1
|
Qin J, Yuchi Z. Identification of a Novel Inhibitor of Cimex lectularius Acetylcholinesterase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12498-12507. [PMID: 38771663 DOI: 10.1021/acs.jafc.4c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Acetylcholinesterase (AChE) stands as a primary target of commercial insecticides, notably organophosphates and carbamates. Despite their widespread use in agricultural and indoor pest control, concerns over their high toxicity and the emergence of resistance have restricted their efficacy. In this study, we conducted high-throughput virtual screening against both wild-type (WT) and resistant Cimex lectularius AChE utilizing a library encompassing 1 270 000 compounds. From this screening, we identified 100 candidate compounds and subsequently assessed their inhibitory effects on purified AChE enzymes. Among these candidates, AE027 emerged as a potent inhibitor against both WT and resistant AChE, exhibiting IC50 values of 10 and 43 μM, respectively. Moreover, the binding of AE027 significantly stabilized AChE, elevating its melting temperature by approximately 7 °C. Through molecular docking and molecular dynamics simulation, we delineated the binding mode of AE027, revealing its interaction with a site adjacent to the catalytic center, which is distinct from known inhibitors, with differing poses observed between WT and resistant AChE. Notably, the resistance mutation F348Y, positioned at a site directly interfacing with AE027, impedes ligand binding through steric hindrance. Furthermore, we evaluated the toxicity and pharmacokinetic properties of AE027 utilizing bioinformatics tools. These findings lay a crucial foundation for the development of a novel generation of insecticides that can combat both WT and resistant pest populations effectively and safely.
Collapse
Affiliation(s)
- Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| |
Collapse
|
2
|
Bava R, Castagna F, Palma E, Marrelli M, Conforti F, Musolino V, Carresi C, Lupia C, Ceniti C, Tilocca B, Roncada P, Britti D, Musella V. Essential Oils for a Sustainable Control of Honeybee Varroosis. Vet Sci 2023; 10:vetsci10050308. [PMID: 37235392 DOI: 10.3390/vetsci10050308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Varroa destructor parasite is the main obstacle to the survival of honey bee colonies. Pest control mainly involves the use of synthetic drugs which, used with the right criteria and in rotation, are able to ensure that infestation levels are kept below the damage threshold. Although these drugs are easy to use and quick to apply, they have numerous disadvantages. Their prolonged use has led to the emergence of pharmacological resistance in treated parasite populations; furthermore, the active ingredients and/or their metabolites accumulate in the beehive products with the possibility of risk for the end consumer. Moreover, the possibility of subacute and chronic toxicity phenomena for adult honeybees and their larval forms must be considered. In this scenario, eco-friendly products derived from plant species have aroused great interest over the years. In recent decades, several studies have been carried out on the acaricidal efficacy of plant essential oils (EOs). Despite the swarming of laboratory and field studies, however, few EO products have come onto the market. Laboratory studies have often yielded different results even for the same plant species. The reason for this discrepancy lies in the various study techniques employed as well as in the variability of the chemical compositions of plants. The purpose of this review is to take stock of the research on the use of EOs to control the V. destructor parasite. It begins with an extensive discussion of the characteristics, properties, and mechanisms of action of EOs, and then examines the laboratory and field tests carried out. Finally, an attempt is made to standardize the results and open up new lines of study in future.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Pharmaceutical Biology Laboratory, Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Carmine Lupia
- Mediterranean Etnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- National Etnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Vincenzo Musella
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Ayilara MS, Adeleke BS, Akinola SA, Fayose CA, Adeyemi UT, Gbadegesin LA, Omole RK, Johnson RM, Uthman QO, Babalola OO. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front Microbiol 2023; 14:1040901. [PMID: 36876068 PMCID: PMC9978502 DOI: 10.3389/fmicb.2023.1040901] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
Over the years, synthetic pesticides like herbicides, algicides, miticides, bactericides, fumigants, termiticides, repellents, insecticides, molluscicides, nematicides, and pheromones have been used to improve crop yield. When pesticides are used, the over-application and excess discharge into water bodies during rainfall often lead to death of fish and other aquatic life. Even when the fishes still live, their consumption by humans may lead to the biomagnification of chemicals in the body system and can cause deadly diseases, such as cancer, kidney diseases, diabetes, liver dysfunction, eczema, neurological destruction, cardiovascular diseases, and so on. Equally, synthetic pesticides harm the soil texture, soil microbes, animals, and plants. The dangers associated with the use of synthetic pesticides have necessitated the need for alternative use of organic pesticides (biopesticides), which are cheaper, environment friendly, and sustainable. Biopesticides can be sourced from microbes (e.g., metabolites), plants (e.g., from their exudates, essential oil, and extracts from bark, root, and leaves), and nanoparticles of biological origin (e.g., silver and gold nanoparticles). Unlike synthetic pesticides, microbial pesticides are specific in action, can be easily sourced without the need for expensive chemicals, and are environmentally sustainable without residual effects. Phytopesticides have myriad of phytochemical compounds that make them exhibit various mechanisms of action, likewise, they are not associated with the release of greenhouse gases and are of lesser risks to human health compared to the available synthetic pesticides. Nanobiopesticides have higher pesticidal activity, targeted or controlled release with top-notch biocompatibility and biodegradability. In this review, we examined the different types of pesticides, the merits, and demerits of synthetic pesticides and biopesticides, but more importantly, we x-rayed appropriate and sustainable approaches to improve the acceptability and commercial usage of microbial pesticides, phytopesticides, and nanobiopesticides for plant nutrition, crop protection/yield, animal/human health promotion, and their possible incorporation into the integrated pest management system.
Collapse
Affiliation(s)
- Modupe S. Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Bartholomew S. Adeleke
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Biological Sciences, Microbiology Unit, School of Science, Olusegun Agagu University of Science and Technology, Okitipupa, Nigeria
| | - Saheed A. Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Chris A. Fayose
- Department of Agricultural Technology, Ekiti State Polytechnic, Isan-Ekiti, Nigeria
| | - Uswat T. Adeyemi
- Department of Agricultural Economics and Farm Management, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria
| | - Lanre A. Gbadegesin
- Institute of Mountain Hazards and Environment, University of Chinese Academy of Sciences, Chengdu, China
| | - Richard K. Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria
| | | | - Qudus O. Uthman
- Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
| | - Olubukola O. Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
4
|
Dassanayake MK, Chong CH, Khoo TJ, Figiel A, Szumny A, Choo CM. Synergistic Field Crop Pest Management Properties of Plant-Derived Essential Oils in Combination with Synthetic Pesticides and Bioactive Molecules: A Review. Foods 2021; 10:2016. [PMID: 34574123 PMCID: PMC8467659 DOI: 10.3390/foods10092016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
The management of insect pests and fungal diseases that cause damage to crops has become challenging due to the rise of pesticide and fungicide resistance. The recent developments in studies related to plant-derived essential oil products has led to the discovery of a range of phytochemicals with the potential to combat pesticide and fungicide resistance. This review paper summarizes and interprets the findings of experimental work based on plant-based essential oils in combination with existing pesticidal and fungicidal agents and novel bioactive natural and synthetic molecules against the insect pests and fungi responsible for the damage of crops. The insect mortality rate and fractional inhibitory concentration were used to evaluate the insecticidal and fungicidal activities of essential oil synergists against crop-associated pests. A number of studies have revealed that plant-derived essential oils are capable of enhancing the insect mortality rate and reducing the minimum inhibitory concentration of commercially available pesticides, fungicides and other bioactive molecules. Considering these facts, plant-derived essential oils represent a valuable and novel source of bioactive compounds with potent synergism to modulate crop-associated insect pests and phytopathogenic fungi.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; (M.K.D.); (T.-J.K.)
| | - Chien Hwa Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Jalan Broga, Semenyih 43500, Malaysia
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; (M.K.D.); (T.-J.K.)
| | - Adam Figiel
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37a, 51-630 Wrocław, Poland;
| | - Antoni Szumny
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Chee Ming Choo
- Centre for Water Research, Faculty of Engineering, Built Environment and Information Technology, SEGi University Kota Damansara, Petaling Jaya 47810, Malaysia;
| |
Collapse
|
5
|
Li C, Cao Y, Yang J, Li M, Li B, Bu C. Acetylcholinesterase target sites for developing environmentally friendly insecticides against Tetranychus urticae (Acari: Tetranychidae). EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:419-431. [PMID: 33914192 DOI: 10.1007/s10493-021-00624-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The non-target toxicity and resistance problems of acetylcholinesterase (AChE) insecticides, such as organophosphates and carbamates, are of growing concern. To explore the potential targets for achieving inhibitor selectivity, the AChE structures at or near the catalytic pocket of Tetranychus urticae (TuAChE), honey bees, and humans were compared. The entrances to the AChE catalytic pocket differ significantly because of their different peripheral sites. The role of these potential mite-specific sites in AChE function was further elucidated by site-directed mutagenesis of these sites and then examining the catalytic activities of TuAChE mutants. The spider mite E316, H369, and V105 active sites are important for AChE function. By further analyzing their physostigmine inhibitory properties and the detailed interaction between physostigmine and TuAChE, the peripheral site H369 locating near the gorge entrance, and S154 at the oxyanion hole, affects substrate and inhibitor trafficking. The discovery of conserved mite-specific residues in Tetranychus will enable the development of safer, effective pesticides that target residues present only in mite AChEs, potentially offering effective control against this important agricultural pest.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Yang Cao
- Center for Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jin Yang
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Mengyi Li
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Bo Li
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
6
|
Abaukaka YA, Sanusi S, Ozigi KA, Malo FU. Assessment of the cytotoxic and mutagenic potential of dichlorvos (DDVP) using in silico classification model; a health hazard awareness in Nigeria. Environ Anal Health Toxicol 2020; 35:e2020016. [PMID: 32979901 PMCID: PMC7656162 DOI: 10.5620/eaht.2020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/03/2020] [Indexed: 11/11/2022] Open
Abstract
Dichlorvos (DDVP) has been abused in Nigeria for suicide attempts, topical applications to treat an ectoparasitic infestation, and indiscriminate use on farm produce. Exposure to this compound in subacute concentration can cause toxicity in different tissues by alteration of the cellular antioxidative defence mechanism. This analysis is aimed at the systematic profiling of DDVP to assess its cytotoxic and mutagenic potential for human vulnerability using an in silico classification model. DDVP was grouped into categories of analogue chemical compounds generated from inventories based on structural alerts that measure the biological effects on cell lines and animal models using the quantitative structure-activity relationship (QSAR) model. The cytotoxic and mutagenic potential of DDVP was assessed by analyzing target endpoints like skin sensitization, oral/inhalation toxicity, neurotoxicity and mutagenicity. DDVP shows moderate sensitization potential that can induce skin irritation during prolonged exposure because of the presence of dichlorovenyl side-chain that interacts with cellular proteins and causes degradation. 50% lethal dose (LD50) of DDVP per body weight was determined to be 26.2 mg/kg in a rat model at 95% confidence range for acute oral toxicity, and 14.4 mmol/L was estimated as 50% lethal concentration (LC50) in the atmosphere due to acute inhalation toxicity. DDVP can also inhibit acetylcholinesterase in the nervous system to produce nicotinic and muscarinic symptoms like nausea, vomiting, lacrimation, salivation, bradycardia, and respiratory failure may cause death. The widely used pesticide causes weak DNA methylation which can repress gene transcription on promoter sites. DDVP is volatile so it can cause oral and inhalation toxicity coupled with neurotoxicity during prolonged exposure. Serum cholinesterase blood tests should be encouraged in federal and state hospitals to investigate related health challenges as DDVP is still used in Nigeria.
Collapse
Affiliation(s)
| | - Salihu Sanusi
- Tehran University of Medical Sciences, No. 226, Qods St., Keshavarz Blvd., Tehran, Iran
| | - Kabir Abdullahi Ozigi
- Tehran University of Medical Sciences, No. 226, Qods St., Keshavarz Blvd., Tehran, Iran
| | | |
Collapse
|
7
|
Mohamed MA, Shaalan S, Ghazy AEM, Ali AA, Abd-Elaziz AM, Ghanem MME, Abd-Elghany SA. Purification and characterization of acetylcholinesterase in Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Int J Biol Macromol 2019; 147:1029-1040. [PMID: 31751747 DOI: 10.1016/j.ijbiomac.2019.10.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Red palm weevil (RPW), Rhynchophorus ferrugineus, is one of the most destructive pests of cultivated palm trees. The application of synthetic insecticides is currently a main strategy for RPW control. In this study we estimated the distribution of acetylcholinesterase (AChE), as a detoxifying enzyme and the target site of inhibition by insecticides, using ASChI as substrate in different organs of the pest including whole gut, cuticle, fat body, head and haemolymph. The activity ranged from 314.9 to 3868 U in individual organs while the specific activity ranged from 99 to 340.8 U/mg proteins; the cuticle had the highest enzyme level. During larval development, the 11th instar larvae had the highest enzyme content with 5630 U in the cuticle, with a specific activity of 140 U/mg protein. The two major AChE isoenzymes were purified by chromatography on gel filtration and ion exchange columns. They had specific activities of 3504.3 and 2979 U/mg protein, molecular weights of 33 and 54 kDa and activation energies of 8.3 and 4.4 kcal/mol, respectively. Both isoenzymes had monomeric forms, optimum activity at pH 8.0 and 40 °C, were completely inhibited by Hg2+ and Cu2 and showed similar trends towards the inhibitors eserine, BW284C51 and iso-OMPA. The catalytic properties were compared with those previously recorded for different insect species. This work will pave the way for more studies for improving the understanding of insecticide resistance and developing the field application of synthetic insecticides for controlling R. ferrugineus to ensure successful application.
Collapse
Affiliation(s)
- Magda A Mohamed
- Molecular Biology Department, National Research Centre, 33-El Bohouth st. Dokki, P.O.12622, Giza, Egypt.
| | - Shebl Shaalan
- Zoology Department, Faculty of Science, Cairo University, P.O.12316, Giza, Egypt
| | - Abd-Elhady M Ghazy
- Molecular Biology Department, National Research Centre, 33-El Bohouth st. Dokki, P.O.12622, Giza, Egypt
| | - Atef A Ali
- Zoology Department, Faculty of Science, Cairo University, P.O.12316, Giza, Egypt
| | - Ahmed M Abd-Elaziz
- Molecular Biology Department, National Research Centre, 33-El Bohouth st. Dokki, P.O.12622, Giza, Egypt
| | - Manal M E Ghanem
- Molecular Biology Department, National Research Centre, 33-El Bohouth st. Dokki, P.O.12622, Giza, Egypt
| | - Sarah A Abd-Elghany
- Molecular Biology Department, National Research Centre, 33-El Bohouth st. Dokki, P.O.12622, Giza, Egypt
| |
Collapse
|
8
|
Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M. Molecular Targets for Components of Essential Oils in the Insect Nervous System-A Review. Molecules 2017; 23:E34. [PMID: 29295521 PMCID: PMC5943938 DOI: 10.3390/molecules23010034] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/29/2022] Open
Abstract
Essential oils (EOs) are lipophilic secondary metabolites obtained from plants; terpenoids represent the main components of them. A lot of studies showed neurotoxic actions of EOs. In insects, they cause paralysis followed by death. This feature let us consider components of EOs as potential bioinsecticides. The inhibition of acetylcholinesterase (AChE) is the one of the most investigated mechanisms of action in EOs. However, EOs are rather weak inhibitors of AChE. Another proposed mechanism of EO action is a positive allosteric modulation of GABA receptors (GABArs). There are several papers that prove the potentiation of GABA effect on mammalian receptors induced by EOs. In contrast, there is lack of any data concerning the binding of EO components in insects GABArs. In insects, EOs act also via the octopaminergic system. Available data show that EOs can increase the level of both cAMP and calcium in nervous cells. Moreover, some EO components compete with octopamine in binding to its receptor. Electrophysiological experiments performed on Periplaneta americana have shown similarity in the action of EO components and octopamine. This suggests that EOs can modify neuron activity by octopamine receptors. A multitude of potential targets in the insect nervous system makes EO components interesting candidates for bio-insecticides.
Collapse
Affiliation(s)
- Milena Jankowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| | - Joanna Wyszkowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| | - Maria Stankiewicz
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
9
|
Carlier PR, Bloomquist JR, Totrov M, Li J. Discovery of Species-selective and Resistance-breaking Anticholinesterase Insecticides for the Malaria Mosquito. Curr Med Chem 2017; 24:2946-2958. [PMID: 28176636 DOI: 10.2174/0929867324666170206130024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/20/2016] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
Great reductions in malaria mortality have been accomplished in the last 15 years, in part due to the widespread roll-out of insecticide-treated bednets across sub-Saharan Africa. To date, these nets only employ pyrethroids, insecticides that target the voltage-gated sodium ion channel of the malaria vector, Anopheles gambiae. Due to the growing emergence of An. gambiae strains that are resistant to pyrethroids, there is an urgent need to develop new public health insecticides that engage a different target and possess low mammalian toxicity. In this review, we will describe efforts to develop highly species-specific and resistance-breaking inhibitors of An. gambiae acetylcholinesterase (AgAChE). These efforts have been greatly aided by advances in knowledge of the structure of the enzyme, and two major inhibitor design strategies have been explored. Since AgAChE possesses an unpaired Cys residue not present in mammalian AChE, a logical strategy to achieve selective inhibition involves design of compounds that could ligate that Cys. A second strategy involves the design of new molecules to target the catalytic serine of the enzyme. Here the challenge is not only to achieve high inhibition selectivity vs human AChE, but also to demonstrate toxicity to An. gambiae that carry the G119S resistance mutation of AgAChE. The advances made and challenges remaining will be presented. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity".
Collapse
Affiliation(s)
- Paul R Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061. United States
| | - Jeffrey R Bloomquist
- Department of Entomology and Nematology and Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610-00009. United States
| | - Max Totrov
- Molsoft LLC, 11199 Sorrento Valley Road, San Diego, CA 92121. United States
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061. United States
| |
Collapse
|
10
|
Bu C, Peng B, Cao Y, Wang X, Chen Q, Li J, Shi G. Novel and selective acetylcholinesterase inhibitors for Tetranychus cinnabarinus (Acari: Tetranychidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:129-135. [PMID: 26520174 DOI: 10.1016/j.ibmb.2015.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
The carmine spider mite, Tetranychus cinnabarinus (Acari: Tetranychidae), is an economically important and extremely polyphagous herbivorous pest, with the title of "resistance champion" among arthropods. Anticholinesterase insecticides such as organophosphate and carbamate account for more than one-third of global insecticide sales. The non-target toxicity and resistance problem of organophosphate and carbamate have become of growing concern, which may be due to the fact that they target the ubiquitous catalytic serine residue of acetylcholinesterase (AChE) in mammals, birds, and beneficial insects. In this study, the structural differences between T. cinnabarinus AChE and human AChE, at or near the catalytic pocket, were illustrated. From the SPECS chemical lead-compound database, 55 AChE inhibitor candidates were screened for high affinity for T. cinnabarinus AChE, but low affinity for human AChE, using the DOCK 6 and AutoDock Vina software. Three of the fifty-five candidates had inhibitory activity greater than that of the reversible AChE inhibitor eserine, with no observed inhibitory activities against human AChE. Two of the three had toxicity to T. cinnabarinus comparable to that of natural insecticidal pyrethrins. However, their potency is low compared with that of etoxazole, and further work is needed to optimize their potency. The selectivity of the three compounds over human and mite AChE may be due to their interaction with the mite-specific residues, as analyzed by Cyscore. The three compounds are potential lead compounds for development of novel acaricides against T. cinnabarinus with reduced toxicity to non-target species and a low propensity for resistance.
Collapse
Affiliation(s)
- Chunya Bu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture People's Republic of China, Beijing University of Agriculture, Beijing 102206, China
| | - Bo Peng
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yang Cao
- Center for Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaoqin Wang
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture People's Republic of China, Beijing University of Agriculture, Beijing 102206, China
| | - Qing Chen
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture People's Republic of China, Beijing University of Agriculture, Beijing 102206, China
| | - Jinling Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Guanglu Shi
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture People's Republic of China, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
11
|
Bu CY, Feng XJ, Wang XQ, Cao Y, Wang YN, Chen Q, Gao P, Peng B, Li JL, Han JY, Shi GL. Cloning and Characterization of the Acetylcholinesterase1 Gene of Tetranychus cinnabarinus (Acari: Tetranychidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:769-779. [PMID: 26470189 DOI: 10.1093/jee/tou046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 11/21/2014] [Indexed: 06/05/2023]
Abstract
The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is a major agriculture pest. It can be found worldwide, has an extensive host plant range, and has shown resistance to pesticides. Organophosphate and carbamate insecticides account for more than one-third of all insecticide sales. Insecticide resistance and the toxicity of organophosphate and carbamate insecticides to mammals have become a growing concern. Acetylcholinesterase (AChE) is the major targeted enzyme of organophosphate and carbamate insecticides. In this study, we fully cloned, sequenced and characterized the ace1 gene of T. cinnabarinus, and identified the differences between T. cinnabarinus AChE1, Tetranychus urticae Koch AChE1, and human AChE1. Resistance-associated target-site mutations were displayed by comparing the AChE amino acid sequences and their AChE three-dimensional (3D) structures of the insecticide-susceptible strains of T. cinnabarinus and T. urticae to that of a T. urticae-resistant strain. We identified variation in the active-site gorge and the sites interacting with gorge residues by comparing AChE1 3D structures of T. cinnabarinus, T. urticae, and humans, though their 3D structures were similar. Furthermore, the expression profile of T. cinnabarinus AChE, at the different developmental stages, was determined by quantitative real-time polymerase chain reaction; the transcript levels of AChE were higher in the larvae stage than in other stages. The changes in AChE expression between different developmental stages may be related to their growth habits and metabolism characteristics. This study may offer new insights into the problems of insecticide resistance and insecticide toxicity of nontarget species.
Collapse
Affiliation(s)
- Chun-Ya Bu
- College of Biology Science and Engineering, Beijing University of Agriculture, Beijing 102206 China. Key Laboratory of Urban Agriculture (North) Ministry of Agriculture P. R. China, Beijing University of Agriculture Beijing, 102206 China
| | - Xiao-Jiao Feng
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206 China
| | - Xiao-Qin Wang
- College of Biology Science and Engineering, Beijing University of Agriculture, Beijing 102206 China. Key Laboratory of Urban Agriculture (North) Ministry of Agriculture P. R. China, Beijing University of Agriculture Beijing, 102206 China
| | - Yang Cao
- Center for Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - You-Nian Wang
- College of Biology Science and Engineering, Beijing University of Agriculture, Beijing 102206 China. Key Laboratory of Urban Agriculture (North) Ministry of Agriculture P. R. China, Beijing University of Agriculture Beijing, 102206 China
| | - Qing Chen
- College of Biology Science and Engineering, Beijing University of Agriculture, Beijing 102206 China. Key Laboratory of Urban Agriculture (North) Ministry of Agriculture P. R. China, Beijing University of Agriculture Beijing, 102206 China
| | - Pin Gao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206 China
| | - Bo Peng
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206 China
| | - Jin-Ling Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206 China
| | - Jing-Yu Han
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206 China
| | - Guang-Lu Shi
- College of Biology Science and Engineering, Beijing University of Agriculture, Beijing 102206 China. Key Laboratory of Urban Agriculture (North) Ministry of Agriculture P. R. China, Beijing University of Agriculture Beijing, 102206 China. Corresponding author, e-mail:
| |
Collapse
|
12
|
Chan HH, Wajidi MFF, Zairi J. Molecular cloning and xenobiotic induction of seven novel cytochrome P450 monooxygenases in Aedes albopictus. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:163. [PMID: 25399430 PMCID: PMC5634052 DOI: 10.1093/jisesa/ieu025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/02/2013] [Indexed: 06/04/2023]
Abstract
Cytochrome P450 monooxygenase (P450) is a superfamily of enzymes that is important in metabolism of endogenous and exogenous compounds. In insects, these enzymes confer resistance to insecticides through its metabolic activities. Members of P450 from family 6 in insects are known to play a role in such function. In this study, we have isolated seven novel family 6 P450 from Aedes albopictus (Skuse) (Diptera: Culicidae), a vector of dengue and chikungunya fever. Induction profile of these seven genes was studied using several insecticides and xenobiotics. It was found that deltamethrin and permethrin did not induce expression of any genes. Another insecticide, temephos, inhibited expression of CYP6P15 for fivefold and twofold for CYP6N29, CYP6Y7, and CYP6Z18. In addition, copper II sulfate induced expression of CYP6M17 and CYP6N28 for up to sixfold. Benzothiazole (BZT), a tire leachate induced the expression of CYP6M17 by fourfold, CYP6N28 by sevenfold, but inhibited the expression of CYP6P15 for threefold and CYP6Y7 for twofold. Meanwhile, piperonyl butoxide (PBO) induced the expression CYP6N28 (twofold), while it inhibited the expression of CYP6P15 (fivefold) and CYP6Y7 (twofold). Remarkably, all seven genes were induced two- to eightfold by acetone in larval stage, but not adult stage. Expression of CYP6N28 was twofold higher, while expression of CYP6P15 was 15-fold lower in adult than larva. The other five P450s were not differentially expressed between the larvae and adult. This finding showed that acetone can be a good inducer of P450 in Ae. albopictus. On the other hand, temephos can act as good suppressor of P450, which may affect its own bioefficacy because it needs to be bioactivated by P450. To the best of our knowledge, this is the first report on acetone-inducible P450 in insects. Further study is needed to characterize the mechanisms involved in acetone induction in P450.
Collapse
Affiliation(s)
- Hiang Hao Chan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Jaal Zairi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia
| |
Collapse
|
13
|
Zemolin APP, Cruz LC, Paula MT, Pereira BK, Albuquerque MP, Victoria FC, Pereira AB, Posser T, Franco JL. Toxicity induced by Prasiola crispa to fruit fly Drosophila melanogaster and cockroach Nauphoeta cinerea: evidence for bioinsecticide action. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:115-124. [PMID: 24555652 DOI: 10.1080/15287394.2014.866927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The adverse effects of the alga Prasiola crispa extract (PcE) were investigated in a fruit fly (Drosophila melanogaster) and cockroach (Nauphoeta cinerea) model. In flies, toxicity was assessed as mortality and biochemical alterations including acetylcholinesterase (AChE) activity and oxidative stress markers. The cardiotoxic action of PcE was also examined in a model of semi-isolated cockroach heart. The administration of PcE (2 mg/ml) to flies for 24 h resulted in a marked increase in mortality rate (7.6-fold rise compared to control). AChE activity, glutathione (GSH) levels, and hydroperoxide formation remained unchanged. Fly glutathione S-transferase (GST) and catalase (CAT) activity were significantly altered after PcE treatment. Fraction III (ethyl acetate) of PcE was significantly more toxic to flies compared to fractions I (methanol) and II (ethanol). A significant decrease was noted in cockroach semi-isolated heart function. The addition of 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB), an oxidizing agent, concomitant with the extract significantly blocked this effect, suggesting that reduced compounds may be involved in the cardiotoxic action produced by PcE. Our results show for the first time the adverse effects of PcE in two insect models, Drosophila melanogaster and Nauphoetacinerea. The insecticidal properties of PcE may be related to changes in important antioxidant/detoxifying systems, as well as to changes in insect cardiac function.
Collapse
|
14
|
Pang YP, Brimijoin S, Ragsdale DW, Zhu KY, Suranyi R. Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides. Curr Drug Targets 2012; 13:471-82. [PMID: 22280344 PMCID: PMC3343382 DOI: 10.2174/138945012799499703] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/01/2011] [Accepted: 12/09/2011] [Indexed: 12/01/2022]
Abstract
Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | | | |
Collapse
|