1
|
Zhang Q, Lu F, Zhang C, Yu X, Yang X, Yan H. Blocking exosomal secretion aggravated 1,4-benzoquinone-induced cytotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:1099-1106. [PMID: 37818967 DOI: 10.1002/tox.23944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/06/2023] [Accepted: 08/13/2023] [Indexed: 10/13/2023]
Abstract
Benzene exposure inhibits the hematopoietic system and leads to the occurrence of various types of leukemia. However, the mechanism underlying the hematotoxicity of benzene is still largely unclear. Emerging evidence has shown that exosomes are involved in toxic mechanisms of benzene. To understand the effect of 1,4-benzoquinone (PBQ; an active metabolite of benzene in bone marrow) on the exosomal release characteristics and role of exosomal secretion in PBQ-induced cytotoxicity. Exosomes were isolated from PBQ-treated HL-60 cells, purified by ultracentrifugation, and verified by transmission electron microscopy, nanoparticle tracking analysis and the presence of specific biomarkers. Our results showed that PBQ increased exosomal secretion in a dose-dependent manner, reaching a peak in 3 h at 10 μM PBQ treatment and then slowly decreasing in HL-60 cells. The exosomes contained miRNAs, which have been reported to be associated with benzene exposure or benzene poisoning. In particular, mir-34a-3p and mir-34A-5p were enriched in exosomes derived from PBQ-treated cells. In addition, the inhibition of exosomal release by GW4869 (an inhibitor of exosomal release) exacerbated PBQ-induced cytotoxicity, including increased intracellular reactive oxygen species levels, decreased mitochondrial membrane potential, and increased the apoptosis rate. Our findings illustrated that exosomes secretion plays an important role in antagonizing PBQ-induced cytotoxicity and maintaining cell homeostasis.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Medicine, Shandong Xiandai University, Jinan, Shandong, People's Republic of China
| | - Fangfang Lu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chunxiao Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiuyuan Yu
- Clinical Laboratory, Traditional Chinese Medicine Hospital of Jimo City, Jimo, Shandong, People's Republic of China
| | - Xinjun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hongtao Yan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
2
|
Malavolti M, Malagoli C, Filippini T, Wise LA, Bellelli A, Palazzi G, Cellini M, Costanzini S, Teggi S, Vinceti M. Residential proximity to petrol stations and risk of childhood leukemia. Eur J Epidemiol 2023:10.1007/s10654-023-01009-0. [PMID: 37249787 DOI: 10.1007/s10654-023-01009-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/16/2023] [Indexed: 05/31/2023]
Abstract
Petrol stations emit benzene and other contaminants that have been associated with an increased risk of childhood leukemia. We carried out a population-based case-control study in two provinces in Northern Italy. We enrolled 182 cases of childhood leukemia diagnosed during 1998-2019 and 726 age- and sex-matched population controls. We geocoded the addresses of child residences and 790 petrol stations located in the study area. We estimated leukemia risk according to distance from petrol stations within a 1000 m buffer and amount of supplied fuel within a buffer of 250 m from the child's residence. We used conditional logistic regression models to approximate risk ratios (RRs) and 95% confidence intervals (CIs) for associations of interest, adjusted for potential confounders. We also modeled non-linear associations using restricted cubic splines. In secondary analyses, we restricted to acute lymphoblastic leukemia (ALL) cases and stratifed by age (<5 and ≥5 years). Compared with children who lived≥1000 m from a petrol station, the RR was 2.2 (95% CI 0.5-9.4) for children living<50 m from nearest petrol station. Associations were stronger for the ALL subtype (RR=2.9, 95% CI 0.6-13.4) and among older children (age≥5 years: RR=4.4, 95% CI 0.6-34.1; age<5 years: RR=1.6, 95% CI 0.1-19.4). Risk of leukemia was also greater (RR=1.6, 95% CI 0.7-3.3) among the most exposed participants when assigning exposure categories based on petrol stations located within 250 m of the child's residence and total amount of gasoline delivered by the stations. Overall, residence within close proximity to a petrol station, especially one with more intense refueling activity, was associated with an increased risk of childhood leukemia, though associations were imprecise.
Collapse
Affiliation(s)
- Marcella Malavolti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlotta Malagoli
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Alessio Bellelli
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Palazzi
- Pediatric Oncology and Hematology Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Cellini
- Pediatric Oncology and Hematology Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Sofia Costanzini
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Teggi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy.
| |
Collapse
|
3
|
Leesuraplanon C, Jayasena V, Karnpanit W. Risk assessment of exposure to benzoic acid and benzene from consumption of functional drinks. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christina Leesuraplanon
- Graduate student in Master of Science Program in Nutrition Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University Bangkok 10400 Thailand
| | - Vijay Jayasena
- School of Science Western Sydney University Sydney New South Wales 2751 Australia
| | - Weeraya Karnpanit
- Institute of Nutrition, Mahidol University Salaya, Phutthamonthon Nakhon Pathom 73170 Thailand
| |
Collapse
|
4
|
Isinkaralar K. High-efficiency removal of benzene vapor using activated carbon from Althaea officinalis L. biomass as a lignocellulosic precursor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66728-66740. [PMID: 35507228 DOI: 10.1007/s11356-022-20579-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/28/2022] [Indexed: 05/09/2023]
Abstract
Benzene is a primary air pollutant commonly found widespread in the indoor environment. It has always been a research focus on the environment due to the causes of significant human health concerns. It has been widely utilized in the synthesis of solvent production, which can rarely be found in high concentrations in outdoor air or high amounts in indoor air, depending on its sources. It is aimed to remove different initial benzene concentrations (from 5 to 1500 ppm) with the production of activated carbon as an excellent adsorbent with a high surface area to be used in these situations. Lignocellulosic wastes have great potential for activated carbon for their advantages (abundant, recycled, and low-cost materials, etc.). This study aimed to evaluate biowaste material for activated carbon production from Althaea officinalis L. biomass by chemical activation (H2SO4, LiOH, and ZnCl2) at temperatures between 500 and 900 °C. Newly developed powdered activated carbons (Ao-ACs) are also tabulated as Ao-AC1-45 for easy reference. Benzene vapor was collected into Tenax TA® tubes by automatic thermal desorption in conjunction with a capillary gas chromatography-mass spectrometry (TD-GC/MS). The significant surface area and production yield of Ao-ACs were obtained at 1424 m2/g (Ao-AC43) and up to 40.32%, respectively. The maximum gas-phase benzene adsorption capacity was 140 mg/g at 270 min. This research has focused on adsorption gas-phase benzene removal onto Ao-ACs as a low-cost adsorbent from the Althaea officinalis L. biomass. Conspicuously, more study is needed to perform the enhanced adsorption of airborne pollutants capacity with inexpensive activated carbon from waste biomass materials.
Collapse
Affiliation(s)
- Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| |
Collapse
|
5
|
Hu Y, Zhang X, Zhang A, Hou Y, Liu Y, Li Q, Wang Y, Yu Y, Hou M, Peng J, Yang X, Xu S. Global burden and attributable risk factors of acute lymphoblastic leukemia in 204 countries and territories in 1990-2019: Estimation based on Global Burden of Disease Study 2019. Hematol Oncol 2021; 40:92-104. [PMID: 34664286 DOI: 10.1002/hon.2936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 01/13/2023]
Abstract
To provide a foundational guideline for policy-makers to efficiently allocate medical resources in the context of population aging and growth, the latest spatial distribution and temporal trend of acute lymphoblastic leukemia (ALL) along with attributable risk factors by sex and age were mapped. Based on the Global Burden of Disease Study 2019, estimated annual percentage change (EAPC) was calculated according to the relativity between age-standardized rate and calendar year, to quantify temporal trends in morbidity and mortality of ALL. We used applied Spearman rank correlation to estimate the relationship between the EAPC and potential influence factors. The population attributable fraction of potential risk factors for ALL-related disability-adjusted life years were estimated by the comparative risk assessment framework. As a result, we found that new ALL cases increased significantly by 1.29% worldwide, and the age-standardized incidence rate increased by 1.61% annually. The proportion of elder patients sharply increased, especially within the higher socio-demographic index (SDI) region. Smoking and high body mass index remained the predominant risk factors for ALL-related mortality. Notably, the contribution of high body mass index presented an increasing trend. In conclusion, the global burden of ALL has steadily increased, especially in Middle SDI region. Health measures and new drugs should be taken into consideration to improve the management and treatment of elders with ALL due to an increasing proportion in the higher SDI region. For Low SDI areas, attention should be paid to the environmental problems caused by industrial development.
Collapse
Affiliation(s)
- Yuefen Hu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiuping Zhang
- Medical Experimental Diagnosis Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qizhao Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yawen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yafei Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Okorn K, Jimenez A, Collier-Oxandale A, Johnston J, Hannigan M. Characterizing methane and total non-methane hydrocarbon levels in Los Angeles communities with oil and gas facilities using air quality monitors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146194. [PMID: 34602658 PMCID: PMC8485894 DOI: 10.1016/j.scitotenv.2021.146194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Over the past decade, sensor networks have been proven valuable to assess air quality on highly localized scales. Here we leverage innovative sensors to characterize gaseous pollutants in a complex urban environment and evaluate differences in air quality in three different Los Angeles neighborhoods where oil and gas activity is present. We deployed monitors across urban neighborhoods in South Los Angles adjacent to oil and gas facilities with varying levels of production. Using low-cost sensors built in-house, we measured methane, total non-methane hydrocarbons (TNMHCs), carbon monoxide, and carbon dioxide during three deployment campaigns over four years. The multi-sensor linear regression calibration model developed to quantify methane and TNMHCs offers up to 16% improvement in coefficient of determination and up to a 22% reduction in root mean square error for the most recent dataset as compared to previous models. The deployment results demonstrate that airborne methane concentrations are higher within a 500 m radius of three urban oil and gas facilities, as well as near a natural gas distribution pipeline, likely a result of proximity to sources. While there are numerous additional sources of TNMHCs in complex urban environments, some sites appear to be larger emitters than others. Significant methane emissions were also measured at an idle site, suggesting that fugitive emissions may still occur even if production is ceased. Episodic spikes of both compounds suggested an association with oil and gas activities, demonstrating how sensor networks can be used to elucidate community-scale sources and differences in air quality moving forward.
Collapse
Affiliation(s)
- Kristen Okorn
- Environmental Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Correspondence: , P: (303) 735-8054, A: 1111 Engineering Dr., Boulder, CO 80309, USA
| | - Amanda Jimenez
- Preventative Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Jill Johnston
- Preventative Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Hannigan
- Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
7
|
Epigenetic Effects of Benzene in Hematologic Neoplasms: The Altered Gene Expression. Cancers (Basel) 2021; 13:cancers13102392. [PMID: 34069279 PMCID: PMC8156840 DOI: 10.3390/cancers13102392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Benzene is produced by diverse petroleum transformation processes and it is widely employed in industry despite its oncogenic effects. In fact, occupational exposure to benzene may cause hematopoietic malignancy. The leukemogenic action of benzene is particularly complex. Possible processes of onset of hematological malignancies have been recognized as a genotoxic action and the provocation of immunosuppression. However, benzene can induce modifications that do not involve alterations in the DNA sequence, the so-called epigenetics changes. Acquired epigenetic modification may also induce leukemogenesis, as benzene may alter nuclear receptors, and cause changes at the protein level, thereby modifying the function of regulatory proteins, including oncoproteins and tumor suppressor proteins. Abstract Benzene carcinogenic ability has been reported, and chronic exposure to benzene can be one of the risk elements for solid cancers and hematological neoplasms. Benzene is acknowledged as a myelotoxin, and it is able to augment the risk for the onset of acute myeloid leukemia, myelodysplastic syndromes, aplastic anemia, and lymphomas. Possible mechanisms of benzene initiation of hematological tumors have been identified, as a genotoxic effect, an action on oxidative stress and inflammation and the provocation of immunosuppression. However, it is becoming evident that genetic alterations and the other causes are insufficient to fully justify several phenomena that influence the onset of hematologic malignancies. Acquired epigenetic alterations may participate with benzene leukemogenesis, as benzene may affect nuclear receptors, and provoke post-translational alterations at the protein level, thereby touching the function of regulatory proteins, comprising oncoproteins and tumor suppressor proteins. DNA hypomethylation correlates with stimulation of oncogenes, while the hypermethylation of CpG islands in promoter regions of specific tumor suppressor genes inhibits their transcription and stimulates the onset of tumors. The discovery of the systems of epigenetic induction of benzene-caused hematological tumors has allowed the possibility to operate with pharmacological interventions able of stopping or overturning the negative effects of benzene.
Collapse
|
8
|
Zhang X, Wang D, Liu Y, Cui Y, Xue Z, Gao Z, Du J. Characteristics and ozone formation potential of volatile organic compounds in emissions from a typical Chinese coking plant. J Environ Sci (China) 2020; 95:183-189. [PMID: 32653178 DOI: 10.1016/j.jes.2020.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Coking industry is an important volatile organic compounds (VOCs) emission source in China, however, detailed information on VOCs emissions is lacking. Therefore, we selected a typical mechanized coking plant and collected air samples according to the Emission Standard of Pollutants for Coking Chemical Industry (GB16171-2012). Using gas chromatography-mass spectrometry method, we analyzed the VOCs in the air samples, and applied maximum increment reactivity (MIR) rule to estimate ozone formation potential (OFP) of the VOCs emitted from the coke production. More than 90 VOCs species were detected from the coking plant, including alkanes, alkenes, alkynes, aromatic hydrocarbons, halogenated hydrocarbons and oxygenated VOCs. The concentrations of VOCs (ρ(VOCs)) generated at different stages of the coking process are significantly different. ρ(VOCs) from coke oven chimney had the highest concentration (87.1 mg/m3), followed by coke pushing (4.0 mg/m3), coal charging (3.3 mg/m3) and coke oven tops (1.1 mg/m3). VOCs species emitted from the coke production processes were dominated by alkanes and alkenes, but the composition proportions were different at the different stages. Alkenes were the most abundant emission species in flue gases of the coke oven chimney accounting for up to 66% of the total VOCs, while the VOCs emissions from coke pushing and coal charging were dominated by alkanes (36% and 42%, respectively), and the alkanes and alkenes emitted from coke oven top were similar (31% and 29%, respectively). Based on above results, reduction of VOCs emissions from coke oven chimney flue gases is suggested to be an effective measure, especially for alkenes.
Collapse
Affiliation(s)
- Xinmin Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Di Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yufan Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhigang Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhifeng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinhong Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Sharma P, Maithani M, Gupta V, Bansal P. Ayurvedic formulations containing benzoic and ascorbic acids as additives: benzene formation during storage and impact of additives on quality parameters. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:59-65. [PMID: 32745071 DOI: 10.1515/jcim-2020-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/03/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Ayurvedic formulations are becoming the prior choice of people as health care supplements. The increasing demand for these formulations has led to extensive development of Ayurvedic pharmaceutical industries worldwide. The reaction between the preservatives (sodium benzoates and ascorbic acid) used in these formulations could generate benzene. Benzene is classified as class-1 human carcinogen and responsible for various short and long term health effects. METHODS In this study, 25 formulations (containing ascorbic acid and sodium benzoate) of various manufacturers available as over the counter products were obtained and their benzene content were determined using gas chromatograph with flame ionization detector. RESULTS The result showed that 64% of the formulations were free from benzene contamination whereas 36% of formulations were found to be contaminated with benzene. A simple, less time-consuming, economic, and validated gas chromatographic method for estimation of benzene in Ayurvedic formulations was also developed successfully in present study. CONCLUSIONS The data revealed that the level of benzene was within permissible limits, yet the presence of a carcinogen in the marketed formulations intended for internal use is an alarming situation.
Collapse
Affiliation(s)
- Priyanka Sharma
- University Center of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Mukesh Maithani
- Multidisciplinary Research Unit, Veer Chandra Singh Garhwali Government Institute of Medical Science and Research, Srinagar, Pauri Garhwal, India
| | - Vikas Gupta
- University Center of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Parveen Bansal
- University Center of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| |
Collapse
|
10
|
Frederiksen LE, Erdmann F, Wesseling C, Winther JF, Mora AM. Parental tobacco smoking and risk of childhood leukemia in Costa Rica: A population-based case-control study. ENVIRONMENTAL RESEARCH 2020; 180:108827. [PMID: 31655332 DOI: 10.1016/j.envres.2019.108827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The role of environmental and behavioral exposures on childhood leukemia etiology is poorly understood. We examined the association of maternal and paternal tobacco smoking at different time points with the risk of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) in Costa Rican children. MATERIALS AND METHODS We conducted a population-based case-control study on childhood leukemia in Costa Rica. Cases (n ALL = 252; n AML = 40) were diagnosed between 1995 and 2000 (aged <15 years at diagnosis) and identified from the Costa Rican Cancer Registry and the National Children's Hospital. A total of 578 frequency-matched population controls were sampled from the National Birth Registry. Parental tobacco smoking was assessed via face-to-face interviews. We used logistic regression models to examine the association of paternal and maternal tobacco smoking before conception, during pregnancy, and after birth with childhood ALL and AML risk, adjusted for child sex, birth year, maternal/paternal age, and parental education. RESULTS Paternal smoking before conception, during pregnancy, and after birth was associated with an increased risk of childhood AML (Odds Ratio (OR): 2.51, 95% CI: 1.21-5.17; OR: 3.21, 95% CI: 1.56-6.60; and OR: 2.83, 95% CI: 1.36-5.90, respectively). Maternal smoking during pregnancy was also associated with a modest, but imprecise increase in AML risk. We observed null associations of maternal and paternal smoking with ALL in the offspring. CONCLUSION Our results suggest an association between parental smoking and risk of AML, but not ALL, in Costa Rican children. These findings add to the established evidence of numerous health risks associated with smoking and highlight the potential harm of smoking during sensitive windows of the development of fetus and child.
Collapse
Affiliation(s)
| | - Friederike Erdmann
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Catharina Wesseling
- Department of Occupational Medicine, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Jeanette Falck Winther
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health, Aarhus University and University Hospital, Aarhus, Denmark
| | - Ana M Mora
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica; Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum Exp Toxicol 2019; 39:577-595. [PMID: 31884827 DOI: 10.1177/0960327119895570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.
Collapse
Affiliation(s)
- R Dewi
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Z Abdul Hamid
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - N F Rajab
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S Shuib
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Sr Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
12
|
Chunxia D, Meifang W, Jianhua Z, Ruijuan Z, Xiue L, Zhuanzhen Z, Linhua Y. Tobacco smoke exposure and the risk of childhood acute lymphoblastic leukemia and acute myeloid leukemia: A meta-analysis. Medicine (Baltimore) 2019; 98:e16454. [PMID: 31305478 PMCID: PMC6641792 DOI: 10.1097/md.0000000000016454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Tobacco smoke contains carcinogens known to damage somatic and germ cells. In this study, we investigated the effect of tobacco smoking on the risk of childhood acute lymphoblastic leukemia (ALL) and myeloid leukemia (AML). METHODS Information about tobacco smoking exposures of the mother before, during, and after pregnancy was collected via PubMed, Embase, and Web of Science databases through November 5, 2018. We performed to evaluate the association between smoking exposure and the risk of childhood ALL and AML. Study selection, data abstraction, and quality assessment were performed by 2 independent reviewers. Random effects models were used to obtain summary odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Nineteen case-control studies of childhood leukemia (age < 15 years) conducted in 9 countries from 1974 to 2018. Maternal smoking exposures did not a significant association with childhood ALL (OR = 1.004, 95% CI 0.953-1.058, P = .881) and AML (OR = 0.92, 95% CI 0.815-1.038, P = .177) during exposure time windows. However, there was an association with paternal smoking and ALL (OR = 1.15, 95% CI 1.038-1.275, P = .007). Paternal smoking in AML showed there was no association with smoking exposures and childhood AML (OR = 1.133, 95% CI 0.943-1.362, P = .181). Next, maternal daily cigarettes consumption showed no associations with ALL (OR = 1.08, 95% CI 1.000-1.168, P = .051) during pregnancy. No association with maternal daily smoking and AML (OR = 0.909, 95% CI 0.682-1.211, P = .514). Paternal daily cigarettes consumption was associated with increased risks of childhood ALL (OR = 1.200, 95% CI 1.112-1.302, P = .000). The higher consumption of paternal smoking (more than 10 per day) was significantly related to childhood ALL. Paternal daily smoking consumption also was related to AML (OR = 1.242, 95% CI 1.031-1.496, P = .022). CONCLUSION Maternal smoking before, during, or after pregnancy was not associated with childhood ALL or AML. However, paternal smoking was related to a significantly elevated risk of childhood ALL during pregnancy, but not for AML. Maternal daily smoking consumption was not associated with ALL or AML during pregnancy. The higher consumption of paternal smoking were, the higher the risk of childhood ALL or AML.
Collapse
|
13
|
Teras LR, Diver WR, Deubler EL, Krewski D, Flowers CR, Switchenko JM, Gapstur SM. Residential ambient benzene exposure in the United States and subsequent risk of hematologic malignancies. Int J Cancer 2019; 145:2647-2660. [DOI: 10.1002/ijc.32202] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Lauren R. Teras
- Epidemiology Research GroupAmerican Cancer Society Atlanta GA
| | - W. Ryan Diver
- Epidemiology Research GroupAmerican Cancer Society Atlanta GA
| | | | - Daniel Krewski
- McLaughlin Centre for Population Health Risk AssessmentUniversity of Ottawa Ottawa ON Canada
- School of Epidemiology, Public Health and Disease PreventionUniversity of Ottawa Ottawa ON Canada
| | - Christopher R. Flowers
- Department of Hematology and Medical OncologyWinship Cancer Institute, Emory University School of Medicine Atlanta GA
| | - Jeffrey M. Switchenko
- Department of Biostatistics and BioinformaticsRollins School of Public Health, Emory University Atlanta GA
| | | |
Collapse
|
14
|
Zhang Z, Li P, Lin D, Wang D, Zhang Y. Proteome analysis of the potential serum biomarkers for chronic benzene poisoning. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:157-164. [PMID: 29729575 DOI: 10.1016/j.etap.2018.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
The aim of our study is to seek novel specific biomarkers which could provide clues to the mechanism of chronic benzene poisoning (CBP) and might also be used as specific markers for early detection and diagnosis. In this study, a comparative serological proteome analysis between normal controls and CBP patients at three different levels of poisoning were performed via a 2D-DIGE and MALDI-TOF-MS. As the result a total of 10 proteins were found significantly altered between the normal and the mild, moderate and severe poisoning. The identified differentially expressed proteins were classified according to their molecular functions, biological processes, and protein classes, and three important serum proteins among them, apolipoproteinA-1, alpha-1-antitrypsin and complement C3, were further confirmed by immune turbidimetric analysis for their significant up-regulation in the CBP patients. Our findings suggest that these differential proteins may help elucidate the mechanism of CBP and provide potential biomarkers for diagnosis.
Collapse
Affiliation(s)
- Zhimin Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, Guangdong, China
| | - Peimao Li
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, Guangdong, China
| | - Dafeng Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, Guangdong, China
| | - Dianpeng Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, Guangdong, China
| | - Yanfang Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
15
|
Werder EJ, Gam KB, Engel LS, Kwok RK, Ekenga CC, Curry MD, Chambers DM, Blair A, Miller AK, Birnbaum LS, Sandler DP. Predictors of blood volatile organic compound levels in Gulf coast residents. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:358-370. [PMID: 29288257 PMCID: PMC6013310 DOI: 10.1038/s41370-017-0010-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/15/2017] [Accepted: 10/27/2017] [Indexed: 05/26/2023]
Abstract
To address concerns among Gulf Coast residents about ongoing exposures to volatile organic compounds, including benzene, toluene, ethylbenzene, o-xylene, and m-xylene/p-xylene (BTEX), we characterized current blood levels and identified predictors of BTEX among Gulf state residents. We collected questionnaire data on recent exposures and measured blood BTEX levels in a convenience sample of 718 Gulf residents. Because BTEX is rapidly cleared from the body, blood levels represent recent exposures in the past 24 h. We compared participants' levels of blood BTEX to a nationally representative sample. Among nonsmokers we assessed predictors of blood BTEX levels using linear regression, and predicted the risk of elevated BTEX levels using modified Poisson regression. Blood BTEX levels in Gulf residents were similar to national levels. Among nonsmokers, sex and reporting recent smoky/chemical odors predicted blood BTEX. The change in log benzene was -0.26 (95% CI: -0.47, -0.04) and 0.72 (0.02, 1.42) for women and those who reported odors, respectively. Season, time spent away from home, and self-reported residential proximity to Superfund sites (within a half mile) were statistically associated with benzene only, however mean concentration was nearly an order of magnitude below that of cigarette smokers. Among these Gulf residents, smoking was the primary contributor to blood BTEX levels, but other factors were also relevant.
Collapse
Affiliation(s)
- Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Kaitlyn B Gam
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | | | - David M Chambers
- Emergency Response and Air Toxicants Branch, Division of Laboratory Sciences, National Center for Environmental Health, Atlanta, Georgia
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Aubrey K Miller
- Office of the Director, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- Office of the Director, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
16
|
Yoon JH, Kwak WS, Ahn YS. A brief review of relationship between occupational benzene exposure and hematopoietic cancer. Ann Occup Environ Med 2018; 30:33. [PMID: 29760933 PMCID: PMC5946455 DOI: 10.1186/s40557-018-0245-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
We reviewed articles to clarify the current evidence status for 1) types of cancer which related to benzene exposure, and 2) certain benzene exposure level which might cause the hematopoietic cancers. Hematopoietic function of the bone marrow is involved in the production of all blood cells types. The benzene metabolites including benzoquinone and mucoaldehyde affect hematopoietic stem cells as well as differentiation steps of progenitor cells for each blood cell. Hence, we concluded that benzene was associated with all lymphohematic carcinogenesis. First, it is supported by biological plausibility. Second, it is supported by meta-analysis although sing study did not show relationship due to lack of sample size or statistical power. More recent studies show lesser exposed level related to risk of cancer, compare to past studies did. Actually, early studies show the risk of malignancies in workers who exposed more than 200 ppm-years. However, only 0.5 to 1 ppm-year benzene exposed show significant linking to risk of malignancies in recent study. As reviewed research articles, we concluded that the relatively lower exposure level, such as 0.5–1 ppm-year, will be considering at risk of hematopoietic cancer. However, more research needs to be done on dose-response analysis.
Collapse
Affiliation(s)
- Jin-Ha Yoon
- 1Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.,2The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Seok Kwak
- 2The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Korea
| | - Yeon-Soon Ahn
- 3Department of Preventive Medicine, Institute of Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, 162, Ilsan-dong, Wonju, South Korea, Wonju, 26426 Korea
| |
Collapse
|
17
|
Mundt KA, Gentry PR, Dell LD, Rodricks JV, Boffetta P. Six years after the NRC review of EPA's Draft IRIS Toxicological Review of Formaldehyde: Regulatory implications of new science in evaluating formaldehyde leukemogenicity. Regul Toxicol Pharmacol 2017; 92:472-490. [PMID: 29158043 DOI: 10.1016/j.yrtph.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/27/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
Abstract
Shortly after the International Agency for Research on Cancer (IARC) determined that formaldehyde causes leukemia, the United States Environmental Protection Agency (EPA) released its Draft IRIS Toxicological Review of Formaldehyde ("Draft IRIS Assessment"), also concluding that formaldehyde causes leukemia. Peer review of the Draft IRIS Assessment by a National Academy of Science committee noted that "causal determinations are not supported by the narrative provided in the draft" (NRC 2011). They offered recommendations for improving the Draft IRIS assessment and identified several important research gaps. Over the six years since the NRC peer review, significant new science has been published. We identify and summarize key recommendations made by NRC and map them to this new science, including extended analysis of epidemiological studies, updates of earlier occupational cohort studies, toxicological experiments using a sensitive mouse strain, mechanistic studies examining the role of exogenous versus endogenous formaldehyde in bone marrow, and several critical reviews. With few exceptions, new findings are consistently negative, and integration of all available evidence challenges the earlier conclusions that formaldehyde causes leukemia. Given formaldehyde's commercial importance, environmental ubiquity and endogenous production, accurate hazard classification and risk evaluation of whether exposure to formaldehyde from occupational, residential and consumer products causes leukemia are critical.
Collapse
Affiliation(s)
- Kenneth A Mundt
- Environment and Health, Ramboll Environ, Amherst MA, United States.
| | - P Robinan Gentry
- Environment and Health, Ramboll Environ, Amherst MA, United States
| | - Linda D Dell
- Environment and Health, Ramboll Environ, Amherst MA, United States
| | | | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Chen S, Liang H, Hu G, Yang H, Zhou K, Xu L, Liu J, Lai B, Song L, Luo H, Peng J, Liu Z, Xiao Y, Chen W, Tang H. Differently expressed long noncoding RNAs and mRNAs in TK6 cells exposed to low dose hydroquinone. Oncotarget 2017; 8:95554-95567. [PMID: 29221148 PMCID: PMC5707042 DOI: 10.18632/oncotarget.21481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that long noncoding RNAs (lncRNAs) were related to human carcinogenesis and might be designated as diagnosis and prognosis biomarkers. Hydroquinone (HQ), as one of the metabolites of benzene, was closely relevant to occupational benzene poisoning and occupational leukemia. Using high-throughput sequencing technology, we investigated differences in lncRNA and mRNA expression profiles between experimental group (HQ 20 μmol/L) and control group (PBS). Compared to control group, a total of 65 lncRNAs and 186 mRNAs were previously identified to be aberrantly expressed more than two fold change in experimental group. To validate the sequencing results, we selected 10 lncRNAs and 10 mRNAs for quantitative real-time PCR (qRT-PCR). Through GO annotation and KEGG pathway analysis, we obtained 3 mainly signaling pathways, including P53 signaling pathway, which plays an important role in tumorigenesis and progression. After that, 25 lncRNAs and 32 mRNAs formed the lncRNA-mRNA co-expression network were implemented to play biological functions of the dysregulated lncRNAs transcripts by regulating gene expression. The lncRNAs target genes prediction provided a new idea for the study of lncRNAs. Finally, we have another important discovery, which is screened out 11 new lncRNAs without annotated. All these results uncovered that lncRNA and mRNA expression profiles in TK6 cells exposed to low dose HQ were different from control group, helping to further study the toxicity mechanisms of HQ and providing a new direction for the therapy of leukemia.
Collapse
Affiliation(s)
- Shaoyun Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Gonghua Hu
- Department of Preventive Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Kairu Zhou
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Longmei Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Bei Lai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Li Song
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jianming Peng
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China
| | - Zhidong Liu
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
19
|
Pruneda-Alvarez LG, Ruíz-Vera T, Ochoa-Martínez AC, Pérez-Maldonado IN. Urinary trans-trans muconic acid (exposure biomarker to benzene) and hippuric acid (exposure biomarker to toluene) concentrations in Mexican women living in high-risk scenarios of air pollution. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2017; 72:351-358. [PMID: 27982738 DOI: 10.1080/19338244.2016.1272539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to determine t,t-muconic acid (t,t-MA; exposure biomarker for benzene) and hippuric acid (HA; exposure biomarker for toluene) concentrations in the urine of women living in Mexico. In a cross-sectional study, apparently healthy women (n = 104) were voluntarily recruited from localities with a high risk of air pollution; t,t-MA and HA in urine were quantified using a high-performance liquid chromatography (HPLC) technique. Mean urinary levels of t,t-MA ranged from 680 to 1,310 μg/g creatinine. Mean values of HA ranged from 0.38 to 0.87 g/g creatinine. In conclusion, compared to data recently reported in literature, we found high urinary levels of t,t-MA and HA in assessed women participating in this study. We therefore deem the implementation of a strategy aimed at the reduction of exposure as a necessary measure for the evaluated communities.
Collapse
Affiliation(s)
- Lucía G Pruneda-Alvarez
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina, Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Tania Ruíz-Vera
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina, Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Angeles C Ochoa-Martínez
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina, Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Iván N Pérez-Maldonado
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina, Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- c Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí , Rio Verde, San Luis Potosí , México
| |
Collapse
|
20
|
Infante PF. Residential Proximity to Gasoline Stations and Risk of Childhood Leukemia. Am J Epidemiol 2017; 185:1-4. [PMID: 27923798 DOI: 10.1093/aje/kww130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023] Open
Abstract
Significant elevations in the risk of childhood leukemia have been associated with environmental exposure to gasoline; aromatic hydrocarbons from refinery pollution, petroleum waste sites, and mobile sources (automobile exhaust); paints, paint products, and thinners; and secondary cigarette smoke in the home. These higher risks have also been associated with parental exposure to benzene, gasoline, motor vehicle-related jobs, painting, and rubber solvents. These exposures and jobs have 1 common chemical exposure-benzene, a recognized cause of acute leukemia in adults-and raise the question of whether children represent a subpopulation in which a higher risk of leukemia is associated with very low level exposure to environmental benzene.
Collapse
|
21
|
Metayer C, Petridou E, Aranguré JMM, Roman E, Schüz J, Magnani C, Mora AM, Mueller BA, de Oliveira MSP, Dockerty JD, McCauley K, Lightfoot T, Hatzipantelis E, Rudant J, Flores-Lujano J, Kaatsch P, Miligi L, Wesseling C, Doody DR, Moschovi M, Orsi L, Mattioli S, Selvin S, Kang AY, Clavel J. Parental Tobacco Smoking and Acute Myeloid Leukemia: The Childhood Leukemia International Consortium. Am J Epidemiol 2016; 184:261-73. [PMID: 27492895 PMCID: PMC4983653 DOI: 10.1093/aje/kww018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/15/2016] [Indexed: 12/17/2022] Open
Abstract
The association between tobacco smoke and acute myeloid leukemia (AML) is well established in adults but not in children. Individual-level data on parental cigarette smoking were obtained from 12 case-control studies from the Childhood Leukemia International Consortium (CLIC, 1974-2012), including 1,330 AML cases diagnosed at age <15 years and 13,169 controls. We conducted pooled analyses of CLIC studies, as well as meta-analyses of CLIC and non-CLIC studies. Overall, maternal smoking before, during, or after pregnancy was not associated with childhood AML; there was a suggestion, however, that smoking during pregnancy was associated with an increased risk in Hispanics (odds ratio = 2.08, 95% confidence interval (CI): 1.20, 3.61) but not in other ethnic groups. By contrast, the odds ratios for paternal lifetime smoking were 1.34 (95% CI: 1.11, 1.62) and 1.18 (95% CI: 0.92, 1.51) in pooled and meta-analyses, respectively. Overall, increased risks from 1.2- to 1.3-fold were observed for pre- and postnatal smoking (P < 0.05), with higher risks reported for heavy smokers. Associations with paternal smoking varied by histological type. Our analyses suggest an association between paternal smoking and childhood AML. The association with maternal smoking appears limited to Hispanic children, raising questions about ethnic differences in tobacco-related exposures and biological mechanisms, as well as study-specific biases.
Collapse
Affiliation(s)
- Catherine Metayer
- Correspondence to Dr. Catherine Metayer, School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 460, Berkeley, CA 94704-7392 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Agodi A, Oliveri Conti G, Barchitta M, Quattrocchi A, Lombardo BM, Montesanto G, Messina G, Fiore M, Ferrante M. Validation of Armadillo officinalis Dumèril, 1816 (Crustacea, Isopoda, Oniscidea) as a bioindicator: in vivo study of air benzene exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:171-178. [PMID: 25638523 DOI: 10.1016/j.ecoenv.2015.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/15/2014] [Accepted: 01/11/2015] [Indexed: 06/04/2023]
Abstract
This study tests the potential for using Armadillo officinalis as a bioindicator of exposure to and activation of benzene metabolic pathways using an in vivo model. A. officinalis specimens collected in a natural reserve were divided into a control and three test groups exposed to 2.00, 5.32 or 9.09 µg/m(3) benzene for 24h. Three independent tests were performed to assess model reproducibility. Animals were dissected to obtain three pooled tissue samples per group: hepatopancreas (HEP), other organs and tissues (OOT), and exoskeleton (EXO). Muconic acid (MA), S-phenylmercapturic acid (S-PMA), two human metabolites of benzene, and changes in mtDNA copy number, a human biomarker of benzene exposure, were determined in each sample; benzene was determined only in EXO. MA was measured by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection, S-PMA by triple quadrupole mass spectrometer liquid chromatography with electro spray ionization (LC-MS-ESI-TQD), mtDNA by real-time quantitative PCR and end-point PCR, and benzene by quadrupole mass spectrometer head-space gas chromatography (HSGC-MS). MA and S-PMA levels rose both in HEP and OOT; EXO exhibited increasing benzene concentrations; and mtDNA copy number rose in HEP but not in OOT samples. Overall, our findings demonstrate that A. officinalis is a sensitive bioindicator of air benzene exposure and show for the first time its ability to reproduce human metabolic dynamics.
Collapse
Affiliation(s)
- A Agodi
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| | - G Oliveri Conti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; Environmental and Food Hygiene Laboratory (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| | - M Barchitta
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| | - A Quattrocchi
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| | - B M Lombardo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy Via Androne 81, 95124, Catania, Italy.
| | - G Montesanto
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy Via Androne 81, 95124, Catania, Italy.
| | - G Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy Via Androne 81, 95124, Catania, Italy.
| | - M Fiore
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; Environmental and Food Hygiene Laboratory (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| | - M Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; Environmental and Food Hygiene Laboratory (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| |
Collapse
|
23
|
Salviano dos Santos VP, Medeiros Salgado A, Guedes Torres A, Signori Pereira K. Benzene as a Chemical Hazard in Processed Foods. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2015; 2015:545640. [PMID: 26904662 PMCID: PMC4745501 DOI: 10.1155/2015/545640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 11/18/2022]
Abstract
This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1-10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food.
Collapse
Affiliation(s)
- Vânia Paula Salviano dos Santos
- Laboratório de Sensores Biológicos, Escola de Química, Universidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2030, CT, Bloco E, Sala E-122, Ilha do Fundão, 21941-598 Rio de Janeiro, RJ, Brazil
| | - Andréa Medeiros Salgado
- Laboratório de Sensores Biológicos, Escola de Química, Universidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2030, CT, Bloco E, Sala E-122, Ilha do Fundão, 21941-598 Rio de Janeiro, RJ, Brazil
| | - Alexandre Guedes Torres
- Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, CT, Bloco A, Sala 528A, Ilha Fundão, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Karen Signori Pereira
- Laboratório de Microbiologia de Alimentos, Escola de Química, Universidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2030, CT, Bloco E, Sala E-104, Ilha do Fundão, 21941-598 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Charbotel B, Fervers B, Droz J. Occupational exposures in rare cancers: A critical review of the literature. Crit Rev Oncol Hematol 2014; 90:99-134. [DOI: 10.1016/j.critrevonc.2013.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/06/2023] Open
|
25
|
Lymphohematopoietic cancers induced by chemicals and other agents and their implications for risk evaluation: An overview. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:40-64. [PMID: 24731989 DOI: 10.1016/j.mrrev.2014.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/13/2022]
Abstract
Lymphohematopoietic neoplasia are one of the most common types of cancer induced by therapeutic and environmental agents. Of the more than 100 human carcinogens identified by the International Agency for Research on Cancer, approximately 25% induce leukemias or lymphomas. The objective of this review is to provide an introduction into the origins and mechanisms underlying lymphohematopoietic cancers induced by xenobiotics in humans with an emphasis on acute myeloid leukemia, and discuss the implications of this information for risk assessment. Among the agents causing lymphohematopoietic cancers, a number of patterns were observed. Most physical and chemical leukemia-inducing agents such as the therapeutic alkylating agents, topoisomerase II inhibitors, and ionizing radiation induce mainly acute myeloid leukemia through DNA-damaging mechanisms that result in either gene or chromosomal mutations. In contrast, biological agents and a few immunosuppressive chemicals induce primarily lymphoid neoplasms through mechanisms that involve alterations in immune response. Among the environmental agents examined, benzene was clearly associated with acute myeloid leukemia in humans, with increasing but still limited evidence for an association with lymphoid neoplasms. Ethylene oxide and 1,3-butadiene were linked primarily to lymphoid cancers. Although the association between formaldehyde and leukemia remains controversial, several recent evaluations have indicated a potential link between formaldehyde and acute myeloid leukemia. The four environmental agents examined in detail were all genotoxic, inducing gene mutations, chromosomal alterations, and/or micronuclei in vivo. Although it is clear that rapid progress has been made in recent years in our understanding of leukemogenesis, many questions remain for future research regarding chemically induced leukemias and lymphomas, including the mechanisms by which the environmental agents reviewed here induce these diseases and the risks associated with exposures to such agents.
Collapse
|
26
|
Adgate JL, Goldstein BD, McKenzie LM. Potential public health hazards, exposures and health effects from unconventional natural gas development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8307-20. [PMID: 24564405 DOI: 10.1021/es404621d] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rapid increase in unconventional natural gas (UNG) development in the United States during the past decade has brought wells and related infrastructure closer to population centers. This review evaluates risks to public health from chemical and nonchemical stressors associated with UNG, describes likely exposure pathways and potential health effects, and identifies major uncertainties to address with future research. The most important occupational stressors include mortality, exposure to hazardous materials and increased risk of industrial accidents. For communities near development and production sites the major stressors are air pollutants, ground and surface water contamination, truck traffic and noise pollution, accidents and malfunctions, and psychosocial stress associated with community change. Despite broad public concern, no comprehensive population-based studies of the public health effects of UNG operations exist. Major uncertainties are the unknown frequency and duration of human exposure, future extent of development, potential emission control and mitigation strategies, and a paucity of baseline data to enable substantive before and after comparisons for affected populations and environmental media. Overall, the current literature suggests that research needs to address these uncertainties before we can reasonably quantify the likelihood of occurrence or magnitude of adverse health effects associated with UNG production in workers and communities.
Collapse
Affiliation(s)
- John L Adgate
- Colorado School of Public Health, University of Colorado Denver , 13001 E. 17th Place, Campus Box B119, Aurora, Colorado 80045, United States
| | | | | |
Collapse
|
27
|
Canovas-Jorda D, Louisse J, Pistollato F, Zagoura D, Bremer S. Regenerative toxicology: the role of stem cells in the development of chronic toxicities. Expert Opin Drug Metab Toxicol 2013; 10:39-50. [PMID: 24102433 DOI: 10.1517/17425255.2013.844228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Human stem cell lines and their derivatives, as alternatives to the use of animal cells or cancer cell lines, have been widely discussed as cellular models in predictive toxicology. However, the role of stem cells in the development of long-term toxicities and carcinogenesis has not received great attention so far, despite growing evidence indicating the relationship of stem cell damage to adverse effects later in life. However, testing this in vitro is a scientific/technical challenge in particular due to the complex interplay of factors existing under physiological conditions. Current major research programs in stem cell toxicity are not aiming to demonstrate that stem cells can be targeted by toxicants. Therefore, this knowledge gap needs to be addressed in additional research activities developing technical solutions and defining appropriate experimental designs. AREAS COVERED The current review describes selected examples of the role of stem cells in the development of long-term toxicities in the brain, heart or liver and in the development of cancer. EXPERT OPINION The presented examples illustrate the need to analyze the contribution of stem cells to chronic toxicity in order to make a final conclusion whether stem cell toxicities are an underestimated risk in mechanism-based safety assessments. This requires the development of predictive in vitro models allowing the assessment of adverse effects to stem cells on chronic toxicity and carcinogenicity.
Collapse
Affiliation(s)
- David Canovas-Jorda
- Institute for Health and Consumer Protection, DG Joint Research Centre (JRC), European Commission, Systems Toxicology Unit , Via E. Fermi 2749, TP 580, 21027 Ispra (VA) , Italy +39 0332 785914 ; +39 0332 785336 ;
| | | | | | | | | |
Collapse
|
28
|
Metayer C, Zhang L, Wiemels JL, Bartley K, Schiffman J, Ma X, Aldrich MC, Chang JS, Selvin S, Fu CH, Ducore J, Smith MT, Buffler PA. Tobacco smoke exposure and the risk of childhood acute lymphoblastic and myeloid leukemias by cytogenetic subtype. Cancer Epidemiol Biomarkers Prev 2013; 22:1600-11. [PMID: 23853208 PMCID: PMC3769478 DOI: 10.1158/1055-9965.epi-13-0350] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tobacco smoke contains carcinogens known to damage somatic and germ cells. We investigated the effect of tobacco smoke on the risk of childhood acute lymphoblastic leukemia (ALL) and myeloid leukemia (AML), especially subtypes of prenatal origin such as ALL with translocation t(12;21) or high-hyperdiploidy (51-67 chromosomes). METHODS We collected information on exposures to tobacco smoking before conception, during pregnancy, and after birth in 767 ALL cases, 135 AML cases, and 1,139 controls (1996-2008). Among cases, chromosome translocations, deletions, or aneuploidy were identified by conventional karyotype and fluorescence in situ hybridization. RESULTS Multivariable regression analyses for ALL and AML overall showed no definite evidence of associations with self-reported (yes/no) parental prenatal active smoking and child's passive smoking. However, children with history of paternal prenatal smoking combined with postnatal passive smoking had a 1.5-fold increased risk of ALL [95% confidence interval (CI), 1.01-2.23], compared to those without smoking history (ORs for pre- or postnatal smoking only were close to one). This joint effect was seen for B-cell precursor ALL with t(12;21) (OR = 2.08; 95% CI, 1.04-4.16), but not high hyperdiploid B-cell ALL. Similarly, child's passive smoking was associated with an elevated risk of AML with chromosome structural changes (OR = 2.76; 95% CI, 1.01-7.58), but not aneuploidy. CONCLUSIONS Our data suggest that exposure to tobacco smoking was associated with increased risks of childhood ALL and AML; and risks varied by timing of exposure (before and/or after birth) and cytogenetic subtype, based on imprecise estimates. IMPACT Parents should limit exposures to tobacco smoke before and after the child's birth.
Collapse
Affiliation(s)
- Catherine Metayer
- School of Public Health, University of California, 1995 University Avenue, Suite 460, Berkeley, CA94704-7392, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Inhibition of DNA-dependent protein kinase catalytic subunit by small molecule inhibitor NU7026 sensitizes human leukemic K562 cells to benzene metabolite-induced apoptosis. ACTA ACUST UNITED AC 2013; 33:43-50. [PMID: 23392706 DOI: 10.1007/s11596-013-1069-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Indexed: 10/27/2022]
Abstract
Benzene is an established leukotoxin and leukemogen in humans. We have previously reported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to mediate the cellular response to DNA double strand break (DSB) caused by DNA-damaging metabolites. In this study, we used a new, small molecule, a selective inhibitor of DNA-PKcs, 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026), as a probe to analyze the molecular events and pathways in hydroquinone-induced DNA DSB repair and apoptosis. Inhibition of DNA-PKcs by NU7026 markedly potentiated the apoptotic and growth inhibitory effects of hydroquinone in proerythroid leukemic K562 cells in a dose-dependent manner. Treatment with NU7026 did not alter the production of reactive oxygen species and oxidative stress by hydroquinone but repressed the protein level of DNA-PKcs and blocked the induction of the kinase mRNA and protein expression by hydroquinone. Moreover, hydroquinone increased the phosphorylation of Akt to activate Akt, whereas co-treatment with NU7026 prevented the activation of Akt by hydroquinone. Lastly, hydroquinone and NU7026 exhibited synergistic effects on promoting apoptosis by increasing the protein levels of pro-apoptotic proteins Bax and caspase-3 but decreasing the protein expression of anti-apoptotic protein Bcl-2. Taken together, the findings reveal a central role of DNA-PKcs in hydroquinone-induced hematotoxicity in which it coordinates DNA DSB repair, cell cycle progression, and apoptosis to regulate the response to hydroquinone-induced DNA damage.
Collapse
|
30
|
Lack of human tissue-specific correlations for rodent pancreatic and colorectal carcinogens. Regul Toxicol Pharmacol 2012; 64:442-58. [PMID: 23069141 DOI: 10.1016/j.yrtph.2012.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/12/2012] [Accepted: 10/01/2012] [Indexed: 12/14/2022]
Abstract
To better understand the relationships between chemical exposures and human cancer causation, incidence data for human cancer types were identified and pancreatic and colorectal cancers were studied in-depth to assess whether data supporting the causation of pancreatic or colorectal tumors by chemicals in rodents is predictive of causation by the same chemicals of the same tumors in humans. A search of the Carcinogenic Potency Database, the National Toxicology Program (NTP) technical report database, and the published literature identified 38 and 39 chemicals reported to cause pancreatic and colorectal tumors, respectively, in mice or rats. For each of these chemicals, searches were conducted of the International Agency for Research on Cancer monographs, the NTP Report on Carcinogens, and the published literature for evidence of induction of the same tumors in humans. Based on this evaluation, no conclusive evidence was identified to suggest that chemicals reported to cause pancreatic or colorectal tumors in rodents also cause these tumors in humans. These findings suggest that pancreatic tumor data from mouse and rat bioassays are of limited utility with regard to predicting similar tumor induction in humans. For colorectal cancer, a lack of correlation was noted for the vast majority of chemicals.
Collapse
|
31
|
Vinceti M, Rothman KJ, Crespi CM, Sterni A, Cherubini A, Guerra L, Maffeis G, Ferretti E, Fabbi S, Teggi S, Consonni D, De Girolamo G, Meggiato A, Palazzi G, Paolucci P, Malagoli C. Leukemia risk in children exposed to benzene and PM10 from vehicular traffic: a case-control study in an Italian population. Eur J Epidemiol 2012; 27:781-90. [PMID: 22892901 PMCID: PMC3493667 DOI: 10.1007/s10654-012-9727-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/28/2012] [Indexed: 02/06/2023]
Abstract
Benzene, a recognized occupational leukemogen in adults, has been hypothesized to also increase the risk of childhood leukemia. We carried out a population-based case–control study in a northern Italy community involving 83 cases with acute childhood leukemia diagnosed in the years 1998–2009 and 332 matched controls. We assessed residential exposure to benzene and to particulate matter ≤10 μm (PM10) from motorized traffic using geocoded residences and detailed emission and dispersion modeling. Exposure to benzene, and to a lesser extent to PM10, appeared to be independently associated with an excess leukemia risk. When we stratified the study population by age and by leukemia subtype, the relative risk associated with benzene exposure was higher among children aged less than 5 years, and despite small numbers this relation appeared to be considerably stronger for acute myeloid leukemia than for acute lymphoblastic leukemia. Overall, these findings suggest that exposure to low levels of benzene released from motorized traffic may increase the risk of childhood leukemia, and suggest a possible independent effect of PM10, although unmeasured confounding due to other pollutants cannot be ruled out.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Public Health Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang L, He X, Bi Y, Ma Q. Stem Cell and Benzene-Induced Malignancy and Hematotoxicity. Chem Res Toxicol 2012; 25:1303-15. [PMID: 22540379 DOI: 10.1021/tx3001169] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liping Wang
- Department of Occupational and
Environmental Toxicology, School of Public Health, Wuhan University, Wuhan, China
- Department of Basic Pharmaceutical
Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, United States
| | - Xiaoqing He
- Receptor Biology Laboratory, Toxicology
and Molecular Biology Branch, Health Effects Laboratory Division,
National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown,
West Virginia, United States
| | - Yongyi Bi
- Department of Occupational and
Environmental Toxicology, School of Public Health, Wuhan University, Wuhan, China
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology
and Molecular Biology Branch, Health Effects Laboratory Division,
National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown,
West Virginia, United States
| |
Collapse
|
33
|
Spatari G, Saitta S, Cimino F, Sapienza D, Quattrocchi P, Carrieri M, Barbaro M, Saija A, Gangemi S. Increased serum levels of advanced oxidation protein products and glycation end products in subjects exposed to low-dose benzene. Int J Hyg Environ Health 2012; 215:389-92. [DOI: 10.1016/j.ijheh.2011.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 10/22/2011] [Accepted: 11/08/2011] [Indexed: 11/17/2022]
|
34
|
Djurhuus R, Nossum V, Øvrebø S, Skaug V. Proposal on limits for chemical exposure in saturation divers' working atmosphere: the case of benzene. Crit Rev Toxicol 2012; 42:211-29. [PMID: 22304480 DOI: 10.3109/10408444.2011.650791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Saturation diving is performed under extreme environmental conditions. The divers are confined to a limited space for several weeks under high environmental pressure and elevated oxygen partial pressure. At present, divers are protected against chemical exposure by standard exposure limits only adjusted for the increased exposure length, i.e. from 8 to 24 hours a day and from 5 to 7 days a week. The objective of the present study was to indicate a procedure for derivation of occupational exposure limits for saturation diving, termed hyperbaric exposure limits (HEL). Using benzene as an example, a procedure is described that includes identification of the latest key documents, extensive literature search with defined exclusion criteria for the literature retrieved. Hematotoxicity and leukemia were defined as the critical effects, and exposure limits based upon concentration and cumulative exposure data and corresponding risks of leukemia were calculated. Possible interactions of high pressure, elevated pO₂, and continuous exposure have been assessed, and incorporated in a final suggestion of a HEL for benzene. The procedure should be applicable for other relevant chemicals in the divers' breathing atmosphere. It is emphasized that the lack of interactions from pressure and oxygen indicated for benzene may be completely different for other chemicals.
Collapse
Affiliation(s)
- Rune Djurhuus
- Norwegian Underwater Intervention AS (NUI AS), Bergen, Norway.
| | | | | | | |
Collapse
|
35
|
Goldstein BD, Liu Y, Wu F, Lioy P. Comparison of the effects of the US Clean Air Act and of smoking prevention and cessation efforts on the risk of acute myelogenous leukemia. Am J Public Health 2011; 101:2357-61. [PMID: 22021318 DOI: 10.2105/ajph.2011.300256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES We used 2 approaches based on published information to compare the impacts on leukemia incidence and benzene exposure of the 1990 US Clean Air Act (CAA) amendments and smoking prevention and cessation efforts. METHODS We extrapolated leukemia mortality related to community air pollution levels and to cigarette smoking from data from the US Environmental Protection Agency and the US Surgeon General. We also estimated relative decline in total exposures to benzene (a known human leukemogen) owing to the CAA amendments and to smoking prevention and cessation efforts. RESULTS We estimated that because of the CAA, there will be approximately 300 fewer leukemia deaths in the United States during the period 2000 through 2020. During the closest comparable period (1987-2007), we estimated that decline in cigarette smoking led to 7120 fewer leukemia deaths, of which 1282 to 3702 were attributable to benzene. Similarly, the decline in smoking led to about a tenfold greater decrease in total-population benzene exposure than did the 1990 CAA amendments. CONCLUSIONS Both the CAA and smoking cessation activities contribute to a decrease in leukemia incidence. Smoking cessation activities have had a greater effect in the past.
Collapse
|
36
|
Regev L, Wu M, Zlotolow R, Brautbar N. Hydroquinone, a benzene metabolite, and leukemia: a case report and review of the literature. Toxicol Ind Health 2011; 28:64-73. [PMID: 21511898 DOI: 10.1177/0748233711404037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydroquinone is a phenolic metabolite of benzene, a known human carcinogen. Hydroquinone is widely used in the industry. We report a case of a 43-year-old male diagnosed with antecedent myelodysplastic syndrome and acute myeloid leukemia following 16 years of occupational exposure to hydroquinone in radiographic developer solution. Cytogenetic studies revealed aberrations in chromosome 5 and chromosome 7. We review the literature on hydroquinone as a potential cause of hematolymphatic cancers and discuss the role of hydroquinone as a genotoxic and leukemogenic agent.
Collapse
Affiliation(s)
- Lee Regev
- Nachman Brautbar, M.D., Inc., Los Angeles, CA 90048, USA
| | | | | | | |
Collapse
|