhibited negligible activity towards L-fucose, consistent with the absence of L-fucose metabolism in this species. The identification of the gene-encoding mammalian L-fucose dehydrogenase provides novel insights into the substrate specificity of enzymes belonging to the 17-β-hydroxysteroid dehydrogenase family. This discovery also paves the way for unraveling the physiological functions of the L-fucose degradation pathway, which remains enigmatic.
Collapse
Affiliation(s)
- Apolonia Witecka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Varvara Kazak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Sebastian Kwiatkowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland; Biotechnology Division, Research & Development Centre, Celon Pharma S.A., Kazun Nowy, Poland
| | - Anna Kiersztan
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adam K Jagielski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wiktor Kozminski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Rafal Augustyniak
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
| | - Jakub Drozak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
23
|
Wu X, Hou L, Zhang H, Ma Y, Wang J, Cai M, Tang X. Identification of 3-ketocapnine reductase activity within the human microbiota. MLIFE 2024; 3:307-316. [PMID: 38948141 PMCID: PMC11211663 DOI: 10.1002/mlf2.12134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
The microbial synthesis of sulfonolipids within the human body is likely involved in maintaining human health or causing diseases. However, the enzymes responsible for their biosynthesis remain largely unknown. In this study, we identified and verified the role of 3-ketocapnine reductase, the third-step enzyme, in the four-step conversion of l-phosphoserine into sulfobacin B both in vivo and in vitro. This finding builds upon our previous research into sulfonolipid biosynthesis, which focused on the vaginal bacterium Chryseobacterium gleum DSM 16776 and the gut bacterium Alistipes finegoldii DSM 17242. Through comprehensive gene mapping, we demonstrate the widespread presence of potential sulfonolipid biosynthetic genes across diverse bacterial species inhabiting various regions of the human body. These findings shed light on the prevalence of sulfonolipid-like metabolites within the human microbiota, suggesting a potential role for these lipid molecules in influencing the intricate biointeractions within the complex microbial ecosystem of the human body.
Collapse
Affiliation(s)
- Xiaotong Wu
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Lukuan Hou
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingChina
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Yi Ma
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Jufang Wang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
24
|
Samson N, Bosoi CR, Roy C, Turcotte L, Tribouillard L, Mouchiroud M, Berthiaume L, Trottier J, Silva HCG, Guerbette T, Plata-Gómez AB, Besse-Patin A, Montoni A, Ilacqua N, Lamothe J, Citron YR, Gélinas Y, Gobeil S, Zoncu R, Caron A, Morissette M, Pellegrini L, Rochette PJ, Estall JL, Efeyan A, Shum M, Audet-Walsh É, Barbier O, Marette A, Laplante M. HSDL2 links nutritional cues to bile acid and cholesterol homeostasis. SCIENCE ADVANCES 2024; 10:eadk9681. [PMID: 38820148 PMCID: PMC11141617 DOI: 10.1126/sciadv.adk9681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.
Collapse
Affiliation(s)
- Nolwenn Samson
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Cristina R. Bosoi
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Christian Roy
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laurie Turcotte
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laura Tribouillard
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Mathilde Mouchiroud
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Line Berthiaume
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Jocelyn Trottier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Heitor C. G. Silva
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Thomas Guerbette
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aurèle Besse-Patin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Alicia Montoni
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
| | - Nicolò Ilacqua
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Centre de recherche CERVO, Québec, QC, Canada
| | - Jennifer Lamothe
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Yemima R. Citron
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Yves Gélinas
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | | | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Alexandre Caron
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Mathieu Morissette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Luca Pellegrini
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, QC, Canada
| | - Patrick J. Rochette
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Département d’Ophtalmologie et ORL – chirurgie cervico-faciale, Université Laval, Québec, QC, Canada
| | - Jennifer L. Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Michael Shum
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Olivier Barbier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
25
|
Pu Z, Cao J, Wu W, Song Z, Yang L, Wu J, Yu H. Reconstructing dynamics correlation network to simultaneously improve activity and stability of 2,3-butanediol dehydrogenase by design of distal interchain disulfide bonds. Int J Biol Macromol 2024; 267:131415. [PMID: 38582485 DOI: 10.1016/j.ijbiomac.2024.131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The complete enzyme catalytic cycle includes substrate binding, chemical reaction and product release, in which different dynamic conformations are adopted. Due to the complex relationship among enzyme activity, stability and dynamics, the directed evolution of enzymes for improved activity or stability commonly leads to a trade-off in stability or activity. It hence remains a challenge to engineer an enzyme to have both enhanced activity and stability. Here, we have attempted to reconstruct the dynamics correlation network involved with active center to improve both activity and stability of a 2,3-butanediol dehydrogenase (2,3-BDH) by introducing inter-chain disulfide bonds. A computational strategy was first applied to evaluate the effect of introducing inter-chain disulfide bond on activity and stability of three 2,3-BDHs, and the N258C mutation of 2,3-BDH from Corynebacterium glutamicum (CgBDH) was proved to be effective in improving both activity and stability. In the results, CgBDH-N258C showed a different unfolding curve from the wild type, with two melting temperatures (Tm) of 68.3 °C and 50.8 °C, 19.7 °C and 2 °C higher than 48.6 °C of the wild type. Its half-life was also improved by 14.8-fold compared to the wild type. Catalytic efficiency (kcat/Km) of the mutant was increased by 7.9-fold toward native substrate diacetyl and 8.8-fold toward non-native substrate 2,5-hexanedione compared to the wild type. Molecular dynamics simulations revealed that an interaction network formed by Cys258, Arg162, Ala144 and the catalytic residues was reconstructed in the mutant and the dynamics change caused by the disulfide bond could be propagated through the interactions network. This improved the enzyme stability and activity by decreasing the flexibility and locking more "reactive" pose, respectively. Further construction of mutations including A144G showing a 44-fold improvement in catalytic efficiency toward meso-2,3-BD confirmed the role of modifying dynamics correlation network in tunning enzyme activity and selectivity. This study provided important insights into the relationship among dynamics, enzyme catalysis and stability, and will be useful in the designing new enzymes with co-evolution of stability, activity and selectivity.
Collapse
Affiliation(s)
- Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Jiawen Cao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Wenhui Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China.
| |
Collapse
|
26
|
Martin LBB, Kikuchi S, Rejzek M, Owen C, Reed J, Orme A, Misra RC, El-Demerdash A, Hill L, Hodgson H, Liu Y, Keasling JD, Field RA, Truman AW, Osbourn A. Complete biosynthesis of the potent vaccine adjuvant QS-21. Nat Chem Biol 2024; 20:493-502. [PMID: 38278997 PMCID: PMC10972754 DOI: 10.1038/s41589-023-01538-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/20/2023] [Indexed: 01/28/2024]
Abstract
QS-21 is a potent vaccine adjuvant currently sourced by extraction from the Chilean soapbark tree. It is a key component of human vaccines for shingles, malaria, coronavirus disease 2019 and others under development. The structure of QS-21 consists of a glycosylated triterpene scaffold coupled to a complex glycosylated 18-carbon acyl chain that is critical for immunostimulant activity. We previously identified the early pathway steps needed to make the triterpene glycoside scaffold; however, the biosynthetic route to the acyl chain, which is needed for stimulation of T cell proliferation, was unknown. Here, we report the biogenic origin of the acyl chain, characterize the series of enzymes required for its synthesis and addition and reconstitute the entire 20-step pathway in tobacco, thereby demonstrating the production of QS-21 in a heterologous expression system. This advance opens up unprecedented opportunities for bioengineering of vaccine adjuvants, investigating structure-activity relationships and understanding the mechanisms by which these compounds promote the human immune response.
Collapse
Affiliation(s)
| | | | - Martin Rejzek
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - James Reed
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Amr El-Demerdash
- John Innes Centre, Norwich Research Park, Norwich, UK
- Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Yuzhong Liu
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Jay D Keasling
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | | | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
27
|
Hendi NN, Nemer G. In silico characterization of the novel SDR42E1 as a potential vitamin D modulator. J Steroid Biochem Mol Biol 2024; 238:106447. [PMID: 38160768 DOI: 10.1016/j.jsbmb.2023.106447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The short-chain dehydrogenase/reductase (SDR) superfamily encompasses enzymes that play essential roles in the metabolism of steroid hormones and lipids. Despite an enigmatic function, recent genetic studies have linked the novel SDR 42 extended-1 (SDR42E1) gene to 25-hydroxyvitamin D levels. This study investigated the potential SDR42E1 functions and interactions with vitamin D using bioinformatics and molecular docking studies. Phylogenetic analysis unveiled that the nucleotide sequences of human SDR42E1 exhibit high evolutionary conservation across nematodes and fruit flies. Molecular docking analysis identified strong binding affinities between SDR42E1 and its orthologs with vitamin D3 and essential precursors, 8-dehydrocholesterol, followed by 7-dehydrocholesterol and 25-hydroxyvitamin D. The hydrophobic interactions observed between the protein residues and vitamin D compounds supported the predicted transmembrane localization of SDR42E1. Our investigation provides valuable insights into the potential role of SDR42E1 in skin vitamin D biosynthesis throughout species. This provides the foundation for future research and development of targeted therapies for vitamin D deficiency and related health conditions.
Collapse
Affiliation(s)
- Nagham Nafiz Hendi
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar; Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box 110236, Beirut, Lebanon.
| |
Collapse
|
28
|
Rossmanith W, Giegé P, Hartmann RK. Discovery, structure, mechanisms, and evolution of protein-only RNase P enzymes. J Biol Chem 2024; 300:105731. [PMID: 38336295 PMCID: PMC10941002 DOI: 10.1016/j.jbc.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The endoribonuclease RNase P is responsible for tRNA 5' maturation in all domains of life. A unique feature of RNase P is the variety of enzyme architectures, ranging from dual- to multi-subunit ribonucleoprotein forms with catalytic RNA subunits to protein-only enzymes, the latter occurring as single- or multi-subunit forms or homo-oligomeric assemblies. The protein-only enzymes evolved twice: a eukaryal protein-only RNase P termed PRORP and a bacterial/archaeal variant termed homolog of Aquifex RNase P (HARP); the latter replaced the RNA-based enzyme in a small group of thermophilic bacteria but otherwise coexists with the ribonucleoprotein enzyme in a few other bacteria as well as in those archaea that also encode a HARP. Here we summarize the history of the discovery of protein-only RNase P enzymes and review the state of knowledge on structure and function of bacterial HARPs and eukaryal PRORPs, including human mitochondrial RNase P as a paradigm of multi-subunit PRORPs. We also describe the phylogenetic distribution and evolution of PRORPs, as well as possible reasons for the spread of PRORPs in the eukaryal tree and for the recruitment of two additional protein subunits to metazoan mitochondrial PRORP. We outline potential applications of PRORPs in plant biotechnology and address diseases associated with mutations in human mitochondrial RNase P genes. Finally, we consider possible causes underlying the displacement of the ancient RNA enzyme by a protein-only enzyme in a small group of bacteria.
Collapse
Affiliation(s)
- Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Philippe Giegé
- Institute for Plant Molecular Biology, IBMP-CNRS, University of Strasbourg, Strasbourg, France.
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
29
|
Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes 2024; 16:2426614. [PMID: 39540668 PMCID: PMC11572103 DOI: 10.1080/19490976.2024.2426614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The fruits and vegetables we consume as part of our diet are rich in bioactive metabolites that can prevent and ameliorate cardiometabolic diseases, cancers, and neurological conditions. Polyphenols are a major metabolite family that has been intensively investigated in this context. However, for these compounds to exert their optimal bioactivity, they rely on the enzymatic capacity of an individual's gut microbiota. Indeed, for most polyphenols, the human host is restricted to more basic metabolism such as deglycosylation and hepatic conjugation. In this review, we discuss the mechanisms by which gut bacteria metabolize the core scaffold of polyphenol substrates, and how their conversion into bioactive small molecules impacts host health.
Collapse
Affiliation(s)
- Sara Alqudah
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
30
|
Su J, Jiao Q, Jia T, Hu X. The photosystem-II repair cycle: updates and open questions. PLANTA 2023; 259:20. [PMID: 38091081 DOI: 10.1007/s00425-023-04295-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION The photosystem-II (PSII) repair cycle is essential for the maintenance of photosynthesis in plants. A number of novel findings have illuminated the regulatory mechanisms of the PSII repair cycle. Photosystem II (PSII) is a large pigment-protein complex embedded in the thylakoid membrane. It plays a vital role in photosynthesis by absorbing light energy, splitting water, releasing molecular oxygen, and transferring electrons for plastoquinone reduction. However, PSII, especially the PsbA (D1) core subunit, is highly susceptible to oxidative damage. To prevent irreversible damage, plants have developed a repair cycle. The main objective of the PSII repair cycle is the degradation of photodamaged D1 and insertion of newly synthesized D1 into the PSII complex. While many factors are known to be involved in PSII repair, the exact mechanism is still under investigation. In this review, we discuss the primary steps of PSII repair, focusing on the proteolytic degradation of photodamaged D1 and the factors involved.
Collapse
Affiliation(s)
- Jinling Su
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
31
|
Yang J, Yan SY, Li GC, Guo H, Tang R, Ma R, Cai QN. The brown planthopper NlDHRS11 is involved in the detoxification of rice secondary compounds. PEST MANAGEMENT SCIENCE 2023; 79:4828-4838. [PMID: 37489868 DOI: 10.1002/ps.7681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND The brown planthopper (Nilaparvata lugens, BPH) is the most destructive serious pest in rice production. Resistant varieties are effective means to defend against BPH, but the impact of the ingestion of resistant rice on BPH transcriptional regulation is still unclear. Here, we explore the molecular basis of the regulation by BPH feeding on resistant rice. RESULTS BPH nymphs preferentially selected susceptible rice TN1 at 24 h after release in a choice test. Feeding on resistant rice IR56 under nonselective conditions increased mortality, decreased growth rate, and prolonged the molting time of BPH. Transcriptomic sequencing revealed 38 dysregulated genes, including 31 down-regulated and seven up-regulated genes in BPH feeding on resistant rice for 7 days compared with feeding on susceptible rice TN1. These genes were mainly involved in the pathways of growth and development, metabolism, energy synthesis, and transport. Finally, we showed that the toxicities of rice defensive compounds to BPH were dose-dependent, and silencing of the BPH gene dehydrogenase/reductase SDR family member 11 (NlDHRS11) increased sensibility to the rice secondary compounds ferulic acid and resorcinol. CONCLUSION The adaption of BPH feeding on resistant rice is orchestrated by dynamically regulating gene expressions, and NlDHRS11 is a gene involved in the detoxification of plant defensive chemicals. The current work provides new insights into the interaction between insects and plants, and will help to develop novel BPH control strategies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Yang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Shu-Ying Yan
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Rui Tang
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Qing-Nian Cai
- College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Rajput A, Manna T, Husain SM. Anthrol reductases: discovery, role in biosynthesis and applications in natural product syntheses. Nat Prod Rep 2023; 40:1672-1686. [PMID: 37475701 DOI: 10.1039/d3np00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Covering: up to 2023Short-chain dehydrogenase/reductases (SDR) are known to catalyze the regio- and stereoselective reduction of a variety of substrate types. Investigations of the deoxygenation of emodin to chrysophanol has led to the discovery of the anthrol reductase activity of an SDR, MdpC involved in monodictyphenone biosynthesis of Aspergillus nidulans and provided access to (R)-dihydroanthracenone, a putative biosynthetic intermediate. This facilitated the identification of several MdpC-related enzymes involved in the biosynthesis of aflatoxins B1, cladofulvin, neosartorin, agnestins and bisanthraquinones. Because of their ability to catalyze the reduction of hydroanthraquinone (anthrols) using NADPH, they were named anthrol reductases. This review provides a comprehensive summary of all the anthrol reductases that have been identified and characterized in the last decade along with their role in the biosynthesis of natural products. In addition, the applications of these enzymes towards the chemoenzymatic synthesis of flavoskyrins, modified bisanthraquinones, 3-deoxy anthraquinones, chiral cycloketones and β-halohydrins have been discussed.
Collapse
Affiliation(s)
- Anshul Rajput
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| | - Tanaya Manna
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
33
|
Lin X, Huang L, Liang H, Hou C, Ling X, Chen Y, Yang P, Wu Q, Zhao H, Wu S, Zhan R, Ma D, Yang J. Genome-wide identification and functional characterization of borneol dehydrogenases in Wurfbainia villosa. PLANTA 2023; 258:69. [PMID: 37608037 DOI: 10.1007/s00425-023-04221-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
MAIN CONCLUSION Genome-wide screening of short-chain dehydrogenases/reductases (SDR) family reveals functional diversification of borneol dehydrogenase (BDH) in Wurfbainia villosa. Wurfbainia villosa is an important medicinal plant, the fruits of which accumulate abundant terpenoids, especially bornane-type including borneol and camphor. The borneol dehydrogenase (BDH) responsible for the conversion of borneol to camphor in W. villosa remains unknown. BDH is one member of short-chain dehydrogenases/reductases (SDR) family. Here, a total of 115 classical WvSDR genes were identified through genome-wide screening. These WvSDRs were unevenly distributed on different chromosomes. Seven candidate WvBDHs based on phylogenetic analysis and expression levels were selected for cloning. Of them, four BDHs can catalyze different configurations of borneol and other monoterpene alcohol substrates to generate the corresponding oxidized products. WvBDH1 and WvBDH2, preferred (+)-borneol to (-)-borneol, producing the predominant ( +)-camphor. WvBDH3 yielded approximate equivalent amount of (+)-camphor and (-)-camphor, in contrast, WvBDH4 generated exclusively (+)-camphor. The metabolic profiles of the seeds showed that the borneol and camphor present were in the dextrorotatory configuration. Enzyme kinetics and expression pattern in different tissues suggested WvBDH2 might be involved in the biosynthesis of camphor in W. villosa. All results will increase the understanding of functional diversity of BDHs.
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Linxuan Huang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Huilin Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Chen Hou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510006, People's Republic of China
- Guangdong Academy of Forestry, Guangzhou, 510006, People's Republic of China
| | - Xuli Ling
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yuanxia Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Peng Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qingwen Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Haiying Zhao
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Sirong Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Ruoting Zhan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Dongming Ma
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Jinfen Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
34
|
Chen X, Sun S, Han X, Li C, Wang F, Nie B, Hou Z, Yang S, Ji J, Li G, Wang Y, Han X, Yue J, Li C, Li W, Zhang L, Yang D, Wang L. Multiomics comparison among populations of three plant sources of Amomi Fructus. HORTICULTURE RESEARCH 2023; 10:uhad128. [PMID: 37560015 PMCID: PMC10407604 DOI: 10.1093/hr/uhad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/11/2023] [Indexed: 08/11/2023]
Abstract
Amomi Fructus (Sharen, AF) is a traditional Chinese medicine (TCM) from three source species (or varieties), including Wurfbainia villosa var. villosa (WVV), W. villosa var. xanthioides (WVX), or W. longiligularis (WL). Among them, WVV has been transplanted from its top-geoherb region, Guangdong, to its current main production area, Yunnan, for >50 years in China. However, the genetic and transcriptomic differentiation among multiple AF source species (or varieties) and between the origin and transplanted populations of WVV is unknown. In our study, the observed overall higher expression of terpenoid biosynthesis genes in WVV than in WVX provided possible evidence for the better pharmacological effect of WVV. We also screened six candidate borneol dehydrogenases (BDHs) that potentially catalyzed borneol into camphor in WVV and functionally verified them. Highly expressed genes at the P2 stage of WVV, Wv05G1424 and Wv05G1438, were capable of catalyzing the formation of camphor from (+)-borneol, (-)-borneol and DL-isoborneol. Moreover, the BDH genes may experience independent evolution after acquiring the ancestral copies, and the following tandem duplications might account for the abundant camphor content in WVV. Furthermore, four populations of WVV, WVX, and WL are genetically differentiated, and the gene flow from WVX to WVV in Yunnan contributed to the greater genetic diversity in the introduced population (WVV-JH) than in its top-geoherb region (WVV-YC), which showed the lowest genetic diversity and might undergo genetic degradation. In addition, terpene synthesis (TPS) and BDH genes were selected among populations of multiple AF source species (or varieties) and between the top- and non-top-geoherb regions, which might explain the difference in metabolites between these populations. Our findings provide important guidance for the conservation, genetic improvement, and industrial development of the three source species (or varieties) and for identifying top-geoherbalism with molecular markers, and proper clinical application of AF.
Collapse
Affiliation(s)
- Xinlian Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Fengjiao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Song Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Ge Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, 666100 Jinghong, China
| | - Yanqian Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, 666100 Jinghong, China
| | - Xiaoyu Han
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Jianjun Yue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, 666100 Jinghong, China
| | - Cui Li
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023 Nanning, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Lixia Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, 666100 Jinghong, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, 528200 Foshan, China
| |
Collapse
|
35
|
Wei F, Gu Y, He L, Kapoor A, Lin X, Dong Y, Su Y, Neira SV, Tang D. HSD17B6 delays type 2 diabetes development via inhibiting SREBP activation. Metabolism 2023:155631. [PMID: 37330135 DOI: 10.1016/j.metabol.2023.155631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The SREBP/SCAP/INSIG complex plays an essential role in SREBP activation and de novo lipogenesis. Whether the activation process is affected by hydroxysteroid 17-beta dehydrogenase 6 (HSD17B6) remains unknown. METHODS SREBP's transcriptional activities were analyzed using an SRE-luciferase (SRE-luc) reporter in 293T cells, Huh7 hepatoma cells, and primary human hepatocytes following a variety of conditions, including ectopic expression of HSD17B6, HSD17B6 mutants defective in its enzymatic activities, knockdown of HSD17B6, and cholesterol starvation. The interaction between HSD17B6 and SREBP/SCAP/INSIG complex was analyzed in 293T cells, Huh7 cells and mouse liver upon ectopic expression of HSD17B6 and its mutants; the interaction was also analyzed using endogenous proteins. The impacts of HSD17B6 on SREBP target expression, glucose tolerance, diet-induced obesity, and type 2 diabetes (T2D) were examined using Huh7 cells in vitro, and with C57BL/6 and NONcNZO10/LtJ T2D mice in vivo. RESULTS HSD17B6 binds to the SREBP/SCAP/INSIG complex and inhibits SREBP signaling in cultured hepatocytes and mouse liver. Although HSD17B6 plays a role in maintaining the equilibrium of 5α-dihydrotestosterone (DHT) in the prostate, a mutant defective in androgen metabolism was as effective as HSD17B6 in inhibiting SREBP signaling. Hepatic expression of both HSD17B6 and the defective mutant improved glucose intolerance and reduced hepatic triglyceride content in diet-induced obese C57BL/6 mice, while hepatic knockdown of HSD17B6 exacerbated glucose intolerance. Consistent with these results, liver-specific expression of HSD17B6 in a polygenic NONcNZO10/LtJ T2D mice reduced T2D development. CONCLUSIONS Our study unveils a novel role of HSD17B6 in inhibiting SREBP maturation via binding to the SREBP/SCAP/INSIG complex; this activity is independent of HSD17B6's sterol oxidase activity. Through this action, HSD17B6 improves glucose tolerance and attenuates the development of obesity-induced T2D. These findings position HSD17B6 as a potential therapeutic target for T2D therapy.
Collapse
Affiliation(s)
- Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Longgang District, Shenzhen, Guangdong, China; Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Yan Gu
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Lizhi He
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anil Kapoor
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Xiaozeng Lin
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ying Dong
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yingying Su
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sandra Vega Neira
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
36
|
Chen L, Champramary S, Sahu N, Indic B, Szűcs A, Nagy G, Maróti G, Pap B, Languar O, Vágvölgyi C, Nagy LG, Kredics L, Sipos G. Dual RNA-Seq Profiling Unveils Mycoparasitic Activities of Trichoderma atroviride against Haploid Armillaria ostoyae in Antagonistic Interaction Assays. Microbiol Spectr 2023; 11:e0462622. [PMID: 37140425 PMCID: PMC10269595 DOI: 10.1128/spectrum.04626-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Armillaria ostoyae, a species among the destructive forest pathogens from the genus Armillaria, causes root rot disease on woody plants worldwide. Efficient control measures to limit the growth and impact of this severe underground pathogen are under investigation. In a previous study, a new soilborne fungal isolate, Trichoderma atroviride SZMC 24276 (TA), exhibited high antagonistic efficacy, which suggested that it could be utilized as a biocontrol agent. The dual culture assay results indicated that the haploid A. ostoyae-derivative SZMC 23085 (AO) (C18/9) is highly susceptible to the mycelial invasion of TA. In the present study, we analyzed the transcriptome of AO and that of TA in in vitro dual culture assays to test the molecular arsenal of Trichoderma antagonism and the defense mechanisms of Armillaria. We conducted time-course analysis and functional annotation and analyzed enriched pathways and differentially expressed genes including biocontrol-related candidate genes from TA and defense-related candidate genes from AO. The results indicated that TA deployed several biocontrol mechanisms when confronted with AO. In response, AO initiated multiple defense mechanisms to protect against the fungal attack. To our knowledge, the present study offers the first transcriptome analysis of a biocontrol fungus attacking AO. Overall, this study provides insights that aid the further exploration of plant pathogen-biocontrol agent interaction mechanisms. IMPORTANCE Armillaria species can survive for decades in the soil on dead woody debris, develop rapidly under favorable conditions, and harmfully infect newly planted forests. Our previous study found Trichoderma atroviride to be highly effective in controlling Armillaria growth; therefore, our current work explored the molecular mechanisms that might play a key role in Trichoderma-Armillaria interactions. Direct confrontation assays combined with time course-based dual transcriptome analysis provided a reliable system for uncovering the interactive molecular dynamics between the fungal plant pathogen and its mycoparasitic partner. Furthermore, using a haploid Armillaria isolate allowed us to survey the deadly prey-invading activities of the mycoparasite and the ultimate defensive strategies of its prey. Our current study provides detailed insights into the essential genes and mechanisms involved in Armillaria defense against Trichoderma and the genes potentially involved in the efficiency of Trichoderma to control Armillaria. In addition, using a sensitive haploid Armillaria strain (C18/9), with its complete genome data already available, also offers the opportunity to test possible variable molecular responses of Armillaria ostoyae toward diverse Trichoderma isolates with various biocontrol abilities. Initial molecular tests of the dual interactions may soon help to develop a targeted biocontrol intervention with mycoparasites against plant pathogens.
Collapse
Affiliation(s)
- Liqiong Chen
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Simang Champramary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Attila Szűcs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | - Bernadett Pap
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Omar Languar
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| |
Collapse
|
37
|
Saleem N, Aziz U, Ali M, Liu X, Alwutayd KM, Alshegaihi RM, Niedbała G, Elkelish A, Zhang M. Genome-wide analysis revealed the stepwise origin and functional diversification of HSDs from lower to higher plant species. FRONTIERS IN PLANT SCIENCE 2023; 14:1159394. [PMID: 37396629 PMCID: PMC10311447 DOI: 10.3389/fpls.2023.1159394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 07/04/2023]
Abstract
Hydroxysteroid dehydrogenase (HSDs) is an oil-body sterol protein (steroleosin) with an NADP(H) binding domain that belongs to the short-chain dehydrogenase/reductase (SDR) superfamily. There are numerous studies on the characterization of HSDs in plants. However, thus far, the evolutionary differentiation and divergence analysis of these genes remain to be explored. The current study used an integrated method to elucidate the sequential evolution of HSDs in 64 sequenced plant genomes. Analyses were conducted on their origins, distribution, duplication, evolutionary paths, domain functions, motif composition, properties, and cis-elements. Results indicate that except for algae, HSD1 was widely distributed in plant species ranging from lower to higher plants, while HSD5 was restricted to terrestrial plants, and HSD2 was identified in fewer monocots and several dicot plants. Phylogenetic analysis of HSD proteins revealed that monocotyledonous HSD1 in moss and ferns appeared closest to the outgroup, V. carteri HSD-like, M. musculus HSD1, and H. sapiens HSD1. These data support the hypothesis that HSD1 originated in bryophytes and then in non-vascular and vascular plants, followed by HSD5 only in land plants. Gene structure analysis suggests that HSDs in plant species came up with a fixed number of six exons, and the intron phase was primarily 0, 1, 0, 0, and 0. Similarly, duplication analysis revealed that segmental duplications were the main reason for HSDs in plant species. Physicochemical properties suggest that dicotyledonous HSD1s and HSD5s were mainly acidic. The monocotyledonous HSD1s and HSD2s and the dicotyledonous HSD2s, HSD3s, HSD4s, and HSD6s were mainly basic, implying that HSDs in plants may have a variety of functions. Cis-regulatory elements and expression analysis revealed that HSDs in plants might have roles in several abiotic stresses. Due to the high expression of HSD1s and HSD5s in seeds, these HSDs in plants may have roles in fatty acid accumulation and degradation.
Collapse
Affiliation(s)
- Noor Saleem
- College of Agronomy, Northwest A & F University, Yangling, China
| | - Usman Aziz
- College of Agronomy, Northwest A & F University, Yangling, China
| | - Muhammad Ali
- College of Horticulture, Northwest A & F University, Yangling, China
| | - Xiangling Liu
- College of Agronomy, Northwest A & F University, Yangling, China
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Poznań, Poland
| | - Amr Elkelish
- Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Meng Zhang
- College of Agronomy, Northwest A & F University, Yangling, China
| |
Collapse
|
38
|
Dinh DM, Thomas LM, Karr EA. Crystal structure of a putative 3-hydroxypimelyl-CoA dehydrogenase, Hcd1, from Syntrophus aciditrophicus strain SB at 1.78 Å resolution. Acta Crystallogr F Struct Biol Commun 2023; 79:151-158. [PMID: 37227375 PMCID: PMC10231260 DOI: 10.1107/s2053230x23004399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023] Open
Abstract
Syntrophus aciditrophicus strain SB is a model syntroph that degrades benzoate and alicyclic acids. The structure of a putative 3-hydroxypimelyl-CoA dehydrogenase from S. aciditrophicus strain SB (SaHcd1) was resolved at 1.78 Å resolution. SaHcd1 contains sequence motifs and structural features that belong to the short-chain dehydrogenase/reductase (SDR) family of NADPH-dependent oxidoreductases. SaHcd1 is proposed to concomitantly reduce NAD+ or NADP+ to NADH or NADPH, respectively, while converting 3-hydroxypimelyl-CoA to 3-oxopimeyl-CoA. Further enzymatic studies are needed to confirm the function of SaHcd1.
Collapse
Affiliation(s)
- David M. Dinh
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
- Price Family Foundation Institute of Structural Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Leonard M. Thomas
- Price Family Foundation Institute of Structural Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Elizabeth A. Karr
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
- Price Family Foundation Institute of Structural Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|
39
|
Leykauf T, Klein J, Ernst M, Dorfner M, Ignatova A, Kreis W, Lanig H, Munkert J. Overexpression and RNAi-mediated Knockdown of Two 3β-hydroxy-Δ5-steroid dehydrogenase Genes in Digitalis lanata Shoot Cultures Reveal Their Role in Cardenolide Biosynthesis. PLANTA MEDICA 2023. [PMID: 37187191 DOI: 10.1055/a-2074-9186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
3β-hydroxy-Δ5-steroid dehydrogenases (3βHSDs) are supposed to be involved in 5β-cardenolide biosynthesis. Here, a novel 3βHSD (Dl3βHSD2) was isolated from Digitalis lanata shoot cultures and expressed in E. coli. Recombinant Dl3βHSD1 and Dl3βHSD2 shared 70% amino acid identity, reduced various 3-oxopregnanes and oxidised 3-hydroxypregnanes, but only rDl3βHSD2 converted small ketones and secondary alcohols efficiently. To explain these differences in substrate specificity, we established homology models using borneol dehydrogenase of Salvia rosmarinus (6zyz) as the template. Hydrophobicity and amino acid residues in the binding pocket may explain the difference in enzyme activities and substrate preferences. Compared to Dl3βHSD1, Dl3βHSD2 is weakly expressed in D. lanata shoots. High constitutive expression of Dl3βHSDs was realised by Agrobacterium-mediated transfer of Dl3βHSD genes fused to the CaMV-35S promotor into the genome of D. lanata wild type shoot cultures. Transformed shoots (35S:Dl3βHSD1 and 35S:Dl3βHSD2) accumulated less cardenolides than controls. The levels of reduced glutathione (GSH), which is known to inhibit cardenolide formation, were higher in the 35S:Dl3βHSD1 lines than in the controls. In the 35S:Dl3βHSD1 lines cardenolide levels were restored after adding of the substrate pregnane-3,20-dione in combination with buthionine-sulfoximine (BSO), an inhibitor of GSH formation. RNAi-mediated knockdown of the Dl3βHSD1 yielded several shoot culture lines with strongly reduced cardenolide levels. In these lines, cardenolide biosynthesis was fully restored after addition of the downstream precursor pregnan-3β-ol-20-one, whereas upstream precursors such as progesterone had no effect, indicating that no shunt pathway could overcome the Dl3βHSD1 knockdown. These results can be taken as the first direct proof that Dl3βHSD1 is indeed involved in 5β-cardenolide biosynthesis.
Collapse
Affiliation(s)
- Tim Leykauf
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Klein
- Department of Plant Physiology, Friedrich-Schiller-Universität Jena, Germany
| | - Mona Ernst
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maja Dorfner
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anastasiia Ignatova
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Kreis
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Lanig
- National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jennifer Munkert
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
40
|
Yang Q, Zhang X, Solairaj D, Fu Y, Zhang H. Molecular Response of Meyerozyma guilliermondii to Patulin: Transcriptomic-Based Analysis. J Fungi (Basel) 2023; 9:jof9050538. [PMID: 37233249 DOI: 10.3390/jof9050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Patulin (PAT), mainly produced by Penicillium expansum, is a potential threat to health. In recent years, PAT removal using antagonistic yeasts has become a hot research topic. Meyerozyma guilliermondii, isolated by our group, produced antagonistic effects against the postharvest diseases of pears and could degrade PAT in vivo or in vitro. However, the molecular responses of M. guilliermondii over PAT exposure and its detoxification enzymes are not apparent. In this study, transcriptomics is used to unveil the molecular responses of M. guilliermondii on PAT exposure and the enzymes involved in PAT degradation. The functional enrichment of differentially expressed genes indicated that the molecular response mainly includes the up-regulated expression of genes related to resistance and drug-resistance, intracellular transport, growth and reproduction, transcription, DNA damage repair, antioxidant stress to avoid cell damage, and PAT detoxification genes such as short-chain dehydrogenase/reductases. This study elucidates the possible molecular responses and PAT detoxification mechanism of M. guilliermondii, which could be helpful to further accelerate the commercial application of antagonistic yeast toward mycotoxin decontamination.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dhanasekaran Solairaj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Fu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
41
|
Jin Y, Wang D, Im WT, Siddiqi MZ, Yang DC. Ketonization of Ginsenoside C-K by Novel Recombinant 3-β-Hydroxysteroid Dehydrogenases and Effect on Human Fibroblast Cells. Molecules 2023; 28:molecules28093792. [PMID: 37175202 PMCID: PMC10180105 DOI: 10.3390/molecules28093792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The ginsenoside compound K (C-K) (which is a de-glycosylated derivative of major ginsenosides) is effective in the treatment of cancer, diabetes, inflammation, allergy, angiogenesis, aging, and has neuroprotective, and hepatoprotective than other minor ginsenosides. Thus, a lot of studies have been focused on the conversion of major ginsenosides to minor ginsenosides using glycoside hydrolases but there is no study yet published for the bioconversion of minor ginsenosides into another high pharmacological active compound. Therefore, the objective of this study to identify a new gene (besides the glycoside hydrolases) for the conversion of minor ginsenosides C-K into another highly pharmacological active compound. METHODS AND RESULTS Lactobacillus brevis which was isolated from Kimchi has showed the ginsenoside C-K altering capabilities. From this strain, a novel potent decarboxylation gene, named HSDLb1, was isolated and expressed in Escherichia coli BL21 (DE3) using the pMAL-c5X vector system. Recombinant HSDLb1 was also characterized. The HSDLb1 consists of 774 bp (258 amino acids residues) with a predicted molecular mass of 28.64 kDa. The optimum enzyme activity was recorded at pH 6.0-8.0 and temperature 30 °C. Recombinant HSDLb1 effectively transformed the ginsenoside C-K to 12-β-hydroxydammar-3-one-20(S)-O-β-D-glucopyranoside (3-oxo-C-K). The experimental data proved that recombinant HSDLb1 strongly ketonized the hydroxyl (-O-H) group at C-3 of C-K via the following pathway: C-K → 3-oxo-C-K. In vitro study, 3-oxo-C-K showed higher solubility than C-K, and no cytotoxicity to fibroblast cells. In addition, 3-oxo-C-K induced the inhibitory activity of ultraviolet A (UVA) against matrix metalloproteinase-1 (MMP-1) and promoted procollagen type I synthesis. Based on these expectations, we hypothesized that 3-oxo-C-K can be used in cosmetic products to block UV radiations and anti-ageing agent. Furthermore, we expect that 3-oxo-C-K will show higher efficacy than C-K for the treatment of cancer, ageing and other related diseases, for which more studies are needed.
Collapse
Affiliation(s)
- Yan Jin
- School of Life Science, Nantong University, Nantong 226019, China
| | - Dandan Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro, Anseong-si 17579, Gyeonggi-do, Republic of Korea
- Department of Oriental Medicinal Material & Processing, College of Life Science, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro, Anseong-si 17579, Gyeonggi-do, Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Material & Processing, College of Life Science, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
42
|
Štěrbová K, Rychlá N, Matoušková P, Skálová L, Raisová Stuchlíková L. Short-chain dehydrogenases in Haemonchus contortus: changes during life cycle and in relation to drug-resistance. Vet Res 2023; 54:19. [PMID: 36882840 PMCID: PMC9993613 DOI: 10.1186/s13567-023-01148-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 03/09/2023] Open
Abstract
Short-chain dehydrogenases/reductases (SDRs) regulate the activities of many hormones and other signaling molecules and participate in the deactivation of various carbonyl-bearing xenobiotics. Nevertheless, knowledge about these important enzymes in helminths remains limited. The aim of our study was to characterize the SDR superfamily in the parasitic nematode Haemonchus contortus. Genome localization of SDRs was explored, and phylogenetic analysis in comparison with SDRs from free-living nematode Caenorhabditis elegans and the domestic sheep (Ovis aries, a typical host of H. contortus) was constructed. The expression profile of selected SDRs during the life cycle along with differences between the drug-susceptible and drug-resistant strains, were also studied. Genome sequencing enabled the identification of 46 members of the SDR family in H. contortus. A number of genes have no orthologue in the sheep genome. In all developmental stages of H. contortus, SDR1, SDR3, SDR5, SDR6, SDR14, and SDR18 genes were the most expressed, although in individual stages, huge differences in expression levels were observed. A comparison of SDRs expression between the drug-susceptible and drug-resistant strains of H. contortus revealed several SDRs with changed expression in the resistant strain. Specifically, SDR1, SDR12, SDR13, SDR16 are SDR candidates related to drug-resistance, as the expression of these SDRs is consistently increased in most stages of the drug-resistant H. contortus. These findings revealing several SDR enzymes of H. contortus warrant further investigation.
Collapse
Affiliation(s)
- Karolína Štěrbová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Nikola Rychlá
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic.
| |
Collapse
|
43
|
Ben Rhouma B, Kley M, Kallabi F, Kacem FH, Kammoun T, Safi W, Keskes L, Mnif M, Odermatt A, Belguith N. Molecular mechanisms underlying the defects of two novel mutations in the HSD17B3 gene found in the Tunisian population. J Steroid Biochem Mol Biol 2023; 227:106235. [PMID: 36563763 DOI: 10.1016/j.jsbmb.2022.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) converts Δ4-androstene-3,17-dione (androstenedione) to testosterone. It is expressed almost exclusively in the testes and is essential for appropriate male sexual development. More than 70 mutations in the HSD17B3 gene that cause 17β-HSD3 deficiency and result in 46,XY Disorders of Sex Development (46,XY DSD) have been reported. This study describes three novel Tunisian cases with mutations in HSD17B3. The first patient is homozygous for the previously reported mutation p.C206X. The inheritance of this mutation seemed to be independent of consanguineous marriage, which can be explained by its high frequency in the Tunisian population. The second patient has a novel splice site mutation in intron 6 at position c.490 -6 T > C. A splicing assay revealed a complete omission of exon 7 in the resulting HSD17B3 mRNA transcript. Skipping of exon 7 in HSD17B3 is predicted to cause a frame shift in exon 8 that affects the catalytic site and results in a truncation in exon 9, leading to an inactive enzyme. The third patient is homozygous for the novel missense mutation p.K202M, representing the first mutation identified in the catalytic tetrad of 17β-HSD3. Site-directed mutagenesis and enzyme activity measurements revealed a completely abolished 17β-HSD3 activity of the p.K202M mutant, despite unaffected protein expression, compared to the wild-type enzyme. Furthermore, the present study emphasizes the importance of genetic counselling, detabooization of 46,XY DSD, and a sensitization of the Tunisian population for the risks of consanguineous marriage.
Collapse
Affiliation(s)
- Bochra Ben Rhouma
- Human Molecular Genetics Laboratory, Faculty of Medicine, 3029 Sfax, Tunisia; Higher Institute of Nursing, M. Ali Street, 4000 Gabes, Tunisia.
| | - Manuel Kley
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland.
| | - Fakhri Kallabi
- Human Molecular Genetics Laboratory, Faculty of Medicine, 3029 Sfax, Tunisia.
| | - Faten Hadj Kacem
- Department of Endocrinology, Hedi Chaker Hospital, 3029 Sfax, Tunisia.
| | - Thouraya Kammoun
- Department of Pediatrics, Hedi Chaker Hospital, 3029 Sfax, Tunisia.
| | - Wajdi Safi
- Department of Endocrinology, Hedi Chaker Hospital, 3029 Sfax, Tunisia.
| | - Leila Keskes
- Human Molecular Genetics Laboratory, Faculty of Medicine, 3029 Sfax, Tunisia.
| | - Mouna Mnif
- Department of Endocrinology, Hedi Chaker Hospital, 3029 Sfax, Tunisia.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland.
| | - Neila Belguith
- Human Molecular Genetics Laboratory, Faculty of Medicine, 3029 Sfax, Tunisia; Department of Congenital and Hereditary Diseases, 1010 Charles Nicolles Hospital, Tunis, Tunisia.
| |
Collapse
|
44
|
Okamoto N, Fujinaga D, Yamanaka N. Steroid hormone signaling: What we can learn from insect models. VITAMINS AND HORMONES 2023; 123:525-554. [PMID: 37717997 DOI: 10.1016/bs.vh.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ecdysteroids are a group of steroid hormones in arthropods with pleiotropic functions throughout their life history. Ecdysteroid research in insects has made a significant contribution to our current understanding of steroid hormone signaling in metazoans, but how far can we extrapolate our findings in insects to other systems, such as mammals? In this chapter, we compare steroid hormone signaling in insects and mammals from multiple perspectives and discuss similarities and differences between the two lineages. We also highlight a few understudied areas and remaining questions of steroid hormone biology in metazoans and propose potential future research directions.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Fujinaga
- Department of Entomology, University of California, Riverside, CA, United States
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, United States.
| |
Collapse
|
45
|
Gabrielli F, Antinucci M, Tofanelli S. Gene Structure Evolution of the Short-Chain Dehydrogenase/Reductase (SDR) Family. Genes (Basel) 2022; 14:110. [PMID: 36672851 PMCID: PMC9859523 DOI: 10.3390/genes14010110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
SDR (Short-chain Dehydrogenases/Reductases) are one of the oldest and heterogeneous superfamily of proteins, whose classification is problematic because of the low percent identity, even within families. To get clearer insights into SDR molecular evolution, we explored the splicing site organization of the 75 human SDR genes across their vertebrate and invertebrate orthologs. We found anomalous gene structures in members of the human SDR7C and SDR42E families that provide clues of retrogene properties and independent evolutionary trajectories from a common invertebrate ancestor. The same analyses revealed that the identity value between human and invertebrate non-allelic variants is not necessarily associated with the homologous gene structure. Accordingly, a revision of the SDR nomenclature is proposed by including the human SDR40C1 and SDR7C gene in the same family.
Collapse
Affiliation(s)
- Franco Gabrielli
- Department of Biology, University of Pisa, Via Ghini, 13-56126 Pisa, Italy
| | - Marco Antinucci
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Sergio Tofanelli
- Department of Biology, University of Pisa, Via Ghini, 13-56126 Pisa, Italy
| |
Collapse
|
46
|
Tang S, Zhao Z, Wang Y, El Akkawi MM, Tan Z, Liu D, Chen G, Liu H. DHRS7 is an immune-related prognostic biomarker of KIRC and pan-cancer. Front Genet 2022; 13:1015844. [PMID: 36276963 PMCID: PMC9584615 DOI: 10.3389/fgene.2022.1015844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Renal clear cell carcinoma (KIRC) is one malignancy whose development and prognosis have been associated with aberrant DHRS7 expression. However, the catalytic activity and pathophysiology of KIRC are poorly understood, and no sensitive tumor biomarkers have yet been discovered. In our study, we examined the significant influence of DHRS7 on the tumor microenvironment (TME) and tumor progression using an overall predictable and prognostic evaluation approach. We found novel cancer staging, particularly in KIRC, as well as potential therapeutic drugs out of 27 drug sensitivity tests. Using Perl scripts, it was possible to determine the number of somatic mutations present in 33 tumors, as well as the relative scores of 22 immune cells using CIBERSORT, the relationship between immune infiltration and differential expression using TCGA data, and the immune microenvironment score using the estimate technique. Our results show that DHRS7 is abnormally expressed in pan-cancer patients, which influences their survival. Low DHRS7 expression was associated with late clinical stages and a low survival rate in KIRC patients, suggesting a poor prognosis and course of treatment, in HNSG, MESO, and KIRC patients. We also found that DHRS7 was associated with TMB and MSI in certain tumors. Using KIRC as an example, we discovered a negative correlation between DHRS7 expression and immunological assessments, suggesting that this substance might be used as a tumor biomarker.
Collapse
Affiliation(s)
- Sheng Tang
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Zhenyu Zhao
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yuhang Wang
- Department of Urology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Mariya M. El Akkawi
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhennan Tan
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Dongbin Liu
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Guoxiong Chen
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Hu Liu
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
- *Correspondence: Hu Liu,
| |
Collapse
|
47
|
Rational Engineering of 3α-Hydroxysteroid Dehydrogenase/Carbonyl Reductase for a Biomimetic Nicotinamide Mononucleotide Cofactor. Catalysts 2022. [DOI: 10.3390/catal12101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enzymes are powerful biological catalysts for natural substrates but they have low catalytic efficiency for non-natural substrates. Protein engineering can be used to optimize enzymes for catalysis and stability. 3α-Hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) catalyzes the oxidoreduction reaction of NAD+ with androsterone. Based on the structure and catalytic mechanism, we mutated the residues of T11, I13, D41, A70, and I112 and they interacted with different portions of NAD+ to switch cofactor specificity to biomimetic cofactor nicotinamide mononucleotide (NMN+). Compared to wild-type 3α-HSD/CR, the catalytic efficiency of these mutants for NAD+ decreased significantly except for the T11 mutants but changed slightly for NMN+ except for the A70K mutant. The A70K mutant increased the catalytic efficiency for NMN+ by 8.7-fold, concomitant with a significant decrease in NAD+ by 1.4 × 104-fold, resulting in 9.6 × 104-fold cofactor specificity switch toward NMN+ over NAD+. Meanwhile, the I112K variant increased the thermal stability and changed to a three-state transition from a two-state transition of thermal unfolding of wild-type 3α-HSD/CR by differential scanning fluorimetry. Molecular docking analysis indicated that mutations on these residues affect the position and conformation of the docked NAD+ and NMN+, thereby affecting their activity. A70K variant sterically blocks the binding with NAD+, restores the H-bonding interactions of catalytic residues of Y155 and K159 with NMN+, and enhances the catalytic efficiency for NMN+.
Collapse
|
48
|
Dai L, Li H, Huang JW, Hu Y, He M, Yang Y, Min J, Guo RT, Chen CC. Structure-based rational design of a short-chain dehydrogenase/reductase for improving activity toward mycotoxin patulin. Int J Biol Macromol 2022; 222:421-428. [PMID: 36176222 DOI: 10.1016/j.ijbiomac.2022.09.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Patulin is a fatal mycotoxin that is widely detected in drinking water and fruit-derived products contaminated by diverse filamentous fungi. CgSDR from Candida guilliermondii represents the first NADPH-dependent short-chain dehydrogenase/reductase that catalyzes the reduction of patulin to the nontoxic E-ascladiol. To elucidate the catalytic mechanism of CgSDR, we solved its crystal structure in complex with cofactor and substrate. Structural analyses indicate that patulin is situated in a hydrophobic pocket adjacent to the cofactor, with the hemiacetal ring orienting toward the nicotinamide moiety of NADPH. In addition, we conducted structure-guided engineering to modify substrate-binding residue V187 and obtained variant V187F, V187K and V187W, whose catalytic activity was elevated by 3.9-, 2.2- and 1.7-fold, respectively. The crystal structures of CgSDR variants suggest that introducing additional aromatic stacking or hydrogen-bonding interactions to bind the lactone ring of patulin might account for the observed enhanced activity. These results illustrate the catalytic mechanism of SDR-mediated patulin detoxification for the first time and provide the upgraded variants that exhibit tremendous potentials in industrial applications.
Collapse
Affiliation(s)
- Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Hao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Min He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
49
|
Lou D, Zhang X, Cao Y, Zhou Z, Liu C, Kuang G, Tan J, Zhu L. A novel NADP(H)-dependent 3α-HSDH from the intestinal microbiome of Ursus thibetanus. Int J Biol Macromol 2022; 219:159-165. [PMID: 35934074 DOI: 10.1016/j.ijbiomac.2022.07.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/05/2022]
Abstract
3α-HSDHs have a crucial role in the bioconversion of steroids, and have been widely applied in the detection of total bile acid (TBA). In this study, we report a novel NADP(H)-dependent 3α-HSDH (named Sc 3α-HSDH) cloned from the intestinal microbiome of Ursus thibetanus. Sc 3α-HSDH was solubly expressed in E. coli (BL21) as a recombinant glutathione-S-transferase (GST)-tagged protein and freed from its GST-fusion by cleavage using the PreScission protease. Sc 3α-HSDH is a new member of the short-chain dehydrogenases/reductase superfamily (SDRs) with a typical α/β folding pattern, based on protein three-dimensional models predicted by AlphaFold. The best activity of Sc 3α-HSDH occurred at pH 8.5 and the temperature optima was 55 °C, indicating that Sc 3α-HSDH is not an extremozyme. The catalytic efficiencies (kcat/Km) of Sc 3α-HSDH catalyzing the oxidation reaction with the substrates, glycochenodeoxycholic acid (GCDCA) and glycoursodeoxycholic acid (GUDCA), were 183.617 and 34.458 s-1 mM-1, respectively. In addition, multiple metal ions can enhance the activity of Sc 3α-HSDH when used at concentrations ranging from 2 % to 42 %. The results also suggest that the metagenomic approach is an efficient method for identifying novel enzymes.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.
| | - Xiaoli Zhang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Yangyang Cao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Zixin Zhou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Cheng Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
50
|
Liang D, Shu R, Jiang S, Yang L, Wang Y, Zhao Y, Cai Y, Xie R, Meng Y. Identification and functional analysis of carbonyl reductases related to tetrahydrobiopterin synthesis in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:403-416. [PMID: 35184330 DOI: 10.1111/imb.12768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The superfamily of short-chain dehydrogenases/reductases (SDRs) is crucial in biosynthetic and signalling pathways, in which the carbonyl reductases (CBRs) subfamily is important in the biosynthesis of tetrahydrobiopterin (BH4). BH4 is an essential coenzyme for animals, and its deficiency can lead to neurological diseases. There are few reports on CBRs involved in BH4 synthesis of silkworms, Bombyx mori. Here, we identified 67 SDR genes in B. mori (BmSDR) through whole genome survey for the first time. Based on bioinformatics analyses and KEGG verification, four BmCBRs that may be related to BH4 synthesis were further characterized and functionally analysed. The results showed these four genes were high expressed in the head and gonads of ah09 (a lem mutant with defective BH4 synthesis). Enzyme activity, BH4 content and the related gene expression levels after intracellular interference with BmCBR and the main catalytic enzymes sepiapterin reductase of B. mori (BmSpr) in the de novo pathway of BH4 showed BmCBR2 plays a role in the salvage pathway. BmCBR3 and BmCBR4 regulate BH4 synthesis through the alternative pathway. Among the four pathways of silkworm BH4 synthesis, the de novo pathway occupies the dominant position, followed by the alternative pathway and salvage pathway. According to the overexpression of BmCBR3 after interference with BmSpr, the BH4 content did not change significantly. It is speculated that BmCBR3 is located upstream of BmSpr. These results provide a theoretical basis for in-depth exploration of the role of BmSDR in B. mori and also provide clues for the research of other animal-related diseases.
Collapse
Affiliation(s)
- Dan Liang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Rui Shu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Liangli Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Ying Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yue Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yangyang Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ruiping Xie
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|